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INTRODUCTION.

AnAn~n

NEarLy seventeen years ago I translated for the Philosophical
Magazine the first of this series of Memoirs, by Professor
Clausius, on the Mechanical Theory of Heat. A short time
afterwards the Essay of Professor Helmholtz, Ueber die Erhal-
tung der Kraft, was placed in my hands: I translated it, and
had it published in the continuation of Taylor’s Scientific
Memoirs.” It was thus my fortune to introduce to the sci-
entific public of England the earliest writings of two of the
most celebrated contributors to the great theory in question.
For many years subsequent to the period here referred to, 1
was careful to translate, or to have translated, every paper
published by these two writers; and the fact that the fol-
lowing series of these Memoirs is thought worthy of being
presented in a collected form to the English public, proves
that I did not overestimate their importance. I have been
asked by its publisher to write a line or two of introduction
to the present volume. This I could not refuse to do, though
I feel how superfluous it must be; for the name and fame of
Professor Clausius stand as high in this country as in his own.
My Introduction therefore shall be confined to this brief
statement of my relationship to his writings. They fell. into
my hands at a time when I knew but little of the Mechanical
Theory of Heat. In those days their author was my teacher;
and in many respects I am proud to acknowledge him as
my teacher still.

JouN TyNDALL.
London, May 1867.
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AUTHOR'S PREFACE.

It has been repeatedly represented to me (and from very dif-
ferent quarters) that the memoirs on the Mechanical Theory of
Heat which, since the year 1850, I have published from time to
time, principally in Poggendorff’s Annalen, are not easily acces-
sible to all who wish to read them, the interest taken in the
* Mechanical Theory of Heat having in recent times greatly
augmented in circles where physical Journals are not usually
found. Accordingly I have thought it advisable to collect and
republish those Memoirs. In so doing I have also sought to
remedy certain defects which have hitherto diminished their
utility.
My memoirs “ On the Mechanical Theory of Heat” are of
different kinds. Some are devoted to the development of the
general theory and to the application thereof to those properties
of bodies which are usually treated of in the doctrine of heat.
Others have reference to the application of the mechanical
theory of heat to electricity. The latter contain many exposi-
tions peculiar to the doctrine of electricity, and they form a
‘separate group, the study of which is not requisite for under-
“standing the former. Other memoirs, again, have reference to
the conceptions I have formed of the molecular motions which
we call heat. These conceptions, however, have no necessary
connexion with the general theory, the latter being based solely
on certain principles which may be accepted without adopting
any particular view as to the nature of molecular motions. I
have therefore kept the consideration of molecular motions
quite distinct from the exposition of the general theory.



vi AUTHOR’S PREFACE.

The memoirs constituting these three different groups did
not, however, appear exactly in their present order; partly
in consequence of the direction of my own studies, and partly
for other reasons, I found it desirable to pass during their
publication from one group to another. Hence has arisen the
disadvantage that a reader desirous of becoming acquainted
only with the theory, freed as much as possible from hypotheses,
cannot know in advance which memoirs are requisite, and which
are unnecessary for his purpose. This disadvantage is remedied
in the present reprint by simply separating the memoirs into
groups, as above explained.

The present collection contains the memoirs which belong to
the first group ; in them the mechanical theory of beat is deve-
loped from certain simple axiomatic principles, and is applied to
a series of phenomena depending upon heat. I have also in-
cluded the application of the theory to steam-engines, because
this application may be conveniently associated with the ex-
positions occurring in these memoirs, and especially with those
which have reference to vapours*.

The memoirs which treat of the application to electricity, and
those which relate to my conceptions of molecular motions, I
intend subsequently to collect in like manner. The memoirs
contained in this collection, however, are quite independent
of the others, and form in themselves a complete and con-
nected whole. -

Another disadvantage which, as I frequently found, dimi-
nished the usefulness of my memoirs, arose from the fact that
many passages therein were with difficulty understood. The
mechanical theory of heat has introduced new ideas into science,
differing from the earlier accepted views, and accordingly re-
quiring special mathematical treatment. An instance of this,
especiclly worthy of mention, is a certain kind of differential
equations which I have used in my researches, and which differ
from the ordinary ones in one essential point: misconception

* [The ninth memoir of the present edition having been published in Ger-
many subsequent to the appearance there of the First Part of the Collected
Memoirs, was not included therein. It is now published for the first time
in English ; and, at the Author’s suggestion, its appropriate place in the entire
series of Memoirs is here assigned to it.—T. A. H.]
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might easily arise if this difference were not sufficiently observed.
The signification of, and the mode of treating these differential
equations have, indeed, long been known to mathematicians
through the researches of Monge; but, from the fact that an
energetic attack on my theory originated in a misconception of
the true nature of these equations, it would appear that they have
not been sufficiently well studied. In order to avoid similar
misunderstandings in future, I gave at the time a more detailed
explanation of the subject; as this, however, was not published
in Poggendorfl’s Annalen, in which my other memoirs appeared,
but in Dingler’s Polytechnic Journal (which contained that
attack), it may possibly have been seen by few of my readers.

In order, once for all, to remove any difficulty of this nature,
_ the present collection is preceded by a mathematical intro-
duction, in which the treatment of the differential equations in
question is discussed in a manner similar to that adopted
in Dingler’s Journal. I have also in many places added notes
and appendices, in order to elucidate passages in the text.

The memoirs are reprinted verbatim in their original form.
The mechanical theory of heat, to the establishment and develop-
ment of which these memoirs have, as I believe, essentially con-
tributed, is of so great importance that it has already frequently
given rise to discussions on priority. Under these circum-
stances it appeared to me advisable to allow myself no altera-
tions; for even unimportant ones, having reference solely to
modes of expression, might possibly give rise to the thought that
I intended thereby either to take credit, ultimately, for some-
thing which did not appear in the original memoirs, or to sup-
press something which was there inserted*.

The notes and appendices now given for the first time are
plainly recognizable as such. In order to distinguish these
notes from those which were previously published, the former

# [It is scarcely necessary to state that in the present English edition this
rule has not been adhered to. The translations of the original memoirs,
which are here reprinted from the Philosophical Magazine, were made by
different persons; and in order to secure the necessary uniformity in termi-
nology, verbal alterations were frequently requisite. All such alterations,
however, have been made with Prof. Clausius’s sanction, to whom the proofs
have all been submitted for revision.—T. A. H.]
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are enclosed in square brackets; and to every note containing
more than a mere reference is added the date. To the appen-
dices also dates have been affixed.

Should apparently superfluous repetitions be here and there
detected, it must be remembered that the memoirs were published
at different times during the course of fourteen years, and that
often, between two memoirs which directly follow each other in -
this edition, I had published several others bearing upon different
subjects. It was necessary in such cases to recapitulate such
portions of the antecedent memoirs as were deemed essential to
the comprehension of the new one, or requisite for bringing the
reader into the proper train of thought.

R. Crausius.
Zurich, August 1864.
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ON THE

MECHANICAL THEORY OF HEAT.

MATHEMATICAL INTRODUCTION.

ON THE TREATMENT OF DIFFERENTIAL EQUATIONS WHICH ARE
NOT DIRECTLY INTEGRABLE¥,

1. A differential equation of the form

dz=¢ (z,y)dz+y @, y)dy . . . . . (1)
being given, we may, for brevity, introduce the letters M and
N as representatives of the arbitrary functions ¢ (, y) and
Yr(z,y) of the variables # and y, and thus write that equation in
the somewhat more convenient form

dz=Mdx+Ndy. . . . . . . . . . (1?3
This equation indicates by how much the magnitude z is in-
creased, when z and y receive the infinitesimal increments re-
presented by dz and dy ; a decrement being here, of course, con-
sidered as a negative increment. The above two functions, by
which' the differentials dz and dy are multiplied, represent the
partial differential coefficients of z according to # and to y. De-
noting, therefore, these partial differential coefficients by the

. dz dz .
fractional forms e and & we may write

Z—z‘=¢(‘”: y) =M" (2)
E=¥@y=N.

* The principal part of this introduction is contained in a note, published
by me, in Dingler's Polytechnisches Journal, vol. cl. p. 20 (1858).
- B



2 MATHEMATICAL INTRODUCTION.
This representation of partial differential cocfficients by the
. . dz dz. . . "
simple fractions tT;’ 3; 1s, in a cersain sense, objectionable. For

if in the equation (1) or (12) we substitute these fractions for the
functions in question, the equation

dz dz
dz—%dw+@dy. N )]

is obtained, in which the same symbol dz appears three times
with three different meanings. On the right of the equation dz
denotes, first, the increment of z when, y remaining constant,
alone is increased by dz ; and secondly, the increment received by
z when, without changing #, y is increased by dy ; whilst on the
left of the equation dz represents the total increment of z due to
the simultaneous reception by z and y of the increments dz and
dy, respectively. This diversity in the interpretation of one and
the same symbol, arising from the different combinations into
which it enters, vitiates the expressiveness of the equation.

In consequence of this, various changes in the notation of
partial differential coefficients have been proposed. In order to
distinguish the partial differential coefficients from others, Euler
enclosed the above simple fractions in brackets, and his method
is still frequently adopted. In this notation the equation (3) as-
sumes the form

dz=(z_z)dz+(z—;) dy. . . . . ... (3
Other mathematicians give, as a suffix to the symbol & in the
numerators of the above fractions, the variable to whose varia-
tion the differential coefficient is due ; in this notation the equa-
tion would be written thus :

Zdy, . ... .. .. (@3

Others again, following the example of Jacobi, use the symbol 9 -
in place of d in the numerator as well as in the denominator of
the fraction which represents a partial differential coefficient. In
this manner our equation acquires the form

oz oz ’ !
-a;dz' +a/ dy. e e e e e e e e (3 )
Of these three notations that of (8°), wherein suffixes are em-

dz=



UNINTEGRABLE DIFFERENTIAL EQUATIONS. ’ 3

ployed, is perhaps the most rational ; for it is precisely the nume-
rators of the representative fractions which admit of different in-
terpretations, and the latter are clearly and unequivocally ex-
pressed by means of these suffixes. Nevertheless the incessant
addition of a suffix constitutes an inconvenience, which, though
trivialin individual cases, becomes much graver when partial dif-
ferential coefficients are frequently employed. It must also be
observed that, in the cases which most frequently occur, the ori-
ginal and most convenient notation gives rise to no ambiguity.
For whenz and y denote two mutually independent variables upon
whose values that of z depends, it is manifest that the dz in the

numerator of the fraction Z—; cannot be understood to denote

other than that increment of z which is due to the increment dz
of the variable 2 which appears in the denominator. Any altera-
tion which may simultaneously take place in the value of the
other variable y must, together with the consequent variation
of z, be perfectly independent of the differential dz, so that the
fraction g would have no definite meaning whatever were the
above variation of z included in that of which dz is here the
symbol. It is consequently of little importance whether, in the
representation of partial differential coefficients, we give prefer-
dz dz
dz’ dy
greater clearness, to one of the above described modified forms
of notation. :

In one case only is it necessary to have recourse to a distinc-
tive symbol in order to avoid misconception. It sometimes
happens, for instance, that the magnitudes # and y, upon whose
values that of 2z depends, are not independent of each other, but
that the value of one is affected by that of the other; in other
words, that the former may be regarded as a function of the latter.-
If y, for example, be considered as a function of z, then, in the
event of # increasing by dz, the simultaneous increment dy
of y cannot be regarded as arbitrary, but must be treated as a
magnitude whose value is also determined by the differential de,

and capable of representation by the expression %Z’ dz. By sub-

B2

ence to the ordinary fractional forms » or, for the sake of
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stitution, the differential equation (3) would now take the form

dz dz dy 4.
dz—dwd.z'-i- p

Dividing throughout by dz we obtain an equation which, if
we also denote the quotient on the left by a simple fraction,
would read thus:

dz _dz dz dy,
dz—detdy do’

here, however, the fraction Z_.z* on the left has a very different

meaning from that of the like fraction on the right.

In such cases the two fractions must in some way or other be
distinguished. To do so, we may either employ, for the partial
differential coefficients on the right, one of the three notations
above described, or we may employ a different symbol for the
fraction on the left. For the last purpose, mathematical authors

have proposed to write, in place of d_z’

either ;—;dz, or z‘) y or
Since cases of this kind however occur, comparatively speaking,
but seldom, it is of little importance which of these methods of
notation is adopted. In fact, whenever necessary, it will be easy
to add an explanatory remark as to the meaning to be attached
to any chosen symbol.

I have thought it necessary to enter into these details con-
cerning the different systems of notation now in use, because it
is precisely in investigations where familiar ideas are departed
from, that a diversity of notation is most liable to give rise to
misconceptions.

2. Returning to the differential equation

dz=Mdz+ Ndy

given in (1) and (1%®), let us now inguire if, and how the magni-
tude z can be determined therefrom.

Differential equations of this form cannot all be regarded as
of like kind ; according to the constitution of the functions M
and N they are, on the contrary, divisible into two classes which
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differ from each other essentially, not only with respect to the
treatment which they require, but also with reference to the
results to which they lead. To the first class belong the cases
where the functions in question satisfy the condition

dM__dN

-(E:E;........(‘L)
and the second class embraces all cases where this equation of
condition is not satisfied by the two functions.

‘When the equation (4) is fulfilled, the expression on the right
of the given differential equation (1) or (12) is integrable; that
is to say, it is the complete differential of a function of # and y,
in which these two variables may be regarded as independent of

each other ; and by integration an equation can be obtained of

the form
z=F(x,y)+const. . . . . . . (B)

When the condition expressed by the equation (4) is not ful-
filled, the expression on the right of the given differential equa-
tion is not integrable, whence we conclude that = cannot be ex-
pressed as a function of x and y so long as these variables are
regarded as independent, one of the other. In fact, if we were to
assume

z=F(z, y),
we should have
M= _dFz 9)
“dz~ dx
_dz_dF(z,y).
N=2="4
whence would result
dM d’F(:c, _1/)
dy ~ dzdy ’
dN d’F(z, )
dx = dydx

" But since, when the two variables of a function are indepen-
dent of each other, the result of differentiating, successively, ac-
cording to both is not affected by the order in which these differ-
entiations are effected, we have necessarily

&*F(z,v) _d*F(z,y) .
dedy ~— dydz ’
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so that from the two preceding equations the equation (4) follows
as a consequence, and thus eontradicts the hypothesis from which
we started.

In such a case, therefore, the integration is impossible on the
assumption that the variables # and y preserve their property of
mutual independence. If, on the other hand, we assume any
determinate relation whatever to exist between the two magni-
tudes, in consequence of which one may be represented as a
function of the other, the integration of the given differential
cquation will be thereby rendered practicable. For if we put

f@,y=0 . . . . . . . . (6)

where f represents any function whatever, we can by means of
this equation express either variable in terms of the other, and
then eliminate the variable thus expressed, together with its dif-
ferential, from the differential equation (1). The general form
given in the equation (6) embraces, of course, the special case,
where one of the magnitudes 2, y ceases to be variable ; for then
its differential, by becoming equal to zero, at once vanishes
from the differential equation, and the magnitude itself becomes
replaced by its constant value.

Let us now suppose one of the variables, say y, together with
its differential, eliminated from the differential equation (1) by
means of the equation: (6), and the former thereby reduced to
the form .
dz=®(z)dz;
the equation thus modified will obviously give, by integration,

another of the form
z=F@)+const. . . . . . . . (7

Accordingly, the two equations (6) and (7) must together be re-
garded as constituting a solution of the given differential equa-
tion. Since the function f(#, y) which appears in (6) is an arbi-
trary one, and to every different form of this function must
correspond, in general, a different function F (#) in (7), it is
manifest that there will be an infinite number of solutions of
the kind under consideration.

The form of the equation (7), it is to be observed, is suscepti-
ble of several modifications. If, by means of the equation (6), z
had been expressed in terms of y; and then, together with its
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differential, eliminated from the given differential equation, the
form in question would have been

dz=>,(y) dy;
from which, by integration, an equation of the form
z=F,(y)+const. . . . . . . (7

would have been obtained. Precisely the same equation would
be arrived at by substituting for 2, in the result (7) obtained

‘by the first method, its value in y as given by the equation (6).

Again, # might be only partially eliminated from (7). For in-
stance, the function F(#) will in general contain # in two or
more different combinations (or rather, it may be always made
to do so, by substituting for # equivalent expressions such as

+1
(1—a)z +ax, %, &c. . ..), and when this is the case the value

of z expressed in y may always be substituted in some combina-
tions, whilst others are allowed to remain unaltered. The equa-
tion would thereby assume the form
z=Fy(z,y)+const.,, . . . . . . (7Y
which may be regarded as the more general one, embracing both
the other forms as special cases.
It is obvious, however, that the three equations (7), (72), and
(7%), each of which only holds in combination with (6), do not

‘constitute different solutions, but merely different expressions of

one and the same solution.

3. In order clearly to appreciate the essential difference
between the cases when the given differential equation belongs
to the first, and when it belongs, to the second class,—that is to
say, when the condition (4) is, and when it is not fulfilled,—we
will consider an example which, partly by its relation to an
already well-known subject, and partly also by its susceptibility
of geometrical representation, is well suited to furnish a clear
conception of the matter.

Conceive a moveable point p in a fixed plane, and let its posi-
tion at any stated moment be determined by rectangular coor-
dinates # and y. Acting on the point, and tending to move it
in the plane, is a force whose intensity and direction are different
at different parts of the plane. Required the work done by this
force when the point moves under its influence.
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Let ds be an element of the path described by the point, S the
component of the force acting thereon which falls in the direction
of this path, and dW the element of work performed by the force
during this small motion. This last element will be determined
by the equation

dW=Sds,. . . . . . . . (8
to which, however, another form may be given more convenient
for our present purpose. Let P be the whole force acting in the
immediate neighbourhood of the arc-element ds, and ¢ the angle
between this element and the direction of that force. Then, ob-

viously, S b.P
S=cos ¢.P,

dW=cos¢.Pds. . . . . .9
Now if X and Y denote the two components of the force P in the
directions of the coordinate axes, the cosines of the angles between
these directions and that of P will be expressed by

)_]E(’ and %

Moreover, if by dz and dy we understand the increments which
the # and y of the point p receive when the latter describes the
arc-element ds, the cosines of the angles between the direction
of this element and those of the coordinate axes will be expressed

by

so that

dx dy
A and s

Hence for the cosine of the angle ¢ between the force P and the
arc-element ds we have the expression
Xde Y dy
s b=% T+ P ds
which, when substituted in (9), gives the equation
AW=Xdz+Ydy. . . . . . . . (10

This is a differential equation of the same form as those given
in (1) and (12), the notation alone being a little changed.
Instead of 2z the letter W is used, as more appropriate for the
representation of work ; and M and N, which before were abbre-
viated symbols for the functions ¢(z, y) and Y (z, y), are now
replaced by X and Y, the customary representatives of the com-
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ponents of the force P, and are again abbreviations for arbitrary
functions of the coordinates # and y ; for, as already remarked,
the force P varies in intensity and direction, according to some
arbitrary law, with the position which the moveable point p, upon
which it acts, occupies in the plane.

Before proceeding, by the integration of this equation, to de-
duce the work corresponding to any finite motion, the question
arises: does it satisfy the condition

ax_dY

dy  dz

analogous to the equation (4) ? Should it do so, we may de-
duce at once an equation of the form

W=F(@,y)+const.; . . . . . (11)

but if it should not satisfy this condition, then in order to be able
to integrate, we must first assume a relation to exist between the
variables » and y ; so that finally we shall obtain a system of
equations of the form  °
Sz, y) =0,
W=F(z,y)+oonst. S * ° (12)

4. The geometrical signification of these two different results
is easily recognized.

Suppose the point p to move from a given initial position
Zo, Yo to a given final one 2,, y,. Then in the first case the
work done by the acting force during this motion may be at once
ascertained without the necessity of inquiring into the nature of
the path thereby described. This work, in fact, is expressed by
the difference

F(z), 1) — F (@, yo)-

Although the point, therefore, may pursue very different paths
when moving from one position to another, the quantity of work
thereby performed by the acting force, being independent of the
path, is perfectly determined so soon as the starting-point and
the terminus are given.

In the second case it is otherwise. Of the two equations (1),
which have reference thereto, the first is arbitrary, and the
second can only be determined when the first is given, since the
form of the function F(z, y) varies obviously with that which is
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given to the function f(z, y). The first equation is that of some
curve, so that the above relation may be expressed, geometri-
cally, by saying, in the present case, the work done by the acting
force during the motion of the point p can only be determined
when the whole course of the curve on which it moves is known.
The initial and final points of the motion being previously known,
the first of the above equations must be chosen so that the curve
thereby represented may pass through these two points ; this
curve, however, may have an infinity of different forms to which,
notwithstanding the coincidence of the extremities, will corre-
spond an infinity of different quantities of work.

If, for instance, the point p be compelled to describe a closed
curve, and thus to return to its initial position, the coordinates
z,, ¥, being respectively equal to z,, y,, the total work done, in
the first case, will be zero; in the second, however, it need not
be so, but may have any positive or negative value whatever.

The example here borrowed from analytical mechanics shows
also very clearlyhow a magnitude which is incapable of expression
as a function of # and y (so long as the latter are regarded as
variables independent of each other) may still have, for partial
differential coefficients according to z and y, determinate func-
tions of these variables. For it is manifest that, strictly speak-
ing, the components X and Y must be termed tke partial differ-
ential coefficients, according to x and y, of the work W ; since,
when z increases by dz, y remaining constant, the work increases
by Xdz ; and when y increases by dy, # remaining unaltered, the
work augments by Ydy. Now whether W be a magnitude ge-
nerally expressible as a function of # and y, or whether it can
only be determined on knowing the path described by the point,
we may always employ the ordinary notation for the partial dif-
ferential coefficients of W, and write,

(13)

5. When the functions ¢ (z, ) and ¥ (#,y), or M and N, which
occur in the differential equation (1) or (12), fail to satisfy the
condition (4), it has been shown that the integration may be
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effected by assuming a relation to exist between the variables
and y of the form
Sz, y) =0.

The same object is achieved in a more general manner, however,
by assuming the existence of an equation, not merely between
and y, but involving all the variables 2, y, 2, or rather any one or
more of them, and therefore expressible in the form

f@,y,2)=0. . . . . . . . . (14

If by means of this equation one of the variables be eliminated
from the given differential equation, another differential equation
will be obtained which may always be integrated.

Indeed in order to exhaust all possible cases of complete dif-
ferential equations of the first order in three variables, still fur-
ther extensions of the above considerations would be necessary.

The differential equation (1) is itself a limited form of the kind
in question, inasmuch as functions of all three variables, in-
stead of the two variables @, y, might therein present themselves.
‘When the differential equation has this more general form, which
may be thus written : '

b(2,y,2)dze+Y(2,y, 2)dy+x(z,y,2)dz=0, . (15)
the condition to be satisfied in order that integration may be
possible without the assumption of any further relation between
the variables, assumes a more complicated form than that given
in (4). Itshould, moreover, be observed that in the case of the
non-fulfilment of this condition, and the consequent impossibility
of actual integration, the relation which must be assumed, or
be involved in some imposed condition, in order to be able to inte-
grate, need not have the form of a primitive, but may itself be
a differential equation. In the treatment of the equations, too,
a8 well as in the manner of expressing the result, many modifi-
cations may present themselves.

It is not necessary, however, to enter here into all these ex-
tensions, since the preceding exposition will suffice to render in-
telligible the equations hereafter to be developed, as well as the
operations to which such equations will be subjected.

6. I may mention, lastly, that the preceding considerations,
relative to complete differential equations involving three varia-
blcs, may he extended in a similar manner to complete differen-
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tial equations in four or more variables, and that amongst the
latter we are thereby led to the detection of corresponding dif-
ferences. In illustration of this I will give but one simple spe-
cial case, well known in mechanics, and closely related to the
example already considered.

Let p be a moveable point in space whose rectanglar coordi-
nates at any particular moment are x, y, 2. Conceive a force P
to act on this point with an intensity and in a direction which
may be different at different places in space. I propose to de-
termine the quantity of work done by the force during any as-
signed motion.

Let ds be an element of the path described by the point, and
¢ the angle at which this path is inclined to the direction of the
force. The element of work dW will be again given by the
equation

' dW =cos ¢.Pds.

In order to give another form to this expression, we may denote
by X, Y, Z, the three components of P in the directions of the,
coordinate axes ; in which case the fractions

X Y Z

PPP
will represent the cosines of the angles which the direction of the
force makes with the directions of the three coordinate axes. If,
further, dz, dy, dz be the increments of the coordinates z,y, z, due
to the description of the path-element ds, the cosines of the angle
between the element ds, and the three coordinate axes will be
expressed, respectively, by

Hence is deduced, for the cosine of the angle ¢ between the
directions of the path and the force, the value
X de Y dy Z dz
Pds Pds P ds
Substituting this value in the above expression for dW, we have
the diﬂ'ere?tia.l equation

AW=Xde+Ydy+Zdz . . . . . . (16)
for the determination of the work. The magnitudes X, Y, Z

cos p= +
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which here present themselves are perfectly arbitrary functions
of z,y, z ; for whatever values these three components may have
at different points in space, a force P always results therefrom.

In treating this equation the following three conditions at once
enter into consideration :

dy dz’ dz dy’ de dz’ ~ =~ °
and the question arises whether or not the functions X, Y, Z
fulfil them.

When the three equations of condition are satisfied, the ex-
pression on the right of (16) is the complete differential of a func-
tion of z,y, z, wherein these three variables may be regarded as
mutually independent. The integration therefore may be at once
effected, and an equation thereby obtained of the form

W=F(z,y,2z) +const. . . . . . . (18)
If we now conceive the point p to move from a given initial
point z,, y,, 2, to a given terminal point z,, y,, 2,, the work done
" by the force during the passage will be represented by the dif-
ference
F(zy, y1, 21) —F (o Yo» 20) - )
This work, therefore, is completely determined by the positions
of the extreme points between which motion has occurred, and
hence it follows that the work done by the force is always the
same whatever path may have been followed in passing from the
one position to the other.

When the three conditions (17) are not fulfilled, the integra-
tion cannot be performed with the same generality. The inte-
gration will be rendered possible, however, so soon as the path
pursued by the moving point p is known. If between the ex-
treme points we conceive several curves to be drawn, and the
point p compelled to move thereon, we shall obtain a definite
amount of work corresponding to each curve, but these quanti-
ties of work. need not, as in the previous case, be equal to one
another ; in fact they will, in general, have different values.
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FIRST MEMOIR.

ON THE MOVING FORCE OF HEAT AND THE LAWS OF HEAT WHICH
MAY BE DEDUCED THEREFROM ¥,

THE steam-engine having furnished us with a means of con-
verting heat into a motive power, and our thoughts being
thereby led to regard a certain quantity of work as an equivalent
for the amount of heat expended in its production, the idea of
establishing theoretically some fixed relation between a quantity
of heat and the quantity of work which it can possibly produce,
from which relation conclusions regarding the nature of heat
itself might be deduced, naturally presents itself. Already, in-
deed, have many successful efforts been made with this view ;
I believe, however, that they have not exhausted the subject,
but that, on the contrary, it merits the continued attention
of physicists; partly because weighty objections lie in the way
of the conclusions already drawn, and partly because other con-
clusions, whiclt might render efficient aid towards establishing
and completing the theory of heat, remain either entirely unno-
ticed; or have not as yet found sufficiently distinct expression.

The most important investigation in connexion with this sub-
ject is that of S. Carnot t.

. Later still, the ideas of this author have been represented

analytically in a very able manner by Clapeyron f.

Carnot proves that whenever work is produced by heat and a

#* Communicated in the Academy of Berlin, Feb. 1850, published in Pog-
gendorfl’s Annalen, March-April 1850, vol. Ixxix. pp. 368, 500, and trans-
lated in the Philosophical Magazine, July 1851, vol. ii. pp. 1, 102.

t Reflexions sur la puissance motrice du feu, et sur les machines propres & dé-
velopper cette puissance, par S. Carnot. Paris, 1824. I have not been able to
procure a copy of this work ; I know it solely through the writings of Clapey-
ron and Thomson, from which latter are taken the passages hereafter cited.
[At a later date Thad an opportunity of studying the work itself, and of thus
confirming the views, regarding its contents, which I had previously formed
from a perusal of the writings referred to.—1864.)

1 Journal de I’Ecole Polytechnique, vol. xiv. 1834 ; Pogg. Ann. vob. lix.;
and Taylor’s Scientific Memoirs, Part III. p. 347.
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permanent alteration of the body in action does not at the same
time take place, a certain quantity of heat passes from a warm
body to a cold one; for example, the vapour which is generated
in the boiler of a steam-engine, and passes thence to the con-
denser where it is precipitated, carries heat from the fireplace to
the condenser. This transmission Carnot regards as the change
of heat corresponding to the work produced. He says expressly,
that no heat is lost in the process, that the quantity remains un-
changed ; and he adds, “ This is a fact which has never been dis-
puted ; it is first assumed without investigation, and then con-
firmed by various calorimetric experiments. To deny it, would
be to reject the entire theory of heat, of which it forms the
principal foundation.” '

I am not, however, sure that the assertion, that in the pro-
duction of work a loss of heat never occurs, is sufficiently esta-

blished by experiment. Perhaps the contrary might be asserted

with greater justice; that although no such loss may have been
directly proved, still other facts render it exceedingly probable
that a loss occurs. If we assume that heat, like matter, cannot
be lessened in quantity, we must also assume that it cannot be
increased ; but it is almost impossible to explain the ascension
of temperature brought about by friction otherwise than by
assuming an actual increase of heat. The careful experiments
of Joule, who developed heat in various ways by the application
of mechanical force, establish almost to a certainty, not only the
possibility of increasing the quantity of heat, but also the fact
that the newly-produced heat is proportional to the work ex-
pended in its production. It may be remarked further, that
many facts have lately transpired which tend to overthrow the
hypothesis that heat is itself a body, and to prove that it con-
sists in a motion of the ultimate particles of bodies. If this be
so, the general principles of mechanics may be applied to heat ;
this motion may be converted into work, the loss of vis viva in
each particular case being proportional to the quantity of work
produced.

These circumstances, of which Carnot was also well aware, and
the importance of which he expressly admitted, pressingly de-
mand a comparison between heat and work, to be undertaken
with reference to the divergent assumption that the production

N

-
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of work is not only due to an alteration in the distribution of
heat, but to an actual consumption thereof; and inversely, that
by the expenditure of work heat may be produced.

In a recent memoir by Holtzmann¥*, it seemed at first as if
the author intended to regard the subject from this latter point
of view. Hesays (p. 7), “ the effect of the heat which has been
communicated to the gas is either an increase of temperature
combined with an increase of elasticity, or a mechanical work,
or a combination of both; a mechanical work being the equiva-
lent for an increase of temperature. Heat can only be measured
by its effects; and of the two effects mentioned, mechanical
work is peculiarly applicable here, and shall therefore be chosen
as a standard in the following investigation. I name a unit of
heat, the quantity which, on being communicated to any gas, is
able to produce the quantity of work a; or to speak more defi-
nitely, which is able to raise a kilogrammes to a height of one
metre.” Afterwards, at page 12, he determines the numerical
value of the constant a, according to the method of Meyer+, and
obtains a number which exactly corresponds to that obtained in
a totally different manner by Joule. In carrying out the theory,
however, that is, in developing the equations by means of which
his conclusions are arrived at, he proceeds in a manner similar
to Clapeyron, so that the assumption that the quantity of heat is
constant is still tacitly retained.

The difference between the two ways of regarding the subject
has been seized with much greater clearness by W. Thomson,
who has applied the recent investigations of Regnault, on the
tension and latent heat of steam, to the completing of the memoir
of Carnoti. Thomson mentions distinctly the obstacles which lie
in the way of an unconditional acceptance of Carnot’s theory,
referring particularly to the investigations of Joule, and dwelling
on one principal objection to which the theory is liable. If it be
even granted that the production of work, where the body in
action remains in the same state after the production as before,

* Ueber die Wirme und Elasticitit der Gase und Dimpfe, von C. Holtz-
mann. Manheim, 1845. Also Poggendorti’s Annalen, vol. Ixxii. a; and Tay-
lor’s Scientific Memoirs, Part XIV. p. 189

+ Ann. der Chem. und Pharm., vol. xlii. p. 239.

1 Transactions of the Royal Society of Edinburgh, vol. xvi.
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is in all cases accompanied by a transmission of heat from a warm
body to a cold one, it does not follow that by every such trans-
mission work is produced, for the heat may be carried over by
simple conduction; and in all such cases, if the transmission
alone were the true equivalent of the work performed, an abso-
lute loss of mechanical force must take place in nature, which is
hardly conceivable. Notwithstanding this, however, he arrives
"at the conclusion, that in the present state of science the prin-
ciple assumed by Carnot is the most probable foundation for an
investigation on the moving force of heat. He says, “ If we
forsake this principle, we stumble immediately on innumerable
other difficulties, which, without further experimental investiga-
tions, and an entirely new erection of the theory of heat, are
altogether insurmountable.”

I believe, nevertheless, that we ought not to suffer ourselves
to be daunted by these difficulties ; but that, on the contrary, we
must look steadfastly into this theory which calls heat a motion,
as in this way alone can we arrive at the means of establishing
it or refuting it. Besides this, I do not imagine that the diffi-
culties are so great as Thomson considers them to be; for
although a certain alteration in our way of regarding the subject
is necessary, still I find that this is in no case contradicted by
proved facts. It is not even requisite to cast the theory of
Carnot overboard ; a thing difficult to be resolved upon, inas-
much as experience to a certain extent has shown a surprising
coincidence therewith: On a nearer view of the case, we find
that the new theory is opposed, not to the real fundamental
principle of Carnot, but to the addition “no heat is lost ;” for it
is quite possible that in the production of work both may take
place at the same time; a certain portion of heat may be con-
sumed, and a further portion transmitted from a warm body to
a cold one; and both portions may stand in a certain definite
relation to the quantity of work produced. This will be made
plainer as we proceed ; and it will be moreover shown, that the
inferences to be drawn from both assumptions may not only exist
together, but that they mutually support each other.
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1. Deductions from the principle of the equivalence of heat and
work.

'We shall forbear entering at present on the nature of the mo-
tion which may be supposed to exist within a body, and shall
assume generally that a motion of the particles does exist, and
that heat is the measure of their vis viva. Or yet more generally,
we shall merely lay down one maxim which is founded on the
above assumption :—

In all cases where work is produced by heat, a quantity of heat
proportional to the work done is consumed ; and inversely, by the
expenditure of a like quantity of work, the same amount of heat
may be produced

. Before passing on to the mathema.tlcal treatment of this maxim,
a few of its more immediate consequences may be noticed, which
have an influence on our entire notions as to heat, and which are
capable of being understood, without entering upon the more
definite proofs by calculation which are introduced further on.

‘We often hear of the Zofal heat of bodies, and of gases and
vapours in particular, this term being meant to express the sum
of the sensible and latent heat. It is assumed that this depends
solely upon the present condition of the body under considera-
tion ; so that when all other physical properties thereof, its
temperature, density, &c. are known, the total quantity of heat
which the body contains may also be accurately determined¥*.
According to the above maxim, however, this assumption cannot
be admitted. If a body in a certain state, for instance a quan-
tity of gas at the temperature #, and volume v,, be subjected to
various alterations as regards temperature and volume, and
brought at the conclusion into its original state, the sum of its
sensible and latent heats must, agcording to the above assump-
tion, be the same as before; hence, if during any portion of the
process heat be communicated from without, the quantity thus
received must be given off again during some other portion of

# [The above may perhaps be more clearly expressed thus :—By total keat
was formerly meant the total quantity of heat which must be imparted to a
body in order, from any given initial condition, to bring it to any other, and
it was thereby implied that, the initial condition being known, the quan-
tity of heat in question is completely determined by the present condition of

the body, no matter in what manner the body may have been brought to this
condition.—1864.] :



MOVING FORCE OF HEAT. 19

the process. With every alteration of volume, however, a cer-
tain quantity of work is either produced or expended by the gas ;
for by its expansion an outward pressure is forced back, and on
the other hand, compression can only be effected by the advance
of an outward pressure. If, therefore, alteration of volume be
among the changes which the gas has undergone, work must be
produced and expended. It is not, however, necessary that at
the conclusion, when the original condition of the gas is again
established, the entire amount of work produced should be exactly
equal to the amount expended, the one thus balancing the other ;
an excess of one or the other will be present if the compression
has taken place at a lower or a higher temperature than the ex-
pansion, as shall be proved more strictly further on. This excess
of produced or expended work must, according to the maxim,
correspond to a proportionate excess of expended or produced
heat, and hence the amount of heat refunded by the gas cannat
be the same as that which it has received.

There is still another way of exhibiting this divergence of our
maxim from the common assumption as to the fotal keat of bo-
dies. When a gas at ¢, and v, is to be brought to the higher
temperature £, and the greater volume v,, the quantity of heat
necessary to effect this would, according to the usual hypothesis,
be quite independent of the manner in which it is communicated.
By the above maxim, however, this quantity would be different
according as the gas is first heated at the constant volume v, and
then permitted to expand at the constant temperature #,, or first
expanded at the temperature ¢, and afterwards heated to ¢, or
expansion and heating alternated in any other manner, or even
effected simultaneously ; for in all these cases the work done by
the gas is different.

In like manner, when a quantity of water at the temperature
t, is to be converted into vapour of the temperature ¢, and the
volume v,, it will make a difference in the amount of heat ne-
cessary if the water be heated first to 7, and then suffered to eva-
porate, or if it be suffered to evaporate by #, and the vapour
heated afterwards to £, and brought to the volume v, ; or finally,
if the evaporation take place at any intermediate temperature.

From this and from the immediate consideration of the
maxim, we can form a notion as to the light in which latent heat

c?



20 FIRST MEMOIR.

must be regarded. Referring again to the last example, we dis-
tinguish in the quantity of heat imparted to the water during
the change the sensible heat and the latent heat. Only the former
of these, however, must we regard as present in the produced
steam ; the latter is, not only as its name imports, hidden from
our perceptions, but has actually no existence ; during the alte-
ration it has been converted into work.

We must introduce another distinction still as regards the
heat expended. The work produced is of a twofold nature. In
the first place, a certain quantity of work is necessary to over-
come the mutual attraction of the particles, and to separate them
to the distance which they occupy in a state of vapour. Secondly,
the vapour during its development must, in order to procure
room for itself, force back an outer pressure. We shall name
the former of these inferior work, and the latter exterior work,
and shall distribute the latent heat also under the same two
heads.

‘With regard to the inferior work, it can make no difference
whether the evaporation. takes place at £, or at £,, or at any other
intermediate temperature, inasmuch as the attraction of the par-
ticles must be regarded as invariable*. The exterior work, on
the contrary, is regulated by the pressure, and therefore by the
temperature also. These remarks are not restricted to the ex-
ample we have given, but are of general application ; and when
it was stated above, that the quantity of heat necessary to bring
a body from one condition into another depended, not upon the
state of the body at the beginning and the end alone, but upon
the manner in which the alterations had been carried on through-
out, this statement had reference to that portion only of the la-
tent heat which corresponds to the exferior work. The remainder

* It must not be objected here that the cohesion of the water at ¢, is less
than at ¢, and hence requires a less amount of work to overcome it. The
lessening of the cohesion implies a certain work performed by the warming
of the water as water, and this must be added to that produced by evapora-
tion. Hence it follows, at once, that only part of the quantity of heat which
water receives from without when heated, is to be regarded as heat in the free
state, the rest being consumed in diminishing cohesion. This view is in ac-
cordance with the circumstance that water has so much higher a specific heat
than ice, and probably also than steam. [The views briefly referred to in this
note will receive full consideration in a subsequent memoir.—1864.]
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of the latent heat and the entire amount of sensible heat are in-
dependent of the manner in which the alteration is effected.

When the vapour of water at ¢, and v, is reconverted into
water at y, the reverse occurs. Work is here ezpended, inas-
much as the particles again yield to their attraction, and the
outer pressure once more advances. In this case, therefore, heat
must be produced ; and the sensible heat which here exhibits it-
self does not come from any retreat in which it was previously
concealed, but is newly produced. It is not necessary that the
heat developed by this reverse process should be equal to that
consumed by the other; that portion which corresponds to the
exterior work may be greater or less according to circumstances.

We shall now turn to the mathematical treatment of the sub-
ject, confining ourselves, however, to the consideration of per-
manent gases, and of vapours at their maximum density ; as be-
sides possessing the greatest interest, our superior knowledge of
these recommends them as best suited to the calculus. It will,
however, be easy to see how the maxim may be applied to other
cases also.

Let a certain quantity of permanent gas, say a unit of weight,
be given. To determine its present condition, three quantities
are necessary; the pressure under which it exists, its volume,
and its temperature. These quantities stand to each other in a
relation of mutual dependence, which, by a union of the laws of .
Mariotte and Gay-Lussac¥*, is expressed in the following equa-
tion : ’

pr=R@+y),. . . . . . . . . @
where p, v and £ express the pressure, volume and temperature
of the gas in its present state, a a constant equal for all gases, and
Po%
a+ty
vy, and £, express contemporaneous values of the above three
quantities for any other condition of the gas. This last constant
is therefore different for different gases, being inversely propor-
tional to the specific weight of each.

It must be remarked, that Regnault has recently proved, by a
series of very careful experiments, that this law is not in all

# This shall be expressed in future briefly thus—the law of M. and G.;
and the law of Mariotte alone thus—the law of M.

R also a constant, which is fully expressed thus, where p,,
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strictness correct. The deviations, however, for the permanent
gases are very small, and exhibit themselves principally in those
cases where the gas admits of condensation. From this it would
seem to follow, that the more distant, as regards pressure and
temperature, a gas is from its point of condensation, the more
correct will be the law. Whilst its accuracy, therefore, for per-
manent gases in their common state is so great, that in most in-
vestigations it may be regarded as perfect, for every gas a limit
may be imagined, up to which the law is also perfectly true; and
in the following pages, where the permanent gases are treated as
such, we shall assume the existence of this ideal condition¥.

The value -‘l; for atmospheric air is found by the experiments

both of Magnus and Regnault to be =0-003665, the tempera-
ture being expressed by the centesimal scale reckoned from the
freezing-point upwards. The gases, however, as already men-
tioned, not following strictly the law of M. and G., we do not

always obtain the same value for ‘1' when the experiment is re-

peated under different circumstances. The number given above
is true for the case when the air is taken at a temperature of 0°
under the pressure of one atmosphere, heated to a temperature
of 100°, and the increase of expansive force observed. If, how-
ever, the pressure be allowed to remain constant, and the in-
ecrease of volume observed, we obtain the somewhat higher value
0-003670. Further, the values increase when the experiments
are made under a pressure exceeding that of the atmosphere, and
decrease when the pressure is less. It is clear from this that
the exact value for the ideal condition, where the differences
pointed out would of course disappear, cannot be ascertained.
Tt is certain, however, that the number 0°003665 is not far from
the truth, especially as it very nearly agrees with the value found
for hydrogen, which, perhaps of all gases, approaches nearest the

ideal condition. Retaining, therefore, the above value for ‘1;, we
have a=273.
One of the quantities in equation (I), for instance p, may be re-

#* [In my later memoirs the gases relative to which the existence of this
ideal condition is assumed are termed perfect gases.—1864.]



MOVING FORCE OF HEAT. 23

garded as a function of the two others ; the latter will then be the
independent variables which determine the condition of the gas®*.

We will now endeavour to ascertain in what manner the quan-
tities which relate to the amount of heat depend upon v and £

When any body whatever changes its volume, the change is
always accompanied by a mechanical work produced or expended.
In most cases, however, it is impossible to determine this with
accuracy, because an unknown interior work usually goes on at
the same time with the ezterior. To avoid this difficulty, Carnot
adopted the ingenious contrivance before alluded to : he allowed
the body to undergo various changes, and finally brought it into
its primitive state ; hence if by any of the changes interior work
was produced, this]was sure to be exactly nullified by some other
change ; and it was certain that the quantity of exterior work
which remained over and above was the total quantity of work
produced. Clapeyron has made this very evident by means of a
diagram : we propose following his method with permanent gases
in the first instance, introducing, however, some slight modifi-
cations rendered necessary by our maxim.

