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 The primary goal of this first part is to argue for a view of induction that I call the 

“material theory of induction.”1 This first chapter will give a synopsis and illustrations of the 

theory. Later chapters will elaborate and support the view.  
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 This is a book about induction and inductive inference. Since these terms may mean 

different things to different people, it is worth fixing at the outset what is meant by them here. 

Traditionally, induction has had a narrow meaning. At its narrowest, it refers to “induction by 

simple enumeration,” the inference from “Some As are B” to “All As are B.” This is an example 

of what is known as “ampliative inference,” for we have amplified the instances to which our 

knowledge applies. The premise applies just to the few cases of As at hand; the conclusion 

applies to all. I take this idea of amplification in its most general sense to be what induction is 

about. I shall use “induction” and “inductive inference” as the general term for any sort of 

ampliative inference; that is, any licit inferences that lead to conclusions logically stronger than 

the premises. Therefore the terms embrace what is sometimes called “abductive inference,” 

which is an inference to something that explains an otherwise puzzling phenomenon. 

                                                
1 For earlier accounts, see Norton (2003, 2005). 
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 A still broader form of induction commonly goes under the name of “confirmation 

theory.” It typically has no inferences with premises and conclusions. Rather it looks at degrees 

of support between propositions. The best-known and dominant form is probabilistic support. 

The conditional probability, P(H|E), represents the total inductive support an hypothesis accrues 

from all evidence, including our background knowledge, written as E. One then tracks how the 

support between hypothesis and evidence changes as the evidence is changed. This form of 

analysis will be included under the terms “induction” and “inductive inference.” 

?:&%'(&$/,;*.&#@@,/*6'&+/&23456+-/3&

 My contention is that the broad literature on induction is built on faulty foundations. It 

has long sought as its most basic goal to develop inductive inference as a formal system akin to 

deductive logic and even ordinary arithmetic. What is distinctive about these systems is that they 

are non-contextual, universal and governed by simple rules. If we have six cartons of a dozen 

eggs each, arithmetic tells us that we have 72 eggs overall. It also tells us that if we have six 

troupes of a dozen acrobats, then we have 72 acrobats overall. Arithmetic tells us that when it 

comes to counting problems like this we can ignore almost everything except the numbers 

appearing in the descriptions. We extract those numbers and then see if our arithmetic provides a 

schema that covers them. In this case, we find in our multiplication tables that 

6 x 12 = 72 

That is really a schema that says (amongst other things) 

If you have 6 groupings of 12 individuals, then you have 72 individuals overall. 

It is a schema or template since it has empty slots, indicated by the words “grouping” and 

“individuals” in italics; and we generate truths about specific systems by inserting appropriate, 

specific terms into the slots. Insert “carton” and “egg” and we generate a numerical fact about 

eggs. Insert “troupe” and “acrobat” and we have a numerical fact about acrobats. 

 This example illustrates the key features typically sought in an inductive logic. It is to be 

non-contextual, universal and formal. The numerical facts of arithmetic are non-contextual—that 

is, independent of the context. In abstracted form, they hold for eggs, acrobats and every other 

sort of individual. The rules are universal; they don’t come with restrictions to particular 

domains. It is the same arithmetic for eggs and acrobats. And the rules are formal in the sense 
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that they attend only to the form of the sentence asserting the data: six …. of 12 ….. The 

matter—eggs or acrobats—is ignored. 

 Deductive logic has developed similarly as a universal, non-contextual formal theory; and 

it enjoys extraordinary success. It has been a reasonable and attractive project to try to find a 

similar account of inductive inference. A universal formal theory of induction would enable us to 

focus attention just on the specifically inductive-logical parts, ignoring all the material 

complications of the much larger inductive enterprise. And we would hope eventually to 

generate great theorems of tremendous power and scope, perhaps rivaling those of arithmetic and 

deductive metalogic. 

A:&B,/C.(;8&/1&+'(&$/,;*.&#@@,/*6'&

 However it is a failed project. The simple formal rules that worked so well for deductive 

inference have no counterpart in inductive inference. In antiquity, we were quite confident of the 

deductive schema 

All A’s are B. 

Therefore, some A’s are B. 

Yet its inductive counterpart, enumerative induction, 

Some A’s are B. 

Therefore, all A’s are B. 

was already the subject of doubt and even ridicule in antiquity. Inductive logic never really 

caught up. While deductive inference has settled into the grey maturity of arcane theorem 

proving, inductive inference has remained an erratic child. For philosophers, the words 

“induction” and “problem” are routinely coupled. 

 There are, as we shall see later, a plethora of modern accounts of induction. But none 

succeed with the simple clarity of deductive logic. We should infer inductively, we are told, to 

the best explanation. But we are given no comparably precise account of what makes an 

explanation better or even what an explanation is. Efforts to make these notions precise open 

more problems than they solve. Or we are told that all of inductive logic is subsumed by 

probability theory. A later part of this book is devoted to arguing that the resulting theory has 

failed to provide a universal account of inductive inference. The probabilistic enterprise has 
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become so many-headed that no single formula captures the difficulty. The account is sometimes 

too strong and imposes properties on inductive inference it should not have. It is sometimes used 

too permissively so that any inductive manipulation one might conceive is somehow embraced 

by it. It is almost always too precise, fitting exact numbers to relations that are not that exact. 

 So how are we to think about inductive inference? A formal theory of induction 

distinguishes the good inductive inferences from the bad by means of universal schemas. In its 

place, I urge a material theory of induction. According to it, what separates the good from the 

bad inductive inferences are background facts, the matter of the inference of the inference, as 

opposed to its form. Or, to put it another way, we locate what authorizes an inductive inference 

not in some universal, formal schema, but in facts that prevail in the domain of the inference. 

D:&23456+-/38&/3&E,08+*.&$/,;8&

 An example will make the problems of the formal accounts clearer and the idea of a 

material theory of induction more concrete. We shall consider an elementary inductive inference 

in science that is so routine that we may even fail to notice that it is an induction. Let us say that 

a chemist prepares a new salt of some metal and notes its particular crystalline form. It is routine 

for the chemist to report the form not merely as the form of this sample, but as the form of this 

salt generally. For crystals have quite regular properties and crystals of different substances have 

characteristic differences. Nonetheless, it is an inductive inference from the one sample to all. 

