B 00 K III.

In the preceding Books I have laid down the principles of philosophy, principles not philosophical, but mathematical: such, to wit, as we may build our reasonings upon in philosophical inquiries. These principles are the laws and conditions of certain motions, and powers or forces, which chiefly have respect to philosophy; but, lest they should have appeared of themselves dry and barren, I have illustrated them here and there with some philosophical scholiums, giving an account of such things as are of more general nature, and which philosophy seems chiefly to be founded on; such as the density and the resistance of bodies, spaces void of all bodies, and the motion of light and sounds. It remains that, from the same principles, I now demonstrate the frame of ti.e System of the World. Upon this subject I had, indeed, composed the third Book in a popular method, that it might be read by many; but afterward, considering that such as had not sufficiently entered into the principles could not easily discern the strength of the consequences, nor lay aside the prejudices to which they had been many years accustomed, therefore, to prevent the disputes which might be raised upon such accounts, I chose to reduce the substance of this Book into the form of Propositions (in the mathematical way), which should be read by those only who had first made themselves masters of the principles established in the preceding Books: not that I would advise any one to the previous study of every Proposition of those Books; for they abound with such as might cost too much time, even to readers of good mathematical learning. It is enough if one carefully reads the Definitions, the Laws of Motion, and the first three Sections of the first Book. He may then pass on to this Book, and consult such of the remaining Propositions of the first two Books, as the references in this, and his occasions, shall require.

RULES OF REASONING IN PHILOSOPHY.

RULE I.

 We are to admit no more causes of natural things than such as are bothtrue and sufficient to explain their appearances.

To this purpose the philosophers say that Nature does nothing in vain, and more is in vain when less will serve; for Nature is pleased with sımplicity, and affects not the pomp of superfluous causes.

RULE II.

Therefore to the same natural effects we must, as far as pissible, assign the same causes.
As to respiration in a man and in a beast; the descent of stones in Europe and in America; the light of our culinary fire and of the sun; the reflection of light in the earth, and in the planets.

RULE III.

The qualities of bodies, which admit neither intension nor remission of degrees, and which are found to belong to all bodies within the reach of our experiments, are to be esteemed the universal qualities of all bodies whatsoever.
For since the qualities of bodies are only known to us by experiments, we are to hold for universal all such as universally agree with experiments; and such as are not liable to diminution can never be quite taken away. We are certainly not to relinquish the evidence of experiments for the sake of dreams and vain fictions of our own devising; nor are we to recede from the analogy of Nature, which uses to be simple, and always consonant to itself. We no other way know the extension of bodies than by our senses, nor do these reach it in all bodies; but because we perceive extension in all that are sensible, therefore we ascribe it universally to all others also. That abundance of bodies are hard, we learn by experience; and because the hardness of the whole arises from the hardness of the parts, we therefore justly infer the hardness of the undivided particles not only of the bodies we feel but of all others. That all bodies are impenetrable, we gather not from reason, but from sensation. The bodies which we handle we find impenetrable, and thence conclude impenetrability to be an universal property of all bodies whatsoever. That all bodies are moveable, and endowed with certain powers (which we call the vires inertia) of persevering in their motion, or in their rest, we only infer from the like properties observed in the
bodies which we have seen. The extension, hardness, impenetrability, mobility, and vis inertice of the whole, result from the extension, hardness, impenetrability, mobility, and vires inertice of the parts; and thence we conclude the least particles of all bodies to be also all extended, and hard and impenetrable, and moveable, and endowed with their proper vires inertia. And this is the foundation of all philosophy. Moreover, that the divided but contiguous particles of bodies may be separated from one another, is matter of observation; and, in the particles that remain undivided, our minds are able to distinguish yet lesser parts, as is mathematically demonstrated. But whether the parts so distinguished, and not yet divided, may, by the powers of Nature, be actually divided and separated from one another, we cannot certainly determine. Yet, had we the proof of but onc experiment that any undivided particle, in breaking a hard and solid body. suffered a division, we might by virtue of this rule conclude that the undivided as well as the divided particles may be divided and actually separated to infinity.

Lastly, if it universally appears, by experiments and astronomical observations, that all bodies about the earth gravitate towards the earth, and that in proportion to the quantity of matter which they severally contain; that the moon likewise, according to the quantity of its matter, gravitates towards the earth; that, on the other hand, our sea gravitates towards the moon; and all the planets mutually one towards another; and the comets in like manner towards the sun ; we must, in consequence of this rule, universally allow that all bodies whatsoever are endowed with a principle of mutual gravitation. For the argument from the appearances concludes with more force for the universal gravitation of all bodies than for their impenetrability; of which, among those in the celestial regions, we have no experiments, nor any manner of observation. Not that I affirm gravity to be essential to bodies: by their vis insita I mean nothing but their vis inertice, This is immutable. Their gravity is diminished as they recede from the earth.

RULE IV.

fin experimental philosophy we are to look upon propositions collected by general induction from phonomena as accurately or very nearly true, notwithstanding any contrary hypotheses that may be imagined, till such time as other phucnomena occur, by which they may either be made more accurate, or liable to exceptions.
This rule we must follow, that the argament of induction may not be evaded by hypotheses.

PHENOMENA, OR APPEARANCES.

PHANOMENON I.

That the circumjovial planets, by radii drawn to Jupiter's centre, describe areas proportional to the times of description; and that their periodic times, the fixed stars being at rest, are in the sesquiplicate proportion of their distances from its centre.
This we know from astronomical observations. For the orbits of these planets differ but insensibly from circles concentric to Jupiter; and their motions in those circles are found to be uniform. And all astronomers agree that their periodic times are in the sesquiplicate proportion of the semi-diameters of their orbits; and so it manifestly appears from the fol${ }^{1}$ owing table.

The periodic times of the satellites of Jupiter.
$1^{\mathrm{d}} .18^{\mathrm{b}} .27^{\prime} .34^{\prime \prime} .3^{\mathrm{d}} .13^{\mathrm{b}} .13^{\prime} 42^{\prime \prime} .7^{\mathrm{d}} .3^{\mathrm{h}} .42^{\prime} 36^{\prime \prime} .16^{\mathrm{d}} .16^{\mathrm{b}} .32^{\prime} 9^{\prime \prime}$.
The distances of the satellites from Jupiter's centre.

