not before they vanish, nor afterwards, but with which they vanish. In like manner the first ratio of nascent quantities is that with which they begin to be. And the first or last sum is that with which they begin and cease to be (or to be augmented or diminished). 'There is a limit which the velocity at the end of the motion may attain, but not exceed. This is the ultimate velocity. And there is the like limit in all quantities and projortions that begin and cease to be. And since such limits are certain and definite, to determine the same is a problem strictly geometrical. But whatever is geometrical we may be allowed to use in determining and demonstrating any other thing that is likewise geometrical.

It may also be objected, that if the ultimate ratios of evanescent quantities are given, their ultimate magnitudes will be also given: and so all quantities will consist of indivisibles, which is contrary to what Euclid has demonstrated concerning incommensurables, in the 10th Book of his Elements. But this objection is founded on a false supposition. For those ultimate ratios with which quantities vanish are not truly the ratios of ultimate quantities, but limits towards which the ratios of quantities decreasing without limit do always converge ; and to which they approach nearer than by any given difference, but never go beyond, nor in effect attain to, till the quantities are diminished in infinitum. This thing will appear more evident in quantities infinitely great. If two quantities, whose difference is given, be augmented in infinitum, the ultimate ratio of these quantities will be given, to wit, the ratio of equality; but it does not from thence follow, that the ultimate or greatest quantities themselves, whose ratio that is, will be given. Therefore if in what follows, for the sake of being more easily understood, I should happen to mention quantities as least, or evanescent, or ultimate, you are not to suppose that quantities of any determinate magnitude are meant, but such as are conceived to be always diminished without end.

SECTION 11.

Of the Invention of Centripetal Forces.

PRQPOSI'TION I. THEOREM I.

The areas, which revolving bodies describe by radii drawn to an immovable centrs of force do lie in tlie same immovable planes, and are proportional to the times in which they are described.
For suppose the time to be divided into equal parts, and in the first part of that time let the body by its innate force describe the right line $A B$ In the second part of that time, the same would (by Law I.), if not hindered, procee l directly to c, alo 2 the line $\mathrm{B} c$ equal to AB ; so that by the radii $\mathrm{AS}, \mathrm{BS}, c \mathrm{~S}$, draw. 1 to the centre, the equal areas $\mathrm{ASB}, \mathrm{BS} c$, would be de-
scribed. But when the body is arrived at B, suppose that a centripetal force acts at once with a great impulse, and, turning aside the body from the right line $B c$, compels it afterwards to continue its motion along the right line BC. Draw $c \mathrm{C}$ parallel to BS meeting BC in C; and at the end of the second part of the time, the body (by Cor. I. of the Laws) will be found in C, in the same plane with the triangle ASB. Join SC, and, because

SB and $\mathrm{C} c$ are parallel, the triangle SBC will be equal to the triangle $\mathrm{SB} c$, and therefore also to the triangle SAB . By the like argument, if the centripetal force acts successively in C, D, E, \&c., and makes the body, in each single particle of time, to describe the right lines CD, DE, EF, \&c., they will all lie in the same plane; and the triangle SCD will be equal to the triangle SBC, and SDE to SCD, and SEF to SDE. And therefore, in equal times, equal areas are described in one immovable plane: and, by composition, any sums SADS, SAFS, of those areas, are one to the other as the times in which they are described. Now let the number of those triangles be augmented, and their breadth diminished in infinitum; and (by Cor. 4, Lem. III.) their ultimate perimeter ADF will be a curve line: and therefore the centripetal force, by which the body is perpetually drawn back from the tangent of this curve, will act continually; and any described areas SADS, SAFS, which are always proportional to the times of description, will, in this case also, be proportional to those times. Q.E.D.

Cor. 1. The velocity of a body attracted towards an immovable centre, in spaces void of resistance, is reciprocally as the perpendicular let fall from that centre on the right line that touches the orbit. For the velocities in those places A, B, C, D, E, are as the bases $A B, B C, C D, D E, E F$; of equal triangles ; and these bases are reciprocally as the perpendiculars let fall upon them.