Even if it is easy to overlook its inductive character, we should expect a good treatment of it 

from an account of inductive inference. 

 To develop the example, we need to appreciate that that adequate reporting of the 

crystalline structure of a new salt is somewhat delicate. For the individual crystals of one salt 

may have many different shapes. In the early history of work on crystals, it proved to be quite 

hard to find a simple and robust system of classification. That complication will prove to be 

important for inductive inference. 

 Crystallographic analysis now categorizes crystal forms according to the axes 

characteristic of the shape. The simplest of the seven crystallographic systems is the cubic or 

regular system. The crystals of common table salt, sodium chloride, fall into this system. It is 

characterized by three perpendicular axes of equal length. A cube conforms to this system; it 
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takes no great geometrical insight to see that a cube has three perpendicular axes of equal length. 

The same is true of a regular octahedron, which also conforms to the system. There are many 

more shapes in the system. Crystals have natural cleavage planes. If we start with a crystal cube 

of common salt and begin chipping off the crystals corners along these planes, we can chisel it 

down to a regular octahedron. The cube on the left of Figure 1 has had its corners chiseled off, 

on the way to the octahedron shown inside. 

 

 
Figure 1. Chiseling Off the Corners of a Cube2 

 

During the process of chiseling, we will pass through many, more complicated shapes of cubes 

with corners removed in different extents. The shape on the right of Figure 1 is such an 

intermediate form. All these multi-faceted shapes and many more are licit forms within the cubic 

system. Figure 2 shows further crystal shapes, both within the cubic system. They derive from 

the octahedron shown within to which they may chiseled down. 

 

                                                
2 Redrawn after Miers (1902, p. 14, Fig. 17 and 18). 
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Figure 2. Mis-shapen Octahedra3 

 

 All these shapes are different from the crystalline shapes permitted to barium chloride, 

for barium chloride is monoclinic. That means that its crystals are characterized by three unequal 

axes, two of which intersect at an oblique angle and the third is perpendicular to them. Instead of 

a cube, its primitive form, the simplest crystal shape, is a right prism with a parallelogram base. 

This is shown in Figure 3, where the parallelogram is the rearmost face. Alternatively, one may 

generate the shape by starting with a right prism with a rectangular base and inclining it to one 

side (hence “mono-cline”). In Figure 3, the inclination is towards the right of the figure. 

 

                                                
3 Redrawn after Miers (1902, p. 11, Fig. 9 and 10). 
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Figure 3. Primitive Form of the Monoclinic System 

 

The range of crystal shapes allowed in the monoclinic system are derived from this form, in the 

same way that those allowed in the cubic system are derived from a cube. 

 When a new metallic salt is prepared, the chemist will simply assert that such-and-such is 

the form of the salt’s crystals. This is an inductive inference and one of breathtaking scope. On 

the strength of just a few samples, the chemist is quite prepared to infer the crystal system of all 

samples of the salt: 

This sample of salt A belongs to crystallographic system B. 

Therefore, all samples of salt A belong to crystallographic system B. 

F:&E5,-(&*34&"*4-5;&

 Perhaps the most famous of all episodes in crystal formation was Marie Curie’s 

separation of radium by fractional crystallization from uranium ore. The massive labor of 

extracting radium from the pitchblende ore is the stuff of scientific legends, Nobel Prizes and a 

1943 MGM movie. The radioactive elements, polonium, radium and actinium, exist in such trace 

quantities that several tons of uranium ore residue had to be treated to recover just a few 

decigrams. A decigram, a tenth of a gram, is a mere speck. The process of recovering the radium 
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was arduous. From each ton of ore, after much processing, about eight kilograms of barium 

chloride was recovered. Radium chloride is present in it as a trace impurity, revealed by its great 

radioactivity. 

 The final separation of the radium chloride from the barium chloride is difficult to 

achieve since radium and barium behave in similar ways chemically. The separation depends on 

the fact that radium chloride is less soluble in water than barium chloride. If the barium chloride 

in solution is concentrated by boiling and cooling until it forms crystals, those crystals will 

harbor more radium chloride. The solution remaining above the crystals has a fifth the 

radioactivity of the original, Curie reported. While that seems like a large increase, the quantity 

of radium present is so tiny that it falls far short of what is required for substantial separation. 

Curie needed to repeat the process over and over; redissolving and recrystallizing to form more 

fractions; recombining them according to their radioactivity; and doing it again and again. In all 

she needed to carry out several thousand crystallizations. 

 All this is described in her doctoral dissertation (Curie, 1904), presented to the Faculté 

des Science de Paris in June 1903. There, she reported on the analytic work carried out in the few 

years before, with her husband, Pierre Curie. The feature of the radium chloride that attracted 

most attention was its powerful radioactivity. In spite of the thousands of crystallizations 

performed, the crystallographic properties of radium chloride barely rated a mention. In the 

ninety four pages of the dissertation, there are only a few complete sentences on the 

crystallographic form (Curie, 1904, p. 26) and they bleed off into less certain reports on the 

colors of the crystals that, she suspects, may prove of practical use in the separation: 

The crystals, which form in very acid solution, are elongated needles, those of 

barium chloride having exactly the same appearance as those of radium chloride. 

Both show double refraction. Crystals of barium chloride containing radium are 

colourless, but when the proportion of radium becomes greater, they have a 

yellow colouration after some hours, verging on orange, and sometimes a 

beautiful pink. This colour disappears in solution. Crystals of pure radium 

chloride are not coloured, so that the colouration appears to be due to the mixture 

of radium and barium. The maximum colouration is obtained for a certain degree 

of radium present, and this fact serves to check the progress of the fractionation. 
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 I have sometimes noticed that formation of a deposit composed of crystals 

of which one part remained uncoloured, whilst the other was coloured, and it 

seems possible that the colourless crystals might be sorted out. 