In the annexed figure let oe Fig. 1.
represent the volume, and ea the
pressure of the unit-weight of
gas when the temperature is ¢; 3
let us suppose the gas to be con-
tained in an expansible bag, with
which, however, no exchange of
heat is possible. If the gas be
permitted to expand, no new heat o eh f g -

a

* [Clapeyron in his researches generally selected v and p for his two inde-
pendent variables—a choice which accords best with the graphic represen-
tation, about to be described, wherein v and p constitute the coordinates. I
have preferred, however, to consider v and ¢ as the independent variables, and
to regard p as a function thereof ; since in the theory of heat the temperature
¢ is especially important, and at the same time very suitable for determination
by direct measurements, accordingly it is ordinarily regarded as a previously
known magnitude upon which depend the several other magnitudes which
there enter into consideration. For the sake of uniformity I have everywhere
abided by this choice of independent variables ; it need scarcely be remarked,
however, that occasionally the equations thus established would assume a
somewhat simpler form, if instead of v and ¢, v and p or ¢ and p were intro-
duced therein as independent variables.—1864.]
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being added, the temperature will fall. To avoid this, let the
gas during the expansion be brought into contact with a body A
of the temperature #, from which it shall receive heat sufficient
to preserve it constant at the same temperature. While this ex-
pansion by constant temperature proceeds, the pressure decreases
according to the law of M., and may be represented by the or-
dinate of a curve a b, which is a portion of an equilateral hyper-
bola. When the gas has increased in volume from o e to o f, let
the body A be taken away, and the expansion allowed to proceed
still further without the addition of heat; the temperature will
now sink, and the pressure consequently grow less as before.
Let the law according to which this proceeds be represented by
the curve b ¢. When the volume of the gas has increased from
of to 0 g, and its temperature is lowered from ¢ to 7, let a pressure
be commenced to bring it back to its original condition. Were
the gas left to itself, its temperature would now rise ; this, how-
ever, must be avoided by bringing it into contact with the body B
at the temperature 7, to which any excess of heat will be imme-
diately imparted, the gas being thus preserved constantly at 7.
Let the compression continue till the volume has receded to 4,
it being so arranged that the decrease of volume indicated by the
remaining portion % e shall be just sufficient to raise the gas from
7 to ¢, if during this decrease it gives out no heat. By the first
compression the pressure increases according to the law of M.,
and may be represented by a portion ¢ d of another equilateral
hyperbola. At the end the increase is quicker, and may be re-
presented by the curve da. This curve must terminate exactly
in a; for as the volume and temperature at the end of the ope-
ration have again attained their original values, this must also
be the case with the pressure, which is a function of both. The
gas will therefore be found in precisely the same condmon as at
the commencement.

In seeking to determine the amount of work performed by
these alterations, it will be necessary, for the reasons before as-
signed, to direct our attention to the exterior work alone. During
the expansion, the gas produces a work expressed by the integral
of the product of the differential of the volume into the corre-
sponding pressure, which integral is represented geometrically by
the quadrilaterals e @ b f, and f6cg. During the compression,
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however; work will be expended, which is represented by the qua-
drilaterals gcdh and hdae. The excess of the former work
above the latter is to be regarded as the entire work produced by
the alterations, and this is represented by the quadrilateral b c d.

If the foregoing process be reversed, we obtain at the conclu-
sion the same quantity abcd as the excess of the work eazpended
over that produced.

In applying the foregoing Fig. 2.
considerations analytically, we
will assume that the various : e
alterations which the gas has b
undergone have been infinitely 2
small. We can then consider | ¥\,
the curves before mentioned to
be straight lines, as shown in
the accompanying figure. In o ehf g
determining its superficial content, the quadrilateral a 4 ¢ d may
be regarded as a parallelogram, for the error in this case can
only amount to a differential of the Zhird order, while the area
itself is a differential of the second order. The latter may there-
fore be expressed by the product e f. k, where & marks the point
at which the ordinate 4 f cuts the lower side of the parallelogram.
The quantity & k is the increase of pressure due to raising the tem-
perature of the gas, at the constant volume o f, from 7 to Z, that is
to say, due to the differential £—7=d¢. This quantity can be ex-
pressed in terms of v and ¢ by means of equation (I.), as follows :

Rdt
p==

If the increase of volume ef be denoted by dv, we obtain the
area of the quadrilateral, and with it

The work produced:R?dt. B ¢ )]

‘We must now determine the quantity of heat consumed during
those alterations. Let the amount of heat which must be im-
parted during the transition of the gas in a definite manner from
~ any given state to another, in which its volume is v and its tem-

perature Z, be called Q ; .and let the changes of volume occurring
in the process above described, which are now to be regarded se-
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parately, be denoted as follows: ¢f by dv, hg by d'v, ek by dv, and
fg9 by 8. During an expansion from the volume oe=v to
of =v+dv, at the constant temperature #, the gas must receive
the quantity of heat expressed by

i

and in accordance with this, during an expansion from oA=v+&v
to og=v+ &v+ d'v at the temperature ¢ —d¢, the quantity

(7 (@) z )y oo

In our case, however, instead of an expansion, a compression
has taken place ; hence this last expression must be introduced
with the negative sign. . During the expansion from ofto 0 g,
and the compression from o % to o e, heat has been neither re-
ceived nor given away ; the amount of heat which the gas has

# [In this memoir I have for the sake of greater clearness employed Euler’s
notation for partial differential coefficients in which the fractions which re-
present the latter are placed between brackets. This precaution was perhaps
unnecessary, since in most cases, as was observed in the Introduction, no mis-
conception can arise even when the brackets are ofnitted ; nevertheless in the
present reprint of the memoir the original notation has been retained. In ac-
cordance with the equation (3a) of the Introduction the complete differential
equation of @ would here be

=) (2

For a given quantity of gas, and indeed for every other body whose condition
is defined by its temperature and volume, the two partial differential coeffi-
cients (%), (%%) must be regarded as perfectly determinate functions of ¢
and v, for the quantities of heat are perfectly defined which a body must re-
ceive when, from a given condition, its temperature is raised under constant
volume, or its volume is increased without any alteration of temperature, a
counter-pressure corresponding to its elastic force being thereby overcome.
‘Whether Q itself, however, is also a magnitude which can be represented as
a function of £ and v, in which these variables are independent of each other,
or whether a further relation between these variables must be given in order to
determine Q, depends upon the circumstance mentioned in the Introduction ;
viz., whether or not the condition (4), which in the present notation is thus

written,

4 ("_Q) =4 (@)

do\dt/) dt\dv)
is satisfied ; the object of the following development is to decide this ques—
tion.—1864.]
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received over and above that which it has communicated, or, in
other words, the quantity of heat consumed, will therefore be

(@)~ (&) a@ P -a@e e - @

The quantities dv and d'v must now be eliminated ; a conside-
ration of the figure furnishes us with the following equation :

dv+dv="8 +d'v.

During its compression from o % to o e, consequently during its
expansion under the same circumstances from oe to o 4, and
during the expansion from o f to 0 g, both of which cause a de-
crease of temperature d?, the gas neither receives nor communi-
cates heat : from this we derive the equations

( Q)sv ( 9 4i=0,

aQy , d dQ dQy , d (dQ _
[(-% ta\a ] Yo [( dt)+dv t)dv]dt—O.
From these three equations and equation (2) the quantities
d'v, 8v, and &'v may be eliminated ; neglecting during the pro-
cess all differentials of a higher order than the second, we obtain
’ aQ
The heat expended = 7t(%- -5 ]d pdt*. . (3)

Turning now to our maxim, which asserts that the production
of a certain quantity of work necessitates the expenditure of a
proportionate amount of heat, we may express this in the form
of an equation, thus:

The heat expende&_
The work produced—A’ SRR

where A denotes a constant which expresses the equivalent of heat
Jor the unit of workt. The expressions (1) and (3) being in-
troduced into this equation, we obtain

# [With reference to the deduction of the equation (8), see also the Ap-
pendiz A. at the end of the present memoir. ]

+ [This magnitude, which will often present itself in the sequel, may, in ac-
cordance with a modern custom, be briefly termed the calorific equivalent of
work.—1864.]
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(2@ )]
R.dv dt -

v
or %(i_?)_ %(%‘ =£';§. R 4

This equation may be regarded as the analytical expression of
the above maxim applicable to the case of permanent gases¥*. It
shows that Q cannot be a function of v and ¢ as long as the two
latter are independent of each other. For otherwise, according
to the known principle of the differential calculus, that when a
function of two variables is differentiated according to both, the
order in which this takes place is a matter of indifference, the
right side of the equation must be equal 0.

The equation can be transformed to a complete differential
equation of the first ordert and of the following form :

dQ=dU+A.R g . . . . (1e)
v 2

A,

where U denotes an arbitrary function of v and ¢}. This differ-

* [The equation (II) may obviously be generalized so as to apply not only
to a gas, but to any other body whatever whose condition is determined by
its temperature and volume, and upon which the sole external forces which
act consist of pressures normal to the surface, of equal intensity at all points
of the latter, and differing so slightly from the body’s force of expansion as to
admit, in calculation, of being considered equal thereto. This generalization is

effected by merely substituting for % the differential coefficient (Z—f) ; which

latter, in the special case of gases, is equal to % The equation then becomes

#7)- 2@ =2 @)

in which form it frequently presents itself in subsequent memoirs.—1864.]
+ [By an oversight the order of this equation was not stated in the ori-
ginal edition.—1864.]
1 [With respect to the manner in which, by integration, the equation (II @)
may be deduced from the equation (IT), see Appendiz B to this Memoir.
That the differential equation (II @) of the first order actually corresponds
to the differential equation (II) of the second order may moreover be easily
shown, conversely, by differentiating (Il @), and thence deducing (II). In
fact, if for dU we write the complete expression
dU dU
() 2+ (G)
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ential equation is of course unintegrable until we find a second

condition between the variables, by means of which # may be

expressed as a function of v. 'This is due, however, to the last

member alone, and this it is which corresponds to the exterior

work effected by the alteration ; for the differential of this work

is pdv, which, when p is eliminated by means of (I), becomes
-B;'(‘:)Lt) dv.

It follows, therefore, in the first place, from (IIa), that the
entire quantity of heat, Q, absorbed by the gas during a change
of volume and temperature may be decomposed into two portions.
One of these, U, which comprises the sensible heat and the heat
necessary for interior work, if such be present, fulfils the usual
assumption, it is a function of v and #, and is therefore deter-
mined by the state of the gas at the beginning and at the end of
the alteration; while the other portion, which comprises the
heat expended on exterior work, depends, not only upon the state

and similarly for dQ the complete expression
dQ dQ
(7) +(&@)
the equation (IL. a.) becomes transformed to
dQ dQ a+tt
(@) 2+ (@)= () 2+ [ (Z)+4 2 T
whence, by comparison, the following equalities may be deduced :

(@)=(a)

(%)=(@)+2-r 5"

On differentiating the first of these expressions twcordmg to v, and the second
according to ¢, it is to be noticed that the magnitude U being, by a previous
statement, a function of ¢ and », the condition
d (dU\ _d(dU
75(7{) - cTt(?E)
is satisfied. Each of the quantities involved in the last equation, therefore,

may be denoted by T d ; 8o that
i(dQ) =7U
do\dt ) dt dv
d(dQy\_ U A R
# @)= draot 5
But the first of these two equations being subtracted from the second, leads at
once to the equation (IT).—1864.]
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of the gas at these two limits, but also upon the manner in which
the alterations have been effected throughout. It is shown above
" that the same conclusion flows directly from the maxim itself.
Before attempting to render this equation suitable for the deduc-
tion of further inferences, we will develope the analytical expres-
sion of the maxim applicable to vapours at their mazimum density.
In this case we are not at liberty to assume the correctness of
the law of M. and G., and must therefore confine ourselves to the
maxim alone. To obtain an equation from this, we will again
pursue the course indicated by Carnot, and reduced to a diagram
by Clapeyron. Let a vessel impervious to heat be partially filled
with water, leaving a space above for steam of the maximum
density corresponding to the temperature £. Let the volume of
both together be represented in the annexed figure by the

abscissa o ¢, and the pressure of the Fig. 8.
steam by the ordinate ea. Let the
vessel be now siipposed to expand, a 3 .

while both the liquid and steam
are kept in contact with a body A ) c
of the constant temperature . As L

the space increases, more liquid is
evaporated, the necessary amount
of latent heat being supplied by o e A f g
the body A; so that the temperature, and consequently the
pressure of the steam, may remain unchanged. When the en-
tire volume is increased in this manner from o e to o f, an exterior
work is produced which is represented by the rectangle ea 3f.
Let the body A be now taken away, and let the vessel continue to
expand without heat being either given or received. Partly by
the expansion of the steam already present, and partly by the
formation of new steam, the temperature will be lowered and the
pressure become less. Let the expansion be suffered to continue
until the temperature passes from ¢ to 7, and let o g represent the
volume at this temperature. If the decrease of pressure during
this expansion be represented by the curve b ¢, the exterior work
produced by it will be represented by f& cg.

Let the vessel be now pressed together so as to bring the liquid
and vapour to their original volume o ¢, and during a portion of
the process let the vessel be in contact with a body, B, of the
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temperature 7, to which any excess of heat shall be immediately
imparted, and the temperature of the liquid and vapour kept con-
stant at 7. During the other portion of the process, let the body
B be withdrawn so that the temperature may rise ; let the first
compression continue till the volume has been reduced to o 2, it
being so arranged that the remaining space % e shall be just suf-
ficient to raise the temperature from 7 to 2. During the first
decrease of volume the pressure remains constant at g ¢, and the
quantity of exterior work expended is equal to the rectangle ge
d k. During the last decrease of volume the pressure increases,
and may be represented by the curve & a, which must terminate
exactly in the point a, as the original temperature ¢ must again
correspond to the original pressure ea. The exterior work ex-
pended in this case is =h dae.

At the end of the operation both fluid and vapour are in the
same state as at the commencement, so that the excess of the
exterior work produced over the amount expended expresses the
total amount of work accomplished. This excess is represented
by the quadrilateral a b ¢ d, the content of which must therefore
be compared with the Aeat exzpended at the same time.

For this purpose let it be as- Fig. 4.
sumed, as before, that the de-
scribed alterations are infinitely a 3
small, and under this view let the R
process be represented by the an- o T

nexed figure, in which the curves
ad and b c shown in fig. 3 have
passed into straight lines. With
regard to the area of the qua- o eh fg
drilateral @ b ¢ d, it may be again regarded as a parallelogram, the
area of which is expressed by the product ef.b k. Now if, when
the temperature is ¢, the pressure of the vapour at its maximum
tension be equal to p, and the difference of temperature £—7 be
expressed by d i, we have

dp

k=7 dt¥*;

bk= gt

* [In the equations corresponding to saturated vapour the differential co-

efficient % is written without brackets, since the pressure is now no longer a

dt
function of the temperature and volume, but of the temperature solely.—1864.]




32 FIRST MEMOIR.

ef is the increase of volume caused by the passing of a certain
quantity of liquid represented by dm into a state of vapour. Let
the volume of the unit of steam at its maximum density for the
temperature ¢ be called 8, and the volume of the same quantity
of liquid at the temperature ¢ be called o ; then is

ef=(s—o)dm;

and hence the area of the rectangle, or
The work produced = (8—a) Z—}; dmdt. . . . (5.)

To express the amount of heat, we will introduce the following
notation :—Let the quantity of heat rendered latent by the pas-
sage of a unit weight of liquid at the temperature ¢, and under a
corresponding pressure into a state of vapour, be called r, and
the specific heat of the liquid ¢ ; both of these quantities, as also

the foregoing s, o, and d—j’} being functions of £. Finally, let

the quantity of heat which must be communicated to a unit
weight of vapour of water to raise it from the temperature ¢ to
t+dt (the vapour being preserved by pressure at the maximum
density due to the latter temperature without precipitation) be
called %dt, where / likewise represents a function of . We shall
reserve the question as to whether its value is positive or nega-
tive for future consideration*.

If x be the mass of liquid originally present in the vessel,
and m the mass of the vapour; further, d m be the mass eva-
porated during the expansion from o e to o f, and d'm the mass
precipitated by the compression from o g to o &, we obtain in the

first case the quantity
rdm

of latent heat which has been extracted from the body A ; and
in the second case, the quantity

(r—Z—: dt)d'm

* [The magnitude 4 here introduced is precisely the specific heat of the va-
pour at its maximun densily, or, in other words, the specific heat of the saturated
vapour, which may be regarded as a peculiar kind of specific heat just as well
as is the specific heat at a constant volume or the specific heat under constant
pressure.—1864.]
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of sensible heat which has been imparted to the body B. By the
other expansion and compression heat is neither gained nor lost ;
hence at the end of the process we have

The heat expended=rdm —(r—% dt)d'm. .. (6

In this equation the differential d'm must be expressed through
dm and dt; the conditions under which the second expansion
and the second compression have been carried out enable us to
do this. Let the mass of vapour precipitated by the compression
from ok to oe, and which therefore would develope itself by ex-
pansion from oe to ok, be represented by &m, and the mass de-
veloped by the expansion from of to og by &m ; then, as at the
conclusion of the experiment the original mass of fluid and of
vapour must be present, we obtain in the first place the equation

dm+ dm=d'm+&m.

Further, for the expansion from oe to ok, as the temperature
of the liquid mass x and the mass of vapour m must thereby be
lessened, the quantity d¢ without heat escaping, we obtain the
equation :

rém—p.cdt—m. hdt=0;

and in like manner for the expansion from of to og, as here we
have only to set u—dm and m + dm in the place of 4 and m, and
&m in the place of &m, we obtain

r&'m— (u— dm) cdt— (m + dm)hdt=0.% .

If from these three equations and equation (6.) the quantities
d'm, dm, and &m be eliminated, and all differentials of a higher

* [With respect to these two equations, whose use is to determine the relation
which exists between 8m or 8m and df, a remark may be made of a similar
kind to those contained in the Appendir A, which relate to the deduction of
the equation (8). To be strictly accurate up to differentials of the second
order, the expressions for 8m or &'m ought to contain another term with the
factor df?, just as do the expressions for 8» and 8'v in the equations (m) and
(n) of Appendiz A. Since this term would be the same in both equations,
however, it would again disappear from the equation

d'm=dm-+8'm—38m,
which determines d'm, and thus be wholly without influence on our result.
Consequently it is unnecessary here to take this term into further considera-
tion. —1864.]

D
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order than the second be neglected, we have
The heat ezpended= (" + c—K)dmdt. . . . (7)

The formule (7) and (5) must now be united, as in the case
of permanent gases, thus: ‘

dr
Te— h)dm dt

=972 Pdm dt

=A;

and hence we obtain, as the analytical expression of the maxim,
applicable to vapours at their maximum density, the equation

d
d’t'+c —h=A(s—c) 2 = A 1 1))

If, instead of the above maxim, the assumption that the quan-
tity of heat is constant be retained, then, according to (7), in-
stead of equation (ILI) we must set

dr —0 % '
‘ w+c-—h_0.’ e e e e e e e e (8)
And this equation, although not exactly in the same form, has
been virtually used heretofore to determine the value of the quan-
tity A. As long as the law of Watt is regarded as true, that the
sum of the latent and sensible heat of a quantity of steam at its
maximum density is the same for all temperatures, and conse-

quently that
' dr
@ +¢=0,t
* [As before remarked, it would follow from this assumption that when a
body suffers a series of changes such that it thereby returns finally to its initial
state, the quantity of heat which it receives from without during one portion
of these changes must be equal to the quantity which it gives off during the
remaining changes. Now the difference between the received and imparted
quantities of heat in the previously described cycle of infinitely small changes
is, according to equation (7), represented by

(3—:+ ¢ -h)dm dt;
and this expression, equated to zero, leads at once to the equation
= dr
= zt.-]- [

which is another form of the equation (8).—1864.]
t [The law of Watt mentioned in the text, and formerly accepted as true,
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it must be inferred that for this liquid % also is equal 0; this, in-
deed, has often been asserted, by saying that when a quantity
of vapour at its maximum density is compressed in a vessel im-
pervious to heat, or suffered to expand in the same, it will remain
at its maximum density. As, however, Regnault* has corrected
the law of Watt so that we can set with tolerable accuracy

dr

25 +o=03051

the equation (8) gives for % also the value 0:305. It follows
from this, that a portion of the steam in the impermeable vessel
must be precipitated by compression, and that it cannot retain .
its maximum density after it has been suffered to expand, as its
temperature does not decrease in a ratio corresponding to the
decrease of density.

Quite otherwise is it if, instead of equation (8), we make use
of equation (III). The expression on the right-hand side is
from its nature always positive, and from this follows in the first
place that % is less than 0-305. It will be afterwards shown
that the value of the said expression is so great that 2 becomes
even negativel. Hence we must conclude that the above quan-

asserts that the sum of the two quantities of heat required to raise the unit of
weight of water from 0° to the temperature ¢, and then to convert it into va-
pour at this temperature, is independent of this temperature £, Accordingly
we should have

r+/:cdt=-oonst.,

an equation which, by differentiation, leads to the equation
§+c=0,
given in the text.—1864.]

* Mém. de P Acad. vol. xxi., 9th and 10th Memoirs.

t [Regnault has found that the sum of free and latent heat is not constant,
as by the law of Watt it should be, but that with increasing temperature it
increases in & manner approximately expressed by the equation

¢
r+/; ¢ dt=606-5+0-305¢,
from which the equation
%+c=9'805
follows by differentiation.—1864.]
1 [In order to decide whether the equation
_dr o Ale_ OGP
h-%-i-c A(s a)%,
p2
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tity of vapour will be partially precipitated, not by the compres-
sion, but by the expansion ; when compressed, its temperature
rises in a quicker ratio than that corresponding to the increase
of density, so that it does not continue at its maximum density.

The result is indeed directly opposed to the notions generally
entertained on this subject ; I believe, however, that no experi-
ment can be found which contradicts it. On the contrary, it
harmonizes with the observations of Pambour better than the
common notion. Pambour found* that the steam issuing from
a locomotive after a journey always possesses the teinperature
_for which the tension observed at the same time is a maximum.
" From this it follows that % is either 0, as was then supposed,
because this agreed with the law of Watt, which was considered
correct at the time, or that A is negative. If & were positive, then
the temperature of the issuing steam must have been too high
in comparison with its tension, and this could not have escaped
Pambour. If, on the contrary, in agreement with the above, 4
be negative, too low a temperature cannot occur, but a portion
of the vapour will be converted into water so as to preserve the
remainder at its proper temperature. This portion is not neces-
sarily large, as a small quantity of vapour imparts a. compara-
tively large quantity of heat by its precipitation ; the water thus
formed is probably carried forward mechanically by the steam,
and might remain unregarded ; the more so, as, even if observed,
it might have been imagined to proceed from the boilert.

deduced from (III), gives a positive or a negative value of k, the numerical
value of A must be known ; and since nothing has been said in the previous
part of the memoir with respect to the numerical determination of this con-~
stant, I have not here entered into the determination of the magnitude 4, but
have referred the question to the sequel. In the second part of the memoir,

an expression for the product A (s—o) Zit’ will be given which involves known

magnitudes solely, and whose substitution in the foregoing equation leads to
another, from which, not only the sign, but also the magnitude of 4, as a func-
tion of the temperature, can be at once determined.—1864.]

* Traité des locomotives, 20d edit., and Théorte des machines & vapeur,
2nd edit.

t [The proceas to which the observation of Pambour refers is too compli-
cated to furnish a convenient and accurate companson with the theoretical
results obtained above. Accordingly the observation in question is cited, not
with a view of supplying a reliable verification of those theoretical results, but
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‘So far the consequencés have been deduced from the above
maxim alone, without any new assumption whatever being made.
Nevertheless, by availing ourselves of a very natural incidental
assumption, the equation for permanent gases (II a) may be ren-
dered considerably more productive.” Gases exhibit in their de-
portment, particularly as regards the relations of volume, tem-
perature, and pressure expressed by the laws of M. and G., 8o
much regularity as to lead us to the notion that the mutua.l
attraction of the particles which takes place in solid and liquid
bodies is in their case annulled ; so_that while with solids and

liquids the heat necessary to eﬁ'ect:;ex—-\—TT pafision has to conten

with both an interior and an exterior resistance, the latter only
is effective in the case of gases. If this be the case, then, by the
expansion of a gas, only so much heat can be rendered latent as
is necessary to exterior work. Further, there is no reason to
suppose that a gas, after it has expanded at a constant tempera-
ture, contains more sensible heat than before. If this also be
admitted, we obtain the proposition, when a permanent gas ex-
pands.at a constant temperature, it absorbs only as much heat as
is necessary to the exterior work produced by the expansion—a
proposition which is probably true for each gas in the same de-
gree as the law of M. and G is true for that gas*.
From this immediately follows

(da)—A R, L@

for, as already mentioned, RZ T dv represents the quantity of

merely to show that it accords better with the latter than with the views pre-
viously entertained.—1864.]

* [Several authors before me regarded the heat which disappears during
the expansion of a gas as simply equivalent to the work done in overcoming
pressure. As far as I know, however, I was the first to enunciate the theorem
in its complete form ; according to which it is asserted that in general exterior
and ¢nferior work are both simultaneously done when a body expands, but
that in the special case of & permanent gas the law of M. and G. sanctions the
assumption of an infinitesimal amount of interior work ; further, that the de-
gree of accuracy to which this assumption can lay claim, when applied to a cer-
tain gas, is the same as that which would attend the application thereto of
the law of M. and G.; and, finally, that the theorem involves the additional
assumption that the heat actually present in the gas is independent of its den-
sity.—1864.] -
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exterior work produced by the expansion dv. According to this,
the function U, which appears in equation (II a), cannot contain
v, and hence the equation changes to

da_cdt+AR"+‘

wherem ¢ can only be a function of ¢*; and it is even probable
that the quantity ¢, which denotes the specific heat of the gas at
a constant volume, is itself a constant.

To apply this equation to particular cases, the peculiar con-
ditions of each case must be brought into connexion therewith,
50 as to render it infegrablet. We shall here introduce only a
few simple examples, which possess either an intrinsic interest,
or obtain an interest by comparison with other results connected
with this subject.

In the first place, if in equation (II 4) we put, successively,
v= const. and p= const., we shall obtain the specific heat of the
gas at a constant volume, and its specific heat under a constant
pressure. In the former case dv=0, and (II ) becomes

aQ

-z =C.

o C e e e e e e e
* [In fact, from the equation (Il a), written in the form

() ar[(D)san <2,

do,. . . . . (B

(10)

it follows immediately that
dQ a+t
(@)= (@) +am e
Now if, on the other hand, the equatlon 9), viz.
dQ\ _ a+t
(d_) =AR4H!

be true, a necessary consequence of the coexistence of it and the previous
equation is tha.t
. (ﬂ) =0;.

dv
accordingly the function U, for perfect gases, must be independent of ». Sub-

stituting the symbol ¢ for the differential coefficient (%[?I) , which of course

shares with U the property of being independent of v, the equation (11 b) is
at once obtained.—1864.]

+ [The equation (TI3) belongs, in fact, to the class of equations, described
in the Introduction, which only admit of being integrated on assuming a se-
cond equation to exist between the variables, whereby the sequence of the
changes becomes determined.—1864.]
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In the latter case, from the condition p= const.; we obtain with
help of equation (I),

dp=2%, .
p
or
i?' -——dt b
v a+t

which by substitution in (II b), the specific heat under a constant
pressure being denoted by ¢/, gives us
aQ_
o dt
From this it may be inferred that the difference of both specific
heats for each gas is a constant quantity AR+. But this quantity
also expresses a simple relation for different gases. The com-

3 . povo
plete expression for R is atty

=c+AR* . . . . . (104

where po, v, and £, denote any

* [Tt will be easily understood why the fraction %(%, in the equations (10)
and (10@), is written without the brackets which ordinarily enclose the
fractions %tg and ‘z—%. For when, from the commencement, a condition is in-
troduced which implies the constancy of » or of p, the sequence of changes

through which the gas can pass is thereby so far fixed, that the increment of
Q is completely determined by the increment of ome of the variables z. In

such cases, therefore, the fraction ‘ZQ does not represent the partial differ-
ential coefficient of a magnitude whose value depends upon those of two inde-
pendent variables, but corresponds to the fractlon F treated at page 4 of the

Introduction, which stands on the left of the differential equation wherein y
was considered as a function of . Infact, it is obvious that, in the equations

(10) and (10 a), the symbol % has two different meanings, arising from the

distinct conditions to which the equations have reference.—1864.]

t [The difference between the two specific heats ¢ and ¢’ being constant,
the conclusion above arrived at, with reference to the specific heat at a con-
stant volume, also holds for the specific heat under constant pressure, so that
the latter is likewise independent of the density, and probably also of the
temperature of the gas. At the time my memoir appeared, this conclusion
was objected to on the ground of its being at variance with some of the ob-
servations of Suermann, and of De la Roche and Bérard, which at that time
were pretty generally accepted as trustworthy ; since then, however, it has
been verified by the experiments which, in 1853, were publisked by Regnault.
—1864.]
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three contemporaneous values of p, v, and ¢ for a unit of weight
of the gas in question ; and from this it follows, as already men-
tioned in establishing equation (I), that R is inversely propor-
tional to the specific gravity of the gas; the same must be true
of the difference ¢ —c=AR, as A is the same for all gases.

If it be desired to calculate the specific heat of the gas, not re-
lative to the unit of weight, but (in accordance with the method
more in use) to the unit of volume, say at the temperature £, and
the pressure p,, it is only necessary to divide ¢ and ¢’ by v,. Let
these quotients be expressed by ¢ and «/, and we obtain

A.R
y-«y__;o__Aa{’: AR )
In tlus last expression nothing appears which is dependent on
the peculiar nature of the gas; the difference of the specific heats
relative to the unit of volume is therefore the same for all gases.
This proposition has been deduced by Clapeyron from the theory
of Carnot; but the result, that the difference ¢’ —c is constant,
is there not arrived at; the expression found for it having still
the form of a function of the temperature.
Dividing both sides of equation (11) by ¢, we obtain

A Po
k~1= 'a+lo (12)

wherein, for brevity, £ is put in the place of 'Yl. This is equal

to the quotient é, and through the theoretic labours of La-

place on the transmission of sound through air, has attained a
peculiar interest in science. For different gases, therefore, the
excess of this quotient above unity is inversely proportional to
the specific heat, at constant volume, the latter being calculated
relative to the unit of volume. This proposition has been proved
experimentally by Dulong* to be so nearly correct, that its
theoretic probability induced him to assume its entire truth, and
to use it in an inverse manner in calculating the specific heats
of various gases, the value of % being first deduced from obser-
vation. It must, however, be remarked, that the proposition
is theoretically safe only so far as the law of M. and G. holds

* Ann. de Chim. et de Phys., xli. ; and Pogg. Ann., xvi.
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good ; which, as regards the various gases examined by Dulong,
was not always the case to a sufficient degree of accuracy.

Let us suppose that the specific heat ¢ at constant volume is
constant for every:gas; a supposition which we have already
stated to be very probable ; this will also be the case when the
pressure is constant, and hence the quotient of both specific heats

=k must be also constant. This proposition, which Poisson, in

agreement with the experiments of Gay-Lussac and Welter, has
assumed to be correct, and made the basis of his investigations
on the tension and heat of gases*, harmonizes very well with our
present theory, while it is not possible to reconcile it with the
theory of Carnot as heretofore treated.

In equation (II15) let Q=const., we then obtain the following

equation between v and #:
cat+A. R mo; . . ... (9

from which, when c¢ is regarded as constant, we derive

AR
v’e . (a+¢)=const.;

or, since according to equation (10 a), Ac—%=2—’-l_k 1,

v*-Ya+t)= const.

Let three corresponding values of v, £, and p be denoted by v,,
to, and p, ; we obtain from this

a+t _ (vo\! '
a“o_(v_) A 1

By means of equation (I) let the pressure p, first for » and then
for £, be introduced here, we thus obtain

Zi;o (po)k“ .. B)

%o=(%)..........(16)

These are the relations which subsist between volume, tempe-
rature, and pressure when a quantity of gas is compressed, or is

* Traité de Mécanique, 2nd edit. vol. ii. p. 648.
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suffered to expand in a holder impervious to heat. These equa-
tions agree completely with those developed by Poisson for the
same case¥, the reason being that he also regarded k as constant.

Finally, in equation (II &) let ¢=const., the first member at
the right-hand side disappears, and we have remaining

dQ= ARa'Hd e L)

from which follows

Q=AR(a+?) log v+const. ;
or when the values of v, p, ¢, and Q, at the commencement-of
the experiment, are denoted by v, po, £y, and Qq,

Q—Q0=AR(a+to)log% .. . . (18)

From this, in the first place, we derive the proposition deve-
loped also by Carnot ; when a gas, without alteration of tempera-
ture, changes its volume, the quantities of heat developed or ab-
sorbed are in arithmetical proyression, while the volumes are in
geometrical progression.

Further, let the complete expression for R=~22 Jdiid i‘; be set in
0

equation (18), and we obtain _
Q—Q‘,:AvaOIOggo. N ¢ 1)}

If we apply this equation to different gases, not directing our
attention to equal weights of the same, but to such quantities as
at the beginning embrace a common volume #,, the equation
will in all its parts be independent of the peculiar nature of the
gas, and agrees with the known proposition to which Dulong,
led by the above simple relation of the quantity £—1, has given
expression : that when equal volumes of different gases at the same
pressure and temperature are compressed or expanded an equal
Jractional part of the volume, the same absolute amount of heat is
in all cases developed or absorbed. The equation (19) is, however,
much more general. It says besides this, that the quantity of
heat is independent of the temperature at whick the alteration of

_volume takes place, if only the quantity of gas applied be always
so determined that the original volumes v, at the different tem-
peratures shall be equal ; further, that when the original pressure
is in the different cases different, the quantities of heat are thereto

proportional.
* Traité de Mécanique, vol. ii. 647.
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II. Consequences of the principle of Carnot in combination with
the preceding.

Carnot, as already mentioned, has regarded the production of
work as the equivalent of a mere transmission of heat from a warm
body to a cold one, the quantity of heat being thereby undimi-
nished.

The latter portion of this assumption, that the qna.ntlty of
heat is undiminished, contradicts our maxim, and must there-
fore, if the latter be retained, be rejected. The former portion,
however, may remain substantially as it is. For although we
have no need of a peculiar equivalent for the produced work,
after we have assumed as such an actual consumption of heat, it
is nevertheless possible that the said transmission may take place
contemporaneously with the consumption, and may likewise stand
in a certain definite relation to the produced work. It remains

-therefore to be investigated whether this assumption, besides
being possible, has a sufficient degree of probability to recom-
mend it.

A transmission of heat from a warm body to a cold one cer-
tainly takes place in those cases where work is produced by heat,
and the condition fulfilled that the body in action is in the same
state at the end of the operation as at the commencement. In
the processes described above, and represented geometrically in
figs. 1 and 3, we have seen that the gas and the evaporating water,
while the volume was increasing, received heat from the body A,
and during the diminution of the volume yielded up heat to the
body B, a certain quantity of heat being thus transmitted from
A to B; and this quantity was so great in comparison with that
which we assumed to be expended, that, in the infinitely small
alterations represented in figs. 2 and 4, the latter was a differ-
ential of the second order, while the formeér was a differential of
the first order. In order, however, to bring the transmitted
heat into proper relation with the work, one limitation is still
necessary. As a transmission of heat may take place by con-
duction without producing any mechanical effect when a warm
body is in contact with a cold one, if we wish to obtain the
greatest possible amount of work from the passage of heat be-
tween two bodies, say of the temperatures Z and 7, the matter
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must be so arranged that two substances of different tempera-
tures shall never come in contact with each other.

It is this maximum of work that must be compared with the
transmission of the heat; and we hereby find that it may reason-
ably be assumed, with Carnot, that the work depends solely upon
the quantity of heat transmitted, and upon the temperatures ¢
and 7 of both bodies A and B, but not upon the nature of the
substance which transmits it. This maximum has the property,
that, by its consumption, a quantity of heat may be carried from
the cold body B to the warm one A equal to that which passed
from A to B during its production. "We can easily convince our-
selves of this by conceiving the processes above described to be
conducted in a reverse manner; for example, that in the first
case the gas shall be permitted to expand by itself until its tem-
perature is lowered from ¢ to 7, the expansion being then con-
tinued in connexion with B; afterwards compressed by itself
until its temperature is again £, and the final compression effected
_ in connexion with A. The amount of work expended during the
compression will be thus greater than that produced by the ex-
pansion, so that on the whole a loss of work will take place ex-
actly equal to the gain which accrued from the former process.
Further, the same quantity of heat will be here taken away from
the body B as in the former case was imparted to it, and to the
body A the same amount will be imparted as by the former pro-
ceeding was taken away from it; from which we may infer, both
that the quantity of heat formerly consumed is here produced,
and also that the quantity which formerly passed from A to B
now passes from B to A.

Let us suppose that there are two substances, one of which is
able to produce more work by the transmission of a certain
amount of heat, or what is the same, that in the performance of
a certain work requires a less amount of heat to be carried from
A to B than the other; both these substances might be applied
alternately ; by the first work might be produced according to
the process above described, and then the second might be applied
to consume this work by a reversal of the process. At the end
both bodies would be again in their original state ; further, the
work expended and the work produced would exactly annul each
other, and thus, in agreement with our maxim also, the quantity



MOVING FORCE OF HEAT. 45

of heat would neither be increased nor diminished. Only with
regard to the distribution of the heat would a difference occur, as
more heat would be brought from Bto A than from A to B, and
thus on the whole a transmission from B to A would take place.
Hence by repeating both these alternating processes, without
expenditure of force or other alteration whatever, any quantity
of heat might be transmitted from a cold body to a warm one ;
and this contradicts the general deportment of heat, which every-
where exhibits the tendency to annul differences of temperature,
and therefore to pass from a warmer body to a colder one*.

From this it would appear that we are theoretically justified in
retaining the first and really essential portion of the assumption
of Carnot, and to apply it as a second maxim in connexion with
the former. It will be immediately seen that this procedure
receives manifold corroboration from its consequences.

This assumption being made, we may regard the maximum
work which can be effected by the transmission of a unit of heat
from the body A at the temperature ¢ to the body B at the tem-
perature 7, as a function of ¢ and 7. 'The value of this function
must of course be so much smaller the smaller the difference
t—7is; and must, when the latter becomes infinitely small (=d¥),
pass into the product of d¢ with a function of ¢ alone. This
latter being our case at present, we may represent the work
under the form

1
c
wherein C denotes a function of Z only+t.

. dt,

* [The principle here assumed, that heat cannot of itself pass from a colder
to a warmer body, and by means of which I have theoretically established the
relation between the work gained and the heat transmitted, is to be regarded
as a principle of the same importance as the one, in virtue of which it is as-
sumed that neither work nor heat can be produced from nothing. In conse-
quence of the different opinions of other authors I afterwards thought it ne-
cessary to make this principle the subject of a special memoir, which will be
found in the sequel.—1864.] -

+ [It will perhaps be well to illustrate somewhat further what is here
stated in the text.

‘When any substance whatever undergoes a complete cycle of changes, heat
being thereby withdrawn from a body A of the temperature ¢, and when of
this heat a portion is consumed by the production of work and the remaining
portion transmitted to a body B of the temperature r, then, according to the



46 FIRST MEMOIR.

To apply this result to the case of permanent gases, let us
once more turn to the process represented by fig. 2. During
the first expansion in that case the amount of heat,

dQ.)
( ) dv,
above principles, the latter portion, that is to say the quantity of heat trans-
mitted from A to B, must bear to the amount of work produced (provided
the latter be the above-mentioned maximum) a certain definite ratio which
will depend upon the temperatures of the two bodies A and B, but not upon
the nature of the interposed substance or upon that of its changes. Conse-
quently an equation of the following form must exist:
%qa,ﬂ, )
wherein ¢ (¢, r) denotes a generally true function of the two temperatures ¢ and
r; it is, in fact, the function which, as stated in the text, represents the max-
imum of the produced work corresponding to the unit of transmitted heat.
Let the temperature ¢ of the body A be now regarded as given, the tempe-
rature 7 of the body B being at the same time susceptible of any values what-
ever. It is readily seen that when the difference {—r is smaller, the work
which corresponds to the transmission of the unit of heat will also be smaller,
and that when the difference of temperature is infinitesimal, in which case it
may be represented by d¢, the work will also be an infinitesimal quantity of
the same order. Imagine then t—d¢ to be substituted for r in the function
¢(t, v) which represents the work, and this function to be subsequently ex-
panded in a series arranged according to increasing powers of d¢. No term of
this series will contain a power of d¢ lower than the first, so that, neglecting
terms which contain higher powers of d¢, we may write :
(@, t—d)=y(Odt,
where the function y(?) is likewise a generally true one. On proceeding to
further calculations it is found that the equations assume & somewhat more
convenient form when, in place of writing the function y(?) itself, a new
symbol is introduced for its reciprocal *%t); the letter C having already been
employed by Clapeyron for this purpose I have provisionally retained it. Ac-
cordingly, .
$(tt-dt)=; .,

the equation (&), in the case where the bodies A and B have the temperatures
t and ¢ df, becomes thus transformed :

Work produced _1

Hoat iranomitiod transmitted_@dt' B V)
The function of the temperature denoted by C is frequently called Carnot’s
function. An opportunity will present itself in the course of this memoir of
determining the form of this function, Its expression will then be found
sufficiently simple to admit of direct introduction into the equations, and
that done the symbol C will of course become superfluous.—1864.]
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passed from A to the gas; and during the ﬁrst compression the
following portion thereof was yielded to the body B: °

[ dQ) = Z? 8v dt(da)dt] dv,

dQ dv— [ dt( Z%(%?l ]dvdt.

The latter quantity is therefore the amount of heat transmitted.
As, however, we can neglect the differential of the second order
in comparison with that of the first, we retain simply

(‘%)dv.

The quantity of work produced at the same time was
Rdv.dt
v
and from this we can construct the equation

Rdv.dt )

Y —Z.dt
——C.
(@dv

or

or ( RC*.......(IV)

Let us now make a corresponding application to the process
of evaporation represented by fig. 4. The quantity of heat in
that case transmitted from A to B was

i dt) d'm,
or
rdm-(d_’+c—h)dm dt;
dt .
* [This equation may be generalized in the same way as was the equation
(II) in a previous note. In fact, replacing the fraction % by the differential
coefficient (j—:-’) » Which for gaseous bodies has the same value, the more ge-

neral equation
(@)= @

is obtained.—1864.]
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for which, neglecting the differentials of the second order, we
may simply put
rdm.

The quantity of work thereby produced was
—) P
(s—0) 7 dm dt,

and hence is obtained the equation

—a\ %P
(s a-)dt.dm.dt

rdm

.

_1
—G'dt’
or J

—_ —ag) Px

r=C. (s c)dt........(V.)

These, although not in the same form, are the two analytical
expressions of the principle of Carnot as given by Clapeyron. In
the case of vapours, the latter adheres to equation (V.), and con-
tents himself with some immediate applications thereof. For
gases, on the contrary, he makes equation (IV.) the basis of a
further development; and in this development alone does the
partial divergence of his result from ours make its appearancet.

We will now bring both these equations into connexion with
the results furnished by the first fundamental principle, com-
mencing with those which have reference to permanent gases.

* [This equation also is merely a special form of the equation
4\ _c(%).
(#)=c(@);

for in the present case we may put

(d_Q) =T
dv]  s—d’

since the heat which must be imparted to the body under consideration, con--

sisting of liquid and vapour, during its increase of volume is precisely the heat

rendered latent by the production of vapour.

The differential coefficient Z—f is written in the equation (V) without
brackets, for the manifest reason before alluded to.—1864.]

+ [Clapeyron, in fact, when treating the equation (IV) and the more ge-
neral one given in a previous note, starts from the hypothesis that the mag-
nitude Q is completely determined by the state of the body at the moment
under consideration, and consequently that it can be at once represented by a
function of the two variables (» and v in his case) upon which the condition
of the body depends. In this sense he effected the integration.—1864.]
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Confining ourselves to that deduction which has the maxim
alone for basis, that is to equation (II @), the quantity U which
stands therein as an arbitrary function of v and # may be more
fully determined by (IV); the equation thus becomes

dQ= [B+R(%—A) log v]dt+R';C b, (IL¢)

in which B remains as an arbitrary function of ¢ alone*.

If, on the contrary, we regard the incidental assumption also
as correct, the equation (IV) will thereby be rendered unneces-
sary for the nearer determination of (II @), inasmuch as the same
object is arrived at in a much more complete manner by equa-
tion (9), which flowed immediately from the combination of the
said assumption with the original maxim. The equation (IV),
however, furnishes us with a means of submitting both prinei-
ples to a reciprocal test. The equation (9) was thus expressed,

dQ\_R.A(e+1?)
-H—v)_ v ’

* [This equation is obtained in the following manner. From the equation
(11 @), that is from

dQ=dU+AR‘.’;:-‘ do,

(‘;%) = (‘;—g) +AR ‘%t..
Hence, replacing (‘2%) by its value given in (IV), we have

o= () AR

or (Z)=rc-a @+012.