Cor. 2. If the chords $A B, B C$ of two arcs, successively described in equal times by the same body, in spaces void of resistance, are completed into a parallelogram ABCV , and the diagonal BV of this parallelogram, in the position which it ultimately acquires when those arcs are diminished in infinitum, is produced both ways, it will pass through the centre of force.

Cor. 3. If the chords AB, BC, and DE, EF, of ares described in equal
times, in spaces void of resistance, are completed into the parallelograms ABCV, DEFZ; the forces in B and E are one to the other in the ultimate ratio of the diagonals $B V, E Z$, when those arcs are diminished in infinitum. For the motions BC and EF of the body (by Cor. 1 of the Laws) are compounded of the motions $\mathrm{B} c, \mathrm{BV}$, and $\mathrm{E} f, \mathrm{E} Z$: but BV and $\mathbf{E Z}$, which are equal to $\mathrm{C} c$ and $\mathrm{F} f$, in the demonstration of this Proposition, were generated by the impulses of the centripetal force in B and E, and are therefore proportional to those impulses.

Cor. 4. 'The forces by which bodies, in spaces void of resistance, are drawn back from rectilinear motions, and turned into curvilinear orbits, are one to another as the versed sines of arcs described in equal times; which versed sines tend to the centre of force, and bisect the chords when those arcs are diminished to infinity. For such versed sines are the halves of the diagonals mentioned in Cor. 3.

Cor. 5 . And therefore those forces are to the force of gravity as the said versed sines to the versed sines perpendicular to the horizon of those parabolic arcs which projectiles describe in the same time.

Cor. 6. And the same things do all hold good (by Cor. 5 of the Laws), when the planes in which the bodies are moved, together with the centres of force which are placed in those planes, are not at rest, but move uniformly forward in right lines.

PROPOSITION II. THEOREM II.

Every body that moves in any curve line described in a plane, and by a radius, drawn to a point either immovable, or moving forward with an uniform rectilinear motion, describes about that point areas proportional to the times, is urged by a centripetal force dirccted to that point Case. 1. For every body that moves in a curve line, is (by Law 1) turned aside from its rectilinear course by the action of some force that impelsit. And that force by which the body is turned off from its rectilinear course, and is made to describe, in equal times, the equal least triangles $\mathrm{SAB}, \mathrm{SBC}, \mathrm{SCD}$, \&c., about the immovable point S (by Prop. XI. Book 1, Elem. and Law II), acts in the place B, according to the direction of a line par-

allel $\mathrm{tc} c \mathrm{C}$, that is, in the direction of the line BS , and in the place C , aceordir g to the direction of a line parallel to $d \mathrm{D}$, that is, in the direction of the line CS, \&e.; and therefore acts always in the direction of lines tending to the immovable point S. Q.E.D.

Case. 2. And (by Cor. 5 of the Laws) it is indifferent whether the superfices in which a body deseribes a curvilinear figure be quiescent, or moves together with the body, the figure described, and its point S, uniformly forward in right lines.

Cor. 1. In non-resisting spaces or mediums, if the areas are not proportional to the times, the forces are not directed to the point in which the radii meet; but deviate therefrom in consequentia, or towards the parts to which the motion is directed, if the deseription of the areas is accelerated; but in antecedentia, if retarded.
Cor. 2. And even in resisting mediums, if the description of the areas is accelerated, the directions of the forces deviate from the point in which the radii meet, towards the parts to which the motion tends.

SCHOLIUM.

A body may be urged by a centripetal force compounded of several forces; in which case the meaning of the Proposition is, that the force which results out of all tends to the point S. But if any force acts perpetually in the direction of lines perpendicular to the described surface, this force will make the body to deviate from the plane of its motion : but will neither augment nor diminish the quantity of the described surface and is therefore to be neglected in the composition of forces.

PROPOSITION III. THEOREM III.

