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Abstract

An issue which has become a focus of controversy in recent years is whether or not clas
sical probability theory is sufficient for dealing with uncertainty in AI. The topicality of
this issue has grown as a result of the emergence of expert systems as one of the princi
pal areas of activity in Al and the development of methods for evidential reasoning
based on the Dempster-Shafer theory and fuzzy logic which extend beyond the current
boundaries of probability theory.

A point of view which is articulated in this paper is that the inadequacy of probability
theory stems from its lack of expressiveness as a language of uncertainty, especially for
describing fuzzy events and fuzzy probabilities. For example, how would one represent
the meaning of the proposition p: it is very likely that Mary is young, in which likely is
fuzzy probability and young is a fuzzy predicate? Furthermore, how can one infer from
this proposition an answer to the question: What is the likelihood that Mary is not very
young?

We show through examples that problems of this type - problems which do not lend
themselves to solution by conventional probability-based methods -- can be dealt witk
effectively through the use of fuzzy logic.

1. The Issue of Adequacy

During the past few years, the question raised in the title of this paper has become :
matter of heated debate, especially in the context of dealing with uncertainty in exper
systems. There are some who claim, as do some of the authors in this volume, that it i
provable that probability theory is the only correct way of dealing with uncertainty anc
that anything that can be done with other techniques can be done equally well through
the use of probability-based methods [47], [44], [31], [33].

There are others, and I am one of them, who dissent from this view and question the
long-standing tradition in science to treat any kind of uncertainty -- regardless of its
nature -- in probabilistic terms.

*Reseurch supported in purt by NASA Grant NCC-2276 and NSF Grants ECS-8209679 and IST-8320416,
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Speaking for myself, what I do not question is the validity of axiomatic approaches such as
those described by Lindley (31] and Cox [9] which lead to the conclusion that, from a set of
what appear to be reasonable axioms regarding a measure of belief, one is led to the con-
clusion that such a measure must be probabilistic in nature. What I believe to be the case
is that, viewed as a language, classical probability theory is insufficiently expressive to
cope with the multiplicity of kinds of uncertainty which one encounters in Al and, more

particularly, in expert systems.

More specifically, the main limitation of probability theory in its present form is that, like
almost all of mathematics, it is based on two-valued logic. What this means is that all
predicates and concepts in probability theory have crisp denotations, implying that an
object x is either an instance of a predicate or a concept or it is not. As a case in point,
consider one of the most basic concepts in probability theory--the concept of an event. An
event, E, considered as a measurable subset of the sample space, either occurs or does not
occur; it cannot occur to a degree. This restriction rules out events defined by fuzzy predi-
cates like warm, small, short andfor fuzzy quantifiers like most, several, few. Simple
examples of such events are: tomorrow will be a warm day, finding a few small balls in a
box, observing a coin falling heads several times, etc. Such fuzzy events pervade our daily
encounters with chance phenomena and shape our intuitive perceptions of likelihood and
probability.

Another basic limitation of classical probability theory relates to the presumption that
probabilities are real numbers. In reality, most probabilities, regardless of whether they
are associated with crisp or fuzzy events, are not known with sufficient precision to be
representable as real numbers or, more generally, as second-order probabilities. For
example, what is the probability that Mary will marry a rich man or Jane will be divorced
from her husband? Although the theory of subjective probabilities does provide methods
for elicitation of subjective numerical probabilities, it does not answer the question of how
such probabilities are arrived at in the first place, nor does it come to grips with the issue
of representation of imprecisely known probabilities as fuzzy rather than second-order pro-
babilities [37], [10], {55].

A good example of a fuzzy event which is associated with a fuzzy probability is furnished
by a recent headline in the San Francisco Chronicle, which read: Experts predict a big San
Francisco earthquake unlikely soon. The fuzzy event in this case is the occurrence of a big
earthquake in San Francisco in the near future, and its fuzzy probability is unlikely. Note
that no expert knows enough about earthquakes to be able to interpret the headline in
question in quantitative terms like: The probability that, within the next three years,
there will be an earthquake in San Francisco of strength seven or more on the Richter
scale is 0.01.

Another example: Consider an urn which is known to contain n balls of various sizes,
several of which are large. What is the probability that a ball drawn at random is not
large?
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These and several other examples which will be given in the sequel are intended to make
two points:

1. Classical probability theory is insufficiently expressive to serve as the language o
uncertainty in Al

2. The inexpressiveness of classical probability theory derives from the fact that, as

language, it has no facilities for representing the meaning of propositions! contain
ing:

(a) fuzzy predicates such as small, large, young, safe, much larger than, soon.
(b) fuzzy quantifiers such as most, many, few, several, often, usually.