This, integrated according to v, gives

U=[C—A(a+?)] Rlog v+ ¢(2),
where ¢(f) denotes an arbitrary function of ¢. Differentiating the last
equation completely, and putting B in place of the differential coefficient

’ %T('t)’ which, like ¢(¢) itself, is also to be regarded as an arbitrary function of
t, we have
_[(dcC R
dU=[(Z-A)Rlog v+B | at+ [c-A @+t Ra.
But if this expression for dU be substituted in the equation (II &) the term
AR 2% win disappear, and the equation (IL¢) of the text will remain—
1864.]

may be deduced

E
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and when we compare this with equation (IV), we find that
both of them express the same thing ; with this difference only,
that one of them expresses it more definitely than the other. In
(IV.) the function of the temperature is expressed in a general
manner merely, whereas in (9) we have instead of C the more
definite expression A (a+1).

To this surprising coincidence the equation (V) adds its testi-
mony, and confirms the result that A(a+?) is the true expres-
sion for the function C. This equation is used by Clapeyron and
Thomson in determining the values of C for particular tempe-
ratures. The temperatures chosen by Clapeyron were the boiling-
points of ather, of alcohol, of water, and of oil of turpentine. He

employed the values of ‘;—l; , 8 and 7, determined by experiment for

these liquids at their boiling-points ; and setting these values in
equation (V), he obtained for C the numbers contained in the se-
cond column of the following Table. Thomson, on the contrary,
limited himself to the vapour of watfer; but considered it at
various temperatures, and in this way calculated the value of
C for every single degree from 0° to 230° Cent. The observa-
tions of Regnault had furnished him with a secure basis as re-

gards the qua.ntltles L and r; ; but for other temperatures than

dt
the boﬂmg-pomt, the value of  is known with much less certainty.
In this case, therefore, he felt compelled to make an assumption
which he himself regarded as only approximately correct, using
it merely as a preliminary help until the discovery of more exact
data. The assumption was, that the vapour of water at its
maximum density follows the law of M. and G. The numbers
thus found for the temperatures used by Clapeyron, as reduced
to the French standard, are exhibited in the third column of the
following table :—

TasLE L.
1. 2. 3.
¢ in Cent. deg [ ding to Clapeyron. | C according to Thomson.
-]
355 0733 o728
788 o828 o814
Too . 0897 o855
156°8 - 0930 v 0952

el
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We see that the values of C found in both cases increase, like
those of A(a-t+?), slowly with the temperature. They bear the
same ratio to each other as the numbers of the following series :

1;113;1:22;1-27;

1;112;117;1-31;
and when the ratio of the values of A (¢ +?) (obtained by setting
a@=273) corresponding to the same temperatures are calculated,
we obtain

1;1-14;1-21;1-39.
This series of relative values deviates from the former only so far
as might be expected from the insecurity of the data from which
those are derived : the same will also exhibit itself further on in
the determination of the absolute value of the constant A.

Such a coincidence of results derived from two entirely differ-
ent bases cannot be accidental. Rather does it furnish an im-
portant corroboration of both, and also of the additional inci-
dental assumption.

Let us now turn again to the application of equations (IV)
and (V) ; the former, as regards permanent gases, has merely
served to substantiate conclusions already known. For vapours,
however, and for other substances to which we might wish to
apply the principle of Carnot, the said equation furnishes the
important advantage, that by it we are justified in substituting
everywhere for the function C the definite expression A (a+ t) *,

The equation (V) changes by this into

=A(a+t).(s-—-,a)d—1;; . . . . (Va)

we thus obtain for the vapour a simple relation between the
temperature at which it is formed, the pressure, the volume, and

* [In this manner we arrive at the definite and simple expression for the
function C of the temperature to which allusion was made in a previous note
(p- 46), and which when first introduced had no determined form. Since
this function, in virtue of its signication, must have a general validity, it is
obvious that the expression for it which has been found on considering spe-
cially the expansion of a perfect gas, may also be applied to all other sub-
stances, and to all kinds of changes whereby these substances are able to pro>
duce work through the expenditure of heat. Whenever, therefore, by the
interposition of any variable substance, heat is transferred from a body A of

E2
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the latent heat, and can make use of it in drawing still further
conclusions.

Were the law of M. and G. true for vapours at their maxi-
mum density*, we should have

ps=R@+?8.. . . . . . . (R0

By means of this equation let s be eliminated from (V @) ; neg-
lecting the quantity o, which, when the temperature is not very
high, disappears in comparison with s, we obtain

ldp_ _r .

pdt” AR(a+1?)*
If the second assumption, that r is constant, be here made, we
obtain by integration

pP_ r(¢—100)
log ;= AR(a+100) (@57’

where p, denotes the tension of the vapour at 100°. Let

r .
t—100=7, a+100=a«, and AR (@3 100) )—/3,
we have then
j! _1—_.‘._._“_ e e e e e e 21
ngl Fr (21)

This equation cannot of course be strictly correct, because the
two assumptions made during its development are not so. As

the temperature ¢ to a body B of the temperature ¢—d¥, the relation between
the transmitted heat and the maximum of the work possibly produced thereby
may be expressed by the equations
Work produced _  dt
Heat transmitted A(a+1)
In a similar manner the general equation given in the note to equation
(IV) (p. 47), can now be written thus :— '

() =+ (Z)

whereby the quantity of heat is completely determined which a body must
absorb when, at a constant temperature, it changes its volume under the in-
fluence of an external pressure equal to its own force of expansion.—1864.]

* [The sole object of the inaccurate assumptions made, merely en passant,
in this paragraph is to elucidate further the formula for the tension of va-
pours which was established by Roche, and considered, from theoretical
points of view, by Holtzmann and other authors; and to show, on the one

hand, why the formula is approximately correct, and on the other, why it is
not strictly so.—1864.]

-~
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however the latter approximate at least in some measure to the
truth, the formula BT: expresses in a rough manner, so to speak,
a

the route of the quantity log f; and from this it may be per-
1

ceived how it is, when the constants « and 8 are regarded as
arbitrary, instead of representing-the definite values which their
meaning assigns to them, that the above may be used as an em-
pirical formula for the calculation of the temsion of vapours,
without however considering it, as some have done, to be com-
pletely true theoretically.

Our next application of equations (V @) shall be to ascertain
how far the vapour of water, concerning which we possess the
most numerous data, diverges in its state of mazimum density from
the law of M. and G. This divergence cannot be small, as car-
bonic acid and sulphurous acid gas, long before they reach their
points of condensation, exhibit considerable deviations.

The equation (V a) can be brought to the following form :

Aps—o) 2= ¥ ___ . . ... (22
a+t ¢ldp
(a+t)pm

Were the law of M. and G. strictly true, the expression at the
left-hand side must be very nearly constant, as the said law
would, according to (20), immediately give

o .
A.psm_A.Ra,

where instead of s we can, with a near approach to accuracy, set
the quantity s—o. By a comparison with its true values calcu-
lated from the formula at the right-hand side of (22), this ex-
pression becomes peculiarly suited to exhibit every divergence
from the law of M. and G. I have carried out this calculation
for a series of temperatures, using for » and p the numbers given
by Regnault*,

In the first place, with regard to the latent heat, the quantity
of heat A necessary, according to Regnault 1, to raise a unit of
weight of water from 0° to #°, and then to evaporate it at this

* Mém. del Acad. de U Inst. de France, vol. xxi. (1847).
t Ibid. Mém. IX. ; also Pogg. Ann., vol. Ixxviii.
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temperature, may be represented with tolerable accuracy by the
following formula :

A=60654+0305¢. . . . . . . (23)
In accordance, however, with the meaning of A, we have
t
x=r+y edt. . . . . . . .(R8a)
(1]

For the quantity ¢, which is here introduced to denote the spe-
cific heat of the water, Regnault* has given, in another investi-
gation, the following formula :

¢=1+0-00004. £+0-0000009. £ . . . (235)

By means of these two equations we obtain from (23) the fol-
lowing expression for the latent heat :

r=6065—0695.t—000002.72—0'0000003. £2+. . (24)

Further, with regard to the pressure, Regnault} has had re-
course to a diagram to obtain the most probable values from his
numerous experiments. He has constructed curves in which the
abscissz represent the temperature, and the ordinates the pres-
sure p, taken at different intervals from —33° to 230°. From
100° to 230° he has drawn another curve, the ordinates of which

* Mém. de U Acad. de UInst. de France, Mem. X,

+ In the greater number of his experiments Regnault has observed, not so
much the heat which becomes latent during evaporation, as that which be-
comes sensible by the precipitation of the vapour. Since, therefore, it has
been shown, that if the maxim regarding the equivalence of heat and work
be correct, the heat developed by the precipitation of a quantity of vapour is
not necessarily equal to that which it had absorbed during evaporation, the
question may occur whether such differences may not have occurred in Reg-
nault’s experiments also, the given formula for » being thus rendered useless.
I believe, however, that a negative may be returned to this question; the
matter being so arranged by Regnault, that the precipitation of the vapour
took place at the same pressure as its development, that is, nearly under the
pressure corresponding to the maximum density of the vapourat the observed
temperature ; and in this case the same quantity of heat must be produced
during condensation as was absorbed by evaporation.

[In a subsequent memoir I have proposed to employ, instead of the equa-
tion (24), the following equation for the latent heat:

r=607—-0-708. ¢.
1t is more convenient for calculation, and gives very nearly the same value
for 7 as the equation (24) itself.—1864.]

1 Ibid. Mém. VIIL

-
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represent, not p itself, but the logarithms of p. From this dia-
gram the following values are obtained; these ought to be re-
garded as the most immediate results of his observations, while
the other and more complete tables which the memoir contains
are calculated from formulse, the choice and determination of
which depend in the first place upon these values.

TasLe II.
p in millimetres,
t in Cent. \ ¢in Cent. d
of the air-ther- | p in millimetres. | of the air-ther- ding to the ding to the
mometer. mometer. curve :_;f the | curve of the
o o
—20 o'g1 110 1073'7 10733
—1I0 2708 120 14890 14907
[ 4°60 130 2029'0 2030°§
10 9'16 140 27130 2711°§
20 17°39 150 3572 3578°5
30 31°55 160 464770 4651°6
40 54°91 170 59600 59567
50 9198 180 75450 7537°0
60 14879 190 94280 94254
70 23309 200 116600 116790
80 354°64 210 143080 143250
90 52545 220 17390°0 17390°0
100 76000 230 2091 5°0 20927°'0 t

To carry out the intended calculations from these data, I have

first obtained from the Table the values of % . %’ for the tempe-
ratures —15°, —5°, 5°, 15°, &ec. in the following manner. As
the quantity}l—, . Z—]; decreases but slowly with the increase of tem-

perature, I have regarded the said decrease for intervals of 10°,
that is, from —20° to —10°, from —10° to 0°, &c. as uniform,

* This column contains, instead of the logarithms derived immediately from
the curve and given by Regnault, the corresponding numbers, so that they
may be more readily compared with the values in the column preceding.

+ [It would have been more convenient to employ the values of vapour-
tensions, calculated by Regnault, from degree to degree, by help of an empi-
rical formula, and collected in his well-known larger table. On attempting
to do so, however, I found that it would be more appropriate for my present
object to return to the values here tabulated, and which were obtained with-
out the aid of an empirical formula, from immediate measurements of the
curves drawn according to observations; for these values represent with the
greatest purity the results of observations, and are consequently particularly
well adapted for comparison with theoretical results.—1864.]
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8o that the value due to 25° might be considered as a mean be-

tween that of 20° and that of 30°. Asll—) . z_;;=d(l;tgp ), I was by

this means enabled to use the following formula:
(l @) _log pyw—log pue.

p ) dt ”O_ 10
or 1 dp\ _ Log psr—Log par 25)
Yt ) 10.M ?

wherein, by Log, is meant Briggs’s logarithms, and by M, the
modulus of his system. With the assistance of these values of
1 dp
par
278 of a, the values assumed by the formula at the right-hand
side of (22) are calculated, and will be found in the second co-
lumn of the following Table. For temperatures above 100°, the

and those of » given by equation (24), as also the value

Tasre ITI.
a
. Ape—o) 5y
. - 4.
£in Cent. de,
of the air-tﬁer- 2. 3. Differences.
mometer. According to the values | According to
observed. equation (27).
- x; 30°61 30°61 o'co
-3 2921 30°54 +133
5 3093 30'46 —047
15 3060 30°38 —o0'22
25 30°40 30°30 —o°'10
35 © 3023 3020 —or03
45 3010 jo'10 000
13 29°98 30°00 +o002
65 29'88 29'88 000
75 29'76 29°76 o'00
85 29°65 29°63 —o'02
95 29°49 2948 —orol
105 29'47 29°50 29°33 —o'14 —o'17
11§ 2916 29°02 29°17 +ocror +o°15
125 2889 2893 28'99 +o'10 +o0'06
135 2888 2901 28-80 —o0'08 —o021
145 2865 28°40 2860 —o00§ +o020
155 2816 2825 28-38 +o022 +o13
165 2802 28'19 2814 4012 ~—o0'0§
17§ 2784 27°90 27'89 +o05 —oror
135 2776 27°67 27762 —o'14 —o0°0§
19§ 27°45 27°20 27°33 —0'12 4013
20§ 26-89 26°94 27'02 +o13 +o008
215 26°56 26'79 2668 +o12 —o'11
225§ 2664 26°50 26°32 —-0'32 —o18
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two series of numbers given above for p are made use of singly,
and the results thus obtained are placed side by side. The sig-
nification of the third and fourth columns will be more particu-
larly explained hereafter.

We see directly from this Table that Ap (s—cr) — m not con-

stant, as it must be if the law of M. and G. were va.hd, but that
it decidedly decreases with the temperature. Between 35° and
95° this decrease is very uniform. Before 35°, particularly in
the neighbourhood of 0° considerable irregularities take place ;
which, however, are simply explained by the fact, that here the
%‘; are very small, and
hence the trifling inaccuracies which might attach themselves to
the observations can become comparatively important. It may
be added, further, that the curve by means of which, as men-
tioned above, the single values of p have been obtained, was not
" drawn continuously from —38° to 100°, but to save room was
broken off at 0°, so that the route of the curve at this point
cannot be so accurately determined as within the separate por-
tions above and below 0°. From the manner in which the di-
vergences show themselves in the above Table, it would appear
that the value assumed for p at 0° is a little too great, as this

pressure p and its differential quotient

would cause the values of Ap(s—a) 4;9+:—t to be too small for the

temperatures immediately under 0°, and too large for those above
it*¥. From 100° upwards the values of this expression do not
~ decrease with the same regularity as between 35°and 95°. They

* [It must be remembered that the values of
Ap(s—a) -2

+t
are calculated by the formula
ar

el

(a+1?) P
given in equation (22). If now the value of p, and consequently also the value
of log p, corresponding to 0° be too great, we must assume that the values of
the differential coeflicient of log p, that is to say of 1 dp ,Will be too great im-

mediately under 0°, and too small immediately a,bove O° in consequence of
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show, however, a general correspondence ; and particularly when
a diagram is made, it is found that the curve which, within
those limits, connects almost exactly the points, as determined
from the numbers contained in the foregoing Table, may be car-
ried forward to 230°, so that the points are uniformly distributed
on both sides of it.

Taking the entire Table into account, the route of this curve
may be expressed with tolerable accuracy by the equation

which the values of the abave formula which containsil; %’ in the denomi-

nator will necessarily be incorrect in an opposite sense. With reference to tem-
peratures under 0° another circumstance must also be mentioned. For tem-
peratures under 0° I have, in my calculations, applied the values of the va-
pour-tension p, given by Regnault’s observations, also to the case when the
vapour is in contact with liquid water, as of course it may be, since under cer-
tain conditions water may remain liquid at a temperature far below 0°. Ac-
cordingly I have considered the magnitude » in the numerator of the formula
to be, at all temperatures, the quantity of heat consumed in the evaporation
of liquid water. If, on the contrary, we assume that those values of p given
by observation have reference, for temperatures under 0°, to the case where
vapour is in contact with ice ; then, for these temperatures, » must be under-
stood to denote the quantity of heat which is consumed in the evaporation of
ice. For the temperature (P itself the latter quantity of heat is obtained by
simply adding to the heat consumed in the evaporation of liquid water the
latent heat of fusion, that is to say 60654 79=6856. For temperatures under
0° this method, it is true, is not quite accurate ; nevertheless it must be very
nearly so when, in applying it, the differences in the latent heat of fusion are
considered which correspond to different temperatures. The value of

Ap(s-a) ;2

corresponding to the temperature —5° when calculated in this manner ac-
cording to the above formula, gives the number 32-93, instead of 2921, as found
by the previous calculation. Comparing this number 8298 with the series
of numbers which correspond to the positive temperatures 6°, 15° &e., we
find that its deviation from the course of the latter is of an opposite kind to,
and indeed somewhat greater than, the deviation of the previously calculated
number 29-21. Regnault’s values, therefore, regarded in either of the ways,
lead to irregularities in the course of the numbers. The occurrence of such ir-
regularities at low temperatures, is explained, as has already been observed, by
the fact that the vapour-tensions are then so small, that errors of observation,
though absolutely small, may become relatively great ; less weight, therefore,
must be attached to the numbers in the above Table which refer to low tem-
peratures, than to those which correspond to the mean and to the higher tem-
peratures.—1864.]
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a
Ap(s—o) a—_-l_—t_m—ne"‘, .. . . (26)

in which e denotes the base of the Napierian logarithms, and m,
n, and k are constants. When the latter are determined from
the values given by the curve for 45°, 125° and 205°, we obtain

m=2381'549; n=1-0486; k=0'007138; . . (260a)

and when, for the sake of convenience, we introduce the loga-
rithms of Briggs, we have

Log[31'549—Ap(s—a-) ﬁ_t] =00206+0:003100 2.  (27)

From this equation the numbers contained in the third column
are calculated, and the fourth column contains the differences
between these numbers and those contained in the second.

From the data before us we can readily deduce a formula
which will enable us more definitely to recognize the manner in
which the deportment of the vapour diverges from the Jaw of M.
and G. Assuming the correctness of the law, if ps, denote the
value of ps for 0°, we must put, in agreement with (20),

ps a+t
P8 “a
and we thereby obtain for the differential quotients :tit z : )
(V]

a constant quantity, that is to say, the known coefficient of ex-
pansion —=0-003665. Instead of this we derive from (26), when

in the pla.ce of $—ao we set s itself simply, the equation
P8 _m—n. et a4t

. 5 e e e e e o . (28)
P3% m—n a :
and from this follows
1 m-n[l+k(a+t)]e"‘
dt( pso) m—n coee - (29)

The differential quotient is therefore not a constant, but a func-
tion which decreases with the increase of temperature; and
which, when the numbers given by (26 a) for m, » and %, are
introduced, assumes among others the following values : —
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TasLE IV.
d d d

¢ 7‘(5-0). t B(ﬁ)' t a(%).

-] o o

o 0'00342 70 000307 140 000244
10 000338 8o 0°'00300 150 0°00231
20 000334 90 000293 160 000217
30 000329 100 000285 170 000203
40 0°0032§ 110 0'00276 180 000187
50 000319 120 000266 190 000168
60 0’00314 130 0°00256 200 000149

We see from this that the deviations from the law of M. and
G. are small at low temperatures ; at high temperatures, how-
ever, for example at 100° and upwards, they are no longer to be
neglected.

It may, perhaps, at first sight appear strange that the values

found for dit(L:') are less than 0:003665, as it is known that
o

for those gases which deviate most from the lawof M. and G.,
as carbonic acid and sulphurous acid, the coefficient of expan-
sion is not smaller but greater. The differential quotients before
calculated must not however be regarded as expressing literally
the same thing as the coefficient of expansion, which latter is
obtained either by suffering the volume to expand under a con-
stant pressure, or by heating a constant volume, and then obser-
ving the increase of expansive force; but we are here dealing
with a third particular case of the general differential quotient

g} (1%3—), where the pressﬁre increases with the temperature in
0 -

the ratio due to the vapour of water which retains its maximum
density. To establish a comparison with carbonic acid, the same
case must be taken into consideration.

At 108° steam possesses a tension of 1 metre, and at 1294° a
tension of 2 metres. 'We will therefore inquire how carbonic acid
acts when its temperature is raised 211°, and at the same time the
pressure increased from 1 to 2 metres. According to Regnault*,
the coefficient of expansion for carbonic acid at a constant press-
ure of 760 millims. is 0°003710, and at a pressure of 2520 millims.
it i8 0003846. For a pressure of 1500 millims. (the mean be-
tween 1 metre and 2 metres) we obtain, when we regard the in-

* Mém de P Acad., vol. xxi. Mem. I,
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crease of the coefficient of expansion as proportional to the in-
crease of pressure, the value 0°003767. If therefore carbonic acid
were heated under this mean pressure from 0 to 214°, the quantity

Pl"vi would be thus increased from 1 to 140003767 x21'5
o .
=1-08099. Further, it is known from other experiments of

Regnault¥*, that when carbonic acid at a temperature of nearly
0° and a pressure of 1 metre, is loaded with a pressure of
1-98292 metre, the quantity pv decreases at the same time in
the ratio of 1: 099146 ; according to which, for an increase of
pressure from 1 to 2 metres, the ratio of the decrease would be
1:0°99181. If now both take place at the same time, the increase
of temperature from O to 214, and the increase of pressure from

1 metre to 2 metres, the quantity Il:v—v must thereby increase

o
very nearly from 1 to 1-08099 x 0-99131=1-071596 ; and from
this we obtain,-as the mean value of the differential quotient

0-071596

a4 m),
dt \ pv,
215

‘We see, therefore, that for the case under contemplation a value
is obtained for carbonic acid also which is less than 07003665 ;
and it is less to be wondered at if the same result should occur
with the vapour a? ifs mazimum density.

If, on the contrary, the real coefficient of expansion for the
vapour were sought, that is to say, the number which expresses
the expansion of a certain quantity of vapour taken at a definite
temperature in the state of maximum density, and then heated
under a constant pressure, we should certainly obtain a value
greater, and perhaps considerably greater, than 0-003665.

From the equation (26) the relative volumes of a unit weight
of steam at its maximum density for the different temperatures,
as referred to the volume at a fixed temperature, is readily esti-
mated. To calculate from these the absolute volumes with suffi-
cient exactitude, the value of the constant A must be established
with greater certainty than is at present the caset.

* Mém. de P Acad., vol. xxi. Mem. VL.
't [At the time I wrote this Joule had not stated which value of the me-

=0"00333.
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The question now occurs, whether a single volume may not
be accurately estimated in some other manner, so as to enable
us to infer the absolute values of the remaining volumes from their
relative values. Already, indeed, have various attempts been made
to determine the specific gravity of water vapour ; but I believe
for the case in hand, where the vapour is at its maximum den-
sity, the results are not yet decisive. The numbers usually given,
particularly that found by Gay-Lussac, 0-6235, agree pretty well
with the theoretic value obtained from the assumption, that two
measures of hydrogen and one of oxygen give by their combina-
tion two measures of vapour, that is to say, with the value

2x0'06926 +1-10563
2

These numbers, however, refer to observations made, not at those
temperatures where the pressure used was equal to the maximum
expansive force, but at higher ones. In this state the vapour
might nearly agree with the law of M. and G., and hence may
be explained the coincidence of experiment with the theoretic
values. To make this, however, the basis from which, by appli-
cation of the above law, the condition of the vapour at its max-
imum density might be inferred, would contradict the results
before obtained ; as in Table IV. it is shown that the divergence
at the temperatures to which these determinations refer are too
considerable. It is also a fact, that those experiments where the
vapour at its maximum density was observed have in most cases
given larger numbers; and Regnault* has convinced himself,
that even at a temperature a little above 30° when the vapour
was developed iz vacuo, a satisfactory coincidence was first ob-
served when the tension of the vapour was 0'8 of that which
corresponded to the maximum density due to the temperature
existing at the time ; with proportionately greater tension, the

=0-622.

chanical equivalent of heat he considered to be most in accordance with the
results of all his experiments. Taking experimental difficulties into conside-
ration, the values yielded by his various methods of observation agreed suffi-
ciently well with each other to leave no doubt in the mind as to the accuracy
of the theorem relative to the equivalence of heat and work, but not well
enough to enable me to deduce therefrom a value capable of being employed
with safety in the calculation of vapour-volumes.—1864.]
* Ann. de Chim. et de Phys., ser. 3, vol. xv. p. 148,
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numbers were too large. The case, however, is not finally set at
rest by these experiments ; for, as remarked by Regnault, it is
doubtful whether the divergence is due to the too great specific gra-
vity of the developed vapour, or to a quantity of water condensed
upon the sides of the glass balloon. Other experiments, wherein
the vapour was not developed iz vacuo but saturated a current of
air, gave results which were tolerably free* from these irregulari-
ties ; but from these experiments, however important they may
be in other respects, no safe conclusion can be drawn as to the
deportment of the vapour in vacuo.

The following considerations will perhaps serve to fill up to
some extent the gap caused by this uncertainty. The Table (IV.)
shows that the lower the temperature of the vapour at its maxi:
mum density, the more nearly it agrees with the law of M. and
G.; and hence we must conclude that the specific gravity for
low temperatures approaches more nearly the theoretic value
than for high ones. If therefore, for example, the value of 0-622
for 0° be assumed to be correct, and the corresponding values d
for higher temperatures be calculated from the following equa-
tion, deduced from (26),

d=0622 ="

SRt L (80)

* Ann. de Chim. et de Phys., ser. 8, vol. xv. p. 158.

+ [The magnitude d denotes the density of the vapour compared with that
of atmospheric air of the same temperature, and under the same pressure.
Now if s represent, as before, the volume of a unit of weight of the vapour,
and v the volume of an equal weight of atmospheric air of the same tempera-
ture, and under the same pressure, we may put

a=2.
]
But, according to the law of M. and G.,
p=Po% 3!
r e’
where p, and v, have reference to the temperature 0°; and again, according
to the equation (26), o being neglected therein,

s=—."T(m—ne ')

Now these values of v and s being substituted in the above fraction, we have

d= Apgv,
m—net’
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we shall obtain far more probable values than if we had made
use of 0622 for all temperatures. The following Table gives
some of these.

Tasre V.

t. I 0°% 80° | 100°. | 150°. | 900°.
d. |o'6u o'63x| o‘645| 0°666 | 0'698

Strictly speaking, however, we must proceed still further. In

Table III. it is seen that the values of Ap(s—o) ai-l-t’ as the
temperature decreases, approach a limit which is not attained
even by the lowest temperatures in the Table ; and not until this
limit be reached can we really admit the validity of the law of
M. and G., or assume the specific gravity to be 0-622. The
question now occurs, what is this limit ? Could we regard the
formula (26) to be true for temperatures under —15° also, it
would only be necessary to take that value to which it approaches
as an asymptote, m=_31'549, and we could then replace (30) by
the equation ’ )

m
=0°622.m__”e“. B .20

From this we should derive for 0° the specific gravity 0-643
instead of 0622, and the other numbers of the above Table would
have to be increased proportionately. But we are not jus-
tified in making so wide an application of the formula (26), as
it has been merely derived empirically from the values contained
in Table III.; and among these, the values belonging to the
lowest temperatures are insecure. We must therefore for the -

present regard the limit of A (s—o) a—i—t as unknown, and con-

and hence, for the temperature 0°,
' d =Apo"o.

* m—n
Eliminating pv, from these equations, we arrive at the equation

d=d, "

“m—ne®

from which, on replacing d, by its value 0-622, the equation (30) is at once
obtained.—1864.]
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tent ourselves with an approximation similar-to that furnished
by the numbers in the foregoing Table; so much however we
may conclude, that these numbers are rather too small than too
large*.

By combining (Va) with the equation (III), which was de-
rived from the first fundamental prmclple, we can ehmmate

A(s—a-) 2 and thus obtam the equatlon

ar

at
by means of which, the quantity &, described above as negative,
can be more nearly determined. For ¢ and r let the expres-
sions in (23 5) and (24) be substltuted and fora the number 273 ;
we then obtain

606'5—0-695¢—0- 00002!’-—0'00000031’

S+ e—h=—o e e e . (32

Iz=0'305— CYERN: t; . (33)
and from this we derive among others the followmg values for 4 :
- TABLE VI.‘I'f
¢ . 0°. | ©o50% | 100°, |. . 150°%.. |- “200". N

h. . —1'916' —1465| —1°233 -°.879J —0'676

* [For a comparison of the theoretical determination of the density of vapour,
as here expounded, with more recent results of observations, see Appendiz C.]
t [When we employ the simplified formula

) r=607-0708.¢,
given in the note to eqn&tmn (24), and retain the value 0-305 given by Reg-

nault for the sum a—+c, the equation for 4 assumes the simpler form

_ o025 607—0708. ¢
£=0305 e
which may also be written thus:
=1013— 8008
k=1-013 FTaEE

This formula for 4 is a still more convenient one.—1864.]

1 [The conclusion, that % is a negative magnitude, was also drawn by
Rankine, in & memoir published almost at the same time as my own, in the
Transactions of the Royal Society of Edinburgh (vol. xx.), wherein the mag-
nitude itself is represented by K,. The above equation (82), however, which

~ serves for the exact numerical calculation of &, was not established by Ran-
kine, since he was not then in possession of the necessary second funda-
mental theorem of the mechanical theory of heat. The equation employed by

F
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Ia & manner similar to that already puriued in the case of
aquedus vapour, the equation (Va)might be applied to the vapours
of othet fluids, and the results thus obtained compared with each
other, as is done in Table I. with the numbers calculated by Cla~
peyron. We will not, however, énter further upon this appli-
cation¥*,

‘We must now endeavour to determine, at least approximately,
the numerical value of the constant A, or, what is more usual,
‘the value of the fraction %; in other words, to determine the
equivalent of work for the unit of Reatt.

Pursuing the same course as that of Meyer and Holtzmann, we
can in the first place make use of equation (10 4), developed for
permanent gases. This equation was

_ ©=¢+AR;
and when for ¢ the equivalent expression % is introduced, we have
1 k.R

I: (];T)‘ZJ' . . . . . . . (34)
For atmospherie air, the number 0-267, as given by De Laroche
and Bérard, is generally assumed for ¢/; and for %, as given by
Dulong, 1'421, For the determination of R=f—f‘;-, we know
Yo
that the pressure of one atmosphere (760 millims.) on a square
metre amounts to 10333 kils. ; and the volume of 1 kil. of atmo-
spheric air under the said pressure and at the temperature of the

him for the determination of this magnitude, numbered (30) in his memoir,-
would agree with my equation (III), deduced from the first fundamental
theorem, had not Rankine, contrary to myself, assumed the law of M. and G.
to be true for saturated vapours.—1864.]

* [The experimental data when this was written being too incomplete and
unsafe, further pursuit of the subject appeared inappropriate. Regnault, how-
ever, having now published the second series of his extremely valuable inves-
tigations (Rélations des Expériences, t. ii.), in which the vapour-tension,
the latent heat of evaporation, and the specific heat for a considerable
number of liquids are determined in the same manner as was done for aqueous
vapour in the first series, it would be easy to extend to vapours of other
liquid]s the calculations which above have reference to aqueous vapour.—
1864. :

t [Now called, more briefly, the mechanical equivalent of heat.—1864.]
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freezing-point is 07733 of a cubic metre. From this follows
R 10833.0-7758

973 29 %6,
and hence
1_1'421x2926
A=o@I <0267 08

that iy to say, by the expenditure of one unit of heat (the quan-
tity which raises 1 kil. of water from 6° to 1°) a weight of 870
kils. can be raised to a height of 1 metre. This value, however,
on account of the uncertainty of the numbers 0-267 and 1'421,
is deserving of little confidence. Holtzmann gives as the limits
between which he is in doubt the numbers 843 and 429%.

The equation (Va) developed for vapours can be made use of
for the same purpose. If we apply it to the vapour of water,
the foregoing determinations, whose result is expressed in equa-
tion (26), may be used. If, for example, the temperature 100°
be chosen, and for p the corresponding pressure of one atmo-
sphere =10338 kils. be substituted in the above equation, we

. obtain

%:257.(3—@.7 )

* [The remark in the text on the uncertainty of the experimental data em-
ployed .in this calculation, has been recently verified by Regnault’s finding
that the specific heat of atmospheric air is represented by 0-2876, instead of
by the number 0-267, which was previously considered to be the most trust-
worthy. By introducing the former into the above calculation the value 416,
instead of 370, is obtained for the mechanical equivalent of heat. If more-
over-we replace the number 1-421 by 1°410, which probably more nearly ex-
presses the true proportion between the two specific heats, we obtain 424 as
the result of the calculation. I may also here remark that the number 29-26
of the text requires changing to 29-27: this, however, has no influence
upon the given result, since the latter is calculated only to three figures.—
1864

+ [This equation may obvxously be directly deduced from the equation
(V a); for the latter gives at once

) @+
K= ('—f')
The differential coefficient % E’ here involved, has, according to Regnault, at

100°, the value 27-200, expressed in millimetres of mercury, and when this
number is reduced to the measure of pressure above employed, . e. to kilo-
F2
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If it be now assumed with Gay-Lussac that the specific gravity
of aqueous vapour is 0-6235, we obtain §=1-696, and hence

1
1—437. ‘ A ,

Similar results are obtained from the values of C contained in
Table I., which Clapeyron and Thomson have calculated from
equation (V). TIf these be regarded as the values of ‘A (a+¢)

eorrmpondmg to the adjacent temperatures, a series of numbers
are obtained for 1 N all of which lie between 416 and 462.

" It has been mentloned above, that the specific gravity of
aqueous vapour at its maximum density given by Gay-Lussac is
probably a little too small, and the same may be said of the
specific gravities of vapours generally. Hence the value of ‘%
derived from these must be considered a little too large. If the
number 0'645 given in Table V. for the vapour of water, and
from which we find $=1638, be assumed, we obtain

1

’ K-421 H :

which value is perhaps still too great, though probably not
much. As this result is preferable to that obtained from the
atmospheric air, we may conclude that the equivalent of work for
the unit of heat is the raising of something over 400 kils. to a
height of 1 metre. )
 With this theoretic result, we can compare those obtained by
Joule from direct observation. From the heat produced by
magneto-electricity he found

1
—=460%,
A

From the quantity of heat absorbed by atmospheric air during
its expansion, '

1
K=4381';

logrammes on a square metre, becomes 369-8. On substituting further, for
a+¢ and r, the values 378 and 5365, corresponding to the temperature 100°,
the equation (85) is obtained.—1864.]

" * Phil. Mag. vol. xxiii. p. 441 The English measure has been reduced
fo the French sta.nda.rd -t Ibid. vob xxvi. p. 881
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and as mean of a great number of experiments in which the heat
developed by the friction of water, of mercury, and of cast iron

was observed,
1

—495%
I—425 .

The coincidence of these three numbers with each other, not-
withstanding the difficulty of the experiments, dispels all doubt
as to the correctness of the principle which asserts the equiva-
lence of heat and work ; and the agreement of the same with the
number 421 corroborates in like manner the truth of Carnot’s
principle in the form which it assumes when combined with our
first fundamental principle.

APPENDICES TO FIRST MEMOIR [1864].
APPENDIX A. (Page 27.)

COMPLETED DEDUCTION OF THE EXPRESSION FOR THE EXPENDED
HEAT GIVEN IN EQUATION (3).

In developing the expression for the expended heat given in the
equation (3) of the text, certain magnitudes have been left un.
considered which have no influence on the result, and which in
order to simplify the calculus are usually disregarded in all si-
milar cases. One disadvantage of this procedure, however, is
that to the reader doubts may thereby arise as to the accuracy of
the result. On this account I deem it desirable to supply here
a somewhat more complete deduction of the equation (3).

In doing so it must be remembered that the following deve-
lopment, as well as that given in the text, holds not only for a
gas, but also for every other body whose condition is determined
by its temperature and its volume, and whose variations of vo-
lume occur in such a manner that force and resistance differ so
little from one another as to justify, in calculation, the assump-
tion of their equality. We shall assume, moreover, that the sole

* Phil. Mag. vol. xxxv. p. 534,
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exterior force which influences the changes of volume acts every-
where normally and equally upon the surface, so that in general
it may be termed a pressure, inasmuch as any pull which may
possibly take place may be regarded as a negative pressure.

Let us consider the quantity of heat dQ which a body must
receive during an increase of temperature equal to d¢, and an
atigrhentation of volume equal to dv. For a differential which
depends, as dQ does; on the differentials of two independent va-
riables, it is eustomary to employ the equation

da=(‘f_§)dt+(‘.fi‘§)dv, e . ®

which by the introduction of simple symbols for the partial dif-
ferential coefficients, that is to say by putting

dQ
()= o
"2)='N
dv ’
may be thus written :
dQ=Mdt+Ndv. . . . . . . . . (0o

Strictly speaking, however, this equation is incomplete. The
complete expression for dQ contains an infinity of terms, of the
successive orders one, two, three, &c., in reference to the differ-
entials d¢ and dv. By actually introducing the terms of the se-
cond order, and merely indicating the remaining ones, the equa-
tion for dQ becomes

dQ=Mdt+ Ndo+ %{ (%)dﬁ + [(‘;—1;‘) + (‘fi—? )]at ao

+(%)dﬂ}+&c... B ()]

Now it is clear that when an expression contains terms of the
first order in the differentials, all accompanying terms of the se-
cond or of higher order may be neglected. Accordingly the two
first terms on the right of the above equation are the only ones
which are usually written. When in any calculation, however,
the terms of the first order cancel each other,so that among the
terms of the final result those of the second are the lowest in
order, then from the commencement all terms of the second
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order must be taken into consideration, and it is only those of
the third and higher orders which can be neglected. This occurs
in the case under consideration, since the expression for the ex-
pended heat, containing the product dv dt as a factor, is neces-
sarily of the second order. The calculation, given in the text,
was conducted, it is true, in such a manner that only those
terms of the second order were neglected which were without
influence on the final result, nevertheless for the sake of com-
pleteness and rigour, these terms in the following calculation
shall also be written.

When any relation whatever is given between the variables ¢
and v, in virtue of which the one may be regarded as a function
of the other, the equation (d) may be written so that the terms
on the right proceed simply according to ascending powers of a
single variable. If ¢, for instance, be regarded as a function of
v, and the following symbols be introduced for the differential
coefficients of ¢ according to v,

dt dt
H=t i &
then we shall have .
dt=gdv+z"i;i.+&c ...... y e (e

whereby the equation (d) wi‘ll become .
dQ= (ME+N)do+{ )E’+[( ) ( )]s

( )+Me' B ke . ... (@

If, on the other hand, vberegardedasaﬁmctmnoftandwein—
troduce the symbols

do__ . dv_ .

W—ﬂ, W—,f’&c
we shall have

dp-th+q’—§-+&¢ B (1)
and accordingly

da= M +No)dt+{(ZF +[ ﬁ‘)+(‘%’) "
+(‘%’)¢7’+N«7’}%‘+&c ..... )

These equations are to be applied to the four changes to which
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the gas or the body under consideration is to be subjected, and
which are to proceed according to two different laws. .

We consider first the changes of volume which occur at a
constant temperature. In this case the differential coefficients
of ¢ according to v, that is to say, the magnitudes , ¥, &c., must
be put equal to zero. Consequently in order to determine the
quantity of heat which the body must receive during an expan-
sion dv from its initial state without change of temperature, we
may employ the equation (f) in a simplified form ; the terms
which contain the factors £, ¥, &c. . . being omitted. Stopping
at terms of the second order, we thus arrive at the equation

dQ=Ndv+ (‘fll:) %”-

In order to express, in a similar manner, the quantity of heat
which the body must receive when at the temperature ¢—dt it
expands from the volume v+ 8v to the volume v+ &v+d'v, we
must replace dv in the foregoing equatlon by d'v, and in place

of N and (dN) introdice the values which these magnitudes

possess at the slightly changed temperature {—d¢f, and the
somewhat altered volume v+8v. Assuming these values to be
expressed in series proceeding according to powers of d¢ and dv;
we need only retain terms of the first order in the case of N,
since the latter quantity is multiplied by a differential in the
above equation, and all subsequent terms in N would merely
lead, in dQ, to terms of a higher order than the second. Ac-
eordingly in place of N. we have to put C

() e ()
Inthe valueof (71; ) , which in the above equation is multiplied

by the square of a differential, we may for the same reason omit
terms of the first order, and simply retain the original value
((%I) Accordingly if we represent the guantity of heat re-

ceived during this expansion by d'Q, we have the equation

2= [N (D)o (D) st + () 22
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Subtracting this quantity of heat from the former, we obtain the
heat expended during the whole process, that is

dQ-d’Q:Ndv—[N+(‘1§)Sv—(@)dt]d’v
+( dv" )

This expression differs only in the last term from the one num-
bered (2) in the text, and this term is easily recognized to be
only apparently of the second order, for the differentials dv and
d'v can only differ from one another:-by a magnitude infinitely
small relative to their own proper values, so that the difference
dv®—d'v? is an infinitesimal of an order higher than the
second. :

We proceed now to- changes of volume of another description,
—to changes produced without either communicating heat to the
body or abstracting it therefrom. In this case the temperature
must change with the volume, and one of these magnitudes being
chosen as the independent variable, we have to determine the
differential coefficients of the other. We shall consider v as a
function of £, and determine the differential coefficients 5, %' &ec.
of the former. To this end we must employ the equation (h),
and put therein dQ =0, whereby we shall have

o=pr+mnar {(G)+[(G)+(@)]|
(dN)ﬂ + Ny J1_+&c '

Since this equation must hold for any value of dt, the factor of
each power of df must vanish. Equating to zero the factor of
the first power of d¢, we have

M+ Ny=0,

(1)

(k)

whence we deduce v
=M

The magnitude 7 is thereby determined as a function of ¢ and v.
The next differential coefficient %/ might be similarly- determined
by equating to zero the factor of the second power of dt; it is
not necessary, however, actually to perform this calculation,
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since 7' may also be found by differentiating the expression for
7, already found completely, according to ¢; that is to say we
may differentiate according to ¢ and v, and regarding v as a func-
Z_;,="' The succeeding differential coefficients of
v according to ¢, if required, would have to be calculated in a
similar manner.

Now to determine the magnitude 8v by which the volume of
the body must increase from its initial value, in order that the
temperature may sink from ¢ to —d¢, we must employ the
equation (g), and write therein 8v in place of dv, and —d¢ in
place of d¢. By so doing and contenting ourselves with terms
whose order does not exceed the second, we obtain the equation

sv=_,,dt+q'd7".. )

tion of ¢, ‘put

Similarly, to find the value of &, that is to say how much the
body, starting from the volume v+ dv, must expand in order
that the temperature may fall from ¢ to #—d¢, we must replace

7 in the foregoing expression by its changed value q+(§g dy.

The corresponding change of %' need not be considered, since
the only terms which could arise therefrom would be of an order
higher than the second. We have therefore

srv=_[,,+ Z—Zdv dt+q’£§. C .. @

Besides these equations for v and &'v, another must exist in-
volving the four changes of volume which the body suffers suc-
cessively, during the process. This is the equation which ex-
presses the condition that the body ultimately returns to its
initial volume, and which is thus written :

do+8v=8v+dv. . . . . . . . (o)
From this it follows that

dv=dy+&v—d,
an equation which, on substituting for 8v and &'y their respective '
values as already found, becomes

dv=dv—(%)dvdt. e e e e .(p)
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‘We now return to equation (i), which represents the /Aeat ez-
pended during the whole process, and substitute therein the va-
lues of &v and d'v as given by the equations (m) and (p). Ne-
glecting all terms of an order higher than the second, we thus

find
dQ—d'Q_[( )+ dN")]dvdt )

and if in this we replace 9 by its value given in (1), we have

da-da=[(‘%)~(%)]dedt,. R

which, by introducing in place of M and N the original symbols
for partial differential coefficients, becomes
d (dQ
dQ—dQ= 71‘:(3.7)“’ Dawvar. . .. @
This is the equation (8) given in the text, to re-establish

which, in a somewhat more rigorous manner, was the object of
the present Appendix.

APPENDIX B. (Page 28)
INTEGRATION OF THE DIFFERENTIAL EQUATIiON (II).