From the observations of	1	2	3	4	semi-diameter of Jupiter.
Borelli	5\%	${ }^{8 \frac{2}{3}}$	14	$24{ }^{2}$	
Townly by the Microm.	5,52	8,78	13,47	24,72	
Cassini by the Telescope . $\dot{\text { Cassini by the eclip of the satel. }}$.	5 5 5 5 5	8 9	13 $14 \frac{2}{6} \frac{3}{0}$	$\left\lvert\, \begin{aligned} & 23 \\ & 25_{1} \frac{3}{10} \end{aligned}\right.$	
From the periodic times	5,667	$\overline{9,017}$	14,384	$\frac{25,299}{}$	

Mr. Pound has determined, by the help of excellent micrometers, the diameters of Jupiter and the elongation of its satellites after the following manner. The greatest heliocentric elongation of the fourth satellite from Jupiter's centre was taken with a micrometer in a 15 feet telescope, and at ine mean distance of Jupiter from the earth was found about $8^{\prime} 16^{\prime \prime}$. The elongation of the third satellite was taken with a micrometer in a telescope of 123 feet, and at the same distance of Jupiter from the earth was found $4^{\prime} 42^{\prime \prime}$. The greatest elongations of the other satellites, at the same distance of Jupiter from the earth, are found from the periodic times to be \mathbb{Z}^{\prime} $56^{\prime \prime} 47^{\prime \prime \prime}$, and $1^{\prime} 51^{\prime \prime} 6^{\prime \prime \prime}$.
The diameter of Jupiter taken with the micrometer in a 123 feet telescope several times, and reduced to Jupiter's mean distance from the earth, proved always less than $40^{\prime \prime}$, never less than $38^{\prime \prime}$, generally $39^{\prime \prime}$. This diameter in shorter telescopes is $40^{\prime \prime}$, or $41^{\prime \prime}$; for Jupiter's light is a little dilated by the unequal refrangibility of the rays,' and this dilatation bears 2 less ratio to the diameter of Jupiter in the longer and more perfect teleescopes than in those which are shorter and less perfect. The times :"
which two satellites, the first and the third, passed over Jupiter's body, were observed, from the beginning of the ingress to the begianing of the egress, and from the complete ingress to the complete egress, with the long telescope. And from the transit of the first satellite, the diameter of Jupiter at its mean distance from the earth came forth $37 \frac{1}{8}{ }^{\prime \prime}$: and from the transit of the third $37 \frac{3}{8}{ }^{\prime \prime}$. There was observed also the time in which the shadow of the first satellite passed over Jupiter's body, and thence the diameter of Jupiter at its mean distance from the earth came out about $37^{\prime \prime}$. Let us suppose its diameter to be $37 \frac{1^{\prime \prime}}{}$ very nearly, and then the greatest elongations of the first, second, third, and fourth satellite will be respectively equal to $5,965,9,494,15,141$, and 26,63 semi-diameters of Jupiter.

PH.ENOMENON II.

That the circumsaturnal planets, by radii drawn to Saturn's centre, describe areas proportional to the times of description; and that their. periodic times, the fixed stars being at rest, are in the sesquiplicate proportion of their distances from its centre.
For, as Cassini from his own observations has determined, their distances from Saturn's centre and their periodic times are as follow.

The periodic times of the satellites of Saturn.
$1^{\mathrm{d}} .21^{\mathrm{h}} .18^{\prime} 27^{\prime \prime} .22^{\mathrm{d}} .17^{\mathrm{h}} .41^{\prime} 22^{\prime \prime} .4^{\mathrm{d}} .12^{\mathrm{h}} .25^{\prime} 12^{\prime \prime} .15^{\mathrm{d}} .22 \mathrm{~h} .41^{\prime} 14^{\prime \prime}$, $79^{\prime 1} .7^{11} .48^{\prime} 00^{\prime \prime}$.
The distances of the satellites from Saturn's centre, in semi-diameters of

> it: ring.

From observations $1 \frac{1}{2} \frac{9}{9}$. $2 \frac{1}{2}$. $3 \frac{1}{2}$. 8. 24 From the periodic times . . . 1,93. 2,47. 3,45. 8. 23,35. The greatest elongation of the fourth satellite from Saturn's centre is commonly determined from the observations to be eight of these semidiameters very nearly. But the greatest elongation of this satellite from Saturn's centre, when taken with an excellent micrometer in Mr. Huygrens' telescope of 123 feet, appeared to be eight semi-diameters and $\frac{7}{10}$ of a semidiameter. And from this observation and the periodic times the distances of the satellites from Saturn's centre in semi-diameters of the ring are 2,1. 2,69. 3,75. 8,7. and 25,35. The diameter of Saturn observed in the same telescope was found to be to the diameter of the ring as 3 to 7 ; and the diameter of the ring, May 28-29, 1719, was found to be $43^{\prime \prime}$; and thence the diameter of the ring when Saturn is at its mean distance from the earth is $42^{\prime \prime}$, and the diameter of Saturn $18^{\prime \prime}$. These things appear so in very long and excellent telescopes, because in such telescopes the apparent magnitudes of the heavenly bodies bear a greater proportion to the dilatation of light in the extremities of those bodies than in shorter telescopes,

If we, then, reject all the spurious light, the diameter of Saturn will not amount to more than $16^{\prime \prime}$.

PHENOMENON III.

That the five primary planets, Mercury, Veruus, Mars, Jupiter, and Saturn, with their several orbits, encompass the sun.
That Mercury and Venus revolve about the sun, is evident from their moon-like appearances. When they shine out with a full face, they are, in respect of us, beyond or above the sun; when they appear half full, they are about the same height on one side or other of the sun; when horned, they are below or between us and the sun; and they are sometimes, when directly under, seen like spots traversing the sun's disk. 'That Mars surrounds the sun, is as plain from its full face when near its conjunction with the sun, and from the gibbous figure which it shews in its quadratures. And the same thing is demonstrable of Jupiter and Saturn, from their appearing full in all situations; for the shadows of their satellites that appear sometimes upon their disks make it plain that the light they shine with is not their own, but borrowed from the sun.