(c) fuzzy probabilities expressed as likely, unlikely, not very likely, etc.

(d) fuzzy possibilities expressed as quite possible, almost impossible, etc.

(e) fuzzy truth values such as very true, quite true, mostly untrue.

() predicate modifiers such as very, quite, extremely, somewhat, slightly.

Lacking these facilities, one cannot? express within the framework of classical theory th
meaning of descriptions of facts, rules and events examplified by the following:

P1: slimness is attractive.

p2. most small cars are unsafe.

pg: it is very likely that Mary is young.

p4: Brian is much taller than most of his close friends.

Ps: an urn contains ten balls of various sizes a few of which are quite large.
Pe: if the search is moderately small then exhaustive search is feasible.

pr: if @ piece of code is called frequently then it is worth optimizing.

ps: if large oil spill or strong acid spill then emergency is strongly suggested.?

In addition to its inability to represent the meaning of fuzzy facts, rules and events such
as those listed above, classical probability theory has no facilities for inference from fuzzy
premises. As a case in point, suppose that we want to chain a fuzzy fact of the form

X is F, 1.1)

where X is a variable and F is a fuzzy predicate, e.g.,

X is very small

! In probabilistic terms, a proposition may be viewed as a description of an event.

2 What is meant here is that either it cannot be done at all or, if it can be done indirectly,
it cannot be done simply.

3 pe. p7 8nd pg are taken from [6). Although they are not treated as such. most rules in a
typical expert aystam ure fuzzy to some degree.
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with a fuzzy rule
if X is G then Y is H (1.2)

e.g.,
if X is much smaller than 10 then Y is large,

in which there is a partial match between F and G. The question is: How can one com-
pute the fuzzy value of Y given the fuzzy predicates F, G and H? Classical probability
theory does not provide an answer to this question.

In sum, the inadequacy of classical probability theory as a conceptual framework for deal-
ing with uncertainty in Al stems from two facts:

1. The theory does not provide a general computational system for representing the
meaning of fuzzy propositions, i.e., propositions containing fuzzy predicates and/or

fuzzy quantifiers and/or fuzzy probabilities.

2. The theory does not provide a general computational system for inference from fuzzy
propositions.

When we add to probability theory the needed facilities for dealing with: fuzzy proposi-
tions, we get a subset of fuzzy logic. In what follows, we shall consider several examples
of problems which do not lend themselves to solution within the framework of classical
probability theory and will show how they can be solved through the use of fuzzy logic.
These problems may be regarded as a test-bed for assertions to the effect that anything
that can be done with techniques outside of probability theory can be done equally well
with techniques that lie within it.

2. Inference

As was alluded to already, to be an effective tool for dealing with uncertainty, a theory
must pass two basic tests:

(a) It must provide a system for representing the meaning of various types of proposi-

tions relating to uncertain events and uncertain dependencies; and
(b) It must provide a system for inferring from the representations of such propositions.

Classical probability theory passes both tests when the propositions are crisp, and fails in
both cases when the propositions are fuzzy. Since classical probability theory is subsumed
by fuzzy logic, fuzzy logic passes (a) and (b) for crisp propositions. However, unlike classi-
cal probability theory, it also passes (a) and (b) for fuzzy propositions.

In support of this claim, we shall consider several representative problems which are not
amenable to solution by conventional probability-based techniques and show how they can

be treated within the framework of fuzzy logic. Each of these problems involves inference
from one or more fuzzy premises.
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1.  An urn contains n balls of various sizes. Several of the balls are large. What is the
probability that a ball drawn at random is large ? [61]

Solution. Let U denote the urn; let b, .., b, denote the balls in U; and let

#rarged), i = 1, ., n, denote the grade of membership of b, in the fuzzy set LARGE .4

Using the concept of a sigma-count [51], the number of large balls in U may be expressec
as

2Count(LARGE) = 2, th;QNAQL s (2.1)

which means that the count of large balls is the sum of degrees to which each ball in U
fits the description large.