It will perhaps be useful to elucidate somewhat more fully the
manner of obtaining the equation (IIa) from the equation (II).
The equation (IT), which in the text is thus written,

W@)-la Lo @

may be called a partial differential eguatwn of the second order,
although it differs somewhat from the ordinary equations of this
kind, since in the latter it is usual to assume, tacitly, the fulfil-

ment of the condition
@)=

In order to pass, by integration, from the equation (II) to &
differential equation of the first order, we may proceed as
follows. In the first place we take any function whatever of ¢
and v as a representative of one of the two partial differential
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coeflicients (d??' and (‘%‘3—') For instance, M being any such

(‘%?—’:M,.......(a)

and introduce this value into the equation (II). The substi-
tuted term being then removed from the left to the right of the
equation, we ha.ve

function, we put

) (dVI A.R

Integrating this equatlon according to £, and under the hypo-
thesis that v remains constant, we find

(%3 =j'(%‘.)dt+AR§+¢(v), b

where ¢ (v) denotes an arbitrary function of v. Having thus
obtained an expression for the partial differential coefficient

(%Q), we next form the complete differential equation of the

first order,
d4Q=(2) d+(22)a»,

and substitute therein the assumed fanction M for (‘%), and

aQ

the expression just obtained for ( i

). We thus arrive at the
equation

dQ= Mdt+UdM Jat + AR +¢(v)]dv C .. (@

- The expression -

 Mat+ U(dM dt+¢(v):|dv,

which forms a constltuent part of the nght-hand slde of this
equation, is at once seen to be the complete differential of a
function of £ and v ; for the factor of d¢, when differentiated ac-

cording to v, gives the same’fresu]t,:'(%), as does the differ-

entiation, according to ¢, of the factor of dv.” For this - expres-
sion, therefore, we may. introduce the symbol dS ; and since M
represents an arbitrary function of ¢ and v, and ¢ (v) an arbitrary
function of v, S itself must be regarded as a perfectly arbitrary
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function of £ and v. The introduction of the symbol into the

equation (c) gives

dQ= dS+AR dv....'..'.'(d)
' For the further treatment of thls equation it will be conve-

nient to introduce, in place of the simple magnitude £ in the

last term, the sum a +¢, where a is the constant defined in the
text. To do this the last equation may be written in the form

dQ=dS—ARZ d+AR"“d

or rather thus:
dQ=d(S— ARalogv)+ARa__+td L. e

‘which latter may be simplified by putting

. S—ARalogv=U, . . . . . ()
where U is again an arbitrary function of ¢ and v, since an alge-
braical sum which consists of an arbitrary, and of a known func-
tion of the same variables must itself be regarded as an arbi-
trary function of these variables. By introducing this new
symbol U into the equation (e), we obtain the equation (IIa) of
the text, that is to say, .

dQ=aU+ARZ gy . . . . (1

. The object of the introduction of the sum @+ ¢ in place of the
quantlty t, is to render the last term susceptible of a nmple
mechanical meaning. In fact, from the equation

pv=R(a+1?),
which applies to permanent gases, it follows that
" AR“_"’.‘dv =Apdv; . . . . . . (8

and since pdy denotes the exterior work done during the expan-
‘'sion dv, the last term of the equation (IIa) obviously represents
-the heat-equivalent of the exterior work.

The more general dlﬁ‘erentlal equatlon of the second order,

______ 1
dt dv dt ( SRR 1

given in the first note on p. 28, may be treated in the same man-
ner as. we have just treated the equation (II), and thereby the fol-
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Jowing complete differontial equation of the §irst order obinained,
dQ=dU+Apdv. . . . . . . (Il's
The function U, here introduced, is of great importance in the
theory of heat ; it will frequently come under discussion in the
following memoirs. As stated in the text, it involves two of the
three quantities of heat which enter into consideration when a
‘body changes its condition ; these are the augmentation of the
so-called sensible or actually present heat, and the heat ezpended
in interior work.
APPENDIX C. (Page 65.)

ON TRE DENSITY OF SATURATED AQUEQGUS VAPOUR.

The conclusions drawn in the text, relative to the deviation
from the law of M. and G. presented by saturated vapours, and
which at that time stood isolated, inasmuch as it was the uni-
versal custom to apply the law in question also to vapours, have
since been experimentally verified by Fairbairn and Tate¥*.
The following summary of a note communicated by me to the
Academy of Sciences at Paris +, will show how far these results
of observation agree with my formula.

Under (30), in the text, is given the equation

d=0622 ",
wherein d denotes the density of the saturated agueous vapour,
in comparison ‘with atmospheric air at the same temperature
and under the same pressure, and m, n, k are three constants
having the values
m=31'549, na=1-0486, k=0"007138.

By means of this equation the values of d were calculated which
are contained in Table V. of the text (p. 64). If s be the
volume of a kilogramme of saturated vapour, and v that of a ki-
logramme of atmospheric air at the same temperature and pres-

sure, the fraction ; may be put instead of d. The reciprocal

fraction, therefore, will, according to the foregoing equation, have
the value B_  m—ne®
v 0622.(m—n)
* "Proceedings of the Royal Society, 1880 ; and Phil. Mag. Fourth 'Series,
vol. xxi. p.'230. t Comptes Rendus,vol. lii. p. 706 (April 1861).




DENSITY OF SATURATED AQUEOUS VAPOUR. 7
This equation may be written in the more convenient form
£=M_N" . . . . . . . . . (‘)

where the consmu M, N, « have the followmg values, depen-
dent on the values of m, n, & previously given,
M=16680, N=005527, a=1007164.

Strictly speaking the difference — o, where o is the volume of a
kilogramme of water, should enter into the foregoing equations
instead of the quantity s, since this difference occurs in the
equation (26), from which (30) is deduced. The volume of
water being very small, however, when compared with that of
vapour, the quantities # and 3—o may, in an approximate calcu-
lation, be regarded as equal to one another.

In the following Table the values of s, calculated from the above

formula for % are placed side by side with those deduced by

Fairbairn and Tate from their observations, and with the values
formerly assumed as corresponding to the equation

s_ 1 |
v 0622
Vol kil of d aq
of .in cubic metres according to
Temperuture in
s grade: “‘:“L"m”‘ the equation (a). observation.

gi'n 838 823 827

852 5741 5'29 533

7076 494 483 491

77'18 384 374 372

7749 379 3°69 371

79'4° : 3’52 343 343

83°50 3'02 2°94 308

86- 83 2°68 2'60 262

92766 218 2'11 2'15
71y 0'991 0947 0’941
11823 0°961 0'917 0906
11846 0954 o091t o891
12417 o809 0769 0768
12841 o718 0681 0648
130°67 0674 0639 0634
13178 0654 v'619 o604
134°87 . o602 0°569 o583
137°46 0°562 0530 o514
13921 0'537 0505 0'496
141°81 0°502 ) 0472 0457
142738 0495 0'465 0448
144°74 0466 0437 0432
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From this Table it will be seen that the observed values agree
much better with those calculated from my equation than with
the formerly assumed values ; and further, that the differences
.which still exist between the observed values and those of my
formula are generally of such a character that the observed
values differ from the formerly assumed ones still more than do
the values of my formula.

ON THE INFLUENCE OF PRESSURE UPON THE
FREEZING OF LIQUIDS*.

Mr. William Thomson has described an experimental inves-
tigation, conducted by himself +, and originating in a theoretic
view entertained by his brother, James Thomson. The latter
had concluded, from the known principle of Carnot, that by an
increase of pressure the freezing-point of water must be lowered,
which view was completely verified by experiment.

Some time ago I published a theoretic memoir {, in which
the principal part of Carnot’s law is retained, but altered in
one minor particular. This alteration rendered certain of the
conclusions heretofore deduced from the principle impossible,
while others remained valid ; the latter being those whose cor-
rectness or high probability had been demonstrated by expe-
riment. Now as the above conclusion regarding the freezing-
point of fluids has also been substantiated experimentally, and
thus in a scientific point of view has obtained a greater signifi-
cance than one would be inclined at first sight to attribute to so
small a difference, I feel myself called upon, in behalf of my
theory, to show that my alteration of Carnot’s principle is in no
way opposed to this result§. Moreover, by a simultaneous ap-

* Note published in Poggvendorﬂ"s Annalen, September 1850, vol. 1xxxi.
p-168; and translated in the Philosophical Magazine, S. 4. vol. ii. p. 548. .

+ Proceedmgs of the Royal Society of Edinburgh, February 1850; and
Phil. Mag. S. 8. vol. xxxvii. p. 128.

1 [First Memoir of this collection. ]

§ I need hardly mention that I have here no thought of disputing with
gir J. Thomson the priority of his ingenious application of the principle of

arnot.
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plication of the first fundamental principle which I have assumed,
a new conclusion is arrived at which, although practically unim-
portant on account of the smallness of the numbers which it in-
volves, nevertheless deserves expression on account of its theoretic
interest.

A lengthened analysis of the subject is not here necessary.
The considerations dwelt upon in my former paper regarding
the evaporation*, may be applied almost verdatim to the freezing
of a liquid. We have only to conceive the vessel impervious to
heat to be filled with the body partly in the solid and partly in
the liquid state, instead of, as in the former case, partly in the
liquid and partly in the vaporiform state ; and then, instead of
permitting a fresh portion of the liquid to evaporate, to allow a
portion of it to freeze, &c.

One of the two principal equations deduced therefrom was

r=A(e+¢) (s— o-) dp

v (Va)

and this holds good for the freezing also, p and ¢ again denoting
the pressure and temperature, and o the volume of a unit of
weight of the liquid, whereas s denotes the volume of a unit of
weight of a solid body (instead of vapour, as in the former case),
and 7 the latent heat of the freezing (instead of the evaporation).
The latter, however, must be here taken as negative, because by
freezing, heat will be lLberated, and not rendered latent. We
have therefore

dt __Aa+?) (3—a) 1)

dp r

Let the value of L T given by Joule in his last investigationt as

the most probable result of all his experiments, that is 42355
(772 English), be here substituted, as also for @ the number
273 ; further, with regard to the water, =0, r=79, 0=0001,
and $=0001087 ; and, finally, let p be expressed in atmospheres,
instead of in kilogrammes, pressing upon a square metre, we

then obtain

& 000738,
dp
* [First Memoir, pp. 30 and 47.]
+ Phil. Trans. of the Royal Society of London for the year 1850, part 1.
p. 8L
G
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which may be regarded as equal to the value calculated by
James Thomson, and corroborated by William Thomson, namely
—0-0075.
The other principal equation deduced from the prineiple of the
equivalence of heat and work was
dr

- —a%
GHe—h=Ap—o)Z . . . . . (@D

To apply this to the case of freezing, we must regard c
and 2 as two quantities which differ from the specific heats
of the liquid and solid body only so far as they express, not
the heat which must be imparted to a body when it is simply
warmed, but that which is necessary when the pressure varies
with the temperature in the manner indicated by equatlon
(1). This difference, however, cannot be considerable, since
Regnault* has found that water, by an additional pressure
of 10 atmospheres, does not increase s;th of a degree Cent.
in temperature; besides this, as the differences for ¢ and 4
take place both in the same sense, and hence in the difference
c—h are subtracted, we can set with a near approach to accu-
racy for c—A the difference of both specific heats simply +. If

the value of d-—P estimated from (1) be substituted in (III) and

if the sign of & 7 ” be changed like that of r in the former case,

we have %"”""’E:—t’ )
From this we must conclude, that when the freezing-point
changes, the latent heat must also change ; for water c=1, and,
according to Personi, #=0'48. Hence we have
dr

T_O 52+4+029=081;

that is to say, when the freezmg-pomt of water is lowered by
pressure, the latent heat decreases 0-81 for every degree.

We must not confound this result with that already expressed
by Person§. From the circumstance that the specific heat ot

* Mém. de P Acad. de U Inst. de France, vol. xxi, Mém. VII,

1 [In one of the following Memoirs a more accurate determination will be .
given.—1866.]

1 Comptes Rendus, vol. xxx. p. 526.

§ Ibid. vol. xxiii. p. 836, and Poggendorﬁ!s Annalen, vol. Ixx. p. 802.
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ice is less than that of water, the latter concluded with great
probability, that when the freezing-point, without increasing the
pressure, is simply lowered by preserving the fluid perfectly mo-
tionless, the latent heat must then be less than at 0°. This
- decrease may be expressed by the equation

dr_

dt™
the above equation (2) therefore shows that, when the freezing-

point is lowered by pressure, the latent heat, besides the change
due to the last-mentioned cause, suffers a still further diminution

c—h;

expressed by the quantity E:-t; this in the case of water is=0-29,

and it is this quantity which corresponds, as equivalent, to the
exterior work accomplished.

The recent observation of Person*, that ice does not melt
completely at a definite temperature, but becomes softer imme-
diately before it reaches the melting-point, I have left unnoticed,
as its introduction would merely render the development more
difficult, without serving any important end ; for the decrease of
latent heat, which corresponds, as equivalent, to the produced
work, must be independent of the little irregularities which may
take place during the melting.

APPENDIX TO PRECEDING NOTE (1864).

ON THE DIFFERENCE BETWEEN THE LOWERING OF THE FREEZING-
POINT WHICH IS CAUSED BY CHANGE OF PRESSURE AND THAT
WHICH MAY OCCUR WITHOUT ANY SUCH CHANGE.

It will not, perhaps, be without advantage to examine some-
what more closely what has been said at the end of the preceding
Note. Allusion was there made to the well-known phenomenon
of the lowering of the freezing-point of water brought about, not
by increasing the pressure, but by protecting the water from all
agitation ; and it was asserted that in this case the latent heat,
or rather the heat rendered sensible on solidification, must change
according to a law different from that which obtains when the.

* Comptes Rendus, vol. xxx. p. 526.
3



84 APPENDIX TO PRECEDING NOTE.

freezing-point is lowered by pressure. The correctness of this
assertion, and of the equation relative thereto, will be rendered
manifest by the following considerations.

It was fully demonstrated in the First Memoir that the heat
which must be imparted to (or abstracted from) a body in order
to bring it from a given initial condition to another determinate
one, may be divided into three parts ; these are the quantity of
heat which serves to increase that which is actually present in
the body (the so-called sensible heat), the quantity expended on
interior work, and the quantity expended on exterior work. It
was stated that the two first parts are completely determined by
the initial and final conditions of the body, and that for this de-
termination it is not necessary to know in what manner the
changes of the body have occurred, in other words, what path has
been pursued by the body in passing from one condition to the
other. If, therefore, we include both these quantities of heat in
one symbol U, as was done in the First Memoir, we shall thereby
obtain a magnitude which, on the supposition that the initial con-
dition of the body is known, depends only upon its present condi-
tion, and not at all upon the manner in which it has been brought
into this condition. The third quantity of heat, however, that
expended on exterior work, depends not only upon the initial and
final states of the body, but also upon the whole series of changes
which it has undergone. The exterior work being represented by
W, the heat expended in its production will be AW, and on adding
to the latter the other two quantities of heat, we obtain the sum

U+AW
as the representative of the total heat which must be imparted
to the body during its several changes.

Now let us conceive a unit of weight of water to be given at
the temperature 0°, and let it be required to convert it into ice at
a certain temperature ¢, below zero, the pressure remaining con-
stantly equal to that of the atmosphere, and to express the quan-
::lity of heat which must be withdrawn from the mass in order to

o so.

The simplest way of producing this change would be to allow
the water to freeze at 0°, and then to cool the ice so formed to
the temperature #,. The process, however, may be also con-
ducted in another way. We will allow the water, in its liquid
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state, to be cooled to a temperature ¢ between 0° and ¢,, and then
at this temperature to be solidified. When water which has been
cooled to a temperature below zero freezes, a considerable quan-
tity solidifies suddenly, and the heat thereby produced or ren-
dered sensible raises the whole mass to 0° again, after which the
further solidification proceeds gradually at the latter tempera-
ture. Nevertheless, although not actually feasible, we will con-
ceive the sensible heat to be withdrawn from the mass during
its solidification just as quickly as it is generated, so that the
whole mass may freeze at one and the same temperature £. The
ice thus produced shall then be subjected to a further cooling
down to the temperature ?,.

In finding an expression for the quantity of heat which must
be withdrawn from the mass during this process, we shall em-
ploy the following symbols :—

7' the heat rendered sensible during gelation,

¢ the specific heat of the water,

k' the specific heat of the ice,

o' the volume of a unit of weight of water,

¢ the volume of a unit of weight of ice.
The letters, it will be observed, are the same as in the foregoing
Note, they are here accented because they have now slightly dif-
ferent values. In the preceding Note, in fact, they had reference
to the case where the pressure increased according to a certain law
with the diminution of temperature, whereas now the pressure is
supposed to remain constantly equal to one atmosphere.’

Accordingly the heat which serves to bring the water from the
temperature 0° to the temperature ¢ will be represented by the

integral ,
(fea
Jo

Now the temperature ¢ being, by hypothesis, lower than 0°, ¢ is
a negative quantity, and with it the value of the integral also;
this expresses the fact that the heat in question is not imparted
to, but withdrawn from the body. In a similar manner the
quantity of heat which serves to depress the temperature of the
ice thus formed from ¢ to ¢, is expressed by the integral

1
f R,
t
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Lastly, 7' represents the heat rendered sensible during solidifica-
tion, and to it a negative sign must be affixed in order to indi-
cate that this quantity of heat must also be withdrawn from the
body.

The algebraical sum of these three quantities constitutes the
required expression for the total heat under consideration, and
since this latter quantity is also expressible by the sum pre-
viously determined, we have the equation

[; .
—r4 ‘ddt+f‘h'dt=U+AW. N O
(1] t

The exterior work W still remains to be determined. The
initial volume of the mass coincides with that of a unit of
weight of water at the temperature 0° and its final volume is
that of a unit of weight of ice at the temperature ¢,. These two
volumes, as special values of ¢’ and &, being represented by o
and s/, the increment of volume will be expressed by s,/—ay.
‘Since this increment of volume takes place under the constant
pressure p, of one atmosphere, the corresponding work will be
expressed by the product p,(s,' — o) simply, and the temperature
at which freezing may have taken place is here a matter of in-
difference. By substituting this expression for W in the pre-

ceding equation, the latter takes the form
—r 4\ cat +5:" Rdt=T + Apo(s/—aq). . (b)
0

‘We will next differentiate this equation according to the in-
termediate temperature ¢ at which freezing took place. Since
now the magnitude U, in every case, depends solely upon the
initial and final conditions, and since, in the special case now
under consideration, the heat expended on exterior work is like-
wise independent of the intermediate temperature ¢, we may, in
differentiating, consider the whole of the right-hand side of the
equation as constant. The result, therefore, will be

dr'

oor

—_— ~h=
dt+c' k=0,
%ﬂ'_y. L

This is, in reality, the last equation of the preceding Note ; the



DIFFERENT VARIATIONS OF THE FREEZING-POINT. 87

notation alone is slightly different, inasmuch as the accents
which, for the sake of better definition, have been here intro-
duced were not there employed ; it being assumed that the dif-
ferent significations of the several quantities, due to the peculiar
circumstances, were self-evident, even in the absence of distin-
guishing marks.

In order to render perfectly manifest the essential points of
difference between the case just considered, where the lowering
of the freezing-point is occasioned solely by protecting the water
from agitation, and the case where the freezing-point is lowered
by increasing the pressure, I will here also re-establish the equa-
tion (2) of the preceding Note, and in so doing retain the same
method of reasoning which has just led to the equation (c).

Given, once more, a unit of weight of water at 0° to be con-
verted into ice of the temperature ,, but in such a manner that
during the diminution of the temperature the pressure shall in-
crease according to the law expressed by the equation (1) of the
preceding Note. Since, under these circumstances, the diminu-
tion of the temperature ¢ likewise represents the depression of
the freezing-point of the water, every temperature ¢ between 0°
and ¢, may be assumed as that at which freezing takes place.
Conceive the water, therefore, to be cooled in the liquid condition
from 0° to ¢, then to be frozen at this temperature ¢, and finally
to be cooled, in its solid state, from £ to #,. The quantity of heat
which must be withdrawn from the mass during this process will,
on again calculating abstracted heat as a negative quantity im-
parted to the mass, be represented by the algebraical sum

-7 +j‘ cdt +y hdt.

Equating this sum to the expression U+ AW, which apphes ge-
nera]ly to all changes, we have, correspondmgto (a), the follow-
ing equation :

'—r+j‘ cdt+j‘ Rit=U+AW. . . . (@

The exterior work W must here be determined anew, and its
determination under the present assumed circumstances will not
be so simple as in the previously considered case, since the
pressure, instead of being constant, is now dependent upon the
temperature. During the cooling of the water from 0° to ¢ the
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volume changes from o, to o under variable pressure; during
the process of gelation the volume changes from o to s under
constant pressure; and as the ice finally cools from £ to ¢, the
volume changes from s to s, again under variable pressure. The
total work therefore is

s
W=p(s—oa) +5‘: pda'+j: pds,
(]
or, otherwise expressed,
do 4 ds
a dt + : ¥/ at dt,
where p is the function of the temperature which defines the
pressure.

On substituting this expression for W in equation (d), we have

t A [ t do 6 ds
._.r+j:) cdt+j: hdt=U+A|p(s—o)+ \ Py dt-l-j: P dt]. (e)

We will now differentiate this equation according to £, as we
formerly did the equation (b), and remember, in doing so, that
the quantity U is independent of the intermediate temperature 2.
‘We thus obtain the equation

dr _ dp d(s—o), do ds
—gito—h=Alo-0) G G2 e GG,

dj
=A(s—a) ?izi”
whence we deduce

4
W=p(s—ao)+\| »
[

dr _ dp
m—c—h—A(S-d') It-. e e e e (f)

Replacing therein the expression A (s— ) by 2 + o in ac-

cordance with the equation (1) of the precedmg Note, we ob-
tain the equation there marked (2), namely,
Z—:_ch+a+t B (9]
On comparing the formation of the equation (f) or (g) with
that of the equation (c), it will be seen that the principal differ-
ence between the two cases corresponding thereto arises from
the circumstance that in the latter the exterior work is inde-
pendent of the intermediate temperature at which freezing oc-
curs, whereas in the former it is dependent thereon. In the

- e
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equations (f) and (g), therefore, there occurs a term expressive
of the variability of the heat expended on exterior work, whilst
in the equation (c) this term is absent. Moreover a small dif-
ference also arises from the fact that the quantities ¢/ and A' have
not exactly the same values as ¢ and 4. In another place I shall
have occasion to return to the consideration of this difference,
and an opportunity will then present itself of determining its
numerical value.

In the last paragraph of the preceding Note allusion was made
to Person’s remark, that ice near the temperature 0° is softer
than at lower temperatures, and that this circumstance must exert
an appreciable influence on the latent heat. If the cohesion of
the ice change, of course the interior work inseparable from the
act of fusion or solidification, and with it the heat corresponding
to this work, will likewise change. At the same time, however, it
must be remembered that a certain amount of interior work is
necessary in order to diminish the cohesion of the ice, and that the
heat expended in this work must necessarily be contained in the
specific heat of the ice. We must conclude, therefore, that when
the differential coefficient % or‘;—r' considerably decreases in
the nclmty of 0° that the quantity 4 (or 4') which occurs, with
a negative sign, on the right side of the foregoing equations in-
creases just as considerably. The truth of the equations them-
selves cannot at all be impaired by this internal deportment, for
these equations were established on perfectly general principles,
without predicating anything whatever relative to the internal
deportment of ice and water during changes of temperature.

It is scarcely necessary to mention, in conclusion, that the
preceding developments, which have been applied to water
merely for the sake of an example, are equally applicable to
every other liquid. With respect to the circumstances where
the difference s—o comes into consideration, a behaviour ana-
logous to that of water, or opposite thereto, will present itself,
according as the substance under examination occupies a greater
or a less volume in the solid than it does in the liquid state.
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SECOND MEMOIR.

ON THE DEPORTMENT OF VAPOUR DURING ITS EXPANSION UNDER
DIFFERENT CIRCUMSTANCES*,

Nor long ago, Mr. Rankinet and myself]{ gave utterance
almost contemporaneously to the proposition,—that when .the
saturated vapour of water, contained in a vessel impervious to
heat, is subjected to compression, it does not remain saturated,
but can part with a certain quantity of heat without being pre-
cipitated ; and conversely, when, under the same circumstances,
the vapour is suffered to expand, to preserve it from precipita-
tion a certain amount of heat must be imparted from without.
In connexion with this proposition, Mr. W. Thomson, in a
letter to Mr. Joule, refers to the fact “ that the hand may be
held with impunity in a current of steam issuing from the safety-
valve of a high-pressure boiler’’ §. From this he concludes that
the stream of vapour carries no water along with it, and holds
that this conclusion must contradict the above proposition, if
the existence of a source of heat from which the vapour shall
receive a quantity sufficient to preserve it from precipitation
cannot be established. This source he finds in the friction which
takes place during the issue of the steam from the orifice.
Although Mr. Thomson himself observes, in the course of his
letter, that, according to the mechanical theory of heat, different
states of the vapour are induced by different methods of expan-
sion, still in making the remark cited above he does not appear
to have taken this circumstance into account. He, in fact, ap-
plies the proposition to a case, to which, according to its deve-
* Published in Poggendorfl’s Annalen, Feb. 1851, vol. Ixxxii. p. 263, and
translated in the Philosophical Magazine, May 1851, 8. 4. vol. i. p. 398. '
+ Transactions of the Royal Society of Ed.mburgh vol. xx. part 1. p. 147 3
and Pogg. Ann. vol. Ixxxi. p. 172 (abstract).
1 Pogg. Ann. vol. Ixxix. pp. 368 and 500 ; Monatsberichte der K. Preu.u.
Acad. der Wiss. Feb. 1850 (abstract) ; and Phil. Mag. S. 4. vol. ii. pp. 1 and

102. [First MEMOIR of this collection.]
§ Phil. Mag. vol. xxxvii. p. 387 ; and Pogg. Ann. vol. Ixxxi. p. 477.
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lopment, it is altogether inapplicable. For vapour escaping
from a boiler into the air the theory would give a totally different
result, which latter may be likewise easily deduced.

From the innumerable modifications to which the expansion
of the steam may be subjected, I will choose three which may
be considered the most important, and in which the essential
differences exhibit themselves with peculiar clearness.

‘We will consider the matter as subjected successively to the
two following conditions :—first, that the vapour during its ex-
pansion has to overcome a resistance which corresponds to its
entire expansive power ; and secondly, that it escapes into the
open air, in which case the pressure of the atmosphere alone is
opposed to it. We will further consider the two cases embraced
by the last condition ; namely, that in which the vapour is sepa-
rated from water and left to itself to expand, and that in which
the vessel which contains the vapour contains water also, which
by its evaporation always replaces the quantity of vapour which
escapes.

First, then, suppose a unit of weight of vapour at its maxi-
mum density to be contained in a vessel separated from water¥,
and let the vapour expand itself by pushing back a piston, for
instance. Let us suppose that the vapour in each stage of its
expansion exerts against the piston the entire expansive force due
to that stage. To effect this, it is only necessary that the piston
should recede so slowly, that the vapour which follows it can
always adjust its expansive force to that of the vapour in the
remaining portion of the vessel. During the expansion so much
heat is to be communicated to the vapour, or abstracted from it,
as is necessary to its preservation in the saturated gaseous state.
The question is, what quantity of heat is here necessary ?

To this case the proposition expressed by Mr. Rankine and
myself applies. The work performed by the vapour in this in-
stance, and the quantity of heat consumed in its production, are
so considerable, that, were this heat supplied from the vapour
itself, the latter would be cooled to an extent that would render
the retention of the gaseous condition impossible. It will there-
fore be necessary to communicate heat to it from without.

# For the sake of brevity I will always speak of water, although the same
reasoning holds, substantially, for all other liquids,
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The quantity of heat to be communicated, which corresponds
to an alteration of temperature d¢, I have expressed in my former
memoir by Adt, where 4 is a negative quantity ; so that the pro-
duct, kdt for increasing temperatures is negative, and for de-
creasing temperatures is positive. The value of 4 in the case of
water I have expressed as a function of the temperature ¢ in
equation (33)%, thus:

6065 —0°695¢ — 0-00002¢2— 0-00000032

273+ t.
If, therefore, the quantity of heat necessary to be communicated
to the unit-weight of vapour, when its temperature changes from
¢, to ¢y, be called Q,, we have

¢
Q,=ﬁhd1,. R )

and from this we can readily calculate the value of Q, for each
particular case. For example, let the tension of the vapour at
the beginning be five or ten atmospheres, and let the expansion be
carried on until the tension sinks to one atmosphere. According
to Regnault’s determination, we must put ¢,=152°2 or =180°:3,
and £,=100°; on doing so we obtain the values

Q,=521 or =749 units of heat. . . . (I)

Secondly, let us again assume that a unit-weight of saturated
vapour at the temperature £,, above 100° is enclosed in a vessel
separated from water, and that an orifice is made in the vessel
through which the vapour can issue into the atmosphere. Let
us follow it at the other side of the orifice until a distance is
attained where its expansive force is exactly equal to the atmo-
spheric pressure, the vapour being supposed to remain unmixed
with air, and inquire how much heat must be imparted to the
entire mass of vapour during its passage, so that it may remain
throughout gaseous and saturated.

* [See p. 65.]

t [In a note appended to this equation I remarked that by means of a sim-
plified empirical formula proposed by me for the latent heat r, and which very

well represents the results of Regnault’s observations, the equation for A as-
sumes the form

h=0-305—

8003
273F¢
and thereby becomes more convenient for calculation.—1864.]

h=1013—
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The interior work which the vapour has to execute during this
expansion is exactly the same as in the first case; for here the
state of the vapour at the commencement and at the end is the
same as there. The ezferior work, on the contrary, is much less ;
for while, in the first case, the resistance at the commencement
was equal to the tension which corresponds to the temperature
t,, and decreased slowly to one atmosphere, in the present in-
stance the resistance is only one atmosphere from beginning to
end. The amount of heat converted into work is therefore in
the present case less, and hence a much smaller quantity is
required from without to preserve the vapour gaseous.

That this difference in regard to the quantity of heat con-
sumed actually occurs, is already established with complete di-
stinctness by the experiments of Joule with atmospheric air¥.
He found that by pumping air into a rigid vessel, the mode of
compression here being analogous to the first of the above two
cases, much more heat was developed than disappeared when the
compressed air was permitted to stream into a space where the
pressure of one atmosphere was exerted, the process here being
analogous to our second case. These two quantities were nearly
in the ratio of the quantities of work calculated according to the
foregoing principles.

In order to carry out the calculation in our case, we must, in
reality, besides the resistance of the atmosphere, take two other
quantities into account ; namely, the resistance due to the fric-
tion of the vapour as it issues, and the work which must be ex-
pended to communicate to the vapour the motion which it still
Ppossesses at the point where its tension is equal to the pressure
of the atmosphere. To overcome the friction, a certain quantity
of heat must be consumed ; by the friction, however, heat will
be again developed ; and although a portion of this is conducted
away by the surrounding mass, still the remaining portion com-
municates itself to the vapour. It is here, however, evident that
the effect of friction does not, as Mr. Thomson supposes, exhibit
* itself in a gain of heat, but, on the contrary, in a loss of heat;
the latter, however, not corresponding to the entire quantity of
work expended in overcoming the friction, but only to a portion

#* «0On the Changes of Temperature produced by the Rarefaction and
Condensation of Air, by J. P. Joule,” Phil. Mag. 8. 8. vol. xxvi. p. 369.
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thereof. We will neglect this, and also the loss arising from the

second circumstance alluded to, which is undoubtedly inconsi-

derable*,—in this way the calculation is rendered very simple.
It is here necessary to subtract from the amount of heat

f:’ hdt found in the former case, the heat which corresponds to

1

the difference of the quantities of exterior work produced in both
cases. Let p be the tension of the vapour for the temperature ¢,
and s the volume of the unit of weight belonging to this tempe-
rature. Further, let p, and p, be the values of p, and &, and s,
the values of s at the commencement and at the end of the ope-
ration, p, being, according to our assumption, the pressure of
one atmosphere ; the exterior work then is— '

in the first case = | * pds,
81

in the second case =5" Peds.
8

The corresponding amounts of heat are obtained by multi-
plying these quantities by the heat-equivalent of the unit of
work, which equivalent I have formerly denoted by A. If Q,

* [The velocity of the current of vapour, and the vfs vina corresponding
thereto are different at different distances from the orifice. In the orifice
itself the velocity is considerable; it is due of course to the difference between
the pressure in the vessel, and that in the orifice. Beyond the orifice, in the
space where the stream of vapour spreads out, the velocity diminishes again
quickly. The cause of this diminution of velocity will be discussed in the
appendix to this memoir. Without any such special examination, however,
we may safely conclude that with the decrease of vis viva in the current is
associated an increase in the vis viva of the molecules of the vapour; in other
words, that the destruction of vis véva in the current is accompanied by the
generation of heat. Now when, as in the present case, our object is, not to
follow individually the various phenomena which present themselves during
the several phases of the vapour’s effiux, but merely to determine the total
quantity of heat which must be imparted to the vapour in order that it may,
without partial condensation, remain precisely at its maximum density, we
may from the commencement leave out of consideration both the heat ex-
pended in the production of motion, and that which is generated by the de-
crease of the motion; for the two having opposite signs will in our calcula~
tions cancel each other. If, moreover, we assume that at the place where
we finally examined the vapour the velocity of the current is so small as to
justify our neglecting the v7s viza corresponding thereto, then we need not in
gxa}lcnlaﬁons pay any attention whatever to the velocity of the current.—
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express the quantity of heat sought, or that which is required
by the unit of vapour as it issues, we must put

1y s, LS
Qg=j‘ hdt—A f pd8+Aj' pas. . . . . (3
'l Jh ‘L

It is, however, evident that

N 8.
‘: * peds=py(s,—s,),

and
% - 2,
(" pts=ptss=)-nis=a) " 6=ordp

t
=ny=0)=pilei=o) =" =) B,
where o is an arbitrary constant¥, for which we will substitute
the volume of a unit of weight of water, since the alteration of the
latter with the change of temperature may be so much the more
neglected, inasmuch as the entire volume of the water is scarcely
deserving of notice. This expression introduced into (2) gives

Q,;ﬁt’[HA(s-a)% dt+Ap,(sl—o-)(1-‘%:). .. @)

The sum %+ A (s—o) %—l; is, according to equation (III) of my

former memoirt, =Z—:+c ; and this sum again, according to
the determinations of Regnault, is nearly a constant quantity,
viz. 0'305. Equation (3) thus passes into

Q= —0'305(t,—t5) + Ap; (s, —) (1—%). L@

The only unknown quantity here is Ap,(s,—c), and this can be
expressed as a function of the initial temperature by means of

* [In fact, if in place of ds we put the equivalent differential d(s—¢), ¢
being regarded as any constant quantity whatever, we shall have, as is well
known, the equation

Jpd(s—0)=p(s—0)—f(s—o)ap,
and if we here conceive the integration to be effected between the determinate
limits which correspond to the assumed extreme temperatures ¢, and ¢,, we
shall obtain the equation given in the text.—1864.]

1 [See p. 34.]
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equation (26) of my former memoir*; so that for every initial
pressure and the corresponding initial temperature the value of
Q, may be calculated. Supposing, for example, the pressure at
the commencement, as in the former case, to be five or ten at-
mospheres, we obtain
Q=196 or =170 units of heat. . . . (II)
As Qg is a positive quantity, it follows that in this case also heat
must not be withdrawn, but on the contrary communicated, to
preserve the vapour from partial precipitation ; which, however,
would take place not only at the orifice, but also within the
vessel. The quantity of vapour thus precipitated would be
smaller than in the former case, inasmuch as Qg is less than Q,.
It may appear singular that the equation (II) gives for an
initial pressure of five atmospheres a greater quantity of heat
" than for ten atmospheres. This is explained by the fact, that
under a pressure of five atmospheres the volume of the vapour
is already so small, and under ten atmospheres is reduced to so
small an amount, that the increase of work thus rendered ne-
cessary during the issue of the vapour is more than compensated
by the excess of the sensible heat in the one state over that in the
other, the vapour being heated in one case to 180°:3, and in the
other case to 152°-2.

The second case which we have just considered, can be applied
with some degree of approximation to the case of vapour issuing,
without expansion from the cylinder of a high-pressure engine
after the completion of work; provided we assume that the vapour,
as long as it remains in connexion with the boiler, is completely
gaseous and at the same time completely saturated. In engines
where the expansive principle is applied, the first case becomes
applicable from the moment when the steam is shut off and the
piston is driven by expansion alone. Strictly speaking, the case
applies to those engines only in which the expansion continues

* [See p. 59. In place of the equation (26), which constitutes an empi-
rical formula adapted for numerical calculation, the principal equation (Va)
p. 61, may, of course, be employed. The latter gives at once the equation

A@p—o)=—T" _,
ap
(a+9) &

in which the quantities on the right are all known from observation.—1864.]
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until the pressure within is equal to that of the atmosphere ; and
even here the correspondence would not be perfectly exact, inas-
much as the heat developed by the friction of the piston must
certainly be considerable¥.

We will finally apply ourselves to the
consideration of the third case, that is to
say, to the case to which the remark of
Mr. Thomson refers. Let the vessel
ABCD (see the accompanying figure) C__G
be supposed to be filled with water to ’
EF, and from here upwards to be filled
with vapour. Let PQ be the orifice, con-
nected with which is a neck PQKM, ®n )y
which widens slowly, and renders the
expansion of the vapour more regular.
This is not essential, but is merely as- 4 B
sumed to render the conception of the matter easier. By the
application of a proper source of heat, let the water be preserved
at the constant temperature ¢, so that the vapour which escapes
shall be continually replaced by newly developed vapour, the
state of things as regards the issue of the vapour being thus pre-
served stationary.

. Let GHJ represent a surface in which the vapour which passes
has, everywhere, the expansive force p,, the temperature ¢,, and
the volume 8,, which exist within the vessel, and with which the
new vapour is developedt. Let KLM, on the other hand, re-
present a surface in which the vapour which passes has, every-
where, the expansive force p,, equal to one atmosphere, the vapour

* In connexion with the proposition which applies to the first case, I cited
in my former memoir the experiment made by Pambour with the steam pro-
ceeding from a high-pressure engine after the completion of work. I deemed
it sufficient to notice the fact, that Pambour did not find a higher tempera-
ture than that which corresponded to the pressure observed at the same time,
although according to the common theory he must have done so. Torequire
from such observations that they shall exhibit the exact quantity of water
mixed with the vapour which the theory gives, would, for the reasons given
above, and on account of many other simultaneous causes of disturbance, be
unjustifiable.

t [In the figure given in the first editions of this memoir the surface GHJ
is drawn too near the orifice. Notice was given of this in the corrigenda of
the volume of Poggendorfi’s Annalen, wherein the memoir appeared. —1864.]

H
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being supposed to be unmixed with air. During the passage of
the vapour from GHJ to KLM let heat be continually with-
drawn or communicated, so that the vapour may remain com-
pletely gaseous and quite saturated, and hence at the surface
KLM have the temperature #,=100° exactly, and the corre-
sponding volume s,. The question is, what quantity of heat
Qg must be imparted to, or withdrawn from, the issuing vapour
so that this condition shall be fulfilled.

The interior work performed by the vapour during its issue in
the present instance is exactly the same as in the other cases.
With regard to the exterior work, however, an entirely new cir-
cumstance enters into the consideration, which renders this
case essentially different from the former ones.

We must here, in fact, consider the quantity of work pro-
duced at both the surfaces GHJ and KL M. Through the surface
G HJ the vapour is driven with the volume s, and the pressure
P, it therefore produces the work

P 5

This work proceeds from the vapour within the vessel, and more-
over only from that portion of it which, during the time of issue,
is developed anew. To obtain room for itself, this presses the
neighbouring stratum forwards, this the next, and so on. The
intervening layers thus serve merely to transmit the force from
the surface of the water to the orifice. The quantity of heat
consumed in the production of this work is contained in the
latent heat of the developed steam, and need not in the present
consideration be further taken into account.

If now in the surface KLM exactly the same work be pro-
duced as in GHJ, then in the interval between both surfaces no
proper work is produced, inasmuch as in this case there would
be merely a transmission of work from one surface to the other.
If, on the contrary, the work accomplished at the surface KLM
be different from that. produced at GHJ, the difference must be
referred to the said interval. But through KLM the unit of
weight of steam with the volume s, and the pressure p, is driven,
and hence produces the work

) Py - 3
The work performed in the intervening space is then

Py 8q=pP; -8y
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. which is a negative quantity. This shows, that, during the
passage from surface to surface, a portion of the exterior work
already completed is actually lost again¥.

The quantity p,.s;—ps, must be treated as the quantity

J‘ Dgds in the second case ; in this way we obtain the following
equation, which corresponds to equation (2) :

o= (" M= (" pde+ Aoy =pio0). - . O)

Subjecting this equation to the same process as that applied in
the deduction of equation (4) from equation (2), and neglecting
the terms which contain the factor o, we obtain

Q=—03805 (t,—t)t. . . . . . (6)

* [The deportment of the vapour in the space between the two surfaces
GHJ and KL M is by no means simple, inasmuch as the velocity of the stream
from the first surface to the orifice PQ is greatly accelerated, whilst that from
the orifice to the second surface is, approximately, quite as strongly retarded.
As already remarked in a previous note, however, it is not necessary, in de-
termining the total quantity of heat which must be communicated to the va-
pour, to take into consideration the peculiarities of this deportment; for it
may be predicated with certainty that heat will be expended during the in-
crease of the vis viva of the stream, and generated during its decrease. It will
suffice, therefore, to know what takes place at the two limiting surfaces
chosen for consideration, and the vis v¥va in these surfaces being small enough
to be neglected, we need only take cognizance of the mechanical work which
is performed on the passage of the vapour by the pressure which there exists,
the latter being estimated in the direction of the stream.—1864.]

+ [As already remarked when transforming the equation (2), the following
equation holds:

& pds=p,(8,— ) —p,(8—0) _j::a (s—0) gg a,

1

and in virtue of it the equation (5) takes the form
¢
Q3=j‘ 2 [h-I-A(G— 0‘) dat ] lﬂ Ad‘(pl —pz)
h

On substituting herein the expression E-l—c for its equal A+A(s~0) %»
and neglecting the term which contains the factor o, we have
Ldr
= - dt.
Q, 5:1 (&+e)
This equation, when specially applied to water by putting, with Regnault,
%+c=°'3°5’

leads to the equation (6).—1864.] y
H
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Calculating from this the numerical value of Qg for an initial
pressure of five or ten atmospheres, we obtain
Qz=—159 or = —24'5 units of heat, respectively . (III)

The value of Qg being negative, it follows that in this case
heat is not to be communicated, but, on the contrary, must be
withdrawn, the quantity being the same as that found by apply-
ing the common theory of heat. If this withdrawal up to the
place under consideration be not sufficiently effected, then the
vapour at this place will have a temperature which exceeds 100°;
and hence, if water be not mechanically carried along with the
vapour, the latter must be completely dry.

It is thus shown that the friction is not necessary to the ex-
planation of the fact adduced by Mr. Thomson ; the effect of this
friction, as already mentioned, being exactly opposite to what he
supposes it to be. The loss of heat arising from this cause is
not reckoned above. In such cases as the issuing of steam from
the safety-valve of a high-pressure engine, this loss is by no
means capable of effecting the consumption of the quantlty of
heat found by equation (6).

APPENDIX TO SECOND MEMOIR [1864].

ON THE VARIATIONS OF PRESSURE IN A SPREADING STREAM OF GAS.

In the preceding memoir it was stated that the velocity of the
stream diminishes considerably, from the orifice PQ to the sur-
face KLM, in the gradually widening neck of the vessel drawn
on p. 97. The force which causes this diminution must be
sought for in the difference between the pressure which prevails
near the orifice, and that which exists at the surface KLM.

Such a difference of pressure

invariably occurswhena stream E
of gas spreads out; itsexistence
may be detected readily by

F

means of a well-known little
instrument. Let AB in the ad-
joining figure be a narrow tube
fitted, by means of a cork, into =2
a wider tube CDEF; so that H
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a stream of air, driven through the narrow tube from A to B,
can spread itself out in the wider tube, before it reaches the free
atmosphere. Just below the mouth of the small tube a siphon-
shaped tube G HK is fitted to the wide tube, and partially filled
with a liquid. On blowing through the narrow tube AB, the
liquid in the branch HG of the siphon-shaped tube is seen to
rise; thereby showing that during the blast the pressure in the
wide tube near the mouth of the small one is less than that of
the surrounding atmosphere. Hence the pressure at B in the
stream of air which flows in the wide tube from B to EF is
smaller than at the mouth of the latter, where the atmospheric
pressure exists ; it is this difference of pressure which retards
the current and causes so great a diminution in its velocity that
the same quantity of air which in a given time passes through
the small section at B, is able throughout that time to fill the
wider section EF.

The origin of this difference of pressure may be thus ex-
plained :—The stream of air in the neighbourhood of the orifice
B, where it has not yet spread itself so far as to occupy, in a uni-
form manner, the whole section of the wide tube, seeks to carry
with it the still air at its side, and in consequence of this effort
a portion of the circumjacent air is removed at the commence-
ment of the current, and a rarefaction thereby ensues which
continues as long as the current lasts.