PHENOMENON IV.

That the fixed stars being at rest, the periodic times of the five primary planets, rud (whether of the sun about the earth, or) of the earth about the sun, are in the sesquiplicate proportion of their mean distances from the sun.
This proportion, first observed by Kepler, is now received by all astronomers; for the periodic times are the same, and the dimensions of the orbits are the same, whether the sun revolves about the earth, or the earth abnut the sun. And as to the measures of the periodic times, all astronomers are agreed about them. But for the dimensions of the orbits, Kepler and Bullialdus, above all others, have determined them from observations with the greatest accuracy; and the mean distances corresponding to the periodic times differ but insensibly from those which they have assigned, and for the most part fall in between them; as we may see from the following table.
The periodic times with respect to the fixed stars, of the planets and earth revolving about the sum, in days and decimal parts of a day.

10759,275. 4332,514. 686,9785. 365,2565. 224,6176. 87,9692.
The mean distances of the planets and of the earth from the sun.

As to Mercury and Venus, there can be no doubt about their distances from the sun; for they are determined by the elongations of those planets from the sun; and for the distances of the superior planets, all dispute is cut off by the eclipses of the satellites of Jupiter. For by those eclipses the position of the shadow which Jupiter projects is determined; whence we have the heliocentric longitude of Jupiter. And from its heliocentric and geocentric longitudes compared together, we determine its distance.

PHENOMENON V.

Then the primary planets, by radii drawn to the earth, describe areas no wise proportional to the times; but that the areas which they describe by radii drawn to the sum are proportional to the times of description.
For to the earth they appear sometimes direct, sometimes stationary, nay, and sometimes retrograde. But from the sun they are always seen direct, and to proceed with a motion nearly uniform, that is to say, a little swifter in the perihelion and a little slower in the aphelion distances, so as to maintain an equality in the description of the areas. This a noted proposition among astronomers, and particularly demonstrable in Jupiter, from the eclipses of his satellites; by the help of which eclipses, as we have said, the heliocentric longitudes of that planet, and its distances from the sun, are determined.

PHENOMENON VI.

That the moon, by a radius dravon to the earth's centre, describes an area proportional to the time of description.
This we gather from the apparent motion of the moon, compared with its apparent diameter. It is true that the motion of the moon is a little disturbed by the action of the sun: but in laying down these Phænomena I neglect those amall and inconsiderable errors.

PROPOSITIONS.

PROPOSITION I. THEOREM I.

That the forces by which the circumjovial planets are continually drawn off from rectilinear motions, and retained in their proper orbits, tend to Jupiter's centre ; and are reciprocally as the squares of the distances of the places of those planets from that centre.
The former part of this Proposition appears from Phæn. I, and Prop. II or III, Book I; the latter from Phæn. I, and Cor. 6, Prop. IV, of the same Book.

The same thing we are to understand of the planets which encompass Saturn, by Phæn. II.

PROPOSITION II. THEOREM II.

That the forces by which the primary planets are continually drawn off from rectilinear motions, and retained in their proper orbits, tend to the sun ; aud are reciprocally as the squares of the distances of the places of those planets from the sun's cemtre.
The former part of the Proposition is manifest from Phæn. V, and Prop. II, Book I; the latter from Phæn. IV, and Cor. 6, Prop. IV, of the same Book. But this part of the Proposition is, with great accuracy, demonstrable from the quiescence of the aphelion points; for a very small aberration from the reciprocal duplicate proportion would (by Cor. 1, Prop. XLV, Book I) produce a motion of the apsides sensible enough in every single revolution, and in many of them enormously great.

PROPOSITION III. 'THEOREM III.

That the force by which the mon is retained in its orlit tends to the earth; and is reciprocally as the square of the distance of its place from the earth's centre.
The former part of the Proposition is evident from Phæn. VI, and Prop. II or III, Book I; the latter from the very slow motion of the moon's apogee; which in every single zevolution amounting but to $3^{\circ} 3^{\prime}$ in consequentia, may be neglected. For (by Cor. 1, Prop. XLV, Book I) it appears, that, if the distance of the moon from the earth's centre is to the semi-diameter of the earth as D to 1 , the force, from which such a motion will result, is reciprocally as $D^{2} \frac{4}{2} \frac{4}{3}$, i. e., reciprocally as the power of D, whose exponent is $2_{\frac{-4}{43}}$; that is to say, in the proportion of the distance something greater than reciprocally duplicate, but which comes $59 \frac{3}{4}$ timez nearer to the duplicate than to the triplicate proportion. But in regard that this motion is owing to the action of the sun (as we shall afterwards
shew), it is here to be neglected. The action of the sun, attracting the moon from the earth, is ncarly as the moon's distance from the earth; and therefore (by what we have shewed in Cor. 2, Prop. XLV, Book I) is to the centripetal force of the moon as 2 to 357,45 , or nearly so; that is, as 1 to $178 \frac{2}{4} \frac{9}{0}$. And if we neglect so inconsiderable a force of the sun, the remaining force, by which the moon is retained in its orb, will be reciprocally as D^{2}. 'This will yet more fully appear from comparing this force with the force of gravity, as is done in the next Proposition.

Cor. If we augment the mean centripetal force by which the moon is retained in its orb, first in the proportion of $177 \frac{3}{4} \frac{9}{0}$ to $178 \frac{2}{4} \frac{9}{0}$, and then in the duplicate proportion of the semi-diameter of the earth to the mean distance of the centres of the moon and earth, we shall have the centripetal force of the moon at the surface of the earth ; supposing this force, in descending to the earth's surface, continually to increase in the reciprocal duplicate proportion of the height.

PROPOSITION IV. THEOREM IV.