Curie and, soon, others separated out only miniscule quantities of radium. Yet, that radium 

chloride forms crystals just like those of barium chloride entered the literature quite quickly. In 

his 1913 survey of radioactive substances, Rutherford (1913, p. 470) reported: 

Radium salts crystallise in exactly the same form as the corresponding salts of 

barium. The crystals of radiferous barium chloride several hours after preparation 

usually assume a yellow or rose tint. The intensity of this colouration depends on 

the relative proportions of barium and radium present in the crystal. Nearly pure 

radium chloride crystals do not show this colouration, indicating that the presence 

of barium is necessary. 

The facts are reported as having quite general scope, even though the instances of observed 

radium chloride crystals must have been very few, given the enormous labors needed to create 

them in tiny quantities. Nonetheless, both Curie and Rutherford seem quite certain of the 

generalization. Rutherford’s report looks like little more than a shorter paraphrase of Curie’s 

remark. 

G:&#&$/,;*.&#3*.08-8&

 If we approach inductive inference formally, how are we to accommodate this induction? 

We need only investigate a few simple formal attempts to see just how poor is the formal 

analysis. The inference looks like a type of enumerative induction with the schema: 

Some (few) A’s are B. 

Therefore, all A’s are B. 

Yet this alone cannot be what authorizes the induction. For almost every substitution for the As 

and Bs would yield a feeble induction. To get an induction of the strength seen by Curie and 

Rutherford, we have to be very selective in what is substituted for A and B. The As have to be 

specific chemical types, such as radium chloride or barium chloride, as opposed to the hundred 

and one other types of stuff that Curie found in her vats. More importantly, the induction works 
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only for very carefully chosen properties B. There are very many ways of describing crystal 

forms. Virtually none of them support a strong inductive inference. 

 To revert to the simpler example, one may find some particular crystal of common salt is 

a perfect cube. However no chemist would risk the induction to all crystals of common salt 

having exactly that shape. It was only after serviceable systems of crystallography were 

introduced that the right property was found.  Individual crystals of common salt fall into the 

cubic or regular system and that property can be inserted into the schema of enumerative 

induction to form the generalization. 

 This problem of finding the right descriptions challenged generations of 

crystallographers. Indeed, for a long time, many held that crystal forms admit no simple 

systematization so that exactly this sort of induction would be denied. The scientist, historian and 

philosopher of science William Whewell published in the mineralogical literature. His History of 

the Inductive Sciences (1837, Vol. III, Book XV, Ch.1-2) gives a lively account of these 

hesitations and their clarifications by Romé de Lisle and Haüy after 1780. 

 These difficulties make it a matter of some delicacy to specify in formal terms just what 

property of the radium chloride crystals can be generalized. Curie and Rutherford above used 

parasitic locutions: the crystals of radium chloride are the same as those of barium chloride. 

Hence Marie Curie, in her 1911 Nobel Prize address, chose a technical locution to describe the 

crystal form of radium chloride 

In chemical terms radium differs little from barium; the salts of these two 

elements are isomorphic, while those of radium are usually less soluble than the 

barium salts. 

Isomorphism is a term of art then and now used to describe the circumstance in which two 

different substances have very close chemical and crystalline properties. (See, Miers, 1902, p. 

213.)  It saved Curie the need of describing in more detail the precise structure possessed by the 

salts of radium. It was familiar knowledge for chemists that barium chloride has such and such a 

monoclinic crystalline form. The declaration of isomorphism tells us that radium chloride has it 

too. 

 If the schema of enumerative induction is to function as a general logic, these restrictions 

on just what may be substituted for A and B have to be abstracted, regularized and formalized 

and then included in the schema. The problem is that the restrictions that must be added are so 
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specific that one despairs of finding a general formulation. Presumably a general logic cannot 

append clauses of the form: 

“…and, if A is a substance that manifests in crystalline form, 

then B must be one of the known crystal forms 

 as sanctioned by modern crystallography.” 

This is a little short of offering a huge list in which we inventory the specific inferences that are 

allowed. That is not a logic, but merely a catalog whose guiding rationale is hidden. 

 A more promising approach is to draw on a popular philosophical notion devised for this 

sort of application: we require that A and B must be natural kind terms. These are terms adapted 

to the divisions arising in nature (“is crystallographically regular”); as opposed to artificial 

divisions introduced by humans (“looks like a cubist sculpture”). The hope is that we succeed in 

delimiting good inductive inferences by restricting the schema explicitly to natural kind terms. 

 The approach fails at multiple levels. First it fails because the good inductions on crystal 

forms are still narrower. It is surely a natural kind term for a crystal to be a perfect cube, one of 

the five Platonic solids. Yet an induction on common salt that uses the property fails to be a good 

induction by the standards of the crystallographers. Second, the schema is only viable if one can 

give a general formula that specifies what is a natural kind term. The familiar characterizations 

of natural kind terms include that the terms support induction. (Bird and Tobin, Section 1.1) This 

means that we are allowed to generalize relations found in a few cases to hold between natural 

kind terms. If we append this characterization of natural kind terms to the schema of enumerative 

induction, the schema is rendered circular. For to require that the schema can only be used on 

terms A and B that support induction is to say in fancy words that the schema only works when it 

works. Another common characterization of natural kind terms is that they appear in natural 

laws. If we try to include this characterization in the specification of the schema, we face similar 

circularities when we try to state just what we mean by “law.” Are they true relations that obtain 

between natural kinds? 