Every body, that by a radius drawn to the centre of another lndy, howsoever moved, describes areas about that centre proportimul to the times, is urged by a force compounded out of the centripetal force 'ending to that other body, and of all the accelerative force by which that oither body is impelled.
Let L represent the one, and T the other body ; and (by Cor. 6 of the Laws; if both bodies are urged in the direction of parallel lines, hy a ner force equal and contrary to that by which the second body 'T' is urged, the first body L will go on to describe about the other body T the same areas as before: but the force by which that other body T was urged will be now destroyed by an equal and contrary force; and therefore (hy law I.) that other body T, now left to itself, will either rest, or move uniformly forward in a right line: and the first body L impelled by the difference of the forces, that is, by the force remaining, will go on to describe aboat the other body ' Γ areas proportional to the times. And therefore (by Theor. II.) the difference of the forces is directed to the other body T as its centre. Q.E.D

Coz. 1. Hence if the one body L, by a radius drawn to the other body T, descriles areas proportional to the times; and from the whole force, by which the first body L is urged (whether that force is simple, or, according to Cor. 2 of the Laws, compounded out of several forces), we subduct (by the same Cor.) that whole accelerative force by which the other body is urged; the whooe remaining force by which the first body is urged will tend to the (ther body T , as its centre.

Cor. 2. And, if these areas are proportional to the times nearly, the remaining force will tend to the other body T nearly.

Cor. 3. And vice versa, if the remaining force tends nearly to the other body T, those areas will be nearly proportional to the times.

Cor. 4. If the body L, by a radius drawn to the other body T, describes areas, which, compared with the times, are very unequal; and that other body \mathbf{T} be either at rest, or moves uniformly forward in a right line : the action of the centripetal force tending to that other body T ' is either none at all, or it is mixed and compounded with very powerful actions of other forces: and the whole force compounded of them all, if they are many, is directed to another (immovable or moveable) centre. The same thing obtains, when the other body is moved by any motion whatsoever; provided that centripetal force is taken, which remains after subducting that whole force acting upon that other body T.

SCHOLIUM.

Because the equable description of areas indicates that a centre is respected by that force with which the body is most affected, and by which it is drawn back from its rectilinear motion, and retained in its orhit; why may we not be allowed, in the following discourse, to use the equable description of areas as an indication of a centre, about which all circular motion is performed in free spaces?

PROPOSITION IV. THEOREM IV.

The centripetal forces of bodies, which by equable motions describe different circles, tend to the centres of the same circles; and are one to the other as the squares of the arcs described in equal times applied to the radii of the circles.
These forces tend to the centres of the circles (by Prop. II., and Cor. 2, Prop. I.), and are one to another as the versed sines of the least arcs described in equal times (by Cor. 4, Prop. I.); that is, as the squares of the same arcs applied to the diameters of the circles (by Lem. VII.); and therefore since those ares are as ares described in any equal times, and the diame ers see as the radii, the fores will be as the squares of any arcs deser bed in the same time applied to the radii of the circles. Q.E.D.

Yor. 1. Therefore, since those arcs are as the velocities of the bodies
the centripetal forces are in a ratio compounded of the duplicate rasio of the velocities directly, and of the simple ratio of the radii inversely.

Cor. 2. And since the periodic times are in a ratio compounded of the ratio of the radii directly, and the ratio of the velocities inversely, the centripetal forces, are in a ratio compounded of the ratio of the radii directly, and the duplicate ratio of the periodic times inversely.

Cor. 3. Whence if the periodic times are equal, and the velocities therefore as the radii, the centripetal forces will be also as the radii; and the contrary.

Cor. 4. If the periodic times and the velocities are both in the subduplicate ratio of the radii, the centripetal forces will be equal among themselves ; and the contrary.

Cor. 5. If the periodic times are as the radii, and therefore the velocities equal, the centripetal forces will be reciprocally as the radii; and the contrary.

Cor. 6. If the periodic times are in the sesquiplicate ratio of the radir, and therefore the velocities reciprocally in the subduplicate ratio of the radii, the centripetal forces will be in the duplicate ratio of the radii inversely; and the contrary.

Cor. 7. And universally, if the periodic time is as any power R^{n} of the radius R, and therefore the velocity reciprocally as the power R^{n-1} of the radius, the centripetal force will be reciprocally as the power $R^{2 n-1}$ of the radius; and the contrary.