That the moon gravitates towurds the earith, and by the force of gravity is continually drawn off from a rectilinear motion, and retained in its orbit.
The mean distance of the moon from the earth in the syzygies in semudiameters of the earth, is, according to Ptolemy and most astronomers, 59 ; according to Vendelin and Huygens, 60 ; to Copernicus, $60 \frac{1}{3}$; to Street, $60 \frac{2}{5}$; and to Tychn, $56 \frac{1}{2}$. But Tycho, and all that follow his tables of refraction, making the refractions of the sun and moon (altogether against the nature of light) to exceed the refractions of the fixed stars, and that by four or five minutes near the horizon, did thereby increase the moon's horizontal parallax by a like number of minutes, that is, by a twelfth or fifteenth part of the whole parallax. Correct this error, and the distance will become about $60 \frac{1}{2}$ semi-diameters of the earth, near to what others have assigned. Let us assume the mean distance of 60 diam.. eters in the syzygies; and suppose one revolution of the moon, in respect of the fixed stars, to be completed in $27^{\mathrm{d}} \cdot 7^{\mathrm{h}} \cdot 43^{\prime}$, as astronomers have determined ; and the circumference of the earth to amount to 123249600 Paris feet, as the French have found by mensuration. And now if we imagine the moon, deprived of all motion, to be let go, so as to descend towards the earth with the impulse of all that force by which (by Cor. Prop. III) it is retained in its orb, it will in the space of one minute of time, describe in its fall $15_{\frac{1}{1} \frac{1}{2}}$ Paris feet. This we gather by a calculus, founded either upon Prop. XXXVI, Book I, or (which comes to the same thing: upon Cor. 9, Prop. IV, of the same Book. For the versed sine of that arc, which the moon, in the space of one minute of time, would by its mean
motion describe at the distance of 60 semi-diameters of the sarth, is nearly $15 \frac{1}{12}$ Paris feat. or more accurately 15 feet, 1 inch, and 1 line $\frac{4}{9}$. Wherefore, since that force, in approaching to the earth, increases in the reciprocal duplicate proportion of the distance, and, upon that account, at the surface of the earth, is 60×60 times greater than at the moon, a body in our regions, falling with that force, ought in the space of one minute of time, to describe $60 \times 60 \times 15_{\frac{1}{12}}$ Paris feet; and, in the space of one second of time, to describe $15 \frac{1}{1 \frac{1}{2}}$ of those feet; or more accurately 15 feet, 1 inch, and 1 line $\frac{4}{9}$. And with this very force we actually find that bodies here upon earth do really descend; for a pendulum oscillating seconds in the latitude of Paris will be 3 Paris feet, and 8 lines $\frac{1}{2}$ in length, as Mr. Huygens has observed. And the space which a heavy body describes by falling in one second of time is to half the lenth of this pendulum in the duplicate ratio of the circumference of a circia to its diameter (as Mr. Huygens has also shewn), and is therefore 15 Paris feet, 1 inch, 1 line $\frac{7}{9}$. And therefore the force by which the moon is retained in its orbit becomes, at the very surface of the earth, equal to the force of gravity which we observe in heary bodies there. And therefore (by Rule I and II) the force by which the moon is retained in its orbit is that very same force which we commonly call gravity ; for, were gravity another force different from that, then bodies descending to the earth with the joint impulse of both forces would fall with a double velocity, and in the space of one second of time would describe $30 \frac{1}{6}$ Paris feet; altogether against experience.

This caiculus is founded on the hypothesis of the earth's standing still; for if both earth and moon move about the sun, and at the same time about their common centre of gravity, the distance of the centres of the moon and earth from one another will be $60 \frac{1}{2}$ semi-diameters of the earth; as may be found by a computation from Prop. LX, Book I.

SCHOLIUM.

The demonstration of this Proposition may be more diffusely explained after the following manner. Suppose several moons to revolve about the earth, as in the system of Jupiter or Saturn; the periodic times of these moons (by the argument of induction) would observe the same law which Kepler found to obtain among the planets; and therefore their centripetal forces would be reciprocally as the squares of the distances from the centre of the earth, by Prop. I, of this Book. Now if the lowest of these were very small, and were so near the earth as almost to touc' the tops of the highest mountains, the centripetal force thereof, retaining it in its orb, would be very nearly equal to the weights of any terrestrial bodies that should be found upon the tops of those mountains, as may be known by the foregoing computation. Therefore if the same little monn should be deserted by its centrifugal force that carries it through its orb, and so be
lisabled from going onward therein, it would descend to the earth; and that with the same velocity as heavy bodies do actually fall with upon the tops of those very mountains ; because of the equality of the forces that oblige them both to descend. And if the force by which that lowest moon would descend were different from gravity, and if that moon were to gravitate towards the earth, as we find terrestrial bodies do upon the tops of mountains, it would then descend with twice the velocity, as being impelled by both these forces conspiring together. Therefore since both these forces, that is, the gravity of heavy bodies, and the centripetal forces of the moons, respect the centre of the earth, and are similar and equal between themselves, they will (by Rule I and II) have one and the same cause. And therefore the force which retains the moon in its orbit is that very force which we commonly call gravity ; because otherwise this little moon at the top of a mountain must cither be without gravity, or fall twice as swiftly as heavy bodies are wont to do.

PROPOSITION V. THEOREM V.

1'hat the circumjovial planets gravitate towards Jupiter; the circumsaturnal towards Saturn; the circumsolar towards the sun; and by the forces of their gravity are drawn off from rectilinear motions, and retained in curvilinear orlits.
For the revolutions of the circumjovial planets about Jupiter, of the circumsaturnal about Saturn, and of Mercury and Venus, and the other circumsolar planets, about the sun, are appearances of the same sort with the revolution of the moon about the earth; and therefore, by Rule II, must be owing to the same sort of causes; especially since it has been demonstrated, that the forces upon which those revolutions depend tend to the centres of Jupiter, of Saturn, and of the sun; and that those forces, in receding from Jupiter, from Saturn, and from the sun, decrease in the same proportion, and according to the same law, as the force of gravity does in receding from the earth.

Cor. 1. There is, therefore, a power of gravity tending to all the planets ; for, doubtless, Venus, Mercury, and the rest, are bodies of the same sort with Jupiter and Saturn. And since all a teraction (by Law III) is mutual, Jupiter will therefore gravitate towards all his own satellites, Saturn towards his, the earth towards the moon, and the sun towards all the primary planets.

Cor. 2. The force of gravity which tends to any one planet is reciprocally as the square of the distance of places from that planet's centre.