H:&#&I*0(8-*3&#++(;@+&

 These sorts of problems will defeat other attempts to provide a formal account of the 

inference. Here is a quite different attempt at another extreme of the literature.  
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  There are many ways that one can give Bayesian analyses of this problem. Let me sketch 

just one. We write H for the hypothesis that a newly prepared salt belongs to some particular 

crystallographic system; we write E for the evidence that a number of samples are each observed 

to belong to that class. If there are n samples, we can write E = E1& E2&…& En, where Ei 

asserts the evidence in the i-th case. The probability of interest is P(H|E), the probability of the 

hypothesis H given the evidence E. It represents the inductive support afforded to H by E, if we 

think of the probabilities objectively. Or it is the belief we have in H given that we know E, if we 

interpret the probabilities subjectively. We are interested in seeing how the posterior probability 

P(H|E) compares with the prior probability, P(H); that is, we seek how is the probability of H 

changes when we incorporate our learning of evidence E. Those changes will tell us the 

evidential import of E. An increase in probability is favorable evidence; a decrease is 

unfavorable. 

 We can compute these changes by means of Bayes’ celebrated theorem. In a form 

suitable for this application, it asserts 

P(H|E)
P(~H|E)  = 

P(E|H)
P(E|~H)   

P(H)
P(~H)  

We will not be able to compute P(H|E) directly, but only how incorporating E alters the balance 

of probability between the hypothesis H and its negation, ~H. That is, we can see how the ratio 

of prior probabilities, P(H)/P(~H) changes to P(H|E)/P(~H|E) = r. From this last ratio, P(H|E) can 

be recovered as 

P(H|E) = 
r

 r+1  

 The theorem tells us that the controlling quantities are the two likelihoods, P(E|H) and 

P(E|~H). The first is easy to compute. It expresses the probability that we have the evidence E if 

the hypothesis H is true. The hypothesis H says that all samples belong to a particular 

crystallographic system. Hence the n samples at hand must belong to that system. So the 

probability is unity that we have evidence E: P(E|H) = 1.  

 The other likelihood P(E|~H) is much harder to determine. How probable, it asks us, is 

the evidence if the hypothesis is false? Answering that requires some creative imagination for we 

have no precise prescription for the ways that the hypothesis might fail. The likelihood will vary 

depending on how we judge the hypothesis might fail. If the only possibility for failure is that the 
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salt belongs to one of the other crystallographic classes, then there is no possibility of the 

evidence E obtaining. Then P(E|~H)=0. Inserting this into Bayes’ theorem leads to P(H|E) = 1; 

the hypothesis is maximally probable. 

 However things are not quite so simple. E can be reported if there are observational 

errors, so that the evidence is misreported. Or it may turn out that the salt is dimorphous or even 

polymorphous. That means that the salt can crystallize into two or more the systems. So there is 

some chance, perhaps small, that the evidence Ei obtains, even if H is false. Let us set that 

probability to q so that P(Ei|~H)=q. Let us suppose that each of the samples is taken under 

independent conditions, so that the obtaining of each Ei is probabilistically independent of the 

others and the probability of the conjunction is a just a simple product of terms: 

P(E|~H) = P(E1& E2&…& En|~H) = P(E1|~H).P(E2 |~H). … .P(En|~H) = qn 

Bayes’ theorem now becomes 

P(H|E)
P(~H|E)  = 

1
qn 

   
P(H)

P(~H)  

Here we have a nice limit result. As n becomes large, qn can be brought arbitrarily close to 0, as 

long as q<1. Hence the ratio of likelihoods 1/ qn becomes arbitrarily large, so that the ratio r = 

P(H|E)/P(~H|E) also grows arbitrarily large. That corresponds to the posterior, P(H|E) =r/(r+1) 

coming arbitrarily close to unity. And that means that the support for or belief in H approaches 

certainty. This limiting result is comforting, for it means that we do not need to worry about the 

particular values that we might assign to the priors. Whatever influence their values may have 

had on the final result is “washed out” by the limit process. That is for the better, since the prior 

probabilities P(H) and P(~H) would have to be plucked from the air. 

J:&K'*+&-8&K,/3L&K-+'&2+&

 If one inclines to numerical and algebraic thinking, this may seem like a very satisfactory 

analysis. It has brought mathematical precision to what first seemed like an intractable problem. 

There is even a little limit theorem in which priors are washed out. All that is an illusion. There 

are few if any gains in the analysis. However the harm done is great, since we have convinced 

ourselves that we have solved a great problem, when we have not. 
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 First, the analysis is troubled by problems on the technical level. The calculation can only 

succeed if we make the right sorts of assumptions. We have to assume that each of the 

observations Ei are probabilistically independent given that H is false. Need I say that 

speculating on how things might be connected if the hypothesis is false is a risky operation, for 

hypotheses can fail in many ways? Setting that aside, in the case of radium salts, the samples are 

all recovered in similar circumstances, by fractional crystallization of traces from a solution of 

the corresponding barium salt. Given that similarity in each case, there is every reason to expect 

that the observations are not independent. What if radium salts turn out to be polymorphous so 

that they may crystallize in several systems? The common conditions of radium preparation may 

favor just one, so that we never see the other systems realized. That would be a failure of 

independence. 

 Second, the analysis has solved the wrong problem. Curie was sure of the result already 

from just a few samples. She did not need to look at n samples and ponder the result as this n 

grew arbitrarily large. This “small n” result can be addressed in the Bayesian system, but it 

requires us to insert numbers. We need concrete values for q and for the priors P(H) and P(~H) 

in order to see if the analysis supports Curie’s analysis. Which are the right values? Can we find 

them? Or are our selections just hunches driven by dim feelings of what is reasonable. 

 We now must face the awkward problem of all Bayesian analysis: it introduces specific 

probability numbers, while no such numbers are in evidence in the inductive practice. Just which 

value is appropriate for P(Ei|~H)? Is it 0.1? Or 0.5? What of the prior probabilities? If we think 

of the probabilities as measuring objective degrees of support, then we have no good basis for 

assigning the prior probabilities and the whole small n calculation will rest on a fabrication. If we 

think of probabilities subjectively so that they are merely reflections of our freely chosen 

opinion, we are no better off. The hope, in this case, is that the accumulation of evidence will 

wash out the individual prejudices we introduced by arbitrary stipulation of our prior belief. This 

washing out does not happen precisely because we are limited to the small n analysis. 