A deportment precisely similar to the one observed in the small
apparatus just described, must also present itself in the gradually
widening neck PQK M of the vessel previously alluded to. Here
also, in the neighbourhood of the narrow orifice P Q, the pressure
must be less than at the broader part of the neck, and the stream
of vapour must be retarded in its passage from the narrow, to
the broader parts. When the gradually widening neck is with-
drawn, which separates from the exterior air the stream of va-
pour during its expansion and consequent retardation, that is to
say, when the vapour passes directly, with its full velocity of
efflux, into the atmosphere, a slight difference arises from the cir-
cumstance that the stream of vapour continually sets in motion
a certain quantity of the circumjacent air, the air carried with it
being continually replaced by new air streaming in from the
surrounding space. On the whole, however, the phenomena
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under these circumstances must be similar to those previously
considered.

In the letter written by Mr. W. Thomson to Mr. Joule, and
cited in the preceding memoir, Mr. Thomson commences with
comparing the case where steam issues from the safety-valve of
a boiler, with that where vapour, contained in a vessel without
liquid, expands by overcoming a resistance corresponding to its
entire expansive force. To prevent partial condensation in the
latter case, a certain quantity of heat must be imparted to the
vapour, and Mr. Thomson holds the opinion that it is “ by the
friction of the steam as it rushes through the orifice ’ that this
quantity of heat, necessary to prevent partial condensation during
the efflux of the steam, is produced. I understood by the ex-
pression above quoted, the friction of the vapour in the orifice
itself, that is to say against the fixed walls thereof as the vapour
rushes past them, and it is to Mr. Thomson’s views thus inter-
preted that reference is made in the preceding memoir. On
comparison with the words used, my interpretation of the ex-
pression will be found to be a very natural one, and Mr. Thom-
son himself, in his reply*, nowhere states that I have misin-
terpreted that expression. In this reply, however, he has chosen
another form of expression, when alluding to his former expla-
nation, and that without either stating his reasons for so doing,
or even drawing attention to the difference. He there says,
in fact, that in his former explanation he stated that the quan-
tity of heat in question was generated ““ by the fluid friction in
the neighbourhood of the aperture.” If from the beginning Mr.
Thomson had used the latter form of expression, which I cannot
consider as identical with the previous one, the difference of
opinion between us would have been to some extent, if not
wholly, avoided. It has, in fact, been already stated that the
difference of pressure, which retards the stream of vapour or
other expanding gas (with which retardation a development of
heat is associated), arises from the circumstance that the stream
of gas seeks to carry with it the surrounding gaseous particles,
and hence it is clear that the phenomenon must be referred, ul-
timately, to the action of the particles of gas upon one another ;
to this action, although it is not of a very simple kind, the term

* Phil. Mag. S. 4. vol. i. p. 474,
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JSriction may be applied. It was not my intention to dispute, in
the least degree, the influence of tkis friction, occurring in the
stream of gas beyond the orifice; I merely objected to the too
great part which, as it appeared to me, was ascribed to the fric-
tion against the walls of the orifice.

It is now, indeed, of little importance whether the difference
of meaning which gave rise to the preceding memoir was an es-
sential one, or whether, and to what extent, it arose merely from
the use of an inappropriate form of expression. The memoir itself
will scarcely be affected thereby, and quite apart from the way in
which it originated, I trust that the developments it contains,

~and particularly the precise distinction which is therein drawn
between the three cases treated, and the consideration, in the
last case, of the work done in the surface GHJ (not alluded to
by Mr. Thomson), will not be without scientific interest.
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THIRD MEMOIR.

ON THE THEORETIC CONNEXION OF TWO EMPIRICAL LAWS RELA-
TING TO THE TENSION AND THE LATENT HEAT OF DIFFERENT

VAPOURS ¥,

A supERFICIAL contemplation of the tension series, experimen-
tally developed for the vapours of different liquids, suffices to
show that a certain uniformity exists therein; and hence the
various efforts which have been made to ascertain a definite law
by means of which the series which holds good for one liquid,
water for instance, might be applied to other liquids.

A very simple law of this nature was expressed by Dalton.
Calling those temperatures which belong to equal tensions cor-.
responding temperatures, the law ran thus: —In the case of any
two liquids the differences between the corresponding temperatures
are all equal.

This law agrees pretty well with experience in the case of
those liquids whose boiling-points are not far apart ; for those,
however, which possess very different degrees of volatility, it is
inexact. This is shown by a comparison of the vapour of mer-
cury with that of water, according to the observations of Avo-
gradot. Still more decidedly does the divergence exhibit itself
in the investigations of Faraday} on the condensation of gases.

Tu the “ Additional Remarks” to his memoir, Mr. Faraday,
after having disproved the applicability of the law of Dalton to
gases, expresses himself as follows:—“ As far as observations
upon the following substances, namely, water, sulphurous acid,

* Published in Poggendorff’s Annalen, February 1851, vol. lxxxii. p. 274;
and tra.nalabed in the Philosophical Magazine, December 1851, S. 4. vol. ii.

483.
P + AbstractsmAm.de Chim. et de Phys. xlix. p. 369 ; a.ndPogg Ann. vol.
xxvii. p. 60. Complete in Mém. de I Acad. de Turin, vol xxxvi.

1 Phil. Trans. of the Roy. Soc. of London for 1845, p. 165 ; and Pogg. Axn.
vol. Ixxii a. p. 198,
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cyanogen, ammonia, arseniuretted hydrogen, sulphuretted hy-
drogen, muriatic acid, carbonic acid, olefiant gas, &c., justify any
conclusion respecting a general law, it would appear that the
more volatile a body is, the more rapidly does the force of its va-
pour increase by further addition of heat, commencing at a given
point of pressure for all;” and further on,  there seems every
reason therefore to expect that the increasing elasticity is di-
rectly as the volatility of the substance, and that by further
and more correct observation of the forces a general law may
be deduced, by the aid of which and only a single observation
of the force of any vapour in contact with its liquid, its elasticity
at any other temperature may be obtained ”¥,

What Faraday here expresses with evident reserve and caution,

# [By the more recent appearance of the second volume of Regnault’s
Experimental Researches, in which extensive tension series are given for a
considerable number of substances, an opportunity is afforded of testing more
accurately than it was possible to do according to previous data, the mutual
relations of the several tension series. In order to elucidate what has been
said in the text, I will here tabulate some of the numbers, given by Reg-
nault’s observations, which are most suitable for comparison. The first hori-
zontal line contains the boiling-points of the several substances, that is to say,
those corresponding temperatures to which belongs a vapour-tension of one
atmosphere. The second line likewise contains corresponding temperatures
solely, namely, those to which a vapour-tension of five atmospheres belongs.
The lowest line, finally, contains the differences between the numbers in the
two first lines,

Euuipk:il:i_. Ether. osf'ﬂ ::{g; Alcohol. | Water. | Mercury. | SBulphur.
e . o o -] [ [ [ o
Boiling-points .. —10 35 46 78 100 357 448
Temperatures for
a tension of five
atmospheres .. 33 89 106 12§ 152 458 568
Differences.. .. .. 43 54 60 47 52 101 120

According to Dalton’s law, the differences in the last horizontal line should
be equal to one another; this, however, is manifestly not the case, the dif-
ferences being, in general, greater the higher the boiling-point of the liquid.
The latter progression, it is true, is not so regular that each difference is
greater than the preceding one; but on the whole, and particularly so far as
liquids are concerned whose boiling-points lie far asunder, it is unmistakeable.
—1864.]
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we find again in the form of an equation in a later memoir by
M. Groshans*. The equation (3) of the said memoir contains,
implicitly, the following law:—If all temperatures be counted from
—278° C. (that is, from that temperature which is expressed
by the inverse value of the coefficient of expansion for atmo-
- spheric air), then for any two liguids the corresponding tempera-
tures are proportional.

Although this carries with it a great degree of probability, at
least as an approrimate law, and is undoubtedly proved by the
experimental researches of Avogrado and Faraday to be preferable
to the law of Dalton, still the manner in which M. Groshans
deduces his equations leaves much to be desired. He bases the
deduction upon two equations which can only be regarded as
approximately correct, inasmuch as they contain the expression
of the law of Mariotte and Gay-Lussac for vapours at their
maximum density. For the further development, however, he
makes use of the following proposition :—If in the case of any
two vapours the temperatures are so chosen that the tensions
of both are equal, then, if the density of each vapour at the
temperature in question be measured by its density at the boiling-
point, these densities are equal. This proposition is introduced
by the author in the memoir alluded to without any proof what-
ever. In alater memoirt, however, he says that he was led to
the above conclusion by observing that in the case of seven dif-
ferent bodies composed of p C+¢ H +7 O the density of the va-
pour at the boiling-point compared with the density of steam at
100° could be expressed by the formula

p=Pt g-ﬁ-r;
and immediately afterwards} he states, that * there are several
bodies to which the formula
_ptgtr
D= —3
is inapplicable.” From this it appears that the foundation on
which the proposition rests cannot be regarded as established.
It seems to me, that although the law mentioned above has ob-

* Pogg. Ann. vol. Ixxviii. p. 112,
+ Pogg. Ann. vol. Ixxix. p. 290, 1 Ibid. p. 292.
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tained from M. Groshans a more definite form than in Faraday’s .
expression, its probable validity is in no way augmented thereby.

In this state of uncertainty every new. point of view from
which a more extended insight as to the deportment of liquids
during evaporation may be obtained is deserving of attention ;
and hence it will not perhaps be without interest, to establish
such a connexion between the above law as regards the tension
and another law regarding the latent heat,—the latter being also
empirically established in a manner totally independent of the
former—that the one shall appear to be a necessary consequence
of the other.

I refer to the law, that the latent heat of a unit of volume of
vapour developed at the boiling-point is the same for all liquids.
Although this has not been completely corroborated by the ex-
periments hitherto made, and even if it were perfectly true, could
not be so corroborated, our knowedge of the volumes of vapours
at their maximum density being too scanty, still, an approxima-
tion is observed which it is impossible to regard as accidental.
We will therefore for the present assume the law to be correct,
and thus make use of it for further deductions.

In the first place, it is clear that if the law be true for the
boiling-points of all liquids, it must also be true for every other
system of corresponding temperatures ; for the boiling-points de-
pend merely upon the accidental pressure of the atmosphere, and
hence the law can be immediately extended thus : the latent heat
calculated for the unit of volume of vapour is, for all liquids, the
same function of the tension. Letr be the latent heat of a unit of
weight of vapour at the temperature Z, the volume of the unit of
weight for the same temperature being s, the latent heat of a unit

of volume will then be expressed by the fraction % ; let p be the

corresponding tension ; the law will then be expressed by the
equation
§=f(p),. ()
in which f is the symbol of a function which is the same for all
liquids.
Let this function be substituted for ; in the equation (Va) of
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. my memoir “On the Moving Force of Heat”*, by neglecting
therein the volume ¢ of a unit of weight of liquid as compared
with that of vapour, we thus obtain

F (D) =AE+)%,

where A and e are two constants, the latter denoting the number
273,80 that a4 ¢ is the temperature of the vapour reckoned from
—2738°. If, for the sake of brevity, we call this quantity T,

we have
aT _Adp

T fp)’
and from this we obtain by integration
- ¢.T=F(p),
in which F is the symbol of another function, which is likewise
the same for all liquids, and ¢ is an arbitrary constant which must
be determined for each liquid+. Let us suppose this equation
solved for p, it will assume the form
p=¢cT), . . . . . . . (D
# [See p. 51. The equation (Va) here cited is
r=A (a+t)(a—o')ddl;
whence B
;:r;=A(“+t)7tpr

in which, with great approximation, we may put % for ;r—.—1864.]
-0
+ [By integration, in fact, we have in the ﬁrst place

log T—f Fi0) (p)

where % is an arbitrary constant, and p, represents, for all liquids, one and the
same arbitrary initial tension; for instance, a tension of one atmosphere.

From this equation it follows that
A . dp

T=e mf(p)'el‘,

or
rA . dp

T—e (pj

Introducing here the abbrevxatxons
/1? Adp
F(p=e/n ' (P)

c=6 ,
the equation in the text is at once obtained.—1864.]
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where ¢ is the symbol of a third function, which is the same for
all liquids.

This equation is evidently the mathematical expression of the
law of tension mentioned above ; for to apply the function which
in the case of any one liquid determines the tension from the tem-
perature, to any other liquid, it is only necessary to multiply the
temperature by a different constant, which constant is easily
found when the tension for a single temperature is known.

It is thus shown, that, in so far as the validity of equation
(Va) is granted, the two laws expressed by the equations (I) and
(I1) are so connected with each other that when one of them is
true, the ofher must necessarily be true also.

But in case both laws are only approximations to the truth,
as to me appears most probable, the equation (Va), which by
introducing T instead of ¢ becomes

ro o dp

e A.T I
enables us at least to conclude, from the manner and degree of
divergence between two vapours with regard to their latent heat,
what divergence there is between their tension series, and vice
versd*. Thus, for instance, in comparing water with other li-
quids, it is observed that, relatively to its boiling-point, the ten-
sion of the vapour of the former increases more quickly with the
temperature than the tension of other vapours. There is a com-
plete coincidence between this fact and that observed by An-
drewst, that the vapour of water possesses a greater latent heat
than an equal volume of the vapour of any other liquid which

* [¥or if the fraction ,Tr; relative to the boiling-point, and almost iden-
tical with ;, has a greater value for a certain liquid than it has for others, we

must conclude that, for the former, the product T j-% is also greater, and hence

that the vapour-tension near the value of ome atmosphere increases more
quickly with increasing temperature than one would anticipate from the
height of the liquid’s boiling-point. In & similar manner, from the circum-
stance that an exceptionally quick increase of the vapour-tension of a liquid
takes place, we should conclude that the latent heat, calculated according to
the volume of the vapour, has an unusually large value.—1864.] |

+ Quarterly Journal of the Chem. Soc. of London, No. 1. p. 27.
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Andrews examined, alcohol excepted. From this we perceive
that it is by no means advantageous for the application of the
above two laws to choose, as is generally done, water as the liquid
of comparison; but that, on the contrary, the comparison of
water with liquids of lower boiling-points is peculiarly calculated
to support the law of Dalton*.

* [Since, in the case of water, the ﬁaction';'isgreaterthnnformost

other liquids, the tension of aqueous vapour must, according to the foregoing
note, increase more quickly in the neighbourhood of the boiling-point, and,
as a consequence of this, the difference between two corresponding tempera-
tures must be smaller than the height of the boiling-point would lead us to
expect; so that in this respect water approaches the liquids having lower
boiling-points. The same remark must apply still more forcibly to alcohol,

for which liquid the fraction %is still greater. This is verified, in fact, by

the small Table given in a note on p. 105; for on comparing the differences
between the systems of corresponding temperatures there selected for con-
sideration, it will be found that these differences are smaller for water and
alcohol than for sulphide of carbon and ether, although the latter substances
have lower boiling-points than the former.—1864.]

* ~
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FOURTH MEMOIR.

ON A MODIFIED FORM OF THE SECOND FUNDAMENTAL THEOREM IN
THE MECHANICAL THEORY OF HEAT¥,

IN my memoir “ On the Moving Force of Heat, &c.”’t, I have
shown that the theorem of the equivalence of heat and work,
and Carnot’s theorem, are not mutually exclusive, but that, by
asmall modification of the latter, which does not affect its prin-
cipal part, they can be brought into accordance. With the
exception of this indispensable change, I allowed the theorem of
Carnot to retain its original form, my chief object then being,
by the application of the two theorems to special cases, to arrive
at conclusions which, according as they involved known or un-
known properties of bodies, might suitably serve as proofs of the
truth of the theorems, or as examples of their fecundity.

. This form, however, although it may suffice for the deduction
of the equations which depend upon the theorem, is incomplete,
because we cannot recognize therein, with sufficient clearness,
the real nature of the theorem, and its connexion with the first
fundamental theorem. The modified form in the following pages
will, I think, better fulfil this demand, and in its applications
will be found very convenient.

Before proceeding to the examination of the second theorem,
I may be allowed a few remarks on the first theorem, so far as this
is necessary for the supervision of the whole. It is true that I
might assume this as known from my former memoirs or from
those of other authors, but to refer back would be inconvenient ;
and besides this, the exposition I shall here give is preferable
to my former one, because it is at once more general and more
concise.

# Published in Poggendoff’s Annalen, December 1854, vol. xciii. p, 481 ;
translated in the Journal de Mathématiques, vol. xx. Paris, 1855, and in the
Philosophical Magazine, August 1856, S. 4. vol. xii. p. 81.

t [First Memoir of this Collection. ]

¢ 17&
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Theorem of the equivalence of Heat and Work.

Whenever a moving force generated by heat acts against an- °
other force, and motion in the one direction or the other ensues,
positive work is performed by the one force at the same time that
negative work is done by the other. As this work has only to
be considered as a simple quantity in calculation, it is perfectly
arbitrary, in determining its sign, which of the two forces is
chosen as the indicator. Accordingly in researches which have
a special reference to the moving force of heat, it is customary
to determine the sign by counting as positive the work done
by heat in overcoming any other force, and as negative the work
done by such other force. In this manner the theorem of the
equivalence of heat and work, which forms only a particular case
of the general relation between vis viva and mechanical work,
can be briefly enunciated thus :—

Mechanical work may be transformed into heat, and conversely
heat into work, the magnitude of the one being always proportional
to that of the other.

The forces which here enter into consideration may be divided
into two classes : those which the atoms of a body exert upon each
other, and which depend, of course, upon the nature of the body,
and those which arise from the foreign influences to which the
body may be exposed. According to these two classes of forces
which have to be overcome (of which the latter are subjected
to essentially different laws), I have divided the work done by
heat into interior and exterior work.

With respect to the interior work, it is easy to see that when
a body, departing from its initial condition, suffers a series of
modifications and ultimately returns to its original state, the
quantities of interior work thereby produced must exactly can-
cel one another. For if any positive or negative quantity of
interior work had remained, it must have produced an opposite
exterior quantity of work or a change in the existing quantity
of heat; and as the same process could be repeated any number
of times, it would be possible, according to the sign, either to
produce work or heat continually from nothing, or else to lose
work or heat continually, without obtaining any equivalent ; both
of which cases are universally allowed to be impossible. But if
at every return of the body to its initial condition the quantity

>
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of interior work is zero, it follows, further, that the interior work
corresponding to any given change in the condition of the body
is completely determined by the initial and final conditions of
the latter, and is independent of the path pursued in passing
from one condition to the other. Conceive a body to pass succes-
sively in different ways from the first to the second condition, but
always to return in the same manner to its initial state. It is
evident that the quantities of interior work produced along the
different paths must all cancel the common quantity produced
during the return, and consequently must be equal to each other.

It is otherwise with the exterior work. With the same initial
and final conditions, this can vary just as much as the exterior
influences to which the body may be exposed can differ.

Let us now consider at once the interior and exterior work
produced during any given change of condition. If opposite in
sign they may partially cancel each other, and what remains
must then be proportional to the simultaneous change which
has occurred in the quantity of existing heat. In calculation,
however, it amounts to the same thing if we assume an alteration
in the quantity of heat equivalent to each of the two kinds of
work. Let Q, therefore, be the quantity of heat which must be
imparted to a body during its passage, in a given manner, from
one condition to another, any heat withdrawn from the body
being counted as an imparted negative quantity of heat. Then
Q may be divided into three parts, of which the first is employed
in increasing the heat actually existing in the body, the second
in producing the interior, and the third in producing the ex-
terior work. What was before stated of the second part also
applies to the first—it is independent of the path pursued in the
passage of the body from one state to another: hence both parts
together may be represented by one function U, which we know
to be completely determined by the initial and final states of the
body. The third part, however, the equivalent of exterior work,

can, like this work itself, only be determined when the precise

manner in which the changes of condition took place is known.
If W be the quantity of exterior work, and A the equivalent”
of heat for the unit of work, the value of the third part will
be A .W, and the first fundamental theorem will be expressed
by the equation Q=U+A.W. . . . . .. (O

1

!
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When the several changes are of such a nature that through
them the body returns to its original condition, or when, as
we shall in future express it, these changes form a cyclical
process, we have

U=0,
and the foregoing equation becomes
Q=A.W.. . . . . . . (D

In order to give special forms to equation (I), in which it
shall express definite properties of bodies, we must make special
assumptions with respect to the foreign influences to which the
body is exposed. For instance, we will assume that the only
active exterior force, or at least the only one requiring consi-
deration in the determination of work, is an exterior pressure
which (as is always the case with liquid and gaseous bodies,
when other foreign forces are absent, and might at least be the
case with solid bodies) is everywhere normal to the surface, and
equally intense at every point thereof. It will be seen that under
this condition it is not necessary, in determining the exterior
work, to consider the variations in form experienced by the
body, and its expansion or contraction in different directions,
but only the total change in its volume. We will further assume
that the pressure always changes very gradually, so that at any
moment it shall differ so little from the opposite expansive force
of the body, that both may be counted as equal. Thus the
pressure constitutes a property of the body itself, which can be
determined from its other contemporaneous properties.

In general, under the above circumstances, we may consider the
pressure as well as the whole condition of the body, so far as it is
essential to us, as determined so soon as its temperature ¢ and
volume v are given. 'We shall make these two magnitudes, there-
fore, our independent variables, and shall consider the pressure
p as well as the quantity U in the equation (I) as functions of
these. Tf, now, ¢ and » receive the increments d¢ and dv, the cor-
responding quantity of exterior work done can be easily ascer-
tained. If any increase of temperature is not accompanied by
a change of volume, no exterior work is produced ; on the other
hand, if, with respect to the differentials, we neglect terms higher
than the first in order, then the work done during an incre-
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« ment of volume dv will be pdv. Hence the work done during
a simultaneous increase of ¢ and v is

AW =pdv,
and when we apply this to the equation (I), we obtain
dQ=dU+A.pdv. . . . . . (2

On account of the term A .pdv, this equation can only be inte-
grated when we have a relation given, by means of which ¢z may
be expressed as a function of v, and therefore p s a function of v
alone*. It is this relation which, as above required, defines the
manner in which the changes of condition take place.

The unknown function U may be eliminated from this equa-
tion. - When written in the form

dQ, ,dQ, dU
dt —dt+ T —dv=— dt+ ( +A. p)dv'l',
we eas:ly see that it is d1v151b1e into the two equations
dQ. du
Tdt’
and
dQ_dU
v dv wtAP

Let the first of these be differentiated according to v and the
second according to ¢&. In doing so we may apply to U the well-
known theorem, that when a function of two independent varia-

* [In fact since dU is itself a complete differential, the magnitude A . pdv
must also be one, in order that the whole of the expression on the right
may be 80; but this can only be the case when p is expressible as a function
of v alone.—1864.]

+ [In this and the following memoirs the notation for partial differential
coefficients is somewhat different from that employed in the first memoir;
the brackets, which were there used for the sake of clearness, are here omitted,
since, a8 stated in the Introduction, no misunderstanding can be thereby
produced. The same simplified notation is also retained in the present
reprint, in order to preserve unchanged the form of the memoirs. It would
certainly have been more convenient to the reader had I, on collecting into
one volume the memoirs written at various epochs, adopted one and the
same notation throughout; nevertheless every mathematician is so accus-
tomed to see first one and then the other notation employed, that the transi-
tion will probably be scarcely noticed ; at all events, it will not render the
memoirs themselves less intelligible, or seriously impair the facility with
which one may be compared with another.--1864.]

12
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bles is successively differentiated according to both, the order in
which this is done does not affect the result. This theorem,
however, does not apply to the magnitude Q, so that for it we
must use symbols which will show the order of differentiation.
This is done in the following equations :—

d dQ) U |
a\dt)” dtdv’
(dQ _a*u
dt ~ dtdv
By subtraction, we have
dQ\ d/dQ
@) w@=2% - - - -

an equation which no longer contains U.

The equations (2) and (3) can be still further specialized by
applying them to particular classes of bodies. In my former
memoir I have shown these special applications in two of the
most important cases, viz. permanent gases and vapours at a
maximum density. On this account I will not here pursue the
subject further, but pass on to the consideration of the second
fundamental theorem in the mechanical theory of heat.

Theorem of the equivalence of transformations.

Carnot’s theorem, when brought into agreement with the first
fundamental theorem, expresses a relation between two kinds of
transformations, the transformation of heat into work, and the
passage of heat from a warmer to a colder body, which may be
regarded as the transformation of heat at a higher, into heat at a
lower temperature. The theorem, as hitherto used, may be
enunciated in some such manner as the following :—1In all cases
where a quantity of heat is converted into work, and where the
body effecting this transformation ultimately returns toits original
condition, another quantity of heat must necessarily be transferred
Jrom @ warmer to a colder body ; and the magnitude of the last
quantity of heat, in relation to the first, depends only upon the tem-
peratures of the bodies between which heat passes, and not upon
the nature of the body cffecting the transformation.

In deducing this theorem, however, a process is contem-
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plated which is of too simple a character ; for only two bodies
losing or receiving heat are employed, and it is tacitly assumed
that one of the two bodies between which the transmission of heat
takes place is the source of the heat which is converted into work.
Now by previously assuming, in this manner, a particular tem-
perature for the heat converted into work, the influence which
a change of this temperature has upon the relation between the
two quantities of heat remains concealed, and therefore the
theorem in the above form is incomplete.

It is true this influence may be determined without great
difficulty by combining the theorem in the above limited form
with the first fundamental theorem, and thus completing the
former by the introduction of the results thus arrived at. But
by this indirect method the whole subject would lose much of its
clearness and facility of supervision, and on this account it
appears to me preferable to deduce the general form of the
theorem immediately from the same principle which I have
already employed in my former memoir, in order to demonstrate
the modified theorem of Carnot.

This principle, upon which the whole of the following deve-
lopment rests, is as follows :—Heat can never pass from a colder
to a warmer body without some other change, connected therewith,
occurring at the same time*. Everything we know concerning

* [The principle may be more briefly expressed thus: Heat cannot by
itself pass from a colder to a warmer body ; the words “by itself,” (von selbst)
however, here require explanation. Their meaning will, it is true, be rendered
sufficiently clear by the expositions contained in the present memoir, never-
theless it appears desirable to add a few words There in order to leave no
doubt as to the signification and comprehensiveness of the principle.

In the first place, the principle implies that in the immediate interchange
of heat between two bodies by conduction and radiation, the warmer body
never receives more heat from the colder one than it imparts to it. The
principle holds, however, not only for processes of this kind, but for all
others by which a transmission of heat can be brought about between twe
bodies of different temperatures, amongst which processes must be particu-
larly noticed those wherein the interchange of heat is produced by means of
one or more bodies which, on changing their condition, either receive heat
from a body, or impart heat to other bodies.

On considering the results of such processes more closely, we find that in
one and the same process heat may be carried from a colder to a warmer
body and another quantity of heat transferred from a warmer to a colder body
without any other permanent change occurring. In this case we have not a
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the interchange of heat between two bodies of different tempera-
tures confirms this; for heat everywhere manifests a tendency to
equalize existing differences of temperature, and therefore to
pass in a contrary direction, i. e. from warmer to colder bodies.
Without further explanation, therefore, the truth of the prin-
ciple will be granted.

. For the present we will again use the well-known process first
conceived by Carnot and graphically represented by Clapeyron,
with this difference, however, that, besides the two bodies be-
tween which the transmission of heat takes place, we shall assume
a'third, at any temperature, which shall furnish the heat con-
verted into work. An example being the only thing now re-
quired, we shall choose as the changing body one whose changes
are governed by the simplest possible laws, e.g. a permanent
gas*. Let, therefore, a quantity of permanent gas having the
temperature ¢ and volume v be given. In the adjoining figure
we shall suppose the volume represented by the abscissa o %, and
the pressure exerted by the gas at this volume, and at the tem-

simple transmission of heat from a colder to a warmer body, or an #scending
transmission of heat, as it may be called, but two connected transmissions of
opposite characters, one ascending and the other descending, which compen-
sate each other. It may, moreover, happen that instead of a descending
transmission of heat accompanying, in the one and the same process, the
ascending transmission, another permanent change may occur which has
the peculiarity of not being reversible without either becoming replaced by
& new permanent change of a similar kind, or producing & descending trans-
mission of heat. In this case the ascending transmission of heat may be said
to be accompanied, not immediately, but mediately, by a descending one, and
the permanent change which replaces the latter may be regarded as a com-
pensation for the ascending transmission,

Now it is to these compensations that our principle refers; and with the
aid of this conception the principle may be also expressed thus: an uncom-
pensated transmission of heat from a colder to a warmer body can never occur.
The term ‘uncompensated ” here expresses the same idea as that which was
intended to be conveyed by the words *by itself ” in the previous enuncia-
tion of the principle, and by the expression ¢ without some other change,
connected therewith, occurring at the same time ” in the original text.—1864.]

* [It will readily be understood that everything here said, by way of ex-
ample, concerning a gas applies, essentially, to every other body whose con-
dition is determined by its temperature and volume. Of course the shapes
of the curves, representing the decrease of pressure corresponding to an aug-
mentation of volume, differ for different bodies; in other words, the aspect
of the figure will depend upon the choice of the body.—1864.]
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perature ¢, by the ordinate 2a. This gas we subject, succes-
sively, to the following operations :—
1. The temperature ¢ of the gas is changed to ¢,, which, for
Fig. 7.
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the sake of an example, may be less than ¢. To do this, the
gas may be enclosed within a surface impenetrable to heat, and
allowed to expand without either receiving or losing heat. The
diminution of pressure, consequent upon the simultaneous in-
crease of volume and decrease of temperature, is represented by
the curve @ b; so that, when the temperature of the gas has
reached ¢, its volume and pressure have become oi and id
respectively.

2. The gas is next placed in communication with a body K,,
of the temperature ¢,, and allowed to expand still more, in such
a manner, however, that all the heat lost by expansion is again
supplied by the body. With respect to this body, we shall
assume that, owing to its magnitude or to some other cause, its
temperature does not become appreciably lower by this expen-
diture of heat, and therefore that it may be considered constant.
Consequently, during expansion the gas will also preserve a
constant temperature, and the diminution of the pressure will
be represented by a portion of an equilateral hyperbola 4 c. The
quantity of heat furnished by K, shall be Q,.

3. The gas is now separated from the body K, and allowed to
expand still further, but without receiving or losing heat, until
its temperature has diminished from ¢, to Z,. The consequent
diminution of pressure is represented by the curve ¢ d, which is
of the same nature as a b.

4. The gas is now put in communication with a body K,
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having the constant temperature Z,, and compressed ; all the
heat thus produced in it being imparted to K,. This com-
pression is continued until K, has received the same quantity of
heat Q, as was before furnished by K,. The pressure will in-
crease according to the equilateral hyperbola d e.

5. The gas is then separated from the body K, and com-
pressed, without being permitted to receive or lose heat, until
its temperature rises from £, to its original value £, the pressure
increasing according to the curve ef. The volume o n to which
the gas is thus reduced is smaller than its original volume o &,
for the pressure which had to be overcome in the compression
d e, and therefore the work to be spent, were less than the cor-
responding magnitudes during the expansion bc¢; so that, in
order to restore the same quantity of heat Q,, the compression
must be continued further than would have been necessary
merely to annul the expansions. '

6. The gas is at length placed in communication with a body
K, of the constant temperature £, and allowed to expand to its
‘original volume o %, the body K replacing the heat thus lost, the
amount of which may be Q. When the gas reaches the volume
ok with the temperature ¢, it must exert its original pressure;
and the equilateral hyperbola, which represents the last diminu-
tion of pressure, will precisely meet the point a.

These six changes together conmstitute a cyclical process, the
gas ultimately returning to its original condition. Of the three
bodies K, K, and K,, which throughout the whole process are
considered merely as sources or reservoirs of heat, the two first
have lost the quantities of heat Q and Q,, and the third has
received the quantity Q,, or, as we may express it, Q, has been
transferred from K, to K, and Q has disappeared. The last
quantity of heat must, according to the first theorem, have been
converted into exterior work. The pressure of the gas during
expansion being greater than during compression, and therefore
the positive amount of work greater than the negative, there has
been a gain of exterior work, which is evidently represented by
the area of the closed figure a b cdef. If we call this amount
of work W, then, according to equation (1),

Q=A. W%,
* [The cyclical process here described differs from the one described at
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The whole of the above-described cyclical process may be re- .
versed or executed in an opposite manner by connecting the gas
with the same bodies and, under the same circumstances as be-
fore, executing the reverse operations, i. e. commencing with the
compression af, after which would follow the expansions fe and
e d, and lastly the compressions dc, ¢b, and ba. The bodies K and
K, will now evidently receive the quantities of heat Q and Q,,
and K, will Jose the quantity Q. At the same time the nega-
tive work is now greater than the positive, so that the area of
the closed figure now represents a loss of work. "The result of
the reverse process, therefore, is that the quantity of heat Q, has
been transferred from K, to K, and the quantity of heat Q,
generated from work, given to the body K.

In order to learn the mutual dependence of the two simulta-
neous transformations above described, we shall first assume that
the temperatures of the three reservoirs of heat remain the same,
but that the cyclical processes through which the transforma-
tions are effected are different. This will be the case when,
instead of a gas, some other body is submitted to similar trans-
formations, or when the cyclical processes are of any other kind,
subject only to the conditions that the three bodies K, K, and
K, are the only ones which receive or impart heat, and of the
two latter the one receives as much as the other loses. These
several processes can be either reversible, as in the foregoing

" case, or not, and the law which governs the transformations will
vary accordingly. Nevertheless the modification which the law
for non-reversible processes suffers may be easily applied after-
wards, so that at present we will confine ourselves to the con-
sideration of reversible cyclical processes.

page 23 of the First Memoir, and there graphically represented in fig. 1, only
by the circumstance that three, instead of two bodies, serving as reservoirs of
heat, now present themselves. If we assume the temperature ¢ of the body
K to be equal to the temperature #, of the body K,, we may dispense with
the body K altogether, and instead thereof employ the body K, ; the result
of this would be that the body K, would give up, on the whole, the quantity
Q+Q, of heat, and the body K, would receive the quantity Q,. It would
then be said that of the total quantity of heat given up by the body K, the
portion Q is transformed into work, and the other part Q, is transferred to
the body K, ; but this occurred in the previously described process, so that
the latter must be regarded as a special case of the one here described.—1864.]
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With respect to all these it may be proved from the foregoing
principle, that the quantity of heat Q,, transferred from K, to
K,, has always the same relation to Q, the quantity of heat
transformed into work. For if there were two such processes
wherein, Q being the same, Q, was different, then the two pro-
cesses could be executed successively, the one in which Q, was
smaller in a direct, the other in an opposite manner. Then the
quantity of heat Q, which by the first process was converted into
work, would be again transformed into heat by the second pro-
cess and restored to the body K, and in other respects every-
thing would ultimately return to its original condition ; with this
sole exception, however, that more heat would have passed from
K, to K, than in the opposite direction. On the whole, there-
fore, a transmission of heat from a colder body K, to a warmer
K, has occurred, which in contradiction to the principle before
‘mentioned, has not been compensated in any manner.

Of the two transformatious in such a reversible process either
can replace the other, if the latter is taken in an opposite direc-
tion; so that if a transformation of the one kind has occurred,
this can be again reversed, and a transformation of the other
kind may be substituted without any other permanent change
being requisite thereto. For example, let the quantity of heat
Q, produced in any manner whatever from work, be received by
the body K ; then by the foregoing cyclical process it can be again
withdrawn from K and transformed back into work, but at the
same time the quantity of heat Q, will pass from K, to K, ; or
if the quantity of heat Q, had previously been transferred from
K, to K,, this can be again restored to K, by the reversed cyclical
process whereby the transformation of work into the quantity of
heat Q of the temperature of the body K will take place.

We see, therefore, that these two transformations may be
regarded as phenomena of the same nature, and we may call two
tranformations which can thus mutually replace one another
equivalent. 'We have now to find the law according to which
the transformations must be expressed as mathematical magni-
tudes, in order that the equivalence of two transformations may
be evident from the equality of their values. The mathematical
value of a transformation thus determined may be called its
equivalence-value (Aequivalenzwerth).
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‘With respect to the direction in which each transformation is
to be considered positive, it may be chosen arbitrarily in the one,
but it will then be fixed in the other, for it is clear that the trans-
formation which is equivalent to a positive transformation must
itself be positive. In future we shall consider the conversion of
work into heat and, therefore, the passage of heat from a higher
to a lower temperature as positive transformations*. ‘

‘With respect to the magnitude of the equivalence-value, it is
first of all clear that the value of a transformation from work
into heat must be proportional to the quantity of heat produced ;
and besides this it can only depend upon the temperature.
Hence the equivalence-value of the transformation of work into
the quantity of heat Q, of the temperature ¢, may be represented

generally by
Q.f,

wherein f(¢) is a function of the temperature, which is the same
for all cases. When Q is negative in this formula, it will indi-
cate that the quantity of heat Q is transformed, not from work
into heat, but from heat into work. In a similar manner the
value of the passage of the quantity of heat Q, from the tem-
perature £, to the temperature Z;,, must be proportional to the
quantity Q, and besides this, can only depend upon the two
temperatures. In general, therefore, it may be expressed by

Q.F(, 1), )

wherein F(Z, ¢,) is a function of both temperatures, which is
the same for all cases, and of which we at present only know
that, without changing its numerical value, it must change its
sign when the two temperatures are interchanged; so that

P, t)==F@,t). . . « . . (4

In order to institute a relation between these two expressions,
we have the condition, that in every reversible cyclical process
of the above kind, the two transformations which are involved
must be equal in magnitude, but opposite in sign ; so that their
algebraical sum must be zero. For instance, in the process for

- * [The reason why this choice of the positive and negative senses is pre-
ferable to the opposite one, will become apparent after the theorems relative
to the transformations have been enunciated. —1864 ]
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a gas, so fully described above, the quantity of heat Q, at the
temperature ¢, was converted into work; this gives —Q. f(¢)
as its equivalence-value, and that of the quantity of heat Q,,
transferred from the temperature ¢, to ¢, will be Q, . F(¢,,¢,), so
that we have the equation
—Q.f0+Q,.F(t,)=0. . . . . (5
Let us now conceive a similar process executed in an opposite
manner, so that the bodies K, and K,, and the quantity of heat
Q, passing between them, remain the same as before ; but that
instead of the body K of the temperature £, another body K’ of
the temperature ¢ be employed ; and let us call the quantity of
heat produced by work in this case Q,—then, analogous to the
last, we shall have the equation

Q.ft)+Q,.F(,¢)=0. . . . . (6)
Adding these two equations, and applying (4), we have
—-Q.fO+Q .f(t)=0. . . . . . (O

If now we regard these two cyclical processes together as one
cyclical process, which is of course allowable, then in the latter
the transmissions of heat between K, and K, will no longer
enter into consideration, for they precisely cancel one another,
and there remain only the quantity of heat Q taken from K and
transformed into work, and the quantity Q' generated by work
and given to K'. These two transformations of the same kind,
however, may be so divided and combined as again to appear as
transformations of different kinds. If we hold simply to the
fact that a body K has lost the quantity of heat Q, and another
body K’ has received the quantity Q’, we may without hesitation
consider the part common to both quantities as transferred from
K to K’, and regard only the other part, the excess of one quan-
tity over the other, as a transformation from work into heat, or
vice versd. For example, let the temperature ¢ be greater than
t, so that the above transmission, being a transmission from the
colder to the warmer body, will be negative. Then the other
transformation must be positive, that is, a transformation from
work into heat, whence it follows that the quantity of heat Q'
imparted to K’ must be greater than the qua.ntlty Q lost by K.
If we divide Q" into the two parts

Q and Q' —Q,
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the first will be the quantity of heat transferred from K to K/,
‘and the second the quantity generated from work. :

According to this view the double process appears as a pro-
cess of the same kind as the two simple ones of which it
consists; for the circumstance that the generated heat is not
imparted to a third body, but to one of the two between
which the transmission of heat takes place, makes no essential
difference, because the temperature of the generated heat is
arbitrary, and may therefore have the same value as the tem-
perature of one of the two bodies; in which case a third body
would be superfluous. Consequently, for the two quantities of
heat Q and Q'—Q, an equatlon of the same form as (6) must
hold, i. e.

(Q@—Q).f(£)+Q.F(t,¢)=0.

Eliminating the magnitude Q by means of (7), a.nd d1v1dmg by
Q, this equation becomes

FoO=fO—0, - - - - . ©

so that the temperatures ¢ and ¢ being arbitrary, the function
of two temperatures which applies to the second kind of trans-
formation is reduced, in a general manner, to the function of
one temperature which applies to the first kind.

For brevity, we will introduce a simpler symbol for the last
function, or rather for its reciprocal, inasmuch as the latter will
afterwards be shown to be the more convenient of the two.
Let us therefore make

f(t)=-,}—\,.......(9)'

so that T is now the unknown function of the temperature
involved in the equivalence-values. Further, T,, T,, &c. shall
represent particular values of this function, correspondmg to the
temperatures ¢, ¢,, &c.

According to thls, the second fundamental theorem in the
mechanical theory of heat, which in this form might appro-
priately be called the theorem of the equivalence of transforma-
tions, may be thus enunciated :

If two transformations which, without necessitating any other
permanent change, can mutually replace one another, be called
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equivalent, then the generation of the quantity of heat Q of the
temperature t from work, has the equivalence-value
. 9,
: T
and the passage of the quantity of heat Q from the temperature
t, to the temperature t,, has the equivalence-value

1 1

T, T,

wherein T is a function of the temperature, independent of the
nature of the process by which the transformation is effected.
If to the last expression we give the form

Q Q

T,
it is evident that the passage of the quantity of heat Q, from the
temperature ¢, to the temperature ,, has the same equivalence-
value as a double transformation of the first kind, that is to say,
the transformation of the quantity Q from heat at the tempera-
ture ¢, into work, and from work into heat at the temperature ¢,.
A dlscusswn of the question how far this external agreement is
based upon the nature of the process itself would be out of
place here*; but at all events, in the mathematical determina-
tion of the equivalence-value, every transmission of heat, no
matter how effected, can be considered as such a combination of
two opposite transformations of the first kind.

By means of this rule, it will be easy to find a mathematical
expression for the total value of all the transformations of both
kinds, which are included in any cychcal process, however com-
plicated. For instead of exammmg what part of a given quan-
tity of heat received by a reservoir of heat, during the cyclical
process, has arisen from work, and whence' the other part has
come, every such quantity received may be brought into calcu-
lation as if it had been generated by work, and every quan-
tity lost by a reservoir of heat, as if it had been converted into
work. Let us assume that the several bodies K, K,, K, &e.,
serving as reservoirs of heat at the temperatures ¢, ¢,, 5, &c.,
have received during the process the quantities of heat Q,, Q,,
Q;, &c., whereby the loss of a quantity of heat will be counted

[* This subject is discussed in one of the subsequent memoirs.—1864.]
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as the gain of a negative quantity of heat; then the total value
N of all the transformations will be

N=% %+%+ &e. . =z%. .. . . (10)
It is here assumed that the temperatures of the bodies K , K,, K,
&c. are constant, or at least so nearly constant, that their varia-
tions may be neglected. When one of the bodies, however,
either by the reception of the quantity of heat Q itself, or
through some other cause, changes its temperature during the
process so considerably that the variation demands considera-
tion, then for each element of heat dQ we must employ that
temperature which the body possessed at the time it received it,
whereby an integration will be necessary. For the sake of
generality, let us assume that this is the case with all the
bodies ; then the foregoing equation will assume the form

N=\R
wherein the integral extends over all the quantities of heat
received by the several bodies.

If the process is reversible, then, however complicated it may
be, we can prove, as in the simple process before considered,
that the transformations which occur must exactly cancel each
other, so that their algebraical sum is zero.

For were this not the case, then we might conceive all the
transformations divided into two parts, of which the first gives
the algebraical sum zero, and the second consists entirely of
transformations having the same sign. By means of a finite or
infinite number of simple cyclical processes, the transforma-
tions of the first part must admit of being cancelled*, so that
the transformations of the second part would alone remain

* [By a simple cyclical process is here to be understood one in which, as
above described, a quantity of heat is transformed into, or arises from work,
whilst a second quantity is transferred from one body to another. Now it
may be readily shown that every two transformations whose algebraical sum
is zero may be cancelled by means of one or two simple cyclical processes.