Cor. 3. All the planets do mutually gravitate towards one another, by Cor. 1. and 2. And hence it is that Jupiter and Saturn, when near their
conjunction, by their mutual attractions sensibly disturb each other's m, \quad tions. So the sun disturbs the motions of the moon; and both sun and moon disturb our sea, as we shall hereafter explain.

SCHOLIUM.

The force which retains the celestial bodis in their orbits has been hitherto called centripetal force; but it being now made plain that it can be no other than a gravitating force, we shall hereafter call it gravity. For the cause of that centripetal force which retains the moon in its orbit will extend itself to all the planets, by Rule I, II, and IV.

PROPOSITION VI. THEOREM VI.

That all bodies gravitate towards every planet; and that the weights of bodies towards any the same planet, at equal distances from the centre of the planet, are proporional to the quantities of matter which they severally contain.
It has been, now of a long time, observed by others, that all sorts of heavy bodies (allowance being made for the inequality of retardation which they suffer from a small power of resistance in the air) descend to the earth from equal heights in equal times; and that equality of times we may distinguish to a great accuracy, by the help of pendulums. I tried the thing in gold, silver, lead, glăss, sand, common salt, wood, water, and wheat. I provided two wooden boxes, round and equal: I filled the one with wood, and suspended an equal weight of gold (as exactly as I could) in the centre of oscillation of the other. The boxes hanging by equal threads of 11 feet made a couple of pendulums perfectly equal in weight and figure, and equally receiving the resistance of the air. And, placing the one by the other, I ubserved them to play together forward and backward, for a long time, wi h equal vibrations. And therefore the quantity of matte, in the gold (by Cor. 1 and 6, Prop. XXIV, Book II) was to the quantity of matter in the wood as the action of the motive force (or vis motrix) upon all the gold to the action of the same upon all the wood; that is, as the weight of the one to the weight of the other: and the like happened in the other bodies. By these experiments, in bodies of the same weight, I could manifestly have discovered a difference of matter less than the thousandth part of the whole, had any such been. But, without all donbt, the nature of gravity towards the planets is the same as towards the earth. For, should we imagine our terrestrial bodies removed to the orb of the moon, and there, together with the moon, deprived of all motion, to be let go, so as to fall together towards the earth, it is certain, from what we have demonstrated before, that, in equal times, they would describe equal spaces with the moon, and of consequence are to the moon, in quantity of matter, as their weights to its weight. Moreover, since the satellites of Jupiter perform
their revolutions in times which observe the sesquiplate pr portion of their distances from Jupiter's centre, their accelerative gravities towards Jupiter will be reciprocally as the squares of their distances from Jupiter's centre ; that is, equal, at equal distances. And, therefore, these satellites, if supposed to fall towards Jupiter from equal heights, would describe equal spaces in equal times, in like manner as heavy bodies do on our earth. And, by the same argument, if the circumsolar planets were supposed to be let fall at equal distances from the sun, they would, in their descent towards the sun, describe equal spaces in equal times. But forces which equally accelerate unequal bodies must we as those bodies: that is to say, the weights if the planets towards the sun must be as their quantities of matter. Further, that the weights of Jupiter and of his satellites towards the sun are proportional to the several quantities of their matter, appears from the exceedingly regular motions of the satellites (by Cor. 3, Prop. LXV, Book 1). For if some of those bodies were more strongly attracted to the sun in proportion to their quantity of matter than others, the motions of the satellites would be disturbed by that inequality of attraction (by Cor. $巳$, Prop. LXV, Book I). If, at equal distances from the sun, any satellite, in proportion to the quantity of its matter, did gravitate towards the sun with a force greater than Jupiter in proportion to his, according to any given proportion, suppose of d to e; then the distance between the centres of the sun and of the satellite's orbit would be always greater than the distance between the centres of the sun and of Jupiter nearly in the subduplicate of that proportion: as by some computations I have found. And if the satellite did gravitate to wards the sun with a force, lesser in the proportion of e to d, the distance of the centre of the satellite's orb from the sun would be less than the distance of the centre of Jupiter from the sun in the subduplicate of the same proportion. Therefore if, at equal distances from the sun, the accelerative gravity of any satellite towards the sun were greater or less than the accelerative gravity of Jupiter towards the sun but by one ${ }_{\frac{1}{10} \overline{0} \overline{0}}$ part of the whole gravity, the distance of the centre of the satellite's orbit from the sun would be greater or less than the distance of Jupiter from the sun by one $\frac{-1}{2000}$ part of the whole distance; that is, by a nf h part of the distance of the utmost satellite from the centre of Jupiter; an eccentricity of the orbit which would be very sensible. But the orbits of the satellites are concentric to Jupiter, and therefore the accelerative gravities of Jupiter, and of all its satellites towards the sun, are equal among themselves. And by the same argument, the weights of Saturn and of his satellites towards the sun, at equal distances from the sun, are as their several quantities of matter; and the weights of the moon and of the earth towards the sun are either none, or accurately proportional to the masses of matter which they contain. But some they are, by Cor. 1 and 3, Prop. V.

But further; the weights of all the parts of every planet tiwards any other
planet are one to another as the matter in the several parts; for if some parts did gravitate more, others less, than for the quantity of their matter, then the whole planet, according to the sort of parts with which it most abounds, would gravitate more or less than in proportion to the quantity of matter in the whole. Nor is it of any moment whether these parts are external or internal; for if, for example, we should imagine the terrestrial bodies with us to be raised up to the orb of the moon, to be there compared with its body: if the weights of such bodies were to the weights of the external parts of the moon as the quantities of matter in the one and in the other respectively ; but to the weights of the internal parts in a greater or less proportion, then likewise the weights of those bodies would be to the weight of the whole moon in a greater or less proportion; against what we have shewed above.

Cor. 1. Hence the weights of bodies do not depend upon their forms and textures; for if the weights could be altered with the forms, they would be greater or less, according to the variety of forms, in equal matter ; altogether against experience.