Cor. 8. The same things all hold concerning the times, the velocities, and forces by which bodies describe the similar parts of any similar figures that have their centres in a similar position with those figures ; as appears by applying the demonstration of the preceding cases to those. And the application is casy, by only substituting the equable description of areas in the place of equable motion, and using the distances of the bodies from the centres instead of the radii.

Cor. 9. From the same demonstration it likewise follows, that the are which a body, uniformly revolving in a circle by means of a given centripetal force, describes in any time, is a mean proportional between the diameter of the circle, and the space which the same body falling by the same given force would descend through in the same given time.

SCHOLIUM.

The case of the 6th Corollary obtains in the celestial bodies (as Sir Christopher Wren, Dr. Hooke, and Dr. Halley have severally observed); and therefore in what follows, I intend to treat more at large of those things which relate to centripetal force decreasing in a duplicate ratic of the distances from the centres.

Moreover, by means of the preceding Proposition and its Corollaries, we
may diseaver the proportion of a centripetal force to any other known force, such as that of gravity. For if a body by means of its gravity revolves in a circle concentric to the earth, this gravity is the centripetal force of that body. But from the descent of heavy bodies, the time of one entire revolution, as well as the arc described in any given time, is given (by Cor. 9 of this Prop.). And by such propositions, Mr. Huygens, in his excellent book De Horologio Oscillatorio, has compared the force of gravity with the centrifugal forces of revolving bodies.

The preceding Proposition may be likewise demonstrated after this manner. In any circle suppose a polygon to be inscribed of any number of sides. And if a body, moved with a given velocity along the sides of the polygon, is reflected from the circle at the several angular points, the force, with which at every reflection it strikes the circle, will be as its velocity : and therefore the sum of the forces, in a given time, will be as that velocity and the number of reflections conjunctly ; that is (if the species of the polygon be given), as the length described in that given time, and increased or diminished in the ratio of the same length to the radius of the circle; that is, as the square of that length applied to the radius; and thercfore the polygon, by having its sides diminished in infinitum, coincides with the circle, as the square of the arc described in a given time applied to the radius. This is the centrifugal force, with which the body impels the circle; and to which the contrary force, wherewith the circle continually repels the body towards the centre, is equal.

PROPOSITION V. PROBLEM I.

There being given, in amy places, the velocity with which a body describes a given figure, by means of forces directed to some common centre: to find that centre.
Let the three right lines PT, TQV, VR touch the figure described in as many points, $\mathbf{P}, \mathbf{Q}, \mathbf{R}$, and meet in \mathbf{T} and \mathbf{V}. On the tangents erect the perpendiculars PA, QB, RC, reciprocally proportional to the velocities of the body in the points P, Q, R, from which the perpendiculars were raised; that is, so that PA
 may be to $\mathbf{Q B}$ as the velocity in \mathbf{Q} to the velocity in P , and $\mathbf{Q B}$ to $\mathbf{R C}$ as the velocity in R to the velocity in Q. Through the ends A, B, C, of the perpendiculars draw AD, DBE, EC, at right angles, meeting in D and E : and the right lines TD, VE produced, will meet in S, the centre required.

For the perpendiculars let fall from the centre S on the tangents $P T$, Q'T, are reciprocally as the velocities of the bodies in the points \mathbf{P} and \mathbf{Q}
(by Cor. 1, Prop. I.), and therefore, by construction, as the perpendiculars AP, BQ directly; that is, as the perpendiculars let fall from the point D on the tangents. Whence it is easy to infer that the points S, D, T, are in one right line. And by the like argument the points $\mathrm{S}, \mathrm{E}, \mathrm{V}$ are also in one right line; and therefore the centre S is in the point where the right lines TD, VE meet. Q.E.D.

PROPOSITION VI. THEOREM V.

In a space void of resistance, if a body revolves in any orbit about an immovable centre, and in the least time describes amy arc just then nascent ; and the versed sine of that arc is supposed to be drawn bisecting the chord, and produced passing through the centre of force: the centripetal force in the middle of the arc will be as the versed sine directly and the square of the time inversely.
For the versed sine in a given time is as the force (by Cor. 4, Prop. 1); and augmenting the time in any ratio, because the arc will be augmented in the same ratio, the versed sine will be augmented in the duplicate of that ratio (by Cor. 2 and 3, Lem. XI.), and therefore is as the force and the square of the time. Subduct on both sides the duplicate ratio of the time, and the force will be as the versed sine directly, and the square of the time inversely. Q.E.D.