 More generally, this “solving the wrong problem” is an infraction committed repeatedly 

in Bayesian analyses. There are a few simple, exemplar computations and the exercise in 

Bayesian analysis is to modify the problem actually posed in successive steps until it resembles 

one of them. In this case the original problem is transformed into the problem of distinguishing a 
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double-headed coin (hypothesis H) from a coin that has probability q of showing a head 

(hypothesis ~H). We are given the evidence E of n independent tosses all of which show heads. 

 These first two problems are familiar and generally addressed by making the analysis 

more complicated. If independence is doubtful, then repeat the analysis assuming some form of 

dependence between the evidence instances Ei. Or if selecting appropriate prior probabilities is 

troublesome, then devise rules or systems for selecting them. This maneuver does not solve the 

problem. It merely enlarges the analysis and exiles the same problems to remote corners, where 

the same problems remain and more appear. They are just harder to see because the analysis has 

become so enlarged and so much more complicated. 

 The third problem is, in my view, the most serious. It cannot be deflected by the strategy 

of expand and exile. The Bayesian analysis began by declaring the hypothesis that the salt has 

crystals belonging to a certain crystallographic system and that the observed instances all 

conformed to this system. Once that description is given, the most important part of the inductive 

analysis is over. Once we know that these are the terms in which the problem should be 

described, then almost any analysis will succeed. Enumerative induction will quickly return 

something like Curie’s result. Or, looking ahead to other accounts of induction, we can declare 

the evidence a severe test of the hypothesis; or best explained by the hypothesis. 

 Until we are able describe things in these terms, no analysis will work, including the 

Bayesian. The alternative descriptions will either be too coarse or too fine. If they are too coarse, 

the sorts of hypotheses investigated and affirmed under Bayesian analysis will likely end up as 

banal. We may affirm that radium chloride forms crystals, for example. If the descriptions are 

too fine, we will likely find that no hypothesis is well supported by the evidence. If, for example, 

we give too detailed a description of the crystal form, then the several cases at hand will differ 

sufficiently so that no single description fits and so that we do not even have a compatible 

hypothesis to set for H in the analysis. 

 The damage done by the Bayesian analysis is that it obscures exactly the most important 

part of the inductive analysis with a smokescreen of numbers and theorems. The essential part of 

the analysis was the recognition that the hypothesis and the evidence need to be described in 

terms of a narrow and hard won vocabulary of crystallographic theory. The elaborate 

computations of the Bayesian analysis mislead us into thinking that inductive problems are 
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solved by manipulating probabilities and by proving theorems in the probability calculus. It is a 

seductive aura of precision that is to be resisted if we are to understand inductive inference. 

 It is widely acknowledged that the real work lies in finding the appropriate system of 

classification. In introducing crystallography as a “classificatory science,” Whewell (1837, pp. 

212-13, his emphasis) stresses that finding this appropriate description is the object of the 

science: 

Our classification of objects must be made consistent and systematic, in order to 

be scientific; we must discover marks and characters, properties and conditions, 

which are constant in their occurrence and relations; we must form our classes, 

we must impose our names, according to such marks. We can thus, and thus 

alone, arrive at that precise, certain, and systematic knowledge, which we seek; 

that is, at science. The object, then, of the classificatory sciences is to obtain 

fixed characters of the kinds of things; the criterion of the fitness of names is, 

that they make general propositions possible. 

Finding the right system of classification is what makes generalization possible. 

M:&#&)*+(,-*.&#3*.08-8&

 Formal analysis presumes that one isolates the transition from knowledge of a single case 

to all cases as a problem in inductive logic; and that we establish the cogency of the transition by 

displaying its conformity with formal principles. Examples are conforming the transition with an 

abstract schema of enumerative induction or, in the probabilistic case, with Bayes’ theorem. 

Hence the inference from a single sample to all, is immediately beset with the familiar problems 

that have troubled induction for millennia. They sustain the weary sense among philosophers that 

induction, trouble and woe all go together. 

 Chemists at the start of the 20th century, pondering the crystalline structure of matter, 

would likely not have sensed that their passage from one sample to all was problematic. Indeed 

they are unlikely to have thought of it in the abstract terms of theories of inductive inference at 

all. The century before had seen vigorous investigation into the question of just how properly to 

characterize the crystalline forms so that the passage from properties of one sample to all may be 

effected. Curie and Rutherford, if called on to defend this transition, would not have recited 
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passages from logic books. They would have pointed to background knowledge then shared by 

all competent chemists. 

 The foundations of the successful approach were laid by René Just Haüy in the late 18th 

and early 19th century. His approach was based on the idea that each distinct substance that 

forms crystals is built up from many, primitive geometrical nuclei, all of the same geometric 

shape. Common salt, for example, is built from minute cubes. The many shapes of crystals of 

common salt were just those shapes that can be constructed by stacking up these little cubes. 

They include large cubes and anything that can be derived from it by fracturing pieces off. The 

oblique faces admitted by fracturing off the corners of the cube are, at the smallest scale, really 

many staircases of these cubes. But that scale is so small that we perceive a perfectly smooth 

surface. In his treatise published at the time Curie was working on radium, Henry Miers (1902, 

p.48) illustrated Haüy’s account as in Figure 4:4 

 

B A

C

              
Figure 4. Haüy’s Accont of Crystal Fracture Planes 

 An account5 contemporary to Haüy summarized the theory (Accum, 1813, p. 110): 

He [Haüy] has also shewn that all crystals, however complicated their form may 

be, contain within them a primitive geometrical nucleus, which has an 

invariable form in each chemical species of crystallisable material. 

                                                
4 The figure on the left is redrawn from Mier’s Fig. 38 and the figure on the right is a 

reproduction of Mier’s Fig. 37. 
5 This account is more succinct that Haüy’s own synopsis of Haüy (1807, pp. 86-101). 
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From this theory came the essential result that every substance was characterized by a unique 

primitive form (Accum, p. 117) 

The diversity of primitive forms ought therefore to be regarded as a certain 

indication of a difference in nature between two substances and the identity of 

primitive form indicates identity of composition, unless the nucleus is one of 

those solids which have a marked character of regularity; such as the cube, the 

regular octahedron, &c. 