In the first place, let the two given transformations be of different kinds.
For instance, let the quantity of heat Q at the temperature ¢ be transformed

nto work, and the quantity Q, be transferred from a body K, of the tempera-
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without any other change. Were these transformations ne-
gative, i. e. transformations from heat into work, and passages
of heat from lower to higher temperatures, then of the two
kinds the first could be replaced by transformations of the

ture ¢, to a body K, of the temperature #,, whereby we will assume, since
our intended exposition will be thereby facilitated, that Q and Q, denote the
absolute values of the quantities of heat, so that the positive or negative cha-
racter of each transformation must be denoted explicitly by a prefixed 4 or
— sign. Suppose, moreover, that the magnitudes of the two quantities of
heat are related to one another in the manner expressed by the equation

-9

~F+ (g )=
Conceive the cyclical process above described to be performed in a contrary
manner, so that the quantity of heat Q at the temperature ¢ arises from work,
and another quantity of heat is transferred from the body K, to the body K,.
This latter quantity must then be precisely the quantity Q, which enters into
the above equation, and thus the given transformations are cancelled.

In the next place, let a transformation from work to heat, and another from
heat to work be given; for instance, let the quantity of heat Q, at the tem-
perature.Z, be generated by work, and the quantity Q', at the temperature #/,
be converted into work, and suppose the two quantities to be so related to
one another that 9

-

T T

Conceive the above-described cyclical process to be first performed, whereby
the quantity of heat Q at the temperature ¢ is converted into work, and
another quantity Q, transferred from a body K, to another body K,. After-
wards conceive & second cyclical process of the opposite kind to be performed,
in which the last-named quantity of heat Q, is transported back from K, to
K,, and, besides this, a quantity of heat of the temperature #' is generated
from work. This conversion of work into heat must then, apart from its
sign, be equivalent to the preceding conversion of heat into work, since both
are equivalent to one and the same transmission of heat. The heat at the
temperature ¢', which has arisen from work, must consequently be just as
great as the quantity Q' involved in the last equation, and the given trans-
formations are thus cancelled.

In the last place, let two transmissions of heat be given; for instance,
let the quantity of heat Q, be transferred from a body K, of the temperature
¢, to a body K, of the temperature £,, and let another quantity Q', be con-
veyed from a body K',, of the temperature #,, to a body K',, of the temperature
t';, and suppose these two quantities to stand to each other in the relation

1 ' 1\ _
Q1) + () =0
Conceive now two cycllca.l processes to be performed, in one of which the

quantity of heat Q, is carried from K, to K,, and thereby the quantity Q at
the temperature ¢ generated by work, whllst in the second the same quan-
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latter kind*, and ultimately transmissions of heat from a lower
to a higher temperature would alone remain, which would be
compensated by nothing, and therefore contrary to the above
principle. Further, were those transformations positive, it would
only be necessary to reverse the operations in order to render
them negative, and thus we should again obtain the foregoing
impossible case. Hence we conclude that the second part of
the transformations can have no existence.
Consequently the equation

aQ

T
is the analytical expression, for all reversible cyclical processes,
of the second fundamental theorem in the mechanical theory of
heat.

The application of this equation can be considerably extended
by giving to the magnitude ¢ involved in it & somewhat different
signification. For this purpose, let us consider a cyclical pro-
cess consisting of a series of changes of condition made by a

=0 . .. .... (I

tity of heat Q is reconverted into work, and thereby another quantity trans-
ferred from K', to K',, This other quantity must then be precisely that
which isdenoted by Q,', and the two given transformations are thus cancelled.

If now, instead of two, any number of transformations were given, having
an algebraical sum equal to zero, we could always separate and combine them
80 as to obtain, solely, groups consisting each of two transformations whose
algebraical sum is equal to zero; and the two transformations of each such
group could then, as has just been shown, be cancelled by means of one or
two simple cyclical processes. If continuous changes of temperature should
present themselves in the given original process, so that the quantities of
heat given up and received would have to be divided into infinitesimal
elements, the number of the groups which would have to be formed, and
consequently also the number of simple cyclical processes, would be infinite ;
as far as the principle is concerned, however, this makes no difference.—
1864.]

* [For if the given transformation consist in the conversion into work of
the quantity of heat Q at the temperature ¢, we have, as already explained
in the text in reference to the opposite case, merely to conceive the above-
described cyclical process performed in a contrary manner, whereby the
quantity of heat Q at the temperature ¢ will be generated by work ; and at
the same time another quantity Q, will be transferred from a body K,, of the
temperature ¢,, to a body K, of the higher temperature ¢, The given trans-
formation from heat to work will thus be cancelled, and replaced by the
transmission of heat from K, to K,,—1864.]

K
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body which ultimately returns to its original state, and for sim-
plicity, let us assume that all parts of the body have the same
temperature ; then in order that the process may be reversible,
the changing body when imparting or receiving heat can only
be placed in communication with such bodies as have the same
temperature as itself, for only in this case can the heat pass in
an opposite direction. Strictly speaking, this condition can
never be fulfilled if a motion of heat at all occurs; but we may
assume it to be so nearly fulfilled, that the small differences of
temperature still existing may be neglected in the calculation.
In this case it is of course of no importance whether ¢, in the
equation (II), represents the temperature of the reservoir of
heat just employed, or the momentary temperature of the
changing body, inasmuch as both are equal. The latter signi-
fication being once adopted, however, it is easy to see that any
other temperatures may be attributed to the reservoirs of heat

without producing thereby any change in the expressign "HTQ

which shall be prejudicial to the validity of the foregoing equation.
As with this signification of ¢ the several reservoirs of heat need
no longer enter into consideration, it is customary to refer the
quantities of heat, not to them, but to the changing body itself,
by stating what quantities of heat this body successively receives
or imparts during its modifications. If hereby a quantity of
heat received be again counted as positive, and a quantity im-
parted as negative, all quantities of heat will of course be affected
with a sign opposite to that which was given to them with
reference to the reservoirs of heat, for every quantity of heat
received by the changing body is imparted to it by some reser-
voir of heat; nevertheless, this circumstance can have no influ-
ence upon the equation which expresses that the value of the
whole integral is zero. From what has just been said, it fol-
lows, therefore, that when for every quantity of heat dQ which
the body receives or, if negative, imparts during its changes,
the temperature of the body at the moment be taken into cal-
culation, the equation (II) may be applied without further con-
sidering whence the heat comes or whither it goes, provided the
process be in other respects reversible.

To the equation (II) thus interpreted we can now give a
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more special form, as was formerly done to equation (I), in
which form it shall express a particular property of the body.
We shall thus obtain an equation essentially the same as the
well-known one deduced by Clapeyron from the theorem of
Carnot*. With respect to the nature of the changes, we shall
assume the same conditions as before led to the deduction of
the equations (2) and (3) from (I), and which also suffice for
the fulfilment of equation (II)+. Hence, the condition of the
body being defined by its temperature ¢ and volume v, we have

_da,  dQ

Inasmuch as by (II) deQ must always equal zero, whenever

t and v assume their initial values, the expression under the
integral sign, which by the foregoing equation becomes

1 dQ 1 4dQ
T. Ft-dt"'T. ‘tTv-dv,

must be a complete differential, if ¢ and » are independent vari-
ables ; and the two terms of the expression must consequently
satisfy the following condition,

d/l dg)_g 1 dQ
a\T " av _dv('f"dt '

* Journ. de U Ecole Polytechnigque, tome xiv.

+ [These conditions were that the sole exterior force in operation is &
pressure acting everywhere with the same intensity upon, and perpendi-
cularly to the surface, and that this pressure always differs so little from the
expansive force of the body that the two may be regarded as equal to one
another in all calculations. Hence it follows that the changeable body may
be again compressed under the same pressure as that under which it expands,
and consequently that its changes of volume have occurred in a reversible
manner. A certain temperature ¢ was likewise ascribed to the entire change-
able body—an assumption which implies that all parts of the latter have one
and the same temperature, or at all events, that the differences of tempera~
ture which present themselves are small enough to be neglected. Hence
it follows that within the body no transmissions of heat occur from warmer
to colder places, which are of sufficient importance to be taken into calcula-
tion. All the changes, therefore, of which the body is susceptible may be
regarded as reversible, and for the truth of the equation (II) nothing more
than this is requisite.—1864.] 2

K
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From this we obtain 4T
1 1(&'9 _dQ ‘dr_1 i(i@)
T dt\dv) dv T T do\'dt
or

dQ dT d(dQ\ d/dQ
% 7= [{&)-#2)]) - @
Substituting, from equation (3), the value of the expression
within the [ ], we obtain the desired equation,
dQ dT_ dp
& @=ATE - - (8

which, on account of the relation

dp_dp dT
dt—dT’ at’
may be written thus :
dQ d,
'E::A’Td_%*‘ .« . . . (130)
If we compare this result with the before-mentioned equation
established by Clapeyron, we shall at once see the relation which
exists between the function T, here introduced, and that used by
Clapeyron, denoted by C, and known as Carnot’s function, which
I have also used in former memoirs. This relation may be ex-
pressed thus:

* [I may here remark that the equation (12) may be transformed in the

same way as the equation (13) has already been transformed. For putting
therein
dQ_dq dr
@ dtT ' dt’
44049 dT
dt(dv ?i‘(d‘v) tde’

and dividing throughout by ‘%‘, we have

dQ_ o[ d (4Q\_ d(dQ\7.

#="[an(7) -2 1

or, otherwise written,

d(dQ\_d[dQ\_1 dqQ

ECONT R DU
Hereby the meaning of the equation (II) is expressed, even more simply

th;n 8{?41 §12),in the form of a partial differential equation of the second order.
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a1

da_A

T=6*""""(14)
We proceed now to the consideration of non-reversible cyclical

processes.

In the proof of the previous theorem, that in any reversible
cyclical process, however complicated, the algebraical sum of all
the transformations must be zero, it was first shown that the sum
could not be negative, and afterwards that it could not be posi-
tive, for if so it would only be necessary to reverse the process in
order to obtain a negative sum. The first part of this proof re-
mains unchanged even when the process is not reversible ; the
second part, however, cannot be applied in such a case. Hence
we obtain the following theorem, which applies generally to all
cyclical processes, those that are reversible forming the limit :—

The algebraical sum of all transformations occurring in a cyclical
process can only be positive.

A transformation which thus remains at the conclusion of
a cyclical process without another opposite one, and which
according to this theorem can only be positive, we shall, for
brevity, call an uncompensated transformation.

The different kinds of operations giving rise to uncompensated
transformations are, as far as external appearances are concerned,
rather numerous, even though they may not differ very essen-
tially. One of the most frequently occurring examples is that
of the transmission of heat by mere conduction, when two bodies
of different temperatures are brought into immediate contact ;
other cases are the production of heat by friction, and by an
electric current when overcoming the resistance due to imper-
fect conductibility, together with all cases where a force, in doing
mechanical work, has not to overcome an equal resistance, and
therefore produces’a perceptible external motion, with more or

* [The equation established by Clapeyron, when written in the form given
to it in the notes to the equations (IV) and (V) of the First Memoir (pp. 47,
48), 18 Q_o%

d  d’
and on comparing this expression for fl%with the one which results from the
equation (18), we obtain the equation (14).—1864.]
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less velocity, the vis viva of which afterwards passes into heat.
An instance of the last kind may be seen when a vessel filled
with air is suddenly connected with an empty one ; a portion of
air is then propelled with great velocity into the empty vessel
and again comes to rest there. It is well known that in this
case just as much heat is present in the whole mass of air after
expansion as before, even if differences have arisen in the several
parts, and therefore there is no heat permanently converted into
work. On the other hand, however, the air cannot again be
compressed into its former volume without a simultaneous con-
version of work into heat.

The principle according to which the equivalence-values of
the uncompensated transformations thus produced. are to be
determined, is evident from what has gone before, and I will
not here enter further into the treatment of particular cases.

In conclusion, we must direct our attention to the function T,
which hitherto has been left quite undetermined ; we shall not
be able to determine it entirely without hypothesis, but by
means of a very probable hypothesis it will be possible so to do.
I refer to an accessory assumption already made in my former
memoir, to the effect that @ permanent gas, when it expands at a
constant temperature, absorbs.only so much heat as is consumed by
the exterior work thereby performed. This assumptlon has been
verified by the later experiments of Regnault, and in all proba-
bility is accurate for all gases to the same degree as Mariotte
and Gay-Lussac’s law, so that for an ideal gas, for which the
latter law is perfectly accurate, the above assumption will also
be perfectly accurate. '

The exterior work done by a gas during an expansion dv,
provided it has to overcome a pressure equivalent to its total ex-
pansive force p, is equal to pdy, and the quantity of heat absorbed

thereby is'expressed by %dv. Hence we have the equation

aQ

%=A 2

and by substituting this value of % in the equation (13), the
latter becomes
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m==. . . . . . . (18
But, according to Mariotte and Gay-Lussac’s law,
+t
p=£;)—— . const.,

where a is the inverse value of the coefficient of expansion of
the permanent gases, and nearly equal to 278, if the temperature
be given in Centigrade degrees above the freezing-point. Elimi-
nating p from (15) by means of this equation, we have

dT _ dt
T=art’ (16)
whence, by integration,

T=(a+t) .const. . . . . . (17)

It is of no importance what value we give to this constant, be-
cause by changing it we change all equivalence-values propor-
tionally, so that the equivalences before existing will not be
disturbed thereby. Let us take the simplest value, therefore,
which is unity, and we obtain

T=a+t.. . . . . . . (18

According to this, T is nothing more than the temperature
counted from a°, or about 278° C. below the freezing-point ;
and, considering the point thus determined as the absolute zero
of temperature, T is simply the absolute temperature. TFor this
reason I introduced, at the commencement, the symbol T for the
reciprocal value of the function f (¢). By this means all changes
which would otherwise have had to be introduced in the form of
equations, after the determination of the function, are rendered
unnecessary ; and now, according as we feel disposed to grant
the sufficient probability of the foregoing assumption or not, we
may consider T as the absolute temperature, or as a yet unde-
termined function of the temperature. I am inclined to believe,
however, that the first may be done without hesitation.
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FIFTH MEMOIR.

ON THE APPLICATION OF THE MECHANICAL THEORY OF HEAT TO
THE STEAM-ENGINE¥,

1. As our present modified views respecting the nature and
deportment of heat, which constitute the mechanical theory of
heat, had their origin in the well-known fact that heat may be
employed for producing mechanical work, we may naturally an-
ticipate that the theory so originated will in its turn help to
place this application of heat in a clearer light. At all events
the more general views thus obtained must enable us to pro-
nounce safely upon the efficiency of the several machines for
thus applying heat, as to whether they already perfectly fulfil
their purpose, or whether and to what extent they are capable
of being perfected.

Besides these reasons, which apply to all thermo-dynamic
machines, there are others, applicable more particularly to the
most important of them, the steam-engine, which appear to
render a new investigation of the latter, conducted according to
the principles of the mechanical theory of heat, desirable. It is
precisely with respect to vapour at a maximum density that this
new theory has led us to laws which differ essentially from those
formerly accepted as true, or at least introduced into former
calculations.

2. I may here be allowed to refer to a fact proved by Rankine
and myself, that when a quantity of vapour, at its maximum den-
sity and enclosed by a surface impenetrable to heat, expands and
thereby displaces a moveable part of the enclosing surface, e. g.
a piston, with its full force of expansion, a part of the vapour
must undergo condensation; whereas in most works on the
steam-engine, amongst others in the excellent work of De

* Published in Poggendorff’s Annalen, March and April 1856, vol. xcvii.
pp- 441 and 513 ; translated in the Philosophical Magazine, 8. 4. vol. xii.
pp- 241, 338 and 426 ; and in Silliman’s Journal, 8. 2. vol. xxii. pp. 180 and
364, vol. xxiii. p. 26.
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Pambour*, Watt’s theorem, that under these circumstances the
vapour remains precisely at its maximum density, is assumed as
a fandamental one.

Further, in the absence of more accurate knowledge, it was
formerly assumed, in determining the volumes of the unit of
weight of saturated vapour at different temperatures, that vapour
even at its maximum density still obeys Mariotte’s and Gay-
Lussac’s laws. In opposition to this, I have already shown in
my first memoirt on this subject, that the volumes in question
can be calculated from the principles of the mechanical theory
of heat under the assumption, that a permanent gas when it ex-
pands at a constant temperature only absorbs so much heat as is
consumed in the external work thereby performed, and that these
calculations lead to values which, at least at high temperatures,
differ considerably from Mariotte’s and Gay-Lussac’s laws.

Even the physicists who had occupied themselves more espe-
cially with the mechanical theory of heat, did not at that time
coincide with this view of the deportment of vapour. William
Thomson in particular opposed it. In a memoir} presented to
the Royal Society of Edinburgh a year later, in March 1851,
he only regarded this result as a proof of the improbability of
the above assumption which I had employed.

Since then, however, he and J. P. Joule have together under-
taken to test experimentally the accuracy of this assumption§.
By a series of well-contrived experiments, executed on a large
scale, they have in fact shown that, with respect to the perma-
nent gases, atmospheric air and hydrogen, the assumption is so
nearly true, that in most calculations the deviations from exacti-
tude may be disregarded. With carbonic acid, the non-perma-
nent gas they investigated, the deviations were greater. This is
in perfect accordance with the remark I made on first making the
assumption, which was that the latter would probably be found
to be accurate for each gas in the same measure as Mariotte’s and
Gay-Lussac’s laws were applicable thereto. In consequence of

* Théorie des Machines @ Vapeur, par le Comte F. M. G. de Pambour.
Paris, 1844.

t [First Memoir of this collection.]

1 Transactions of the Royal Society of Edinburgh, vol. xx. part 2, p. 261.

§ Phil. Trans. vol. cxliii. part 3, p. 357; and vol. exliv. part 2, p 321.
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these experiments, Thomson now calculates the volumes of satu-
rated vapours in the same manner as myself. There is reason
to believe, therefore, that the accuracy of this method of calcu-
lation will be gradually more and more recognized by other
physicists.

8. These two examples will suffice to show that the principles
upon which our former theory of steam-engines was founded have
suffered such essential modifications through the mechanical
theory of heat, as to render a new investigation of the subject
necessary.

In the present memoir I have attempted to develope the prin-
ciples of the calculation of the work of the steam-engine in
accordance with the mechanical theory of heat. I have, how-
ever, limited myself to the steam-engines now in use, without at
present entering into a consideration of the more recent and cer-
tainly very interesting attempts to employ vapour in a super-
heated state.

In recording the results of my investigation, I shall only
assume, on the part of the reader, an acquaintance with my last
memoir, “On a modified Form of the Second Fundamental
Theorem in the Mechanical Theory of Heat”*. This will of
course necessitate the deduction, in a somewhat different man-
ner, of results which are no longer new, but have already been
found by myself or others; I believe, however, that this re-
petition, by leading to greater unity and facility of comprehen-
sion, will not be found superfluous. At the proper places I shall,
to the best of my ability, cite the papers wherein these results
first appeared.

4. The expression ‘“ a machine is driven by heat,” is not of
course strictly accurate. By it we must understand, that, in
consequence of the changes produced by heat upon some kind
of matter in the machine, the parts of the latter are set in motion.
We shall refer to this matter as that which manifests the action
of heat. .

If a continuously-acting machine is in uniform action, all
accompanying changes occur periodically, so that the condition
which at a given time prevails in the machine and all its parts
returns at equal intervals. - Hence the matter which manifests

* [Fourth Memoir of this collection. ] '
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the action of the applied heat must at such regularly-recurring
periods be present in the machine in equal quantity, and in the
same state. This condition can be fulfilled in two different ways.

First. One and the same quantity of matter may always re-
main in the machine, when the changes of condition which this
matter suffers during the action of the machine will be such, that
- at the end of each period it will regain its original condition and
recommence the same cycle of changes.

Secondly. The machine may always expel the matter which
served to produce the effect during a period, and in its place
receive from an external source just as much matter of the same
kind.

5. The last method is the one usually employed in most
machines. This is the case, for instance, in machines with
heated air as at present constructed ; for after every stroke, the
air which moved the piston in the driving cylinder is expelled
into the atmosphere, and in its place an equal quantity of air
from the same source is received into the feeding cylinder. Si-
milarly in steam-engines without condensers, steam is driven
from the cylinder into the atmosphere, and in its place fresh
water is pumped from a reservoir into the boiler.

Further, a similar method is at least partially adopted even in
steam-engines provided with a condenser as usually constructed.
In them the water condensed from the steam is only partially
pumped back into the boiler, for being mixed with the cooling
water, a part of the latter also reaches the boiler. The remaining
part of the condensed water, together with the remaining part
. of the cooling water, has to be got rid of.

The first method has lately been employed in steam-engines
propelled by two vapours, e. g. those of water and sether. In
these machines the steam is condensed solely by contact with
metallic tubes filled with liquid ether, and the water thus pro-
duced is then completely pumped back into the boiler. In the
same manner the vapour of the @ther is condensed in metal tubes,
which are merely surrounded by cold water, and subsequently
it is pumped back into the first space intended for the vapori-
zation of the mther. In order to maintain a uniform action,
therefore, only so much fresh water and ather is necessary as
will replace the leakage consequent upon imperfect construction.
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6. In a machine of this kind, where the same matter is con-
tinually re-employed, the several changes which this matter suf-
fers during a period must, as above stated, form a closed cycle,
or, according to the nomenclature in my former memoir, a cy-
clical process.

On the contrary, machines in which a periodical reception and
expulsion of matter occurs are not necessarily subject to this -
condition, though they may also fulfil it by expelling the matter
in the same condition in which it was received. This is the case
in steam-engines with condensers, where the water is ultimately
expelled from the condenser in the liquid state, and at the same
temperature as it had when introduced from the condenser into
the boiler*. '

In other machines, the condition, when expelled, is different
from what #t was when received. For example, heated-air ma-
chines, even when provided with regenerators, expel the air at
a higher temperature than it formerly had ; and steam-engines
without condensers receive water in the liquid, and expel it in
the gaseous form. Strictly, therefore, the complete cyclical pro-
cess is not fulfilled in these cases; nevertheless we may always
conceive a second machine appended to the given one which
shall receive the matter from the first, reduce it in some manner
to its original condition, and then expel it. Both machines may
then be regarded as constituting one and the same machine,
which will fulfil the above condition. = In many cases this addi-
tion may be made without introducing greater complexity into
the investigation. For example, a steam-engine with a con-
denser at a temperature of 100° C. may be substituted for a ma-
chine without a condenser, provided we assume the latter to be

fed with water at 100° C. -

Hence, if we assume that machines which do not fulfil the
above condition are theoretically completed in the above manner,
we may apply the theorems concerning cyclical processes to
all thermo-dynamic machines, and thereby arrive at conclusions

* The cooling water, which enters the condenser at a low, and leaves it at
a high temperature, is not here taken into consideration, inasmuch as it does
not form a part of the matter manifesting the effect of the applied heat, but
merely constitutes a negative source of heat.
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which are quite independent of the nature of the processes
executed by the several machines.

7. In my former memoir I have represented the two funda-
mental theorems which hold good in every cyclical process by
the following equations :—

Q=A.W,. . . . . ... (I

dQ
T=-N .. ... .. @

wherein the letters have the same signification as before, viz.—

A is the thermal equivalent of the unit of work.

W represents the external work performed during the cyclical
process. ™

Q signifies the heat imparted to the changeable body during
a cyclical process, and dQ an element of the same, whereby any
heat withdrawn from the body is to be considered as an imparted
negative quantity of heat. The integral in the second equation
is extended over the whole quantity Q.

T is a function of the temperature which the changing matter
has at the moment when it receives the element of heat dQ ; or
should the temperature of different parts of the body be different,
a function of the temperature of the part which receives dQ.
With respect to the form of the function T, I have shown in my
former memoir that it is probably the temperature itself reckoned
from a point which may be determined from the reciprocal value
of the coefficient of expansion of an ideal gas, and which must
be in the neighbourhood of —278° C.; so that if ¢ represents
the temperature above the freezing-point,

T=278+¢ . . . . . . . . (1)
In the present memoir T will always have this signification, and
for brevity will be called the absolute temperature. It may be
here remarked, however, that the conclusions do not essentially
depend upon this signification, but remain true even when T is
considered as an undetermined function of the temperature.
* Lastly, N denotes the equivalence-value of all the uncompen-
sated transformations* involved in a cyclical process.

"* One species of uncompensated transformations requires further remark,
The sources from which the changing matter derives heat must have higher
temperatures than itself; and, on the other hand, those from which it derives
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8. If the process is such that it can be reversed in the same
manner, then N=0. If, however, one or more changes of con-

negative quantities of heat, or which deprive it of heat, must have lower
temperatures than itself. Therefore whenever heat is interchanged between
the changing body and any source whatever, heat passes immediately from the
body at a higher to the one at a lower temperature, and thus an uncompen-
sated transformation occurs which is greater the greater the difference be-
tween the temperatures, In determining such uncompensated transforma-
tions, not only must the changes in the condition of the variable matter be
taken into consideration, but also the temperatures of the sources of heat which
are employed ; and these uncompensated transformations will be included in
N or not, according to the signification which is attached to the temperature
occurring in equation (II). If thereby the temperature of thé source of keat
belonging to dQ is understood, the above changes will be included in N. If,
however, agreeably to the above definition, and to our intention throughout
this memoir, the temperature of the changing matter is understood, then the
above transformations are excluded from N. One more remark must be added
concerning the minus sign prefixed to N, which did not appear in the same
equation in my former memoir. This difference arises from the different ap-
plication of the terms negative and positive with respect to quantities of heat.
Before, a quantity of heat received by the changeable body was considered as
negative because it was lost by the source of heat; now, however, it is con-
sidered as positive. Hereby every element of heat embraced by the integral,
and consequently the integral itself, changes its sign ; and hence, to preserve
the correctness of the equation, the sign on the other side must be changed.
[The reason why, in different investigations, I have changed the significa-
tions of positive and negative quantities of heat, is that the points of view
from which the processes in question are regarded, differ according to the na-
ture of the investigations. In purely theoretical investigations on the trans-
formations between heat and work, and’ on the other transformations con-
nected therewith, it is convenient to consider heat generated by work as po-
sitive, and heat converted into work as negative. Now the heat generated by
work during any eyclical process must be imparted to some body serving asa
reservoir or as a source of heat, and the heat converted into work must be
withdrawn from one of these bodies. Quantities of heat will receive appro-
priate signs in theoretical investigation, therefore, when the heat gained by a
reservoir is calculated as positive, and that which it loses as negative. There
are investigations, however, in which it is not necessary to take into special
consideration the reservoirs or sources which receive the heat that is generated,
or furnish the heat that is consumed by work, the condition of the variable
body being the chief object of research. In such cases it is customary to re-
gard the heat received by the changing body as positive, and the heat which
it loses as negative ; to deviate from this custom, for the sake of consistency,
would be attended with many inconveniences. Researches on the interior
processes in a steam-engine are of the latier kind, and accordingly I have
deemed it advisable to adopt the customary choice of signs.—1864.]
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dition occur in a cyclical process which are not reversible, then
uncompensated transformations necessarily arise, and the mag-
nitude N has consequently a determinable and necessarily posi-
tive value.

Amongst the operations to which the last remark is applicable,
is one which in the following will be often mentioned. When
a quantity of gas or vapour expands, and thereby overcomes a
pressure equivalent to its total expansive force, it may be again
compressed into its former volume by employing the same power,
when all the phenomena which accompanied the expansion will
take place in an inverse manner. This is not the case, however,
when the gas or vapour does not, during its expansion, encounter
all the resistance it is capable of overcoming ; when, for instance,
it issues from a vessel in which the pressure is greater than in
the one into which it enters. In thiscase a compression, under
circumstances similar to those accompanying expansion, is im-
possible.

By equation (II) we can determine the sum of all the uncom-
pensated transformations in a cyclical process. As, however, a
cyclical process may consist of several changes of condition in the
given matter, of which some have occurred in a reversible, and
others in an irreversible manner, it is often interesting to know
how much of the whole sum of uncompensated transformations
has resulted from changes of each kind. For this purpose let
us conceive the matter, after the changes of condition which has
to be examined in this manner, reduced to its original condition by
any reversible operation. We shall thereby obtain a small cyclical
process, to which the equation (II) will be just as applicable as
to the whole. Consequently, if we know the quantities of heat
which the matter has received during the process, and the tem-

peratures which correspond thereto, the negative integral — d—-,lc{)'
will give the uncompensated transformation involved therein.
But as the uncompensated transformation involved in the given
change of condition could not have been increased by the above
reduction, which was executed in a reversible manner, it will be
fully represented by the above expression*.

* [Let us suppose the changeable body to be a quantity of gas, and that
one of the changes which this gas has suffered consists of an expansion, with-
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Having thus investigated all the parts of the whole cyclical
process which are not reversible, and found the values N,, N,
&c., which must all be positive, their sum will give the magni-

out change of temperature, from the volume v, to the volume v,. As already
stated in the text, this expansion may occur in several ways. The gas may
8o expand that at every moment the pressure which it has to overcome cor-
responds to its expansive force at that moment; or it may be allowed to ex-
pend without overcoming any resistance whatever, by suddenly placing an
empty vessel in connexion with the one in which it occupied the volume v, ;
or lastly, it may, during its expansion, have to overcome a resistance less than
that which corresponds to its own expansive force. If we wish to know the
magnitude of the uncompensated transformation involved in this change of
volume, we have merely to conceive the gas to be again compressed, at a con-
stant temperature, from the volume v, to the volume v,, and to determine the
quantities of heat received and withdrawn during the cyclical process thus
completed.

If during its expansion the gas has the full resistance to overcome, it must
receive just as much heat as it afterwards gives off during compression, so
that we obtain for the cyclical process the equation

_(2_
L i

If the gas has no resistance to overcome during expansion, and if we more-
over assume it to be & perfect gas, it need not receive any heat during expan-
sion. During compression, however, it must give off a quantity of heat equal
to that which is generated by the exterior work necessary for compression.
For each element of the change of volume this will be represented by A.pdv,
where p denotes the pressure, and the positive or negative sense is already
expressed in the formula itself, since a quantity of heat to be received is po-
sitive, and one to be given off is negative. 'We must put then

_(9Q__("A.piv .
T ), T
Now, according to the law of M. and G.,
RT

P=7’

where R is an already known constant, so that
_44Q_ _ iy _ v,
™= ARJ\ ;_ARlog -

9,
This, therefore, is the value of the uncompensated transformation when a per-
fect gas has expanded from the volume v, to the volume v, without having
had to overcome any exterior resistance.

If, lastly, the gas, on expanding, has to overcome some, but not the full re-
sistance, it will on so doing receive some heat, but not so much as it will give
off on compression. We should now obtain, for the uncompensated trans-
formation corresponding to the expansion, a value between zero and the one
Jlast calculated.—1864.] .
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tude N corresponding to the whole cyclical process, without its
being necessary to take into consideration those parts which are
known to be reversible.

9. If we now apply the equations (I) and (II) to the cyclical
process which occurs during a period in a thermo-dynamic
machine, it will be at once evident that, the whole quantity of
heat communicated during this period to the matter in the
machine being given, the corresponding amount of work can be
immediately determined from the first equation without its being
necessary to know the nature of the operations constituting the
cyclical process.

In an equally general manner the work may be determined
from other data by a combination of both equations.

We will assume that the quantities of heat successively im-
parted to the changing material, as well as the temperatures at
the times of reception, are given, and that only one temperature,
Ty, remains at which a certain as yet unknown quantity of heat
was imparted or, if negative, abstracted. The sum of all the
known quantities of heat shall be represented by Q,, and the
unknown quantity of heat by Q,.

We will divide the integral in equation (II) into two parts, of
which the one shall extend over the known quantity of heat Q,,
and the other over the unknown quantity Q,. In the latter part,
T having a constant value T, the integration may be immediately
effected, and as result we have '

Q,,

T,
The equation (II) thus becomes

Q,dQ Qo
f T ="
whence results

Q,=—T, j‘Q‘d—Q—To N.

Further, seeing that in our case
Q=Q,+Q,.
we have from equation (I),

1
W=1 (Q,+Q).
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Substituting the above-found value of Q, in this equation, it
becomes

W=%(Q,—T2£Q“-{P—Q—'TO.N). @

If, as a special case, the whole cyclical process is reversible,
then
N=0,
and the above equation becomes

W=%(Q1—To.j;q“%g). .

This expression differs from the preceding one only in the absence
of the term —%’ N. Now as N can only be positive, this term

must necessarily be negative ; and thus we see that, under the
above conditions with respect to the communication of heat, the
greatest possible amount of work is obtained when the whole
process is reversible ; and that every circumstance which renders
one of the operations in the cyclical process not reversible, dimi-
nishes the amount of work,—a conclusion which results easily
from a direct consideration of the subject.

The equation (2) leads to the value of the amount of work ina
manner opposite to that usually followed. The amounts of work
done in the several operations are not separately determined
and then added together, but, instead of this, the maximum of
work is first found, and the losses occasioned by the several
imperfections of the process are subsequently deducted from it.

If, with respect to the communication of heat, we introduce a
still more limited condition, and assume that the whole quantity
of heat Q, is also imparted to the body at a constant tempera-
ture T,, then the integration which embraces this quantity of
heat may also be executed, and gives

Q,
'I‘Tl,
whereby the equation (3) for the maximum of work assumes the
" form

Q, T,—T,
W=—Xl. l'l‘l e - )|

In this special form the equation has already been deduced by
William Thomson and Rankine from a combination of Carnot’s
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theorem, as modified by me, and the theorem of the equivalence
of heat and work*.

10. Before we proceed, from these considerations which apply
to all thermo-dynamic engines, to treat of the steam-engine,
we must first premise something concerning the deportment of
vapours at a maximum density.

In a memoir of mine, published as early as 1850,  On the
Moving Force of Heat,” &c.t, I have already established the
equations which show the application of the two fundamental
theorems of the mechanical theory of heat to vapours at a maxi-
mum density, and I have there employed these equations in de-
ducing several consequences. But as in my last memoir, ¢ On
& modified Form of the Second Fundamental Theorem of the
Mechanical Theory of Heat},” I proposed a somewhat different
mode of treating the whole subject, it appears preferable to me
to assume the last memoir only as known. I shall therefore
deduce those equations ence more, in a different manner, by
means of the results established in my last memoir.

It was there assumed, in order to apply the general equations
which were first established to a somewhat more special case,
that the only foreign force, acting upon the changing material,
which required consideration in determining the external work,
was an external pressure equally intense at all points of the sur-
face, and directed everywhere at right angles to the same ; and
further, that this pressure always changed so slowly, and con- .
sequently at each moment differed so little from the opposite
expansive force of the body, that in calculation the two might be
considered equal. Let then p be the pressure, v the volume,
and T the absolute temperature of the body. We introduce the
last instead of ¢, the temperature counted from the freezing-
point, because thereby the formule assume a simpler form. The
equations already established in this case are

d (dQ\_d(dQ\_, dp

dT_(%) %(EIT)‘A'FP’ -+« (D
dQ d

_dv=A.TdT—1-’§. %)

* Phil. Mag. July 1851.

+ [First Memoir of this Collection.]

1 [Fourth Memoir of this Collection.]

§ [Instead of this equation (IV),which is identical with (13a) of the Fourth
L2



148 FIFTH MEMOIR.

These equations shall next be applied to the still more special
case of vapours at their maximum density.

11. Let M be the mass of the matter whose vapour is to be
considered, and which is placed in a perfectly closed expansible
vessel. Let the part m be in a vaporous, and the rest, M —m, in
a liquid state. This mixed mass shall be the changing body to
which the foregoing equations are to be referred.

The condition of the mass, as far as it here enters into con-
sideration, is perfectly determined as soon as its temperature
T and its volume v, i. e. the volume of the vessel, are given._
For, according to hypothesis, the vapour is always in contact
with the liquid, and therefore remains at its maximum density ;
so that its condition, as well as that of the liquid, depends only
upon the temperature T. It only remains to be seen, therefore,
whether the magnitude of each of the parts in different conditions
is perfectly determined, from the condition that both parts
together exactly fill the space enclosed by the vessel. Let ¢
represent the volume of the unit of weight of vapour at its maxi-
mum density where the temperature is T, and o that of the unit
of weight of liquid, then

v=ms+ M—m)o
=m(s—o) +Mo.
The magnitude 8 never occurs hereafter except in the combina-
tion 8—a, so that we will introduce another letter for this dif-

ference, and make
CU=8—0, . . . . . . ... (D)

Memoir (p. 132), the equation (12) of that memoir may be written, which
latter at once assumes the form (12 a), there given in a note, on regarding T
a8 the absolute temperature, and introducing it into the differential coefficients
instead of the temperature estimated from the freezing-point. For the sake
of reference I will here write all three equations, and that in the following

order : 414 Q o
d_T(dv) dv(ﬁ)AdT»---.-....(a)
2E-L@H R W
ZQATZI'}“----.......(«:)

of these equations (a) expresses the first fundamental theorem, and (b) the
second fundamental theorem employed in its modified form. The equation (¢)
is obtained by combining both these theorems.—1864.]
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in consequence of which the foregoing equation becomes
v=mu+Mo, . . . . . . . . (6

v—Mo
=—— (7)
By this equation m is expressed as a function of T and v, be-
cause % and o are functions of T.
12. In order to be able to apply equations (ITI) and (IV) to:
aQ
aT
If the volume of the vessel increases by dv, then the quantity
of heat which must be imparted to the mass in order to maintain
a constant temperature will be generally expressed by
aQ
T dv
But this quantity of heat is expended solely in the vaporization
which takes place during the expansion; so that if  represents
the heat required to vaporize the unit of mass, the above quan-
tity of heat may also be represented by

and we have

. . d
our case, we must next determine the ma.gmtudes Q and —~

dm
" dv,
and we have
dQ_ dn
dv~ " dv
But according to (7),
dm _1.
dv  u’
hence
: aQ_r
'%—a.....;...(S)

Let us next assume that, whilst the volume of the vessel
remains constant, the temperature of the mass increases by dT;
then the general expression for the requisite quantity of heat
will be

aQ
dT
This quantity of heat consists of three parts : —

(1) The liquid part M —m of the whole mass suffers an incre-

ment of temperature d'T, for which, ¢ being the specific heat of

dT.
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the liquid, the quantity of heat
) : (M —m)cdT
is necessary.

() The vaporous part m will also undergo an increment of
temperature dT, but it will be thereby compressed so as still to
remain at its maximum density for the increased temperature
T+dT. For an increment of temperature dT, we will represent
by A&.dT the quantity of heat which must be imparted to the
unit of mass of vapour during its contraction, in order that at
every density it may have precisely that temperature for which
this density is a maximum. The value and even the sign of the
magnitude A is at present unknown. The quantity of heat ne-
cessary in our case will therefore be

mhdT.

(8) During the elevation of temperature, a small quantity of
liquid, represented generally by
dm
a1 9D
becomes vaporized, for which the quantity of heat

dm
T aT aT

is necessary, Herein, according to equation (7),
dn_ v—Mo du M do

—_— .t e —— ¢ —

dT ut dT wu dT
—__m du M do
T % 'dT wu'dr’
so that by substitution the last expresslon becomes
’ m du
“uartw dT) aT.

Equating the sum of these three quantities of heat and the

former expression g% dT, we obtain the equation
dQ r do r du
=ML ) +m(h—e=l. ). . . ©

138. As indicated by equation (III), the above expression for

dQ —— must be differentiated according to T, and the expression for
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dQ
daT
tudes u, g, r, ¢ and % are all functions of T a.lone, and only the
magnitude m is a function of T and v, so that

(dQ 1 dr r du
2 dT & dar - - - - (0

alm)=(——i )

or, substituting for dm its va.lue 2

according to v. The magnitude M is cdnstant the magni-

dv
d (dQ\_h—c_r du
(—l"—) TT _7 172 a_"l‘c . 0 . . (11)

By substituting the expressions given in (10), (11), and (8)
in (III) and (IV), we obtain the required equations, which re-
present the two principal theorems of the mechanical theory of
heat as applied to vapours at their maximum density. These are

dr :

dT+c h—A.u iR V)
| r=A @ ()
and from a combination of both we have

dr =Tx

dT+c —h= Fooor o (12)

14. By means of these equations we will now treat a case,
which in the following will so frequently occur, as to render it
desirable at once to establish the results which have reference
thereto.

* [These equatlons, written in the followmg order,

gT+c—h—A N C
3,;+c-h=,r,......-.....(b)
r=ATe®, . L . . (o)

R
correspond to the three equations(a), (b), (c)of the last note (p. 148). The first,
containing the quantity %, is therefore a consequence of the first fundamental
theorem, and the second follows from the modified form of the second funda-
mental theorem ; the third equation, which does not contain A, arises from a
combination of both these fundamental theorems.—1864.]
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~ Let us suppose that the vessel before considered, containing
the liquid and vaporous parts of the mass, changes its volume
without heat being imparted to, or withdrawn from, the mass.
Then, simultaneously with the volume, the temperature and
magnitude of the vaporous part of the mass will change; and
besides this—seeing that during the change of volume the
pressure of the enclosed vapour is active, which pressure during
expansion overcomes, and during contraction is overcome by an
external force—a positive or negative amount of external work
will be done by the heat which produces the pressure.

Under these circumstances, the magnitude of the vaporous part
m, the volume v, and the work W shall be determined as functions
of the temperature T.

15. It has already been shown that, in order that the volume
and temperature may suffer any infinitely small increments dv
and 4T, a quantity of heat expressed by the sum

d; di
r?'z-';- dv+ [(M—m)c+mh+rd—$]dT

must be imparted to the mass. In consequence of the present
condition, according to which heat is neither imparted to, nor
abstracted from the mass, this sum must be set equal to zero.
Accordingly, writing dm in place of

dm dm
% dv+ (ﬁ,‘ dT,
we obtain the equation
rdm+m(h—c)dT +McdT=0. . . . . (18)
But by (12),
h—c= ﬂ—_’: .
“dT T’
so that by again writing dr in the place of ;—; dT, r being a func-

tion of T alone, we have

'rder,;.d;--%’ dT+McdT=0,

or
d(mr) — %‘ dT+McdT=0%. . . . . . (14)

* (It ig manifest tlm'f the expressions in the left of the equations (13) and
(14), which are respectively equal to zero when heat is neither imparted to

y
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This equation, divided by T, becomes

d(mr) _mr aT_
T w5 8T +Mc ™
or

d(””’)+M D N ¢ )

Inasmuch as the specific heat of a liquid changes only very
slowly with its temperature, we will in future always consider
the magnitude c as constant. In this case the above equation
can be immediately integrated, and gives.

M+ Mc log T=const. ;

T

or if Ty, ,, and m, be the initial values of T, r, and m,
mr _mry_ T o o
=T, MclogTl (VII)

If » may be considered as a known function of the tempera-
ture, as through Regnault’s experiments it may be in the case of
steam, then by means of this equation m is also expressed as a
function of the temperature.

In order to give some idea of the deportment of this function,
1 have, for one particular case, collected together a few calculated
values in the following Table. For instance, it is assumed that

the mass nor abstracted from it, must in general be equated to dQ. For every
change of volume and temperature, therefore, whereby the quantity of the va-
porous part likewise changes in a corresponding manner, we have the equa-

tions
dQ =rdm+m(h—c)dT+MecdT
=d(mr) _%f dT + MedT,

the frequent applicability of which is obvious.—1864.]

# [If the constancy of ¢ be not assumed, the integral of the equation (15)
will be
: mr_mry T edT
TS, U T

1

wherein the integration indicated in the last term may be effected as soon as
¢ is given as a function of the temperature. All those equations in the sequel,
which contain an integral in whose development ¢ was regarded as a constant,
are susceptible of a similar modification. I have not thought it necessary ac-
tually to write the equations in this form, since the modification in question
is a self-evident one.—1864.]
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at the commencement the vessel contains no water in a liquid
state, but is exactly filled with vapour at a maximum density, so
that m;=M ; and that an expansion of the vessel now takes
place. If the vessel has to be compressed, then the assumption
that at the commencement it contained no liquid could not be
made, because in such a case the vapour would not remain at a
maximum density, but would become over-heated by the heat
generated through compression. During expansion, however,
not only does the vapour remain at a maximum density, but a
part of it is actually condensed ; and it is the diminution of m
consequent thereon which is exhibited in the Table. The initial

temperature is supposed to be 150° C., and the values of I—\”d— are

given which correspond to the periods when, by expansion, the
temperature is reduced to 125°, 100°, &c. . . .. As before, in
order to distinguish it from the absolute temperature T, the tem-
perature counted from the freezing-point is represented by ¢.