And the same thing may also be easily demonstrated by Corol. 4, I $\mathrm{Lem} . \mathrm{X}$.
Cor. 1. If a body P revolving about the centre S describes a curve line APQ , which a right line ZPR touches in any point P; and from any other point Q of the curve, $Q R$ is drawn parallel to the distance SP, meeting the tangent in R ; and QT is drawn perpendicular to the distance SP ; the centripetal force will be reciprocally as the solid $\frac{\mathrm{SP}^{2} \times \mathrm{QT}^{2}}{\mathrm{Q} R}$, if the solid be taken of that magnitude which it ultimately acquires when the points \mathbf{P} and \mathbf{Q} coincide. For $\mathbf{Q R}$ is equal to the versed sine of double the arc QP, whose middle is P : and double the triangle SQP , or $\mathrm{SP} \times$ QT is proportional to the time in which that double arc is described; and therefore may be used for the exponent of the time.

Cor. 2. By a like reasoning, the centripetal force is reciprocally as the solid $\frac{\mathrm{SY}^{2} \times Q P^{2}}{Q R}$; if SY is a perpendicular from the centre of force on PR the tangent of the orbit. For the rectangles $S Y \times Q P$ and $S P \times \mathbf{Q T}$ are equal.

Cor. 3. If the orbit is either a circle, or touches or cuts a circle ce neentrically, that is, contains with a circle the least angle of contact or sectien, havinty the same curvature and the same radius of curvature at the point P ; and if PV be a chorl of this circle, drawn from the body through the centre of force; the centripetal force will be reciprocally as the solid $S^{2} \times P V$. For $P V$ is $\frac{Q P^{2}}{Q R}$.

Cor. 4. The same things being supposed, the centripetal force is as the square of the velocity directly, and that chord inversely. For the velocity is reciprocally as the perpendicular SY, by Cor. 1. Prop. I.

Cor. 5. Hence if any curvilinear figure APQ is given, ánd thercin a point S is also given, to which a centripetal force is perpetually directed, that law of centripetal force may be found, by which the body P will be continually drawn back from a rectilinear course, and, being detained in the perimeter of that figure, will describe the same by a perpetual revolution. That is, we are to find, by computation, either the solid $\frac{S P^{2} \times Q^{\prime} T^{2}}{Q R}$ or the solid $\mathrm{SY}^{2} \times \mathrm{PV}$, reciprocally proportional to this force. Example: of this we shall give in the following Problems.

PROPOSITION VII. PROBLEM II.

If a body revolves in the circumference of a circle; it is proposed to fimi the lavo of centripetal force directed to any given point.
Let VQPA be the circumference of the circle ; S the given point to which as to a centre the force tends; \mathbf{P} the body moving in the circumference; Q the next place into which it is to move; and PRZ the tangent of the circle at the preceding place. Through the point S draw the chord PV, and the diameter VA of the circle: join AP, and draw QT perpendicular to SP , which produced, may meet the tangent PR in Z; and lastly, through
 the point Q, draw LR parallel to SP, meeting the circle in L, and the tangent PZ in R. And, because of the similar triangles ZQR, ZTP, VPA, we shall have RP ${ }^{2}$, that is, QRL to QT^{2} as $A V^{2}$ to PV^{2}. And therefore $\frac{Q R L \times P V^{2}}{\Lambda V^{2}}$ is equal to $Q T T^{2}$. Multiply those equals by $\frac{S P^{2}}{Q R^{2}}$, and the points P and Q coinciding, for RL write PV ; then we shall have $\frac{\mathrm{SP}^{2} \times \mathrm{PV}^{3}}{\mathrm{AV}^{2}}=\frac{\mathrm{SP}^{2} \times \mathrm{QT}^{2}}{\mathrm{Q} R}$. And therefore (hv Cor 1 and 5, Prop. VI.)