The essential qualification is that sometimes two substances may be composed of nuclei of the 

same form; this was likely to happen for crystals built from regular solids like cubes. This was a 

quite essential qualification since Accum could list numerous cases of substances with the same 

crystalline form. Accum (1813, p. liv) listed ten substances based on the cube, for example. 

Among them are native gold, native silver, native copper, gray cobalt ore, leucite, common salt, 

galena and iron pyrites. 

 A century later, Haüy’s system had received multiple adjustments and his basic 

supposition was commonly Bowdlerized as (Anon, p. 365 under “crystallography): 

The Abbë Reny Just Hauy, whom Dr Tutton designates the “father of modern 

crystallography,” has enunciated the great principle that to every specific 

substance of definite chemical composition capable of existing in the solid 

condition there appears a crystallizing form peculiar to and characteristics of 

that substance. 

The view outlined was not so much a principle as a simple consequence of his theory; and 

Haüy’s theory, as outlined by Accum, did not insist that each crystalline substance had its own 

“peculiar,” that is, unique, form. 

 For our purposes, the essential point is that, if a chemist were to accept Haüy’s theory, 

then one good sample of a crystalline substance is sufficient to identify the crystallographic 

system to which all crystals of that substance must belong. We have the inference: 

(Haüy’s Principle) Each crystalline substance has a single characteristic crystallographic 

form. 

This sample of salt A has crystallographic form B. 

(Therefore, deductively) All samples of salt A have crystallographic form B. 
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This is the crudest version of how chemists pass from a single sample to all. What is notable is 

that it is no inductive inference at all. The inference is deductive and authorized by early 

crystallographic theory. 

 Of course this is an extreme case and a purely deductive passage was possible only 

during a brief window of a few decades of the early years of Haüy’s crystallographic theory. The 

theory soon encountered anomalies. The shapes Haüy postulated for his nuclei could not always 

be stacked so as to properly fill space. Whewell (837, p. 235) reports the collapse of Haüy’s 

physical theory: 

…and when Haüy, pressed by this difficulty, as in the case of fluor-spar, put his 

integrant molecules together, touching by the edges only, his method became an 

empty geometrical diagram, with no physical meaning. 

A still more serious problem was the recognition mentioned above that the one crystalline 

substance may for crystals belonging to two, three or many crystallographic systems—called 

“dimorphism,” “trimorphism” and “polymorphism” respectively. It was not clear how merely 

stacking the nuclei of the same shape could yield these different shapes. Mineralogy texts of the 

early 20th century routinely reported examples. Ford’s (1912, p. 80) list is presented more as a 

reminder of what everyone supposedly knew, than as a surprising novelty: 

Carbon in the forms of graphite and diamond, calcium carbonate as calcite and 

aragonite, iron sulphide as pyrite and marcasite are familiar examples of 

dimorphism. The two minerals in each case differ from each other in such 

physical properties as crystallization, hardness, specific gravity, color reactions 

with acids, etc. Titanium oxide, TiO2, is trimorphous, since it occurs in the three 

distinct minerals, rutile, octahedrite and brookite. 

This means that Haüy’s principle of the earlier deduction was not true, for there were cases of 

one substance routinely manifesting in several different crystalline forms. 

 However the idea of a strict regularity in the crystal forms manifested by one substance 

remained. So we might render a corrected version of the earlier inference as 

(Weakened Haüy’s Principle) Generally, each crystalline substance has a single 

characteristic crystallographic form. 

This sample of salt A has crystallographic form B. 

(Therefore, inductively) All samples of salt A have crystallographic form B. 
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We now have an inductive inference. The warranting principle is what I have called the 

“weakened Haüy’s Principle.” What makes it inductive is the insertion of the word “generally.” 

It licenses us to proceed from one sample to all, but not with certainty. 

 One might imagine that this “generally” is, finally, a manifestation of some universal 

inductive logic. Perhaps its schema is: 

Generally X. 

Therefore X in this case. 

While we may find many instances of propositions of the form “Generally…,” they are not 

manifestations of a unique inductive logic. In each case, the word “generally” will have a 

meaning peculiar to the context. In this case “generally” means “in so far as polymorphism does 

not interfere.” So the nature of the risk one takes in accepting the conclusion will differ with each 

context.6 

 This is one illustration of how background knowledge drives inductive inferences and 

how that background knowledge is deeply entangled with inductive practices. Once one knows 

to look for it, the extent of the entanglement is quite profound. Another notion that was well 

established at the time Curie worked the isomorphism, mentioned earlier. This was then defined 

more precisely as (Ford, 1912, p. 79): 

A series of compounds which have analogous chemical compositions and 

closely similar crystal forms are said to make an isomorphous group. 

An early celebrated instance was a triumph of crystallographic analysis. Whewell (1937, pp. 

226-28) reports confusion over the crystalline substance “heavy spar.” Haüy found that its 

cleavage angles varied by three and a half degrees, according to the origin of sample. One was 

from Sicily and one from Derbyshire. That was a great perplexity and a dire threat to Haüy’s 

theory since the same nuclei could not accommodate even such a small change of angle. It turned 

                                                
6 While the inferences may look formally similar, they will be quite different if applied to 

crystals or to astronomy. Take the proposition: Generally, orbiting objects in our solar system 

orbit in the same direction as the earth. From it, we may infer with a small risk, that this recently 

discovered asteroid will orbit in that same direction. The risk we are taking is distinct from that 

taken in crystallography. We are risking the possibility that this asteroid was not formed by the 

same processes that formed most other objects in our solar system. 
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out that the two samples were of different substances. The Sicilian was barium sulphate; and the 

one from Derbyshire strontium sulfate. Barium and strontium are both alkaline earth metals in 

the same column of the periodic table and have similar chemistry. They also form crystals that 

are very similar although, as was essential to this story, not perfectly identical. They are a classic 

case of isomorphism. 

