Convergence of Proper Distance along a $t=$ constant curve to Event Horizon

Einstein and Rosen were concerned that the metrical coefficient

$$
g_{11}=\frac{1}{1-2 m / r}
$$

diverges as $\mathrm{r} \rightarrow 2 \mathrm{~m}$. We can see, however, that there is no divergence in the proper distances it assigns. On a curve of constant t, θ and ϕ, this metrical coefficient assigns a proper length to a coordinate difference $d r$

$$
\frac{d r}{\sqrt{1-2 m / r}}=\frac{r^{2} d r}{\sqrt{r-2 m}}
$$

The proper distance along the curve from a point with $r=R>2 m$ to one with $r=2 m$ is

$$
\int_{r=2 m}^{R} \frac{r^{2} d r}{\sqrt{r-2 m}}=\int_{r=2 m}^{R} \frac{r^{2} d(r-2 m)}{\sqrt{r-2 m}}=
$$

We do not need to evaluate this integral exactly. Our real concern is whether the divergence of g_{11} leads the integral to diverge.

The fast way to see that this proper length does not diverge is just to look at the integral for R very close to $2 m$. This is where the divergence would arise, if it is to happen. There we can approximate r^{2} as $4 m^{2}$ and, writing $x=r-2 m$ and $X=R-2 m$, the integral is approximately

$$
\int_{r=2 m}^{R} \frac{r^{2} d(r-2 m)}{\sqrt{r-2 m}} \approx 4 m^{2} \int_{x=0}^{X} \frac{d x}{\sqrt{x}}=8 m^{2} \sqrt{x}_{x=0}^{x=x}=8 m^{2} \sqrt{X}=8 m^{2} \sqrt{R-2 m}
$$

which is finite.
A more precise calculation confines the integral to a finite interval. Since $2 m<r<R$ for all but the end points of the interval of integration, we have

$$
\int_{r=2 m}^{R} \frac{4 m^{2} d(r-2 m)}{\sqrt{r-2 m}}<\int_{r=2 m}^{R} \frac{r^{2} d(r-2 m)}{\sqrt{r-2 m}}<\int_{r=2 m}^{R} \frac{R^{2} d(r-2 m)}{\sqrt{r-2 m}}
$$

The integrals at the extremes of this interval are easily computed through

$$
\int_{r=2 m}^{R} \frac{d(r-2 m)}{\sqrt{r-2 m}}=2 \sqrt{r-2 m}_{r=2 m}^{r=R}=2 \sqrt{R-2 m}
$$

Hence the proper length from a point with $r=R>2 m$ to one with $r=2 m$ lies in the interval

$$
8 m^{2} \sqrt{R-2 m}<\int_{r=2 m}^{R} \frac{d r}{\sqrt{1-2 m / r}}<4 R \sqrt{R-2 m}
$$

and is finite.

$$
\int_{r=2 m}^{r=R} d r / \sqrt{1-2 m / r}=\int_{r=2 m}^{r=R} d \sqrt{x}={\sqrt{r^{2}-2 m}}_{r=2 m}^{r=R}=\sqrt{R^{2}-2 m}
$$