16. In order to express the relation which exists between the

volume v and the temperature, we' must employ the equation

(6), according to which
v=mu+Mo.

t | 150° 125° I 100° 75° 50°

25°

ogrr | o866 | o821 | o776

i3

l 1 0956

The magnitude o herein involved, which represents the volume
of a unit of weight of liquid, changes very little with the tempe-
rature; and these small changes may be the more safely neglected,
because the whole value of o is very small in comparison to  ;
we shall consequently consider o, as well as the product Mo, as
constant. The product mu therefore alone remains to be deter-
mined. For this purpose we have only to substitute the value
of r, as given in equation (VI), in equation (VII), and we obtain
2 =y, %) 1o % .. . (VII)

The differential coefficient gT which here appears, is to be con-
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sidered as known, p itself being given as a function of the tem-
perature. Hence the product mu is determined by this equation,
and by the addition of M the required value of v will also result
from it.

The same suppositions being made as before, the following

Table shows a series of values of the fraction 5'{ calculated from
1
this equation. For the sake of comparison the values of g
1
are also appended which would be obtained if the two assumptions
formerly made in the theory of the steam-engine were correct ;
that is to say, (1) that the vapour during expansion remains
without partial condensation at a maximum density ; (2) that it
follows Mariotte’s and Gay-Lussac’s laws. According to these
hypotheses, we should have

v_p T

v, p T,
t 150° 125° | 100° 75° 50° 25°
:_ 4 1-88 3'90 923 25'7 887
1
:—’1 . % 1 193 416 10231 29'7 107°'1

17. We have still to determine the work done during the
change of volume. In order to do so, we have the general
equation

W=j::’pdv. R ¢ (o)

But, considering o constant, we have from equation (6),

dv=d(mu) ;
therefore
pdv=pd(mu),
for which we may also write
pdv=d(mup) —mu -g% ar. . . . . (17
In the place of mu P e might here substitute the expression

dT
given in (VIII), and then integrate ; but the result is at once
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obtained in a rather more convenient form by the following sub-
stitution. According to (VI),

dp 1 mr ..
dT—A T ++dT;

and through the apphcatlon of equation (14), this becomes

mu d—T dT— A [d(mr) + McdT].

By means of this (17) becomes
pdv=d(mup) — [d (mr) + MedT]*;
and mtegratmg this equation, we have
W =mup—mu,p, +K [myr,—mr+Mc(T,—T)], (IX)

whence, the magnitudes mr and mu being already known from
former equations, W may be calculated.
> I have also made this calculation for the above special case,

and given the values of of the work done during expan-

¥’ ie
sion by the unit of mass, in the following Table. A kilogramme is
chosen as unit of mass, and a kilogramme-metre as unit of work.

For l the value 42355, as found by Joule, is employed .

For the sake of comparison with the numbers in the Table, it
may be well to state that when 1 kilogramme of water is eva-
porated at the temperature of 150°, and under the corresponding
pressure, the quantity of work done by the vapour during its
formation in overcoming the external counter-pressure has the
value 18700.

* [If instead of assuming o to be constant, it be thought desirable to obtain
an accurate expression for pdp, it will be necessary merely to supply the ex-
pression in the text with the additional term Mpdo.—1864.]

t -}i is the equivalent of work for the unit of heat; and the abové number

denotes, therefore, that the quantity of heat which can raise a kilogramme
of water from 0° to 1° C., when converted into mechanical work, gives an
amount equal to 423-65 kilogramme-metres.
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' t. 150° I 125° 100° ' 75° I 50° 25°

= o 11300 | 23200

35900 ’ 49300 | 63700%

18. We proceed now to the consideration of the steam-engine
itself. :
In the adjoining fig. 8, Fig. 8.
which is intended merely :
to facilitate our oversight
"~ of the whole series of
operations involved in the
working of a common
steam-engine, A repre-
sents the boiler whose
contents are maintained
by the source of heat at a
constant temperature T,.
A part of the steam passes
from the boiler to the cy- S
linder B and raises the — b N
piston a certain height. The cylinder and boiler are next dis-
connected, and the vapour contained in the former raises the
piston still higher by its own expansion. After this the cylinder
is put in communication with the space C, which shall represent
the condenser. We shall suppose the latter to be kept cold by
external cooling, and not by injected water, which, as before re-
marked, causes no essential difference in the results, and yet sim-
plifies our problem. The constant temperature of the condenser
shall be T,. During the connexion of the cylinder with the con-
denser the piston retraces the whole of its former path, and thus
all the vapour which did not immediately pass by itself into the
condenser is driven into it, and there becomes condensed. In
order to complete the cycle of operations, it is now necessary to
convey the liquid produced by condensation back again into the
boiler. This is done by means of the small pump D, whose ac-
tion is so regulated, that at every ascent of the piston just as much

* [With respect to certain formule of approximation, which have been em-
ployed by Zeuner in order more easily to calculate the results given above
and in the. Second Memoir, see the Appendiz to the present memoir. ]
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liquid is withdrawn from the condenser as entered it by the above
condensation ; and during the descent of the piston this same
quantity of liquid is forced back into the boiler. As soon as this
liquid is again raised in the boiler to the temperature T, every-
thing is once more in its initial condition, and the same series of
operations can commence again. Here, therefore, we have a
complete cyclical process.

In ordinary steam-engines the steam enters the cylinder not
only at one end, but alternately at both. But the only differ-
ence produced thereby is, that during an ascent and descent of
the piston, two circular processes take place instead of one ; and
in this case even the determination of the work for one of the
processes is sufficient, because from it the total amount of work
done during any time can be deduced *.

19. In making this determination, we shall, as is indeed usual
in such cases, consider the cylinder as impenetrable to heat, so
that we may neglect the interchange of heat which takes place
during a stroke between the walls of the cylinder and the vapour.

The mass in the cylinder can only consist of vapour at a
maximum density, together with some admixed liquid. For it is
evident from the foregoing that, during its expansion in the
cylinder, after the latter is cut off from the boiler, the vapour
cannot pass into the over-heated condition, but must, on the
contrary, be partially condensed, provided no heat reaches it
from an external source. In other operations hereafter to be
mentioned, where this over-heated state might certainly occur,
it will be prevented by the small amount of liquid which the
vapour always carries with it into the cylinder, and with which
it remains in contact.

The quantity of liquid thus mixed with the vapour is incon-
siderable; and as it is for the most part distributed throughout
the vapour in small drops, so that it can readily participate in
any changes of temperature which the vapour may suffer during
expansion, we shall incur no great inaccuracy if, in calculation,
we consider the temperature at any moment as the same through-
out the whole of the mass in the cylinder. :

Further, in order to avoid complicating our formulas too much,

* The space on one side of the piston is a little diminished by the piston-
rod, but an allogwance can easily be made for this small difference.
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we will for the present determine the total amount of work done
by the vapour pressure, without taking into consideration how
much of this work is useful, and how much is again consumed
by the machine itself in overcoming friction, and in working
any pumps, which, besides the one in the figure, may be neces-
sary to the efficiency of the machine. This part of the work may
be afterwards determined and deducted, as will subsequently be
shown.

‘With respect to the friction of the piston in the cylinder, how-
ever, we may remark, the work consumed in overcoming it can-
not be considered as totally lost. For heat is generated by this
friction, and consequently the interior of the cylinder kept warmer
than it would otherwise be, and thus the force of the vapour
increased.

Lastly, inasmuch as it is advisable first to study the actions
of the most perfect machines before examining the influence of
the several imperfections which practically are always unavoid-
able, we will add to these preliminary considerations two more
suppositions, which shall afterwards be again relinquished. First,
the canal from the boiler to the cylinder, and that from the
cylinder to the condenser, or to the atmosphere, shall be so wide,
or the speed of the machine shall be so slow, that the pressure
in the part of the cylinder in connexion with the boiler shall be
equal to that in the boiler itself, and similarly the pressure on the
other side of the piston shall be equal to the pressure in the
condenser or to the atmospheric pressure; and secondly, no
vicious space shall be present.

20. Under these circumstances, the quantities of work done
during a cyclical process can be written down, without further
calculation, by help of the results above attained; and for their
sam they give a simple expression.

Let M be the whole mass which passes from the boiler into
the cylinder during the ascent of the piston, and of it let m, be
the vaporous, and M —m, the liquid part. The space occupied
by this mass is

myu, + Mo ;
where %, is the value of u corresponding to T,. The piston is
raised therefore until this space is left free under it ; and as this
takes place under the action of the pressure p,, corresponding to
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T,, the work performed during this first operation is
W,=mu,p,+Mop,. . . . . . . (18)
The expansion which now follows is continued until the tem-
perature of the mass enclosed in the cylinder sinks from T, to a
second given value T,. The work thus done, which shall be W,
is given immediately by equation (IX), if T, be taken therein as
the final temperature, and for the other magnitudes involved in
the equation the corresponding values be substituted, thus

1
Wo=mglape—myu,p, +'K [myry—mgry+Mc(T,—Ty]. . (19)

By the descent of the piston, which now commences, the mass,

which at the close of the expansion occupied the volume
mguy+ Mo,

is driven from the cylinder into the condenser, and has to over-
come the constant pressure p,. The negative work hereby done
by this pressure is :
W= —mauopo—Map,. . . . . . (20)

Whilst the piston of the small pump now ascends, so as to
leave the free space Mo under it, the pressure p, in the con-
denser acts favourably and does the work, :

We=Mop,. . . . . . . . . . (2L)

Lastly, during the descent of this piston, the pressure p, in

the boiler must be overcome, and therefore it does the negative

work, ‘

Wg=—Mop,. . . . . . . . . (22

By adding these five magnitudes together we obtain the fol-

lowing expression for the work done by the vapour pressure, or,
as we may say, by heat, during a cyclical process :

= % [myry—mgre+Me(T, —T,)] + Mg Pa—Po)- (X)

With respect to the magnitude m,, which must be eliminated
from this equation, it will be observed that, if for u, we substl-
tute the value

Te

—
AT (ZR)s
as given in (VI), it only occurs in the combination myry, and for



THEORY OF THE STEAM-ENGINE. 161

this product we have from equation (VII) the expression
Mgrg=m,r, :-}:3 —McT, log %.
1 1

By employing this expression, therefore, we obtain an equation
the right-hand side of which contains only known quantities ;
for the masses m, and M, and the temperatures T,, T,, and T,
are assumed to be immediately given, and the magnitudes r, p,

and % are supposed to be known functions of the temperature.

21. If in the equation (X) we set T,=T,, we find the amount

of work, for the case that the machine works without expansion,
to be

W=mu (p,—p))- - - - . . . (23)

If, on the contrary, we suppose the expansion to be continued

until the vapour sinks from the temperature of the boiler to that of

the condenser,—which case cannot of course be strictly realized,

“but rather forms a limit which it is desirable to approach as much
as possible,—we have only to set T,=T,, when we obtain

W:=%[mlrl_morﬁMc(T,-To)]. CL (24

Eliminating mgry by means of the equation before given, in
which we must also set T,=T,, we have

WI=%[m,r,TAT‘Ii+Mc(T,—To+Tolog%)T- (XT)

* The above equations, representing the amount of work under the two
simplifying conditions introduced at the close of Art. 19, were developed by me -
some time ago, and publicly communicated in my lectures at the Berlin Uni-
versity as early as the summer of 1854, Afterwards, on the appearance, in
1855, of the Philosophical Transactions for the year 1854, I found therein a
memoir of Rankine’s, “ On the Geometrical Representation of the Expansive
Action of Heat, and the Theory of Thermo-dynamic Engines,” and was sur-
prised to learn that at about the same date Rankine, quite independently, and
in a different manner, arrived at equations which almost entirely agreed with
mine, not only in their essential contents, but even in their forms; Rankine,
however, did not take the circumstance into consideration, that, when enter-
ing the cylinder, a quantity of liquid is mixed with the vapour. By the earlier
publication of this memoir I lost, of course, all claim to priority with respect to
this part of my investigations ; nevertheless the agreement was so far satisfac-
tory as to furnish me with a guarantee for the accuracy of the method I had
employed,

M
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22. If to the foregoing equation we give the form
TAT:I‘°+Mc(T Ty . A(l +T - log 7’ $°) . (25)
then the two products Mc¢(T,—T,) and m r, whxch appear therein
together represent the quantity of heat furnished by the source
of heat during a cyclical process. For the first is the quantity
of heat which is necessary to raise the temperature of the liquid
mass M, coming from the condenser, from T, to T,; and the
latter is the quantity consumed in vaporizing the part m, at the
temperature T,. Asm, is but little smaller than M, the last
quantity of heat is far greater than the first.

In order more conveniently to compare the two factors with
which these two quantities of heat are multiplied in equation (25),
we will alter the form of the one which multiplies M¢(T,—T,).
If, for brevity, we make

T
W =mr,.

z=1_"0 . . . . . . . . (26)
Tl
then
T,-T, =z’
and
To_
Tl—l 2,
so that we have
1+ _Tolog,—r— =1+ e log (1—2)
oy l=zfz 22 22 )
f~..fvl— 7 \gt3+ 3+&c
2t z"
=1 2+2 3 +3 4+8zc...
Hence the equation (25) or (XI) becomes
Wi=mpr .2 +Mec(T,—Ty) 5(—1—+‘—+i+&c D) @
TUTA “*A\l1.2'2.3 " 3.4

It is easy to see that the value of the infinite series, which
distinguishes the factor of the quantlty of heat Mc¢(T, To) from
that of the quantity of heat m,r, varies from £ to 1, as z increases
from O to 1.

23. In the case last considered, where the vapour by expan-
sion cools down to the temperature of the condenser, we can
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easily obtain the expression for the work done in another man-
ner, without considering the several operations which constitute
the cyclical process.

For in this case every part of the cyclical process is reversible.
We can imagine that the vaporization takes place in the con-
denser at the temperature T,, and that the mass M, of which m,
is vaporous and M —m, liquid, enters the cylinder and raises the
piston ; further, that by the descent of the piston the vapour is
first compressed until its temperature is raised to T, and then
that it is forced into the boiler ; and lastly, that by means of the
small pump the mass M is again conveyed in the liquid form
from the boiler to the condenser, and allowed to cool there to

~ the original temperature T,. The matter here passes through

the same conditions as before, but in an opposite order. All
communications and abstractions of heat take place in opposite
order, but in the same quantity and at the same temperature of
the mass; all quantities of work have opposite signs, but the
same numerical value.

Hence it follows that in this case no uncompensated trans-
formation is involved in the cyclical process, and we must con-
sequently set N=0 in equation (2), by which we obtain the fol.
lowing equation,—already given in (3), with the exception that
‘W' is here put in the place of W,—

W=l (Q,—Toj; haQ)

In our present case, Q, denotes the quantity of heat imparted to
the mass M in the boiler, that is,
Ql =mr + Mc(Tl - o) .
.. . 2dQ o
In determining the integral T the two quantities of heat
Me(T,—T,) and m,r, contained in Q, must be separately con-
sidered. In order to execute the integration extending over the
first quantity, we have but to give to the element of heat dQ the
form McdT, and this part of the integral is at once expressed by
Mcj;::'dT—T=Mc log%‘).
During the communication of the latter quantity of heat, the
' M2
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temperature is constant and equal to T,, and consequently the
part of the integral referring to this quantity is simply

mr
T
~ By substituting these values, the foregoing expression for W'
becomes
Wie —lx[mlrl+Mc(Tl—To) ~T, %1:—-1+Mc log %)]
=% I:mlrl T-L,Fl—T‘-’ +Mec (T1 —To+T, log ',—f,i:)] H
and this is the same expression as that contained in equation (XI),
which was before obtained by the successive determination of the
several quantities of work done during the cyclical process.

24. From this it follows that, if the temperatures at which the
matter manifesting the action of heat receives heat from the source
of heat, or imparts heat to some external object, are considered as
previously given, then the steam-engine, under the conditions
made in deducing the equation (XI), is a perfect machine ; that
is to say, for a certain amount of imparted heat it furnishes as
much work as, according to the mechanical theory of heat, is
possible at those temperatures.

It is otherwise, however, when those temperatures, instead of
being given, are also considered as a variable element, to be taken
into consideration in judging the machine.

One uncompensated transformation not included in N, which,
with respect to the economy of heat, causes a great loss,
arises from the fact that the liquid, during the processes of heating
and evaporation, has far lower temperatures than the fire, and
consequently the heat which is imparted to it must pass from a
higher to a lower temperature. The amount of work which can
be produced by the steam-engine from the quantity of heat
m,r;+Mc(T,—Ty) =Q,, is, as may be seen from equation (27),
somewhat smaller than

9{1 TI_TO,

A" T,
If, on the contrary, we could impart the same quantity of heat
Q, to a changeable body at the temperature of the fire, which
may be T', whilst the temperature during the abstraction of heat
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remained T, as before, then by equation (4) the greatest possible
amount of work to be gained in such a case would be

Q, T'-T,

A" T

In order to compare the values of these expressions in a few

examples, let the temperature ¢, of the condenser be fixed at
50° C., and for the boiler let us assume the temperatures 110°,
150°, and 180° C., of which the two first correspond approxi-
mately to the low- and the ordinary high-pressure machines
respectively, and the last may be considered as the limit of the
temperatures hitherto employed in steam-engines. In these
cases the fraction dependent upon the temperatures has the fol-
lowing values :—

.

l t. l 110° : 150 180

I-T, o157 0236 0287
T,

whereas the corresponding value for the temperature of the fire
¢, assuming the latter to be only 1000° C., is 0:746.

25. We may here easily discern, what has already been ex-
pressed by S. Carnot and several other authors, that in order to
render machines driven by heat more efficient, attention must be
particularly directed towards the enlargement of the interval of
temperature between T, and T,

For instance, machines driven by heated air will only attain a
decided advantage over steam-engines when a method is found
of allowing them to work at a far higher temperature than steam-
engines, in consequence of the danger of explosions, can bear.
The same advantage, however, could be attained with over-heated
vapour ; for as soon as the vapour is separated from the liquid,
it is just as safe to heat it further as to heat a permanent gas.
Machines employing vapour in this condition may possess many
of the advantages of the steam-engine besides those of air-ma-
chines, so that a practical improvement may sooner be expected
from these than from air-machines.

In the machines above mentioned, where, besides water, a
second more vaporizable substance was employed, the interval
T, —T, is increased by lowering T,. It has already been sug-
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gested that this interval might be increased in a similar manner
on the upper side, by the addition of a third liquid less vapor-
izable than water. In such a case the fire would be immediately
applied to the evaporation of the least vaporizahle of the three
substances, the condensation of this to the evaporation of the
second, and the condensation of the second to the evaporation of
the third. Theoretically, there is no doubt that such a combi-
nation would be advantageous; the practical difficulties, how-
ever, which would have to be overcome in realizing such a scheme
cannot of course be predicted.

26. Besides the above-mentioned defect, arising out of the
very nature of our ordinary steam-engines, these machines suffer
from many other imperfections, which may be ascribed more
immediately to defective construction.

One of these has already been considered in the foregoing
development, and allowed for in equation (X), that is to say, the
expansion cannot be continued nearly far enough to allow the
vapour in the cylinder to reach the temperature of the condenser.
If, for example, we assume the temperature of the boiler to be
150°, and that of the condenser to be 50°, then the Table in
Art. 16 shows that, for the above purpose, the expansion must be
prolonged to twenty-six times the original volume ; whereas in
practice, owing to many inconveniences. attending great expan-
sions, three or four, and at most ten times the original volume
is attained. ‘

Two other imperfections, however, are expressly excluded in
the foregoing : these are, first, that the pressure of the vapour in
one part of the cylinder is smaller than in the boiler, and in the
other part greater than in the condenser ; and secondly, the pre-
sence of vicious space.

‘We must consequently extend our former considerations so as
to include these imperfections.

27. The influence exercised by the difference ‘of pressure in
the boiler and cylinder upon the work performed, has hitherto
been most completely treated of by Pambour in his work on the
Théorie des Machines a Vapeur. Before entering upon the sub-
ject myself, therefore, I may be allowed to state the most essen-
tial parts of his treatment, altering only the notation, and neg-
lecting the magnitudes which have reference to friction. By
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this means it will be easier, on the one hand, to judge how far
this treatment is no longer in accordance with our more recent
knowledge of heat, and, on the other, to add to it the new me-
thod of treatment which, in my opinion, must be substituted for
the former one.

28. The two laws which, as was before mentioned, were for-
merly very generally applied to steam, form the basis of Pam-
bour’s theory. The first of these is Watt’s law, according to
which the sum of the latent and sensible heat is constant.
From this law it was concluded that when a quantity of steam
at its maximum density is enclosed within a surface impenetrable
to heat, and the volume of the enclosing space is either increased
or diminished, the steam will neither become over-heated nor
partially condensed, but will remain precisely at its maximum
density ; and it was further assumed that this would take place
quite independently of the manner in which the change of vo-
lume occurred, whether thereby the steam had, or had not, to
overcome a pressure corresponding to its own expansive force.
Pambour supposed that the steam in the cylinder of a steam-
engine deported itself thus; and at the same time he did not
assume that the particles of water, which in this case are mixed
with the steam, could exert any appreciable influence.

Further, in order to establish a more accurate relation between
the volume and the temperature, or the volume and the pressure
of steam at a maximum density, Pambour applied, secondly,
Mariotte’s and Gay-Lussac’s laws. If, with Gay-Lussac, we
assume the volume of a kilogramme of steam at 100° C., and
at its maximum density, to be 1-696 cubic metres, under a pres
sure of one atmosphére, which latter amounts to 10,333 kilo-
grammes on every square metre, then from the above law we
obtain the equation

10333 273+¢

v=1696 . G

(28)

where, with reference to the same units, v and p represent the
volume and the pressure corresponding to any other tempera-
ture 2. Herein it is only necessary to substitute in place of p
the values given in the tension series in order to have, according
to the above assumption, the proper volume for each temperature.
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29. In order, however, to be able conveniently to calculate
the value of the integral
fpdv,

which plays an important part in the formula for the work done
by a steam-engine, it was necessary to find the simplest possible
formula between v and p alone,

If, by means of the ordinary empirical formule for p, the
temperature ¢ were eliminated from the above equation, the
results would prove to be too complicated; hence Pambour
preferred forming a special empirical formula for this purpose,
to which, according to the proposal of Navier, he gave the fol-
lowing general form :—

B

”‘pr’ P 2¢)]
wherein B and b are constants. He then sought to determine
these constants, so that the volumes calculated from this for-
mula might agree as nearly as possible with those calculated
from the foregoing one. As this could not be done with suffi-
cient accuracy, however, for all the pressures which occur in
steam-engines, he established two different formula for machines
with and without condenser.

The first of these was

20000
Boo+y - (29a)
which agrees best with the above formula (28) between § and 3}
atmospheres, but is also applicable for a somewhat wider in-
terval, from about 4 to 5 atmospheres.

The second, for machines without condensers, is

_ 21232
v—m, . . . . . - (29 b)

which is most correct between 2 and 5 atmospheres, though the
range of its applicahility extends from about 1} to 10 atmo-
spheres. :

30. The magnitudes which depend upon the dimensions of
the steam-engine, and enter into the determination of the work,
shall be here, somewhat differently from Pambour’s method,

=
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represented in the following manner. Let ¢’ be the whole space
left free to the vapour during a stroke in the piston, the vicious
space being also included. Let the vicious space form a frac-
tional part e of the whole space, so that this space itself will
be represented by ev’, and that described by the surface of the
piston by (1—e¢) /. Further, let the part of the whole space
left free to the vapour up to the moment of disconnecting the
cylinder and boiler (also inclusive of vicious space) be repre-
sented by ev’. Consequently the space described by the surface
of the piston during the entrance of the vapour will be expressed
by (e—e)v’, and that described by it during expansion will be
(1—e) v'.

In order to determine, in the next place, the amount of work
done during the entrance of the vapour, the pressure acting in
the cylinder during this time must be known. This is at any
rate smaller than the pressure in the boiler, otherwise no influx
of vapour could occur; but the magnitude of the difference
cannot in general be stated; for it depends not only upon the
construction of the engine, but also upon the engine-driver,
how far he has opened the valve in the tube leading from the
boiler, and with what velocity he drives the machine. These
things being changed, the above difference may vary between
wide limits. Further, the pressure in the cylinder need not be
constant during the whole time of influx, because the velocity
of the piston may vary, as well as the magnitude of the influx
orifice left free by the valve or the slide.

With respect to the last circumstance, Pambour assumes that
the mean pressure to be brought into calculation in determining
the work may, with sufficient accuracy, be set equal to that
which exists in the cylinder at the end of the influx, and at the
moment of disconnexion from the boiler. Although I do not
think it advisable to introduce such an assumption—which is
only adopted for numerical calculation in the absence of more
certain data—at once into the general formulz, yet here, whilst
explaining his theory, I must adopt his method.

Pambour determines the pressure existing in the cylinder at
the moment of disconnexion by means of the relation, esta-
blished. by him, between volume and pressure ; assuming at the
same time that the quantity of steam which passes from the
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boiler into the cylinder in a unit of time, and therefore the
quantity which passes during a stroke of the piston, is known
from special observations. As before, we will represent by M
the whole mass which enters the cylinder during a stroke, and
by m the vaporous part of the same. As this mass, of which
Pambour only considers the vaporous part, fills the space ev' at
the moment of disconnexion, we have, according to (29), the
equation

y_m. B

=i7r

where p, represents the pressure at the same moment. From
this equation we deduce

p,=’%,§—b. G )
‘ Multiplying this magnitude by (¢—e)v/, the space described
by the surface of the piston up to the same moment, we obtain
the following expression for the first part of the work :—

Wl=m.B.e%€-v’(e—e)b. . . . (8D

The law according to which the pressure changes during the
expansion which now follows, is also given by equation (29).
If at any moment v represents the variable volume, and p the
corresponding pressure, then

_m.B

=—==b.

v
This expression must be substituted in the integral

j‘pdv 5

and the integration effected between the limits v=ev' and v=1';
whence, as the second part of the work, we obtain

W,=mB.log —d/(1—e). . . . (32)

In order to determine the negative work done by the reacting
pressure during the descent of the piston, this reaction must
itself be known. Without at present inquiring into the relation
which exists between the reaction and the pressure in the con-



THEORY OF THE STEAM-ENGINE. 171

denser, we will represent the mean reaction by p,, so that the
work done by it will be expressed by
Wy=—v/(1—€)pp. - . . . . . (33)

There yet remains the work necessary to convey the quantity
M of liquid back again into the boiler. Pambour has not sepa-
rately considered this work, but has included it in the friction
of the machine. As I have included it in my formulee, however,
in order to have the cycle of operations complete, I will also
here add it for the sake of easier comparison. As shown by
equations (21) and (22), established in a former example, this
work will on the' whole be expressed by

W,=—Mo(p,—po), - - - . . (34)

where p, and p, respectively represent the pressures in the boiler
and condenser. This expression, it is true, is not quite correct
for our present case, because by p, we do not understand the
pressure in the condenser itself, but in the parts of the cylinder
in communication with the condenser. Nevertheless we will
retain the expression in its present form, for owing to the small-
ness ot o, the whole expression has a value scarcely worth con-
sideration ; and the inaccuracy, being again small in comparison
to the value of the expression itself, may with still greater im-
punity be disregarded.

By adding these four separate amounts of work together, we
find the whole work done during the cyclical process to be

W’=mB(e:—ff+log§-)—v’(l —€) (b+py) —Mao(p,—p,). . (35)

31. If, lastly, we wish to refer the work to the unit of weight
of vapour instead of to a single stroke, during which the quan-
tity m of vapour acts, we have only to divide the foregoing value

by m. We will put Zin place of the fraction %, which expresses

the relation which the whole mass entering the cylinder bears to
the vaporous part of the same, and whose value is consequently

a little greater than unity; V in place of the fraction ,%’ or the
whole space offered to the unit of weight of vapour in the cylin-

1 .
der; and W in place of the fraction % , or the work correspond-
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ing to the unit of weight of vapour. We thus obtain
- 1
WaB(2 +log,) - V(1) (b-+p)—la(p—p)- - (XTI

Only one term of this equation depends upon V, and it con-
tains V as factor. As this term is negative, it follows that the
work which we can obtain from the unit of weight of vapour is,
all other circumstances being the same, greatest when the vo-
lume offered to the vapour in the cylinder is smallest. The
least value of this volume, which we may approach more and
more although we may never quite reach, is that which is found
by assuming that the machine goes so slowly, or that the influx
canal is so wide, that the same pressure p, exists in the cylinder
as in the boiler. This case therefore gives the maximum of
work. If with equal influx of vapour the velocity of motion is
greater, or with equal velocity of motion the influx of vapour is
smaller, we obtain from the same quantity of vapour a less
quantity of work.

32. Before we now proceed to consider connectedly the same
series of processes according to the mechanical theory of heat,
it will be best to submit one of the same, which requires especial
investigation, to a separate treatment in order at once to esta-
blish the results which have reference thereto. I refer to the
entrance of vapour into the vicious space and into the cylinder,
when it has there to overcome a smaller pressure than that with
which it was forced out of the boiler. In this investigation I
can proceed according to the same principles as those which
I have employed in a former memoir* when treating similar
cases.

* “Ueber das Verhalten des Dampfes bei der Ausdehnung unter verschie-
denen Umsténden ” [Second Memoir of this Collection]. With reference to
this memoir, and fo a notice connected therewith, which appeared in the
Philosophical Magazine, Helmholtz, in his report published in the Fort-
schritte der Physik, by the Physical Society of Berlin (years 1850 and 1851,
p- 582), is of opinion that the principle is in many points incorrect. I have
not, however, been able to understand the reasons he adduces in support of
this opinion. Views are ascribed to me which I never held, and, on the
other hand, theorems enunciated which I never disputed, and which, indeed,
partially constitute the basis upon which my own researches in the mecha-
nical theory of heat are founded; at the same time so great a generality is
maintained throughout, that I found it impossible to recognize how far those
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The vapour from the boiler first enters the vicious space, here
compresses the vapour of small density which still remains from
the former stroke, fills up the space thus becoming free, and
then presses against the piston, which, in consequence of its
assumed comparatively small charge, recedes so quickly that the
vapour cannot follow it quickly enough to reach the same den-
sity in the cylinder as it had in the boiler.

If saturated vapour alone issued from the boiler, it must under
such circumstances become over-heated in the cylinder, for the
vis viva of the entering ‘mass is here converted into heat ; as the
vapour, however, carries with it some finely divided drops of
water, a part of the latter will be evaporated by the surplus heat,
and thus the remaining vapour will be maintained in its satu-
rated condition. :

‘We must now consider the following problem :—Given, first,
the initial condition of the whole mass under consideration, viz.
that which was previously in the vicious space, as well as that
more recently arrived from the boiler ; secondly, the magnitude
of the work done by the pressure acting upon the piston during
the entrance of the wapour; and thirdly, the pressure in the
cylinder at the moment of cutting off the same from the boiler :
to determine how much of the mass in the cylinder at this moment
i3 vaporous.

83. Let p be the whole mass in the vicious space before the
entrance of the fresh vapour, and, for the sake of generality, let
us suppose that the part y, of it is vaporous and the rest liquid.
For the present let p, and T, represent respectively the pressure
of this vapour and its corresponding absolute temperature, with-
out implying, however, that these are exactly the same values as
those which refer to the condenser. As before, p, and T, shall
be the pressure and temperature in the hoiler, M the mass
issuing from the boiler into the cylinder, and m, the vaporous

views ought to follow from my words, and these theorems contradict my con-
clusions, I do not therefore feel myself called upon to defend my former
researches against this censure. As the following development, however,
rests precisely upon the same views which before served me, Helmholtz will
probably again find the same inaccuracy of principle. In such a case I shall
look forward to his objections, and request him merely to enter somewhat
more specially into the subject.
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part of the latter. As we have already remarked, the pressure
upon the piston during the entrance of the vapour need not be
constant. The mean pressure p/; may be defined as that by
which the space described by the surface of the piston, during
the entrance of the vapour, must be multiplied in order to obtain
the same work as is actually done with the variable pressure.
Further, let p, and T, be the pressure and corresponding tem-
perature in the cylinder at the moment of cutting it off from
the boiler ; and lastly, m, the magnitude to be determined, that
is to say, the vaporous part of the whole mass M + x4 now in the
cylinder.

To determine this magnitude, let us conceive the mass M+ p
reduced in any manner to its original condition. For instance,
thus : let the vaporous part m, be condensed in the cylinder by
depressing the piston, whereby we shall suppose that the latter
can also enter the vicious space. At the same time let heat be
constantly withdrawn from the mass in such a manner that the
temperature T, may remain constant. Then of the whole liquid
mass, let the part M be forced back into the boiler, where it may
assume its original temperature T,. By this means the condi-
tion of the mass within the boiler is the same as it originally
was, for of course it is of no importance whether precisely the
same mass m,, which was before vaporous, is again so now, or
whether another equally great mass has taken its place*. With

* [In fact at the end of the operation there is in the boiler just as much
liquid water and just as much steam, both at the temperature T, as there
was at the beginning ; so that the original condition, so far as is necessary
for our consideration, is reestablished ; for we are concerned solely with
the magnitudes of the vaporous and of the liquid portions of the whole mass,
and have not to inquire which of the several molecules there present
belong to the vaporous, and which to the liquid portion. If it were re-
quired that exactly the same molecules should constitute the vaporous por-
tion at the end, as at the beginning of the operation, it would merely be
necessary to assume, first, that the water forced back into the boiler is not
only equal in quantity to that which originally quitted it, but that this water
consists of the same molecules ; and secondly, that of this water, after it has
attained the temperature T,, the formerly vaporous portion m, again va-
porizes, an exactly equal quantity of that already present being precipitated.
For this purpose, of course, no heat need be imparted to, or withdrawn from
the total mass in the boiler; since the heat consumed in evaporation, and
that generated by precipitation, would compensate each other.—1864.]
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respect to the remaining part u, let it be at first cooled in the
liquid state from T, to T,, and at this temperature let the part
Ko become vaporous, to do which the piston must recede so that
this vapour can again occupy its original volume.

34. In this manner the mass M+ has gone through a com-
plete cyclical process, to which we may apply the theorem, that
the sum of all the quantities of heat received by the mass during
a cyclical process must be equivalent to the whole amount of
external work thereby performed.

The following quantities of heat have been successively con-
sumed :—

(1) To raise the temperature of the mass M in the boiler from
T, to T,, and at the latter temperature to evaporate the part m,,

mr,+Mec(T,—T,).
(2) To condense the part m, at the temperature T,,
—mgry.

(8) To cool the part u from T, to T,

—pc(T,—T,).
(4) To evaporate the part i, at the temperature T,,

HoTor
Hence the total quantity of heat is
Q=myr,—myry+Mec(T,—Ty) + poro—ne(T,—Tp). . (36)

The quantities of work may be found as follows :—

(1) In order to find the space described by the surface of the
piston during the entrance of the vapour, we know that at the
end of that time the whole mass M + x4 occupies the space

. myu,+ (M +p)o.
From this we must deduct the vicious space. As at the com-
mencement, this was filled by the mass u, of which u, was vapo-
rous, at the temperature T, its volume is
Holto+ pio.
Deducting this from the foregoing magnitude, and multiplying
the difference by the mean pressure p',, we have for the first

amount of work,
(mgug + Mo —l"o“o)P’ 1°
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(2) The work expended in condensing the mass m, is

— MUy Py
(8) The work expended in forcing back the mass M into the
boiler is
—Mop,.
(4) The work expended in evaporating the part u, is
HotoPo-
By adding these four magnitudes, we obtain for the whole work
W the following expression :—

W=mu,(p',—p)) —Ma (p,—p') —noto(p/—po). - (87)
If in the equation (I), which was
Q=A.W,

we substitute the values of Q and W thus found, and then bring
the terms involving m, to one side of the equation, we have
my[ry+ A, (p',—py) ] =myr, + Me(T, —T,) + poro—pe(T,—Ty)

+Apguy(p',—po) + AMa(p,—p')). . . . . . (XII)
By means of this equation the magnitude m, is expressed in
terms of other magnitudes, all of which are supposed to be
given.

35. If the mean pressure p', were considerably greater than
the final pressure p,, it might happen that the value of m, would
be less than m, + p,, which would denote that a part of the vapour
originally present had become condensed. This would be the
case, for instance, if we were to suppose that, during the time
the vapour was entering the cylinder, the pressure there was
nearly equal to that in the boiler, and that by the expansion of
this vapour already in the cylinder, the pressure ultimately sunk
to the smaller value p,.  On the contrary, if p', were but a little
greater, or indeed smaller than p,, then for m, we should find a
value greater than m +py, The latter ought to be considered
as the rule in steam-engines, and amongst others it holds for the
special case of p/, =p, assumed by Pambour.

‘We have thus arrived at results which differ essentially from
Pambour’s views. Whilst he assumes that the two different
kinds of expansion which successively take place in the steam-
engine are governed by one and the same law, according to which
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the original quantityof vapour is neither increased nordiminished,
but always remains exactly at its maximum density, we have found
two different equations which point to different deportments. By
the equation (XIII), fresh vapour must be produced by the first
expansion during the entrance of the steam; and according to
the equation (VII), a part of the then existing vapour must
become condensed when the further expansion takes place, after
disconnecting the cylinder and boiler, during which time the
work done by the vapour corresponds to its full expansive
force. :

As these two opposite actions, consisting of an increase and a
diminution of vapour, which must also exercise opposite influ-
ences on the work performed by the machine, partially cancel
one another, the ultimate result may, under certain circumstances,
be approximately the same as that to which Pambour’s simpler
assumption leads. 'We must not, however, on this account neg-
lect to consider this difference when once established, especially
if we wish to ascertain in what manner a change in the construc-
tion or driving of the steam-engine will affect the magnitude of
its work.

86. According to what was said in Art. 8, we can easily deter-
mine the uncompensated transformation which occurs in the ex-
pansion by referring the integral contained in the equation

aQ
N=-— Tr—
to the several quantities of heat expressed in Art. 84.

The quantities of heat m,r,,—m,r,, and puyr, are imparted at
the constant temperatures T, T,, and Ty, so that these parts of
the integral are, respectively,

m,r m,r. HoTo

—,ll":‘, b ,]2:‘—:, and -,-I‘:’.
The parts of the integral arising from the quantities of heat
Mc(T,—T,) and—puc(T,~T,), are found, by the method adopted
in Art. 23, to be

T T
Mc log ! and —puc log 2.
¢ log ! and —pic log 2

By putting the sum of these magnitudes in place of the above
N
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integral, we obtain for the uncompensated transformation the
value
myr,

=" M M logii— P00 4 e log A2
N= Tl T, Mec IOgT, T, + pc log T - (88)

37. We can now return to the complete cyclical process which
occurs in an acting steam-engine, and consider the several parts
thereof in the same manner as before.

The mass M, of which the part m, is vaporous and the rest
liquid, issues from the boiler, where the pressure is supposed to
be p,, into the cylinder. As before, the mean pressure acting
in the cylinder during this time shall be p',, and the final pres-
sure p,.

The vapour now expands until its pressure sinks from p, to a
given value pg, and consequently its temperature from T, to T.

After this the cylinder is put in communication with the con-
denser, where the pressure is p,, and the piston returns through
the whole of the space it has just described. When the motion
is somewhat quick, the reaction which it now experiences will
be somewhat greater than p,; to distinguish it from the latter
value, we will represent the mean reaction by p/,,.

Similarly, the pressure of the vapour which remains in the
vicious space after the piston’s motion is completed will not ne-
cessarily be equal either- to p, or to p'), and must consequently
be represented by another symbol p",. It may be greater or less
than p'y, according as the communication with the condenser is
cut off somewhat before, or somewhat after the conclusion of the
piston’s motion ; for in the first case the vapour would be a little
further compressed, whereas in the latter case it would have
time to expand a little more by pa.rtlally passing into the con-
denser.

Lastly, the mass M is conveyed back from the condenser into
the boiler, when, as before, the pressure p, acts favourably, and
the pressure p, has to be overcome.

38. The expressions for the amounts of work done in these
processes will be quite similar to those in the simpler case before
considered, except that a few simple changes in the indices of
the letters will have to be made, and the magnitudes which refer

to the vicious space will have to be added. In this manner we
obtain the following equatioris.
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During the time vapour is passing into the cylinder, we have,
according to Art. 34, "
W, =(mu,+Mo—pglo)p,, . . . . (39)
where «' is simply substituted for u,.
By putting M + 4 in place of M, we have, from equation (IX),
during the expansion from the pressure p, to the pressure p,,

1
W,=mguspg—m,u,p, + A [myr,—mgra+ (M +p)c(T,—Ts)]. (40)

During the return of the piston, when its surface is traversing
the whole space occupied by the mass M+ x at the pressure pg,
diminished by the vicious space pu'y+ uo, we have
Wi=— (mgu3+ Mo—pgo)ply. . . . (41)
Lastly, during the conveyance of the mass M back into the
boiler, we have
W,=—Mo(p,—pp).- - - . . . (42

Consequently the whole work done is
1
W= [mry—myry + (M+ ) o(Ty—Ty)] +mati (¢, ~p) } 48)

+ mgug(ps—p'o) —Ma (p, —p', +'o—po) — koo (P!, —Po)
* The masses m, and mg which are here involved, are given by
the equations (XIII) and (VII), provided in the former we put
'oin the place of p,, and change the magnitudes T, ,, and v, in a
similar manner, and in the latter we substitute M+ for M.
Nevertheless, although it is possible to eliminate m, and mg by
means of these equations, I will here merely replace m, by its
value; it being more convenient in calculation to consider the
equation which thus results in connexion with the equations
(XIII) and (VII) before obtained. The following, therefore,
is the most general form of the system of equations which serve
to determine the work done by the steam-engine :—

1 3
W'=3 [m,r,—myry+Mc(T, — Ts) + por'o— pe(Tg—T"0)]
+ mgug (pg—p'o) + oo (7o —p"o) —Moa (p'y—p0),

mg[ra+ Aug(p',—pg) 1 =myr, + Me (T, —Ty) + py’'y
— pe(To=T"5) + Apg'y (¢!, —p"o) + AMa(p,—7p'),

mgrs _ mory Ty )
M, =T, + (M + u)clog T,
N2

L(XIV)
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39. Before endeavouring to render these equations more con-
venient for application, it may not be without interest to show
how, for an imperfect steam-engine, the same expressions may
be arrived at by a method before alluded to, and opposite to the
one just applied. In order to avoid prolixity in this digression,
however, we will consider two only of the imperfections provided
for in the above equations, viz. the presence of vicious space, and
the existence of a smaller pressure in the cylinder than in the
boiler during the time that the vapeur is passing into the former.
On the other hand, we shall assume the expansion to be com-
plete, therefore T3=T,, and the magnitudes T,, T, and T"; to
be equal. '

In this determination we shall have to employ the equation
(2), to which we will give the following form :—

1dQ\ T,
w=z(, T*'F ) AN

The first term on the right-hand side of this equation denotes
the work which could be obtained from the employed quantity
of heat Q, which in our case is represented bym r, + M¢(T,—T,),
did not the two imperfections exist. This term has been already
calculated in Art. 23, and found to be

1 m.r T
X[mlrl + Mc('r,--'1'(,)—'1‘0(-%1-I +Mclog 'i‘f,)] .

The second term denotes the loss of work caused by those two
imperfections. The magnitude N contained therein has been
calculated in Art. 36, and is represented by the expression in
equation (38).

Substituting these two expressions in the foregoing equation,
we have

[m r— mgrg+Mc(T —Ty—M +/.¢)c'1‘olog$—:+por°].

That this equation actually agrees with the equations (XIV),
may be easily seen by using the third equation in (XIV) in
order to eliminate mg from the first, and then setting T3=T,
=T,=T",.

In the same manner we might make allowance for the loss of

(44)
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work octasioned by incomplete expansion. To do so it would
only be necessary to calculate the uncompensated transformation
which occurs during the passage of the vapour from the cylinder
to the condenser, and to include it in N. By this calculation,
which need not here be executed, we obtain precisely the expres-
sion for the work which is given in (XIV).

40. In order next to be able to use the equations (XIV) in
a numerical calculation, it will be necessary first to determine the
magnitudes 2',, p'o, and p", more precisely.

With respect to the manner in which the pressure in the
cylinder varies during the entrance of the steam, no general law
can be instituted, because the entrance canal is opened and closed
in such a variety of ways in different machines. Hence no defi-
nite general value can be found for the relation between the
mean pressure z',, and the final pressure p,, as long as the latter
is strictly interpreted. Nevertheless this will be possible if the
signification of p, be slightly changed.

The cylinder and boiler cannot of course be instantaneously
disconnected ; more or less time is always required to move the
necessary valves or slides, and during this interval the vapour in
the cylinder expands a little, because the orifice being diminished,
less steam enters than that which corresponds to the velocity
of the piston. In general, therefore, we may assume that at the
end of this time the pressure is already somewhat smaller than
the mean pressure p',.