 When Curie remarked that the radium chloride formed crystals having “exactly the same 

appearance” as barium chloride, it would have been with full knowledge that the chemistry of 

radium mimicked closely that of barium. Indeed that mimicry is what made the separation of the 

two hard. Hence the familiar idea of isomorphism would have indicated that the crystals of the 

two chlorides should be similar. All that was really left to affirm was how close the similarity 

would be. It was, Curie found, “exactly the same.” 

 Immediately after Curie’s work, the chemical and crystallographic similarity of radium 

and barium was immediately investigated and affirmed. Runge and Precht (1903) used 

spectrographic and atomic weight measurements to the locate radium with the other alkaline 

earth metals, magnesium, calcium, strontium and barium. The expected similarity of crystalline 

forms was found by direct measurement of the bromides of barium and radium. (Soddy, 1907, 

p.332) reported 

F. Rinne … has published a careful comparison of the crystallographic relation 

between the bromides of radium and barium and has shown that radium 

bromide crystallises in the monoclinic system and is isomorphous with and 

crystallographically closely related to barium bromide 

To report the isomorphism of barium and radium became standard in the literature. 

 We can now appreciate the great subtlety of Curie’s inference. As long as the background 

theories of crystallography are to be trusted, the possibility of polymorphism was the principal 

risk taken in generalizing the crystalline form of radium chloride from one sample to many. 

Hence Curie and Rutherford were quite sanguine to report the radium salts’ crystalline form as 

an isomorphism with barium salts. For, if there was any polymorphism of the radium salt, they 

could reasonably expect a similar polymorphism to arise with the barium salt. So, with or 

without polymorphism, their result would stand. With that canny formulation, the result could be 

asserted with the confidence they showed. The only real danger was a failure of the isomorphism 
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and, given the multiple points of agreement between barium and radium, that was easy to 

discount. 

 Let us take stock. Our starting point was a simple inductive inference from a few crystal 

samples to all samples. It is the sort of simple induction that should be explicated easily by an 

inductive logic. In particular, we would expect the logical analysis to tell us why this particular 

inference from a “some” to an “all” is so strong as to be essentially unquestioned. On closer 

inspection we found that appearance quite deceptive. The strength of the passage from “some” to 

“all” in this particular case had little to do with issues identifiable by a formal logic. It had all to 

do with background chemical knowledge. The confidence the chemists had for the inference 

resulted from the care with which Curie and Rutherford located it within a complicated network 

of chemical ideas that had been devised over the previous century precisely to admit such 

generalizations. 

N:&)*-3&24(*8&/1&*&)*+(,-*.&%'(/,0&/1&23456+-/3&

 This last case exemplifies how I believe we should understand inductive inference. Let 

me collection the main ideas: 

 Inductive inferences are warranted by facts not formal schema. 

What makes the inductive inference a good and strong one is not conformity with some universal 

formal schema. It is facts pertaining to the subject matter of the induction; hence the warrant is 

“material” and not formal. Curie already knew of the closeness of the chemical properties of 

barium and radium. She knew of the well-established isomormphism that arose in such cases and 

indicated a closeness of the corresponding crystalline structures. Those facts assured her that the 

few cases she had observed of similarity of radium and barium chloride crystals could be 

generalized. 

 The essential idea here is that facts can serve a dual role, both as statements of fact and 

warrants of inference. That idea is actually quite familiar. In deductive logic, the conditional “If 

A then B.” Serves that dual role. It can serve as a factual premise in an argument; or we can take 

the same argument and understand its role as warranting a deductive inference from A to B. 

 In chemistry, the facts that play this dual role look, loosely, like “Generally, X.” For 

example, “Generally, salts that are chemically analogous have similar crystalline structures.” 
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This is both a fact in chemistry and an authorization to infer that radium salts and barium salts 

will have similar crystalline structures because of their chemical similarity. The inference is 

authorized all the more strongly when Curie found a single sample of radium chloride crystals 

that, as expected, exactly resembles barium chloride crystals. That diminished the possibility of 

smaller but superficially detectible differences. The inference is inductive since the chemical 

facts do not deductively entail Curie’s inference. That is the import of the “generally.” It 

accommodates the ways the inference can still fail that are peculiar to this particular chemical 

example. 

 All induction is local. It is contextual. 

The chemical facts that authorize these inductive inference are truths of a particular domain of 

chemistry. They warrant a local mini-logic, peculiar to the context, in which evidence of 

chemical similarity and of a few samples warrants the generalizations indicated. This local mini-

logic resembles the universal schema of enumerative induction. But the resemblance is 

superficial. There will, no doubt, be other domains in which other facts will warrant inferences 

that also resemble enumerative induction. The inferences of each domain will be distinct, 

carrying their own unique restrictions that do not derive from a universal schema, and bearing 

their own unique form of inductive risk. 

 Inductive risk is assessed and controlled by factual investigation. 

When one makes an inductive inference, one takes an inductive risk and one seeks both to assess 

and to minimize the risk taken. In a formal theory of induction, that assessment of the risk 

becomes an assessment of the reliability of the inference schema used. If we infer to the best 

explanation, we then need to ask how reliable it is to do that. We are faced immediately with an 

intractable problem. There is no simple answer to this question; and likely no serviceable, 

complicated answer either. 

 In a material theory of induction, things are quite different. The warrant for an induction 

is a fact and we assess and then control the inductive risk by exploring and developing the fact. 

Let us imagine that we notice only that a few radium chloride crystals resemble those of barium 

chloride. The inference to a broader resemblance might then be warranted by a chemical fact that 

salts manifest only a few crystalline forms. The strength of the inductive inference depends 

essentially on the correctness of that fact and just how many forms are admitted by the “few.” 

All that can be checked by further investigation and just that is the normal business of research 
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chemists. They developed theories of how crystals are constituted to enable a better 

understanding of which crystalline forms will appear in which circumstances. These 

investigations assure us that two salts will manifest similar crystalline forms if they are 

chemically similar; and this conclusion is in turn grounded in both other observations and a 

theoretical argument. Since radium and barium are chemically very similar, the chlorine atoms in 

a barium chloride crystal will permit the barium atoms to be replaced by radium atoms with 

minimum alteration to crystal structure. 