Cor. 2. Universally, all bodics about the earth gravitate towards the earth; and the weights of all, at equal distances from the earth's centre, are as the quantities of matter which they severally contain. This is the quality of all bodies within the reach of our experiments; and therefore (by Rule III) to be affirmed of all bodies whatsocver. If the ather, or any other body, were either altogether void of gravity, or were to gravitate less in proportion to its quantity of matter, then, because (according to Aristotle, Des Cartes, and others) there is no difference betwixt that and other bodies but in mere form of matter, by a successive change from form to form, it might be changed at last into a body of the same condition with those which gravitate most in proportion to their quantity of matter ; and, on the other hand, the heaviest bodies, acquiring the first form of that body, might by degrees quite lose their gravity. And therefore the weights would depend upon the forms of bodies, and with those forms might be changed : contrary to what was proved in the preceding Corollary.

Cor. 3. All spaces are not equally full; for if all spaces were equally full, then the specific gravity of the fluid which fills the region of the air, on account of the extreme density of the matter, would fall nothing short of the specific gravity of quicksilver, or gold, or any other the most dense body ; and, therefore, neither gold, nor any other body, could descend in air; for bodies do not descend in tluids, unless they are specifically heavier than the fluids. And if the quantity of matter in a given space can, by any rarefaction, be diminished, what should hinder a diminution to infinity?

Cor. 4. If all the solid particles of all bodies are of the same density, nor can be rarefied without pores, a void, space, or racuum must be granted

By bodies of the same density, I mean those whose vires intertic are in the proportion of their bulks.

Cor. 5. The power of gravity is of a different nature from the power of magnetism ; for the magnetic attraction is not as the matter attracted. Some bodies are attracted more by the magnet; others less; most bodies not at all. The power of magnetism in one and the same body may be increased and diminished; and is sometimes far stronger, for the quantity of matter, than the power of gravity; and in receding from the magnet decreases not in the duplicate but almost in the triplicate proportion of the distance, as nearly as I could judge from some rude observations.

PROPOSITION VII. THEOREM VII.

That there is a power of gravity tending to all bodies, proportional to the several quantities of matter which they contain.
That all the planets mutually gravitate one towards another, we have proved before ; as well as that the force of gravity towards every one of them, considered apart, is reciprocally as the square of the distance of places from the centre of the planct. And thence (by Prop. LXIX, Book I, and its Corollaries) it follows, that the gravity tending towards all the planets is proportional to the matter which they contain.

Moreover, since all the parts of any planet A gravitate towards any other planet B; and the gravity of every part is to the gravity of the whole as the matter of the part to the matter of the whole; and (by Law III) to every action corresponds an equal re-action ; therefore the planet B will, on the other hand, gravitate towards all the parts of the planet A; and its gravity towards any one part will be to the gravity towards the whole as the matter of the part to the matter of the whole. Q.E.D.

Cor. 1. Therefore the force of gravity towards any whole planet arises from, and is compounded of, the forces of gravity towards all its parts. Magnetic and electric attractions afford us examples of this; for all attraction towards the whole arises from the attractions towards the several parts. The thing may be easily understood in gravity, if we consider a greater planet, as formed of a number of lesser planets, meeting together in one globe; for hence it would appear that the force of the whole must arise from the forces of the component parts. If it is objected, that, according to this law, all bodies with us must mutually gravitate one towards another, whereas no such gravitation any where appears, I answer, that since the gravitation towards these bodies is to the gravitation towards the whole earth as these bodies are to the whole earth, the gravitation towards them must be far less than to fall under the observation of our senses.

Cor. 2. The force of gravity towards the several equal particles of any hody is reciprocally as the square of the distance of places from the particles; as appears from Cor. 3, Prop. LXXIV, Book I.

PROPOSITION VIII. THEOREM VIII.

In two spheres mutually gravitating each towards the other, if the matter in places on all sides round about and equi-distant from the centres is similar, the weight of either sphere towards the other will be reciprocally as the square of the distance between their centres.
After I had found that the force of gravity towards a whole planet did arise from and was compounded of the forces of gravity towards all its parts, and towards every one part was in the reciprocal proportion of the squares of the distances from the part, I was yet in doubt whether that reciprocal duplicate proportion did accurately hold, or but nearly sis, in the total force compounded of so many partial ones; for it might be that the proportion which accurately enough took place in greater distances should be wide of the truth near the surface of the planet, where the distances of the particles are unequal, and their situation dissimilar. But by the help of Prop. LXXV and LXXVI, Book I, and their Corollaries, I was at last satisfied of the truth of the Proposition, as it now lies before us.

Cor. 1. Hence we may find and compare together the weights of bodies towards different planets; for the weights of bodies revolving in circles about planets are (by Cor. 2, Prop. IV, Book I) as the diameters of the circles directly, and the squares of their periodic times reciprocally; and their weights at the surfaces of the planets, or at any other distances from their centres, are (by this Prop.) greater or less in the reciprocal duplicate proportion of the distances. Thus from the periodic times of Venus, revolving about the sun, in $224^{\mathrm{d}} .16 \frac{3 \mathrm{~h}}{4}$, of the utmost circumjovial satellite revolving about Jupiter, in $16.16 \frac{8}{15}$. ; of the Huygenian satellite about Saturn in $15^{\mathrm{d}} .22_{\frac{2}{3} \mathrm{~h}}^{\mathrm{h}}$; and of the moon about the earth in $27^{\mathrm{d}} .7^{\mathrm{h}} .43^{\prime}$; compared with the mean distance of Venus from the sun, and with the greatest heliocentric elongations of the outmost circumjovial satellite from Jupiter's centre, $8^{\prime} 16^{\prime \prime}$; of the Huygenian satellite from the centre of Saturn, $3^{\prime} 4^{\prime \prime}$; and of the moon from the earth, $10^{\prime} 33^{\prime \prime}$: by computation I found that the weight of equal bodies, at equal distances from the centres of the sun, of Jupiter, of Saturn, and of the earth, towards the sun, Jupiter, Saturn, and the earth, were one to another, as $1, \frac{1}{1 \frac{1}{0} \bar{T}}, \frac{1}{3} \frac{1}{\overline{2}} \mathrm{~T}$, and Tब $\frac{1}{9} \overline{\frac{1}{2}} \overline{8} \frac{1}{2}$ respectively. Then because as the distances are increased or diminished, the weights are diminished or increased in a duplicate ratio, the weights of equal bodies towards the sun, Jupiter, Saturn, and the earth, at the distances $10000,997,791$, and 109 from their centres, that is, at their very superficies, will be as $10000,943,529$, and 435 respectively. How much the weights of bodies are at the superficies of the moon, will be shewn hereafter.