But if, in_calculation, instead of restricting ourselves to the
end of the time necessary for closing the entrance canal, we allow
ourselves a little freedom in fixing the time of disconnexion, we
shall be able to obtain other values for p,, We can imagine the
point of time so chosen, that if, previously thereto, the whole
mass M had entered, the pressure at that moment would have
been precisely equal to the mean pressure calculated up to the
same time. By substituting this instantaneous disconnexion
in place of the actual gradual one, we incur but an insignificant
error, as far as the amount of work is concerned. We may
therefore, with this modification, adopt Pambour’s assumption,
that p',=p,, reserving, however, for special consideration in
each particular case the proper determination, according to the
existing circumstances, of the moment of disconnexion.

v
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" 41. With respect to the reaction p/ at the return of the piston,

it is evident that, other circumstances being the same, the dif-
ference p',—p, will be smaller the smaller p, is. In machines
with a condenser, therefore, it will be smaller than in machines
without a condenser, where p, is equal to one atmosphere. In
locomotives, the most important machines without condensers,
there is usually a particular circumstance tending to magnify
this difference. The steam, instead of being allowed to pass off
into the atmosphere through a tube as short and wide as pos-
sible, is conducted into the chimney and there made to issue
through a somewhat contracted blowpipe in order to create an
artificial draft.

In this case an exact determination of the difference is essen-
tial to the accuracy of the result. In doing so, regard must be
had to the fact, that in one and the same machine the difference
is not constant, but dependent upon the velocity with which it
works; and the law which governs this dependence must be
ascertained. Into these considerations, and into the investiga-
tions which have already been made upon the subject, I will not
here enter, however, becanse they do not concern the present ap-
plication of the mechanical theory of heat.

In machines where the vapour from the cylinder is not thus
employed, and particularly in machines with a condenser, g/, dif-
fers so little from p,, and therefore can change so little with the
working velocity, that it is sufficient for most investigations to
assume a mean value for p/.

Seeing, further, that the magnitude p, occurs only in one term
of the equations (XIV), which term involves the factor o, it can
have but a very small influence on the amount of work ; so that
without hesitation we may put, in place of p,, the most probable
value of p',.

As already mentioned, the pressure p", in the vicious space
may vary very much, according as the cylinder is cut off from
the condenser before or after the end of the piston’s motion. But
here, again, this pressure, and the magnitudes dependent thereon,
occur only in terms of the equations (XIV), which involve
the small factors 4 and y,; so that we may dispense with an ac-
curate determination of this pressure, and rest satisfied with an
approximate evaluation. In cases where no particular circum-
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stances are present to cause p”, to differ essentially from
P'o their difference, like the difference between p', and p,,
may be neglected, and the most probable value of the mean re-
action in the cylinder may be assumed as the common value of
all the magnitudes. This value may be represented simply
by p,

By introducing these simplifications, the equations (XIV)
become

= g Imr—myryt Me(T,—T) + poro—pe(Ty—Ty]

+mgus(p3—po),
myrg=m,r, +Mec(T,—T),) +l*‘oro—,“c(T3— o) + Apgto(p,—po) > (XV)
+AMo (Pl -pa) b)
m'l;:,r3 ——3+ (M+/.c)clogT )

42. In these equations it is assumed that the four pressures,
P, Py P3» 80d p,, or what amounts to the same, the four tem-
peratures T, Ty, T3, and T, are given, as well as the masses
M, m,, p and ,, of which the first two must be known from
direct observation, and the last two may be approximately deter-
mined from the ma.gmtude of the vicious space. In practice,
however, this condition is only partially fulfilled, so that in
calculation we must have recourse to other data.

Of the four pressures, only two, p, and p,, can be assumed as
known. The first is given immediately by the manometer on
the boiler, and the second may at least be approximately deduced
from the indications of the manometer attached to the condenser.
The two others, p, and pg, are not given; but in their place we
know the dimensions of the cylinder, and at what position of the
piston the cylinder is cut off from the boiler. From these we
may deduce the volumes occupied by the steam at the moment
of disconnexion and at the end of the expansion, and these two
volumes will then serve as data in place of the pressures p,
and p3.

We must now bring the equations into such a form that the
calculation may be made by means of these data.

43. Let v/, as in the explanation of Pambour’s theory, again
be the whole space, including vicious space, set free during one
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stroke in the cylinder; ev' the space set free up to the time of
disconnexion from the boiler; and ev’ the vicious space. Then,
according to what was before said, we have the following equa-
tions :—

mau, + M+ p)o=ev,

myug+ (M +p)o= v,

P tpo  =ev.
The magnitudes u and o are both so small that we may at once
neglect their product, so that the above become

mu,=ev'— Mo,

mauz= v'—Mo,

, N 1]

€v

%
Further, according to equation (VI),

r=ATug,

where, on account of its subsequent frequent occurrence, a single

letter g is introduced in place of the differential coefficient %

Accordingly, in the above system of equations we may express
rg and 73 in terms of u, and uz; and then, as the masses m, and
mg will only occur in the products m,u, and mgu;, we may sub-
stitute the values of the latter as given in the first two of
equations (45).

Similarly, by means of the last of these equations, we may
eliminate the mass y,; and as to the other mass u, although it
may be a little greater than u,, yet the terms which contain it
as a factor are altogether so unimportant, that we may without
hesitation give it the same value as we have found for y,; in
other words, for the numerical calculation we may give up the
assumption, made for the sake of generality, that the mass
in the vicious space is partially liquid and partially vapo-
rous, and suppose that the mass in question consists entirely of
vapour. :

The substitutions here mentioned may be made in the general
equations (XIV), as well as in the simplified equations (XV).
As they present no difficulties, however, we will here limit our-
selves to the last, in order to obtain the equations in a form
convenient for numerical calculation.
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After this change the equations become

Ay,

(er'—Mo) T,g, =20 ¥ MM =To) | ’°‘°ﬁ:‘T°) )

+Mo (Pl —ps) )
T

J

44. In order to refer these equations, which now express the
work done in a stroke or by the quantity m, of vapour, to the
unit of weight of vapour, we have to proceed in the same manner
as when the equations (35) were changed into (XII); that is to
say, we divide each of the three equations by m,, and set

1
M:l, i:v, and E=W.
m, m, m,

Hereby the equations become

ntle@=T _ v_ip)(Tg,—p,+pg +ev e=L—Td,
A A“o

To)

r +1c(T,—T ro—c(T,—
(€V —lo) Tygy=T1F (Al ,=)+eV(°—c<5"o—°+p;—po +lo(p,—py),

'V
(V—lo)go= eV —le)g, + 1+ )5 log .

T,

45. These equations may be applied in the following manner
to the calculation of the work. From the intensity of evapora-
tion, supposed to be known, and from the velocity with which
the machine is at the same time driven, we determine the volume
'V which corresponds to the unit of weight of vapour. By means
of this value we calculate the temperature T, from the second
equation, afterwards the temperature T3 from the third, and
lastly, we employ the temperature T3 to determine the work
from the first equation.

In doing so, however, we encounter a peculiar difficulty. In
order to calculate T, and T3 from the two last equations, they
ought in reality to be solved according to these temperatures.
But they contain these temperatures not only explicitly, but

(XVI)

XVII)
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implicitly, p and g being functions of the same. If, in order to
eliminate these magnitudes, we were to replace p by one of the
ordinary empirical formule which express the pressure of a vapour
as a function of its temperature, and g by the differential co-
efficient of p, the equations would become too complicated for
further treatment. We might, it is true, like Pambour did,
help ourselves by instituting new empirical formule more con-
venient for our purpose, which, if not true for all temperatures,
would be correct enough between certain limits. Instead of here
making any such attempt, however, I will draw attention to
another method, by which, although the calculation is some-
what tedious, the several parts thereof are capable of easy execu-
tion. :

46. When the tension series for the vapour of any liquid is
known with sufficient accuracy, the values of the magnitudes
g and Ty for the several temperatures can be calculated from it,
and arranged in tables in the same manner as is usually done
with the values of p.

In the case of steam, hitherto almost solely used in ma-
chines, and for the interval of temperature extending from 40°
to 200° C., between which the application takes place, I have,
with the help of Regnault’s tension series, made such a calcu-
lation.

Strictly, I ought to have differentiated according to ¢ the for-
mule which Regnault used in calculating the several values of
2 below and above 100° C., and then to have calculated g by
means of the new formule thus obtained. But as it appeared
to me that those formula did not fulfil their purpose perfectly
enough to justify so large an amount of labour, and as the cal-
culation and institution of another suitable formula would have
been still more tedious, I contented myself with using the num-
bers already calculated for the pressure in order approximately
to determine the differential coefficient of the pressure. For
example, p,,6 and p,4s being the pressures for the temperatures
146° and 148° I have assumed that the magnitude

Prs—Puss
P)

represents with sufficient accuracy the value of the differential
coefficient for the mean temperature 147°.
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In doing this, I have, for temperatures above 100°, used the
numbers given by Regnault himself*. With respect to the
values below 100°, Moritzt+ has lately drawn attention to the
fact that the formula employed by Regnault between 0° and 100°
was, especially in the vicinity of 100° somewhat incorrect in
consequence of his having used logarithms of seven places in
calculating the constants. In consequence of this, Moritz has
calculated those constants with logarithms of ten places, basing
his calculations on the same observed values; and he has pub-
lished the values of p (as far as they differ from Regnault’s,
which only occurs above 40°) thus deduced from the corrected
formulee. I have used these values.

As soon as g is calculated for the several temperatures, the
calculation of T . g also is attended with no further difficulty,
because T is determined from the simple equation

T=273 +1.

I have given the values of g and T . g thus found in a Table
at the end of this memoir. For the sake of completeness, I have
also added the corresponding values of p; those above 100°
being calculated by Regnault, and those below by Moritz. To
each of these three series of numbers are attached the differ-
ences between every two successive numbers; so that from
the Table the values of the three magnitudes can be found for
every temperature; and conversely, for any given value of one
of the three magnitudes the corresponding temperature can be
seen.

After what was before said of the calculation of g, it need
scarcely be mentioned that the numbers of this Table are not to
be considered as quite exact ; they are only communicated in the
absence of better ones. As, however, the calculations with refer-
ence to steam-engines are always based upon rather uncertain
data, the numbers can without hesitation be used for this pur-
pose, there being no fear that the uncertainty of the result will
be much increased therebyi. ‘

* Mém. de U Acad. des Sciences, vol. xxi. p. 625.

1 Bulletin de la Classe Physico-mathématique de P Acad. de St. Péters-
bourg, vol. xxi. p. 41. ’

1 [Since the differential coefficient ‘% frequently presents itself in calcu-
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As to the method of application, however, another remark is
still necessary. In the equations (XVII), it is assumed that the
pressure p and its differential coefficient g are expressed in kilo-
grammes to a square metre; whereasin the Table the same unit
of pressure, a millimetre of mercury, is retained as that referred
to in Regnault’s tension series. In order, notwithstanding this,
to be able to apply the Table, it is only necessary to divide every

lations connected with vapour, it is of interest to know how far the con-
venient method of determining it, employed by me, is trustworthy, I will
therefore here collect a few numbers for the sake of comparison.
In calculating the values of the vapour-tensions for temperatures above
100°, contained in his Tables, Regnault employed the formula
Log p=a—baz—cBs,
wherein Log refers to common or Briggs's logarithms, » denotes the tempera-
ture calculated from —20° so that 2=¢+20, and the five constants are
given by the equations
a=62640348,
Log 5=0-1397743,
Log ¢=06924351,
Log a=1-094049292,
Log 8=1-098343862,

On deducing an equatioﬁ for %’t’ from this formula for p, we have

1 dp_p
5- E—A“ +BBt)

wherein « and B8 have the same values as before, and the new constants A
and B are given by the equations

Log A=25197602,

Log B=2-6028408,
On calculating from the above equation the value of the differential co-

efficient % mentioned, by way of example, in the text and having refer-
ence to the temperature 147°, we find

(5) oo

By the above approximate method of determination we have, according to
Regmault’s Tables, the tensions

P4, =3392'08,

=3212-74
and thence Pres i

Prg—Pre 18024 __ o,
.T_G___‘z =90-12,

This approximate value, as is at once seen, agrees so well with the more accu-
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term in those equations, which does not contain either p or g as
factor, by the number 13:596. This number, which is nothing
more than the specific gravity of mercury at 0° C., compared
with water at its maximum density, will for the sake of brevity
be represented by k*.

This change of the formula, however, scarcely increases the
calculation, inasmuch as it is equivalent to substituting every-

where, in place of the constant factor }K,——which, according to

rate one calculated from the above equation, that it may without hesitation be
employed in calculations connected with the steam-engine.
‘With respect to temperatures between 0° and 100°, Regnault employed the
following formula for calculating the vapour-tensions :—
Log p=a+bat—cpt.
The constants, according to the improved calculations of Moritz, have the
following values :—
' a=47893707,
Log 5=2-1319907112,
Log ¢=0-6117407675,
Log «=0-006864937152,

Log B=1-996725536856.
From this formula an equation for ap 7 18y be again deduced, of the form

l d_P=Aut+Bpt,
wherein the constants «, 8 have the values above indicated, and A and B are
given by the formules
. Log A=46930588,
Log B=2'8513123.
On calculating from this equation the value of Q corresponding, for in-

stance, to a temperature of 70°, we find
P\ =10
(%), =101119,
and by the approximate method of determination we have
Pn—Pe ;P69=10-113;

a number which again agrees satisfactorily with the one calculated from
the more accurate equation.—1864.]

* [To express a pressure of p millimetres of mercury, in lnlogra.mmes per
square metre, the number p must be multiplied by the weight of a column of
mercury, having a height of one millimetre and & base equal to one square
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Joule, has the value 42355 already mentioned,—the other con-

stant,

1 _ 42355
AF135 96._311525 ... . (46)

when, instead of the work W, the magnitude VTV will be found

in the first instance, and will subsequently merely have to be
multiplied by k.

47. Let us now return to the equations (XVII), and consider
first the second of them.

This equation may be written in the following form : —

sz2=c+a(t1_ta)_b(pl_p2)’ R ]

wherein the magnitudes C, 4, and & are independent of £,, and
have the following values :—

ro—c(T, =T,
== la[Ak+ V(° ( °)+”'_”°)]

‘(’+ V) \.. (47a)

=A% Ak(eV —lo)’
_eV —lo.
—eV—la J

Of the three terms on the right-hand side of (47), the first
far exceeds the others; hence it will be possible, by successive
approximation, to determine the product T,g,, and thence also
the temperature Z,.

In order to obtain the first approximate value of the product,
which we will call T'¢', let us on the right side of (47) set ¢, in
the place of £,, and corresponding thereto p, in place of p,, then

Ty=C. . . . . . . . (48)

B

metre. The volume of such a column is the ygl;5th part of a cubic metre,
in other words a cubic decimetre. Now a cubic decimetre of water at the
maximum density weighs 1 kilogramme, and consequently a cubic decimetre
of mercury at 0° weighs 13:596 kilogrammes. This is the factor, therefore,
with which the number p must be multiplied in the case under consideration.
In our equations, however, it will of course amount to the same thing if,
instead of multiplying the terms which contain the factor p, or the differen-
tial coefficient of p by 13:596, we divide the remaining terms by the same
number.—1864.]
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The temperature ¢/, corresponding to this value of the product,
can be sought in the Table. In order to find a second ap-
proximate value of the product, the value of # just found, and
the corresponding value of the pressure p', are introduced into -
(47) in the places of ¢, and p,, whereby, having regard to the
former equation, we have

T'y"=T9'+a(t,—t)—b(p,—p"). . . . (484a)

As before, the temperature ¢, corresponding to this value of
the product, is given by the Table. If this does not with suffi-
cient exactitude represent the required temperature #,, the same
method must be repeated. The newly-found values ¢/ and p"
must be substituted in (47) in place of ¢, and p,, whereby with
the assistance of the two last equations, we have

TG =T"g" 4 a(f ="y —b(p' —p"), . . . (48b)

and in the table we can find the new temperature ¢".

We might proceed in this manner for any length of time,
though we shall find that the third approximation is already
within yg5dth, and the fourth within ;g5pdth of a degree of the
true value of the temperature ¢,.

48. The treatment of the thll'd of the equations (XVII) is
precisely similar. If we divide by V—/o, and for facility of cal-
culation introduce Briggs’s logarithms (Log) in place of natural
logarithms (log) by dividing by M the modulus of this system,
the equation will take the form

T
g3=C+aLog-T3, N :14))

wherem C and @ are independent of T3, and have the following
values :— -

eV—l )
C=S=% % |
eV . v . (494
c(l+ ’“o)

C=M . AR(V=10) J

Again, in equation (49) the first term on the right is greatest,
so that we can apply the method of successive approximation.
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~ In the first place, T, is put in the place of T3, and we obtain the
first approximate value of g,, viz. A
g=C, . . . . . . . (50

from which we can find the corresponding temperature # in the
Tables, and thence the absolute temperature TV. This is now
substituted for T, in (49), and gives

g"'=g +alog %, B € 1 a)'
whence T” is found. Similarly we obtain

9m=gll+aLog;I’!;;, e . (50 d)

and so forth.

49. Before proceeding to the numerical application of the
equations (XVII), the magnitudes ¢ and » alone remain to be -
determined.

The magnitude ¢, which is the specific heat of the liquid, has
hitherto been treated as constant in our development. Of course
this is not quite correct, for the specific heat increases a little
with increasing temperature. If, however, we select as a common
value the one which is correct for about the middle of the inter-
val over which the temperatures involved in the investigation
extend, the deviations cannot be important ones. In machines
driven by steam, this mean temperature may be taken at 100°C. ;
this being, in ordinary high-pressure engines, about equally
distant from the temperature of the boiler and that of the con-
denser. In the case of water, therefore, we will employ the
number which, according to Regnault, expresses its specific
heat at 100° and thus set ,

. e=10180. . . . . . . . (51)

In the determination of » we shall start from the equation

A=6065+0305.¢,
given by Regnault as expressing the whole quantity of heat
necessary to raise the unit of weight of water from 0° to the

temperature Z, and afterwards to evaporate it at that tempera-
ture. According to this definition, however,

t
7\.=y cdt +r,
0
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30 that
¢
r=606-5+0'305. t—j‘ cdt.
o

In order to obtain precisely Regnault’s value of 7, we ought
to substitute for ¢ in the above integral, the function of the tem-
perature which Regnault determined. For our present purpose,
however, I think it will suffice to give to ¢ the constant value
above selected, by means of which

(‘ear=1013.,

0
and the two terms in the above equation involving ¢ combine to
form the single one —0-708 . ¢.

At the same time we must alter the constant term of the equa-
tion a little, and determine it so that the formula will correctly
express that observed value of » which in all probability is most
accurate. As a mean of thirty-eight observations, Regnault
found the value of A at 100° to be 636:67. Deducting the
quantity of heat necessary to raise the unit of weight of water
from 0° to 100°, which, according to Regnault, amounts to 100*5
units of heat, and contenting ourselves with one decimal, there
remains

rlm= 536.2*-
Employing this value, we obtain the following formula :—
r=607-0708.¢. . . . . . (52

The following comparison of a few values calculated here-
from, with the corresponding ones given by Regnault in his
tablest, will show that this simplified formula agrees suffi-
ciently well with the more accurate method of calculation above
alluded to : —

t. o°. §0°. | 100°. 150°. 200°.

r according to equation (52)] 6070 | §71°6 | §36'2 500’8 | 4654
r according to Regnault ...| 6065 571°6 536°5 500°7 | 4643

* In his tables Regnault gives, instead of this, the number 5366 ; the
reason is, however, that instead of the above value 636-67 for X at 100°, he
used the round number 637 in his calculations,

t Mém. de I Acad. des Sciences, vol. xxi. p. 748,
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50. In order to be able to distinguish between the effects of
the two different kinds of expansions to which the two last of
the equations (XVII) refer, it will perhaps be best to consider
in the first place a steam-engine in which only one of them takes
place. We will commence, therefore, with one of the machines
which are said to work without expansion.

In this case, e, which expresses the relation of the volumes
before and after expansion, equals 1, and at the same time
Ty=T,; so that the equations (XVII) assume a simpler form.

The last of these equations becomes an identity, and therefore
vanishes. Further, many terms of the first will admit of elimi-
nation, because they now become like the corresponding terms
of the second, from which they before differed only by contain-
ing Ty instead of Ty. . Introducing the above-mentioned quantity
k at the same time, we now obtain

T V(-9 (p=p0) ~ I (3,—P0) ]

Alku,

(V-za)'r,q,=ﬁi’_0§r’1;‘;—_'1‘e)+ev ro—e(Te—Ty) Pe—Po) j (XVIII)

+lo(p,—ps)*.

The first of these two equations is exactly the same as the one
which we also obtain by Pambour’s theory, if in (XII) we make
e=1, and introduce V instead of B. The second equation,
however, differs from and replaces the simple relation between
volume and pressure assumed by Pambour.

51. To the quantity e, which occurs in these equations and
represents the vicious space as a fractional part of the whole
space set free to the vapour, we will give the value 0°05. The
quantity of liquid which the vapour carries with it on entering

* [If in the two first equations in (X VII) we make e=1, T;=T,, and intro-
duce the quantity %, the second equation at once reduces itself to the second
equation in (XVIII). The first equation, however, assumes at first the form

W le -T, . - ~x
=G ) (Vo to) (L9, VST,

But if in place of (V—lo) T,g, we here substitute the value given by the
second equation, a terms disappear which contain A% as divisor, and the
remaining terms have merely to be arranged according to the factors V and o,
in order to obtain the first equation in (XVIII).—1864.]
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the cylinder varies in different machines. Pambour states that
it amounts on the average to 0'25 in locomotives, but in sta-
tionary engines to much less, probably only to 0-05 of the whole
mass entering the cylinder. In our example we will make use
of the latter number, according to which the ratio of the whole
mass entering the cylinder is to the vaporous part of the same
as 1:0°95. Further, let the pressure in the boiler be five atmo-
spheres, to which the temperature 152°:22 belongs, and let us
suppose that the machine has no condenser, or, in other words,
let it have a condenser with the pressure of one atmosphere.
The mean reaction in the cylinder is accordingly greater than
one.atmosphere. As before mentioned, the difference in loco-
motives may be considerable, but in stationary engines it is
smaller. With respect to stationary engines, Pambour has
altogether neglected this difference; and as our only object at
present is to compare the new formule with those of Pambour,
we will also disregard the difference, and let p, equal one atmo-
sphere.

In this example, therefore, the following values will have to
be made use of in equations (XVIII) :—

=005, )
1
I=5g5=105% | . . . (3
p1=3800:
Po=760. )
To these must be added the values
k=13596,
o=0001,

which are the same for all cases; and then in the first of the
equations (XVIII), besides the required value of W, the magni-
tudes V and p, alone will remain undetermined.

52. We must now examine, in the first place, the least possible
value of V. .

This value corresponds to the case where the pressure in the
cylinder is the same as that in the boiler, so that we have merely
to put p, in the place of p, in the last of equations (XVIII) in
order to obtain

02
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r
X‘Z+l¢r.'l‘lgl

V= (54)

In order at once to give an exa.mple of the influence of the
vicious space, I have calculated two values of this expression,
corresponding respectively to the cases where no vicious space
exists (e=0), and where, according to supposition, e=0-05.
These values, expressed as fractions of a cubic metre to one kilo-
gramme of vapour from the boiler, are

03637 and 0-3690.

The latter value is greater than the former, because, first, the
vapour entering the vicious space with great velocity, the vis
viva of its motion is converted into heat, which in its turn
causes the evaporation of a part of the accompanying liquid;
and secondly, because the vapour before present in the vicious
space, contributes to the increase of the ultimate quantity of
vapour.

Substituting both the above values of V in the first of equa-
tions (XVIII), and in the one case again making e=0, whilst
in-the other e=005, we have as the corresponding quantities of
work expressed in kilogramme-metres, the numbers

- 14990 and 14450.

According to Pambour’s theory, it makes no difference whether
a part of the volume is vicious space or not; in both cases this
volume is determined from the equation (29 ) by giving to p the
particular value p;. By so doing we obtain

0-3883.

This value is greater than the one (0-3637) before found for
the same quantity of vapour, because hitherto the volume of
vapour at its maximum density was esteemed greater than, ac-
cording to the mechanical theory of heat, it can be, and this
former estimate also finds expression in equation (29 ).

If, by means of this volume, we determine the work under
the two suppositions e=0 and e=0-05, we have

16000 and 15200.
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As might have been concluded immediately from the greater
volume, these quantities of work are both greater than those
before found, but not in the same ratio ; for, according to our
equations, the loss of work occasioned by vicious space is less
than it would be according to Pambour’s theory.

53. In a machine of the kind here considered, which Pambour
actually examined, the velocity which the machine actually pos-
sessed, compared with the minimum velocity calculated, accord-
ing to his theory, for the same intensity of evaporation and the
same pressure in the boiler, gave the ratio 1:275: 1 in one ex-
periment, and in another, where the charge was less, 1-70:1.
These velocities would in our case correspond to the volumes
0°495 and 0'660. As an example of the determination of work,
we will now choose a velocity between these two, and set simply,

V=06.

In order next to find the temperature #, corresponding to this
value of V, we employ the equation (47) under the following
special form :—

T,9,=26577 +56°42 . (£, —t,) —00483. (p,—p,). (55)
Effecting, by means of this equation, the successive determina-

tions of £, described in Art. 47, we obtain the following series of
approximate values :—

# =13301,
1" =184-43,
M =134-32,
£ —=134-33.

Further approximate values would only differ from each other in
hjgher decimal places; so that, contenting ourselves with two
decimal places, the last number may be considered as the true
value of ¢, The corresponding pressure is

P,=2308-30.
Applying these values of V and p,, as well as those given in
Art. 51, to the first of the equations (XVIII), we obtain
‘W =11960.
Pambour’s equation (XII) gives for the same volume 06, the

work
W =12520.
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54. In order to show more clearly the dependence of the work
upon the volume, and at the same time the difference which
exists between Pambour’s and my own theory in this respect, I
have made a calculation, similar to the last, for a series of other
volumes increasing uniformly. The results are comprised in the
following Table. The first horizontal row of numbers, separated
from the rest by a line, contains the values found for a machine
without vicious space. In other respects the arrangement of the
Table will be easily understood.

Acoording to Pambour.

v. w.

6‘3637 1 5;'12 14990 03883 16000

0°3690 15222 14450 03883 15200

o4 149'12 14100 o4 15050
o's 140°83 13020 o's 13780
o6 134°33 11960 o6 12520
o7 129'03 10910 o7 11250
o8 124°§§ 9880 o8 9980
0’9 120°72 8860 o'9 8710
I 117°36 7840 I 7440

We see that the quantities of work calculated according to
Pambour’s theory diminish more quickly with increasing volume
than those calculated from our equations ; for at first the former
are considerably greater than the latter, afterwards they approach
thereto, and finally they are actually less than the latter. The
reason is, that according to Pambour’s theory, the same mass,
as at first, always remains vaporous during expansion; whilst,
according to our theory, a part of the liquid accompanying the
vaporous mass afterwards evaporates, and the more so the
greater the expansion.

55. In a similar manner we will now consider a ma.chme
which works with expansion, and we will further select one with
a condenser.

With reference to the magnitude of the expansion, we will
suppose that the cylinder is cut off from the boiler when the
piston has completed one-third of its journey. Then for the
determination of e we have the equation
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1
e—e==-(l1—¢);
3( ) 2

whence, retaining the former value, 0-05, of ¢,

1-1
= e—=U 6...-
e 3 0-366

As before, let the pressure in the boiler be five atmospheres.
By good arrangement the pressure in the condenser may be
kept below one-tenth of an atmosphere. As it is not always so
small, however, and as the reacting pressure in the cylinder
always exceeds it a little, we will assume the mean reaction to
be one-fifth of an atmosphere (or 152 millims.), to which the
temperature #,=60°46 corresponds. Retaining the former
assumed value of /, therefore, the quantities requiring applica-
tion in this example are

e =0'36667,)

e =005,

1=1053, B 1))
»,=38800, [

Po=152.

In order to calculate the work, we now only require the value
of V to be given. To guide our choice, we must first know the
least possible value of V, which we can find, as before, from the
second of the equations (XVIL.) by putting p, in the place of
2o and changing the other quantities dependent on p accord-
ingly. In this manner we find for the present case the value

1-010.

Starting from this, we will assume, as a first example, that the
actual velocity of the machine’s motion-has to this minimum a
ratio of 3 : 2 nearly; so that setting

V=1-5,

we will determine the work for this velocity.

56. The temperatures £, and #; must now be determined by
setting this value of V in the two last of equations (XVII). For
the machine without a condenser, the determination of #, has
been sufficiently explained ; and as the present case differs from
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that one only by a different value for e, which was there equal
to 1, it will be sufficient to state here that the final result is
t,=137°43.
The equation (49), which serves to determine /3, now takes
the form

9,=26:604 451515 LogXs, . . . . (57)
8
and from it we obtain the following approximate values :—
= 9924,
" =101-93,
" =101-74,
t"=101-76.

We may consider the last of these values, from which the fol-
lowing ones would only differ in higher places of decimals, as
the proper value of #,; and we may use it, together with the
known values of ¢, and 7, in the first of the equations (XVII).
By so doing we find

W =31080.

When, assuming the same value of V, we calculate the work
according to Pambour’s equation (XII),—whereby, however, the
values of B and b are not taken from equation (295), as in the
machine without condenser, but from equation (29 ¢) intended
for machines with condensers,—we find

W =32640.

57. In a manner similar to the foregoing I have also calcu-
lated the work for the volumes 12, 1'8, and 2'1. Besides this,
in order to illustrate by an example the influence which the
several imperfections have upon the work, I have added the fol-
lowing cases :—

(1) The case of a machine having no vicious space, and where
at the same time the pressure in the cylinder during the en-
trance of the vapour is equal to that in the boiler, and the ex-
‘pansion is carried so far that the pressure diminishes from its
original value p, to p,. If we further suppose that p, is exactly
the pressure in the condenser, this case will be the one to which
equation (XI) refers, and which for a given quantity of heat—
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the temperatures at which the heat is received and imparted
being also considered as given—furnishes the greatest possible
quantity of work.

(2) The case of a machine, again, having no vicious space,
and when the pressure in the cylinder is again equal to that in
the boiler, but where the expansion is not, as before, complete,
but only continued until the ratio e: 1 is obtained. This is the
case to which equation (X) refers; only in order to determine
the amount of expansion, the change caused by the same in the
temperature of the vapour was before supposed to be known,
whilst here the expansion is determined according to the volume,
and the change of temperature must be afterwards calculated
therefrom.

(8) The case of a machine with vicious space and incomplete
expansion, and where, of the former favourable conditions, the
only one which remains is, that during the entrance of the vapour
the pressure in the cylinder is the same as in the boiler, so that
the volume has its smallest possible value.

To these cases may be added the one already mentioned, where
the last favourable condition is relinquished, and the volume has
a greater than its minimum value.

For the sake of comparison, all these cases, with the exception
of the first, are also calculated according to Pambour’s theory.
The reason of the exception is, that the equations (294) and
(295) do not here suffice ; for even the one which is intended
for small pressures cannot be applied below one-half, or at most
one-third of an atmosphere, whereas here the pressure ought to
decrease to one-fifth of an atmosphere.

The following are the numbers given by our equations in the
first of the above cases :—

Volume before Volume after w

% %

03637 6345 50460

For all the rest of the above cases the results are given in the
following Table, where the numbers referring to a machine
without vicious space, are again separated from the rest by a
horizontal line. The volumes after cxpansion are alone given,
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because the corresponding ones before expansion, being in all
cases smaller in the proportion of e: 1, may be easily found :—

According to Pambour.
V. t, ty. w
V. w.
o o
0'992 152722 113°71 34300 1'032 36650
1°010 152°22 113°68 32430 1'032 34090
12 14563 108-38 31870 12 33570
I's 137°43 101°76 31080 15 32640
18 131°02 9655 30280 8 31710
21 12579 92°30 29490 2'1 30780

58. The quantities of work in this Table, as well as those in

the former Table for machines without condensers, refer to a
- kilogramme of vapour coming from the boiler. It is easy,

however, to refer the work to a unit of heat furnished by the
source of heat; for every kilogramme of vapour requires as
much heat as is necessary, first to raise the mass ! (somewhat
more than one kilogramme) from the temperature it had when
entering the boiler up to the general temperature of the same,
and then at that temperature to convert a kilogramme of it into
vapour. This quantity of heat can be calculated from former
data.

59. In conclusion, I will add a few remarks on friction, re-
stricting myself, however, to a justification of my having hitherto
disregarded friction in the developed equations, by showing that
instead of introducing the same at once into the first general
expressions for the work, as Pambour has done, it may also, ac-
cording to the same principles, and according to the manner of
other authors, be afterwards brought into calculation.

The forces which the machine has to overcome during its
action may be thus distinguished :—(1) The resistance exter-
nally opposed to it, and in overcoming which it performs the
required useful work. Pambour calls this resistance the charge
of the machine. (2) The resistances which have their source in
the machine itself, so that the work expended in overcoming
them is not externally of use. All these resistances are in-
cluded in the term friction; although, besides friction in its



THEORY OF THE STEAM-ENGINE. 203

more limited sense, they comprise other forces, particularly the
resistances caused by pumps belonging to the machine, exclu-
sive of the one which feeds the boiler, and which has already
been considered. ' :

Pambour brings both these kinds of resistances into calcula-
tion as forces opposing the motion of the piston; and in order
conveniently to combine them with the pressures of the vapour
on both sides of the piston, he also adopts a notation similar to
the one ordinarily used for vapour pressures ; that is to say, the
symbol denotes, not the whole force, but that part of it which
corresponds to a unit of surface of the piston. In this sense let
the letter R represent the charge.

A further distinction must still be made in the case of friction,
for it has not a constant value in each machine, but increases
with the charge. Accordingly Pambour divides it into two
parts : that which is already present when the machine moves
without charge, and that which the charge itself occasions.
‘With respect to the last, he assumes that it is proportional to
the charge. Accordmgly, the friction referred to the unit of
surface is expressed by

f+8.R,
where f and 8 are magnitudes which, although dependent upon
the construction and dimensions of the machine, are, according
to Pambour, to be considered as constant in any given machine.

‘We can now refer the work of the machine to these resisting
forces instead of, as before, to the driving force of steam ; for the
negative work done by the former must be equal to the positive
work done by the latter, otherwise an acceleration or retardation
of motion would ensue, which would be contradictory to the
hypothesis of uniform motion hitherto made. During the time
that a unit of weight of vapour enters the cylinder, the surface
of the piston describes the space (1 —¢)V, hence for the work W
we obtain the expression
. W=(1-¢V[(1+8).R+f].

On the other hand, the useful part of this work, which for
distinction from the whole work shall be symbolized by (W),
is expressed thus,

W)=(1—¢V.R.
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Eliminating R from this equation by means of the former, we
have the equation

W—(1-gV.f
W="20 00 68

by means of which, V being known, the useful work (W) can be
deduced from the whole work W as soon as the quantltles Vi
and & are given.

I will not here enter into Pambour’s method of finding the
latter quantities, as this determination still rests upon a too in-
secure basis, and as friction is altogether foreign to the subject
of this memoir. '

TABLE CONTAINING THE VALUES, FOR STEAM, OF p, ITS DIFFER-

d,
ENTIAL COEFFICIENT d—’;‘—"g, AND THE PRODUCT T «g EXPRESSED

IN MILLIMETRES OF MERCURY.

in Cen- P. A. 9. A, T.g A.
degrees.
o
40 | 54'906| . 2'935 . 919
3003 | ,.008 | 9139 965 46

41 57°909 .
42 gx:o54 ; ;;f 3:228 g :1;' 10;4 :g
43 | 6asas| 309 | 3367 | 4T | roby | 32

44 6{:789 3°601 3:%;’ 0161 :' 16 55
45 713991 3966 | 3.2°3 | o167 171

46 75156 935 3'850 0173 1228 57
4; ;9:09' i-gn 4:°"3 o180 1287 22
4 3203 4'203 | .g 5 1349 64

87 4"-94 a8

B | ) G| s Sl mn | g
. 4679 | 7. 0'199

S| dnp| b i) | e | A
‘541 T 987 . 21

53 | 106633 g‘c;gz §°200 g:;g 1695 73

54 | 111°942 5,532 5421 | e | 1773 7

55 | 117475 | oge | 5649 | o 237 | 1853 3

56 | 1237241 8006 5°886 o244 1936 8;

57 | 129247 6254 6°130 oacs | 2023 3

58 | 135°501 6°382 3 2112 9

. 6'510 o260 93
59 | 1420011 775 6642 o'26 22085 5
6o | 148786 77043 6911 0,273 2301 “9,0

61 | 155834 7°18 3 2401

62 | 183-164| 7733° 7.472 0‘286 2504 103
63 | 170785 7°621 7771 0296 zgu ro7
64 | 178707 ;:9“ 8076 | ,°:3°5 2722 b
65 | 186'938 231 8:390 ©'314 1 2836 114
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1269°4 1

tlgude P A, 9 A
T.g. A.
65 | 186'938
68 | 195as| Buso | 5392
& ,?,f,- ;63 s.sgo 8715 | 97325 2836 18
G | 20438 garg | 9o o33a | 2954 | 12
69 223154 9°568 9°393 0°344 3077 lzg
24 i Saas | 97 48 | ©385 3203 131
T 243380 10298 10°113 0'365 3334 13
4 23 3do - 54 10439 0'376 3469 1 35
72 265.l 6o 11072 10°876 00387 3608 !39
72 | 278608 | 11476 | 11 ET o338 | 5o 5
75 288-500| 11392 11684 | 410 ross 153
76 300820 127320 12’106 | 472 ﬁf‘; :g ;
i 40 127 12°539 0433
78 322%3 ls'zfg 12:984 | 2443 i :g
7 | 1 3675 | 13442 ogs8 | 4544 1
1 sosss| 3rs 13913 | 9471 4%!8 ,74
81 369258 14°632 | 14397 oads | T3] lgg
82. | 384404 15146 14894 | 497 o | e
o Fhader: 15664 | 15405 o5y | 3272 l9o
53| 4ol | 161e 15929 | 0524 5469 z<9>7
hy s 16740 16°467 0'538 5671 2 ;
3| 43392 iyagg 177019 | 9552 g879 z?
R I 17586 | 9577 bos3 4
R B 1SR ] ossa | G313 320
89 S05'705 19'067 18 765 0°597 6540 27'7
b Sores 19°687 19°377 0612 774 3g
9 5257392 | 203ag 20005 0628 | 7014 "48
o S83733 | 2097 207649 0644 7262 :4
% 338103 21643 21°309 0°660 7516 zg:
% ol £ 22328 21°985 0'676 ;778 26
s 633-69a | 23031 22'679 0694 3°47 2 2
% 6392 23751 23°391 o712 8323 zg
97 | 63raas| 24488 | 24509 o7 | G | 2
97 | Brsst| asaes 24865 | ©747 900 3c9>o
g A 26017 | 25" 630 o765 | 92
100 | 760000 | 26809 26413 | 0783 3 3
tor | 78739 | 2759 | 2Fees o787 | 5826 | G
tox 2759 | 2842 28'005 o805 10146 323
o $a3a8 | 2977 28845 | © 840 | 10474 32
o3 Saoar | 3073 29700 | 855 10837 343
ot onbar | 3100 30565 | & 865 11167 35':':>
ok | dahr | e 3raso | 0385 11523 3%
o7 A 3283 32°365 0°91§ 113888 3 g
108 1004°91 3377 33°300 0°935 12266 3;8
109 | rogsds | 3474 34°255 0955 12654 3
10g | tosgds | 357 | gae o933 | 1sosz | 397
1 1112°09 36272 367220 0990 13458 407
A e 37230 | 1OI° 13872 414
1 ngds | 37 £ 38260 1'030 14296 424
11q | 122847 | 39 86 | 39320 robo | 14739 434
s 4o'gq | 407400 rodo | 2278 :::
. 1°100 3
41°500 16xo£ 467

205



206

FIFTH MEMOIR.

TABLE (continued).

) A, T.g A,
in Cen- P a g
tigrade
degrees.
. 200 . 16102 479
15 | 16gar |0 post e i | 16581 | 49
116 | 131147 43'19 . 5 17072 02
1354'66 6| B3| vage | 77NN s
1z 120002 443 44°945 1'185 18083 599
118 !399.55 45.53 46°130 1’220 1860 526
119 ,1;4;18 4673 477350 | L 19!42 537
et s3g2s | 4797 | 48595 | 1243 19693 | 547
121 153803 49.1.:. 49°855 1290 zgzs 560
123 | 163896 | 5949 | S1ugs 315 82y | 74
123 ;630-36 5180 1 2460 r3gs | 20071 583
g | magds | 300 | sy | 13| e i
7 | idae | 55| sk | rée 22624 | gy
b | aoniar | | srers | A3 | o
129 !972::'3 60'13 22-875 : ‘;gg 24233 666
130 :031.90 6162 62°375 1320 :5833 678
i | gn| el | By o
bl 69 | 54 65445 | |.0oc 277 | 796
133 89' 2 | 6623 67020 | 200 | 2727 720
b st | 68 | (TN 1630 | 27997 | 935
135 1235373 | 6943 79250 | 6no | 28732 | od
136 | 24 Z"- 3| 7797 | 75920 1685 "g:sz 765
137 ’;;27, oo | 7277 | 73605 | 1508 gmgo 778
3 2641744 72:4 75°315 1°750 31828 798
2| il | | | e | )
41 | 279557 | 708 80645 | 1. 3;;’ 334?: 844
142 2 7% 36 81'56 82480 1 865 34‘3 2 860
| ons | S0 | mnes | 30 oit | &6
2. .
145 | 3125°§5§ 87'19 88'122 :‘gzg 36339 911
143 3';;: g; 39'12: 901120 | 1000 ;;733 928
14’ 9I'1 2°110 B 943
98 . 9 2°01
kIR AR piE
. 99 2°085
| Syar | 95285 | aaa | 11850 | G
. oo* .
i | B | o [ | e | o2
1oy | 35t77 | 19359 | 1ogiee 2220 | #4793 | 1054
154 1 39277 | 10579 106910 | 3250 | 45757 | 1073
133 [ 49830 | 10803 109160 | .70 | 49330 | 1ods
g [ e || ) i e
. . 1137 . 1127
| e | B | g
159 423‘}:62 117°26 118460 ago | S 9% 1165
160 | 4 51-28 119°66 | | o870 2°445 5235 1184
161 57 36 | 122 08 123315 | 2483 5284";' 1209
162 33' 1 | 2455 | 125807 2510 56 ST | yo22
163 | 50 7.9 12706 128315 2545 56073 1244
164 5144'97 129°§7 57317
165 | 527454

130‘860
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TABLE (continued).

in Cen-

p. g A. T.g A
i, e
degrees.
o
xgg 5"72’:24‘ 132°1§ l3°:86° 2°585 5§3§7 1265
1 540099 | y347e | F33HMS | L6a0 | 53332 | [2se
167 | 554143 | (3174 | 136065 2670 | 59868 | 12
163 | 567882 140°08 138735 2685 61182 1226
169 | 5818'90 14276 | 141420 2728 62508 1348
170 | §961°66 14553 | 144145 2763 63856 1372
171 6107°19 1482 146°910 2 65228 1
172 | 625548 1?1-12 149°70§ z,ggg 66618 13-2:
173 | 6406°60 133°95 152535 | .g20 68030 1440
174 | 6s6o'ss | 3588 | 1ssars | .00 | 69470 a6
175 | 671743 | S0 | rs8eazs | 29 70934 | 1404
176 | 687722 132,79 161270 2,932 72410 147
177 1 703997 | 16003 | 164250 | TR | 73912 | 1502
178 | 720572 | 1375 | 167275 | 3205 | 7544 155
179 | 7374'52 | 1,18, | 170335 3ogo | 79991 | 570
180 | 7546'39 17498 | 173425 | g0 | 78561 | 59
181 | 7721°37 17835 | 176'565 170 80160 1613
182 7899'32 18132 | 179735 | 3.0 | 81779 1642
183 | 8080°84 184-26 182°940 2 83421 1670
184 | 8265°40 4'3 1867195 | 3255 85091 7
3 84ca 187°83 5 3280 3 1688
185 45323 | o1ra 189°425 3320 86779 1714
186 | 864435 | | 47 | 192795 | 3350 | 88493 |
187 | 8838:32 | 19447 196-165 . 90236 743
33 6-68 | 197'36 -s6c | 3400 1763
1 903668 | 27, 199°565 . 91999 | 1702
. 27 . 3445 79
189 | 9237°95 | , .. zogoro | 2 53 | 93791 | 47
190 | ga4270 | 20875 | a0bago | 3410 | o505 | 1314
191 | 965093 | Z0 03 | asoces | 35S | o7a4a | 1337
192 | 986271 |