 We assess and control inductive risk by learning more facts. These new facts both 

provide new premises for inductive inference and also new warranting facts. What was an 

intractable problem for a formal theory of induction has become a routine problem in exploring 

the factual realm of chemistry for a material theory. 

 Inductive inference is inherently imprecise. 

The inductive inferences on crystalline structure surveyed above are characterized as “strong” or 

“reliable” or “very certain.” There is an inherent imprecision in these assessments of strength. 

Much more can be said about them. Inferences to a unique crystallographic system are most 

prone to failure if the salt displays polymorphism. That specific risk is the major limit on the 

strength of the inference. That elaboration is still narrowly specific to the chemical context and 

also somewhat vague. It is, however, as good as it gets. 

 Someone with a formal turn of mind will want a more precise measure of strength. A 

probabilistic analysis can supply a definite number—say 0.99—whose closeness to unity gives 

the sought for quantitative measure. As satisfying as it may be, it is simply an exercise in 

spurious precision.7 It forces a vague notion into a single, uniform mold that supposedly enables 

comparisons across domains. However there is a different domain specific meaning for the 

strength of an inductive inference in each domain. In its details, “strong” will mean one thing in 

some domain of chemistry and something else in some domain of astronomy. To demand a 

single number of a single universal term to characterize them invents a uniformity that is not 

found in the variegated character of inductive practice. 

                                                
7 There are a few exceptions in which we perform inductive inferences specifically on systems 

governed by probabilistic facts. There is a probability of 0.5 that a radioactive atom will decay in 

its half life; so we can assign strength 0.5 to conclusion of the decay in that time. 
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 Inductive inference is material at all levels. 

The crystallographic example explored here looks at particular sorts of inductive inferences at a 

specific level of refinement. One may wonder what happens if we take a more fine-grained view 

that looks even more narrowly at very specific inferences; or if we take a coarser view that looks 

at inductive practice at a more general level. Might we find a formal account of inductive 

inference succeeding there? Might we find that, at levels of great refinement, the glue that 

inductively binds the corpuscles of analysis is formal? Or that, at a very general level, a 

universal, formal theory emerges that can unify the diversity of the particular cases. 

 My claim is that a material theory prevails at all levels. Of course, at all levels there will 

be inferences that loosely fit with one or other formal theory. We have seen in the 

crystallographic case that the inferences resemble enumerative induction. We should expect such 

loose fits, else the formal theories could not have survived at all in the literature. However, they 

will always be loose fits and, I maintain, closer examination will reveal that material facts are 

warranting them. 

?9:&!/(8&%'(&)*+(,-*.&%'(/,0&7*0&+'*+&23456+->(&231(,(36(&-8&"(*..0&
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 No. No. NO. It does not say that. This is perhaps the most frequent misreading of the 

material theory and it can be put to rest here. The material theory maintains the distinction 

between the two forms of inference. In deductive inference, the truth of the premises assures the 

truth of the conclusion. In inductive inference, understood materially or otherwise, the premises 

only lend support to the conclusion. Inductive inference is not deductive inference. 

 The misreading of the material theory has it affirming that inductive inference is really 

some form of disguised deductive inference. My sense is that this misreading comes from a 

similarity between the material theory and another approach to inductive inference. In this other 

approach, we note that good inductive inferences are also deductive fallacies. For example, we 

take as a premise: 

This sample of salt A has crystallographic form B. 

and from it infer 

All samples of salt A have crystallographic form B. 
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This is a deductive fallacy. We could imagine that the argument is really, secretly, a valid 

deductive argument, but we do not see it because one or more the premises are unstated. That 

would make the argument an “enthymeme,” a valid inference with unstated premises. In this 

case, a suitable unstated premise would be the strong form of Haüy’s Principle: 

Each crystalline substance has a single characteristic crystallographic form.  

With this added premise, the inference becomes deductively valid. In this other approach, all 

inductive inference is treated this way. They are treated as failed deductions that are repaired by 

supplying missing or unstated premises It is not how the material theory treats inductive 

inference, however. 

 If we transform the inductive inference to a deductive inference by adding such premises, 

we have generated what is known as a “deduction from the phenomena.” The best-known 

examples are given in Book III of Newton’s Principia, where he shows how to infer deductively 

from the phenomena of celestial motions to the basic ideas of his theory of gravitation. His 

examples are so important that inferences of this type are often called “Newtonian deduction 

from the phenomena.” 

 In admitting these cases, the material theory does allow that some inductive inferences 

may turn out to have been deductive inferences all along, once we make the background facts 

explicit.8  However—and here is the key observation—this deductive outcome is an extreme and 

relatively rare case. Most commonly, it does not arise. When we identify the warranting facts, 

they supply an inductive warrant only. The strong form of Haüy’s Principle is false. The correct 

weakened form of Haüy’s Principle merely asserts that: 

Generally, each crystalline substance has a single characteristic crystallographic form. 

That crucial word “generally” makes all the difference. It reminds us that the original principle 

fails if there is polymorphism. In accepting the conclusion we take the risk that polymorphism, if 

present after all, will undo the conclusion. That is, the warrant supplied by the weakened form of 

                                                
8 That is not a bad outcome at all. We thought that we must take an inductive risk in accepting 

the conclusion of the original inference. However we learn that background facts assure us that 

no inductive risk is taken in accepting the conclusion. The inference has become deductive and, 

in effect, we have already taken any needed inductive risk when we accepted the background 

assumptions. 
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the principle is not strong enough to assure us of the conclusion with deductive certainty. The 

distinction between deductive and inductive inference is maintained. 

 

---oOo--- 

 The chapters to come will elaborate and illustrate further. A later chapter will illustrate 

“material at all levels” claim through the analysis of a powerful inductive idea that obtains at the 

most general level, the reproducibility of experiments. It will be followed by a chapter on the 

argument form “analogy.” The next chapter, however, will approach a material theory of 

induction by looking at the nature of inductive inference itself. 
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