Cor. 2. Hence likewise we discover the quantity of matter in the several
planets; for their quantities of matter are as the forces of gravity at equa; distances from their centres; that is, in the sun, Jupiter, Saturn, and the earth, as $1, \frac{1}{\frac{1}{6} \bar{\sigma}}, \frac{1}{30} \frac{1}{2} \frac{1}{1}$, and $\frac{1 \overline{6} \bar{\square} \frac{1}{\overline{8}} \overline{2}}{}$ respectively. If the parallax of the sun be taken greater or less than $10^{\prime \prime} 30^{\prime \prime \prime}$, the quantity of matter in the earth must be augmented or diminished in the triplicate of that proportion.

Cor. 3. Hence also we find the densities of the planets; for (by Prop. SXXII, Book I) the weights of equal and similar bodies towards similar spheres are, at the surfaces of those spheres, as the diameters of the spheres; and therefore the densities of dissimilar spheres are as those weights applied to the diameters of the spheres. But the true diameters of the Sun, Jupiter, Saturn, and the earth, were one to another as $10000,997,791$, and 109 ; and the weights towards the same as $10000,943,529$, and 435 respectively; and therefore their densities are as $100,94 \frac{1}{2}, 67$, and 400 . 'The density of the earth, which comes out by this computation, does not depend upon the parallax of the sun, but is determined by the parallax of the moon, and therefore is here truly defined. The sun, therefore, is a little denser than Jupiter, and Jupiter than Saturn, and the earth four times denser than the sun; for the sun, by its great heat, is kept in a sort of a rarefied state. The moon is denser than the earth, as shall appear afterward.

Cor. 4. The smaller the planets are, they are, cateris paribus, of so much the greater density; for so the powers of gravity on their several surfaces come nearer to equality. They are likewise, cateris paribus, of the greater density, as they are nearer to the sun. So Jupiter is more dense than Saturn, and the earth than Jupiter; for the planets were to be placed at different distances from the sun, that, according to their degrees of density, they might enjoy a greater or less proportion to the sun's heat. Our water, if it were removed as far as the orb of Saturn, would be converted into ice, and in the orb of Mercury would quickly fly away in vapour; for the light of the sun, to which its heat is proportional, is seven times denser in the orb of Mercury than with us: and by the thermometer I have found that a sevenfold heat of our summer sun will make water boil. Nor are we to doubt that the matter of Mercury is adapted to its heat, and is therefore more dense than the matter of our earth; since, in a denser matter, the operations of Nature require a stronger heat.

PROPOSI'TION IX. THEOREM IX.

That the force of gravity, considered downward from the surjace of the planets. decreases nearly in the proportion of the distances from their centres.
If the matter of the planet were of an uniform density, this Proposition would be accurately true (by Prop. LXXIII. Book I). The error,
therefore, can be no greater than what may arise from the inequality of the density.

PROPOSITION X. THEOREM X.

Thrt the motions of the planets in the heavens nuay subsist an exceedingly long time.

In the Scholium of Prop. XL, Book II, I have shewed that a globe of water frozen into ice, and moving freely in our air, in the time that it would describe the length of its semi-diameter, would lose by the resistance of the air ${ }_{4}^{\frac{1}{5} \frac{1}{8} \bar{\delta}}$ part of its motion; and the same proportion holds nearly in all globes, how great soever, and moved with whatever velocity. But that our globe of earth is of greater density than it would be if the whole consisted of water only, I thus make out. If the whole cunsisted of water only, whatever was of less density than water, because of its iuss specific gravity, would emerge and float above. And upon this account, if a globe of terrestrial matter, covered on all sides with water, was less dense than water, it would emerge somewhere; and, the subsiding water falling back, would be gathered to the opposite side. And such is the condition of our earth, which in a great measure is covered with seas. The earth, if it was not for its greater density, would emerge from the seas, and, according to its degree of levity, would be raised more or less above their surface, the water of the seas flowing backward to the opposite side. By the same argument, the spots of the sun, which float upon the lucid matter thereof, are lighter than that matter; and, however the planets have been formed while they were yet in fluid masses, all the heavier matter subsided to the centre. Since, therefore, the common matter of our earth on the surface thereof is about twice as heavy as water, and a little lower, in mines, is found about three, or four, or even five times more heavy, it is probable that the quantity of the whole matter of the earth may be five or six times greater than if it consisted all of water; especially since I have before shewed that the earth is about four times more dense than Jupiter. If, therefore, Jupiter is a little more dense than water, in the space of thirty days, in which that planet describes the length of 459 of its semi-diameters, it would, in a medium of the same density with our air, lose almost a tenth part of its motion. But since the resistance of mediums decreases in proportion to their weight or density, so that water, which is $13 \frac{3}{5}$ times lighter than quicksilver, resists less in that proportion; and air, which is S60 times lighter than water, resists less in the same proportion; therefore in the heavens, where the weight of the medium in which the planets move is immensely diminished, the resistance will almost vanish.

It is shewn in the Scholium of Prop. XXII, Book II, that at the height of 200 miles above the earth the air is more rare than it is at the superficies of the earth in the ratio of 30 to 0,0000000000003998 , or as

75000000000000 to 1 nearly. And hence the planet Jupiter, revolving in a medium of the same density with that superior air, would not lose by the resistance of the mediuin the 1000000 th part of its motion in 1000000 years. In the spaces near the earth the resistance is produced only by the air, exhalations, and vapours. When these are carefully exhausted by the qir-pump from under the receiver, heavy bodies fall within the receiver with perfect freedom, and without the least sensible resistance: gold itself, and the lightest down, let fall together, will descend with equal velocity; and though they fall through a space of four, six, and eight feet, they will come to the bottom at the same time; as appears from experiments. And therefore the celestial regions being perfectly void of air and exhalations, the planets and comets meeting no sensible resistance in those spaces will continue their motions through them for an immense tract of time.

HYPOTHESIS I.

That the centre of the system of the world is immovable.

'This is acknowledged by all, while some contend that the earth, others that the sun, is fixed in that centre. Let us see what may from hence follow.

PROPOSI'IION XI. 'THEOREM XI.

'Ihat the common centre of gravity of the earth, the sun, and all the planets, is immovable.
For (by Cor. 4 of the Laws) that centre either is at rest, or moves uniformly forward in a right line; but if that centre moved, the centre of the world would move also, against the Hypothesis.

PROPOSITION XII. THEOREM XII.

That the sun is agitated by a perpetual motion, but never recedes far from the common centre of gravity of all the planets.
For since (by Cor.2, Prop. VIII) the quantity of matter in the sun is to the quantity of matter in Jupiter as 1067 to 1 ; and the distance of Jupiter from the sun is to the semi-diameter of the sun in a proportion but a small matter greater, the common centre of gravity of Jupiter and the sun will fall upon a point a little without the surface of the sun. By the same argument, since the quantity of matter in the sun is to the quantity of matter in Saturn as 3021 to 1 , and the distance of Saturn from the sun is to the semi-diameter of the sun in a proportion but a small matter less, the common centre of gravity of Saturn and the sun will fall upon a point a little within the surface of the sun. And, pursuing the principles of this computation, we should find that though the earth and all the planets were placed on one side of the sun, the distance of the common centre of gravity of all from the centre of the sun would scarcely amount to one diameter of
the sun. In other cases, the distances of those centres are always less; and therefore, since that centre of gravity is in perpetual rest, the sun, according to the various positions of the planets, must perpetually be moved every way, but will never recede far from that centre.

Cor. Hence the common centre of gravity of the earth, the sun, and all the planets, is to be esteemed the centre of the world; for since the earth, the sun, and all the planets, mutually gravitate one towards another, and are therefore, according to their powers of gravity, in perpetual agitation, as the Laws of Motion require, it is plain that their moveable centres cannot he taken for the immovable centre of the world. If that body were to be placed in the centre, towards which other bodies gravitate most (according to common opinion), that privilege ought to be allowed to the sun; but since the sum itself is moved, a fixed point is to be chosen from which the centre of the sun recedes least, and from which it would recede yet less if the body of the sun were denser and greater, and therefore less apt to be moved.

PROPOSITION XIII. THEOREM XIII.

The plancts move in ellipses which have their common focus in the centre of the sul"; and, hy radii drawn to that centre, they describe areas proportional to the times of description.
We have discoursed above of these motions from the Phænomena. Now that we know the principles on which they depend, from those principles we deduce the motions of the heavens \dot{a} priori. Because the weights of the planets towards the sun are reciprocally as the squares of their distances from the sun's centre, if the sun was at rest, and the other planets did not mutually act one upon another, their orbits would be ellipses, having the sun in their common focus; and they would describe areas proportional to the times of description, by Prop. I and XI, and Cor. 1, Prop. XIII, Book I. But the mutual actions of the planets one upon another are so very small, that they may be neglected; and by Prop. L،XVI, Book I, they less disturb the motions of the planets around the sun in motion than if those motions were performed about the sun at rest.

It is true, that the action of Jupiter upon Saturn is not to be neglected: for the force of gravity towards Jupiter is to the force of gravity towards the sun (at equal distances, Cor. 2, Prop. VIII) as 1 to 1067; and therefore in the conjunction of Jupiter and Saturn, because the distance of Saturn from Jupiter is to the distance of Saturn from the sun almost as 4 to 9 , the gravity of Saturn towards Jupiter will be to the gravity of Saturn towards the sun as 81 to 16×1067; or, as 1 to about 211 . And hence arises a perturbation of the orb of Saturn in every conjunction of this planet with Jupiter, so sensible, that astronomers are puzzled with it. As the planet
is differently situated in these conjunctions, its cccentricity is sometimes augmented, sometimes diminished; its aphelion is sometimes carried forwaid, sometimes backward, and its mean motion is by turns accelerated and retarded; yet the whole error in its motion about the sun, though arising from so great a force, may be almost avoided except in the mean motion) by placing the lower focus of its orbit in the common centre of gravity of Jupiter and the sun (according to Prop. LXVIII, Book I), and therefore that error, when it is greatest, scarcely exceeds two minutes; and the greatest error in the mean motion scarcely exceeds two minutes yearly. But in the conjunction of Jupiter and Saturn, the accelerative forces of gravity of the sun towards Saturn, of Jupiter towards Saturn, and of Jupiter towards the s.m, are almost as 16,81 , and $\frac{16 \times 81 \times 3021}{25}$, or 156609 ; and therefore the difference of the forces of gravity of the sun towards Saturn, and of Jupiter towards Saturn, is to the force of gravity of Jupiter towards the sun as 65 to 156609 , or as 1 to 2409. But the greatest power of Saturn to disturb the motion of Jupiter is proportional to this difference; and therefore the perturbation of the orbit of Jupiter is much less than that of Saturn's. 'The perturbations of the other orbits are yet far less, except that the orbit of the earth is sensibly disturbed by the moon. The common centre of gravity of the earth and moon moves in an ellipsis about the sun in the focus thereof, and, by a radius drawn to the sun, describes areas proportional to the times of description. But the earth in the mean time by a menstrual motion is revolved about this common centre.

PROPOSITION XIV. THEOREM XIV.

The aphelions and nodes of the orbits of the planets are fixed.

The aphelions are immovable by Prop. XI, Book I; and so are the planes of the orbits, by Prop. I of the same Book. And if the planes are fixed, the nodes must be so too. It is true, that some inequalities may arise from the mutual actions of the planets and comets in their revolutions; but these will be so small, that they may be here passed by.

Cor. 1. The fixed stars are immovable, seeing they keep the same position to the aphelions and nodes of the planets.

Cor. 2. And since these stars are liable to no sensible parallax from the annual motion of the earth, they can have no force, because of their immense distance, to produce any sensible effect in our system. Not to mention that the fixed stars, every where promiscuously dispersed in the heavens, by their contrary attractions destroy their mutual actions, by Prop. LAX, Book I.

SCHOLIUM.

Since the planets near the sun (viz. Mercury, Venus, the Earth, and