The proposition U contains several large balls may be interpreted as an elastic or
equivalently, fuzzy constraint on =Count(LARGE). Consequently, if several is interpreted
as a fuzzy number whose membership function is psgvgrar, then the degree to which the
constraint is satisfied by the balls in U may be written as

T = pseveraL (Z; praree (0)) , (2.2

where 7 may be interpreted as the truth value of the proposition several of the balls in [
are large given {b,, ..., b,}, or, equivalently, as the possibility that U contains the balls
{by, ..., b} given the proposition several of the balls are large.

Using the latter interpretation, we can compute the fuzzy probability that a ball drawn at
random is large. Specifically, the probability of drawing &, is 1/n, and hence the probabil-
ity of drawing a large ball is

q= w. Z; prarce (b)) . (2.3)

From the knowledge that several of the balls are large, we cannot compute ¢. However,
we can compute its possibility distribution, that is, for each value of v in [0,1], we can com-
pute the possibility that ¢ = v.

For simplicity, let p, 4 brarge (b)), i =1, ., n, where 4 stands for is defined to be.

What we know about the p, is their possibility distribution, i.e.,

Ty, oy fn) =pseverar (Z; p) . (2.4)

At this point, then, the problem is to find the possibility distribution, w (g), of

1 \
- 5
q " P (2.5)

¢ The denotution of u predicute in expressed in uppercune letters
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from the knowledge of the possibility distribution of the p,.

Using fuzzy logic, the solution of this problem reduces to the solution of the variational
problem

e

mq) = maxy . p 7w, e o)

= maxy 4 (pseverar(Z, p)

subject to

=1
n|=M;:

This problem has an obvious solution, namely,

@w{q) = psgverar (qn) (2.6)

which implies that ¢ may be interpreted as a fuzzy probability which is representable as

the fuzzy number

q = w SEVERAL . @7

For example, if n = 10 and SEVERAL is defined as
SEVERAL = 0.4/3 + 0.8/4 + 1/5 + 1/16 + 0.6/7 + 0.3/8,

where a term such as 0.8/4 signifies that the grade of membership of 4 in SEVERAL is

0.8, then the corresponding representation for g is

q=04/03 + 0804 + 1/05 + 1/0.6 + 0.6/0.7 + 0.3/08.

Note that if the number of large balls is a crisp number, say 3, then the probability of
drawing a large ball would be 0.3.

2. Given the proposition r: it is likely that Mary is young, find the probability that Mary
, is not young.

Solution. Let p denote the prohability density of Mary's age, i.e., p(udu is the probabil-
ity that Mary’s age lies in the interval [u, u + dul, u € U.

The given proposition, 7, may be viewed as an elastic constraint on p which defines its pos-
gibility distribution. Specifically, in terms of p, the probability of the fuzzy event Mary is
young may be expressed as [63]
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Prob {Mary is young} = ._.ESS,S (u) pu) du (2.
U

where pyounc is the membership function of the fuzzy set labeled YOUNG. This probab:
ity is characterized as likely by r. Consequently, the possibility distribution of p is give
by

70) = prery (f provwe @) pw) du) . (2
v

Knowing w=(p), we can compute the probability of the fuzzy event Mary is not youn
Specifically, we have

Prob {Mary is not young} = [ (1 — pyounc (@) plu) du (2.1(
v

1 - [ pyoune (@) p(w) du
v

1 — Prob {Mary is young} .

Furthermore, the probability that Mary is young is described by the fuzzy probabili
LIKELY. Consequently, from (2.10) it follows at once that

Prob {Mary is not young} = 1 © LIKELY , 2.1

where © represents the operation of subtraction in fuzzy arithmetic [29]. The fuz

number 1 © LIKELY may be read as UNLIKELY, where UNLIKELY is the antonym
LIKELY (Fig. 1).

not likely
[ unlikely
4 — .:._Am;m
— likely

— 2yikely

(o] —

Fig. 1. Possibility distribution of fuzzy probabilities.

Ylikely represents very likely.
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In conclusion, from the proposition r: it is likely that Mary is young, we can infer --
through the use of fuzzy logic -- that s: it is unlikely that Mary is not young. Note that

this conclusion is in accord with our intuition.

3. Given the proposition r: most Swedes are tall, find the fraction of Swedes who are

very tall.
Solution. Let p(u) denote the probability density of the height of Swedes. As in the

preceeding example, the meaning of the proposition most Swedes are tall may be
represented as an elastic constraint on p. More specifically, the constraint in question
defines the possibility distribution of p through the expression

7@ = [ prag @) p) du . (2.12)
u

Now, assuming that the predicate modifier very acts as an intensifier {52], i.e.,

Bvery taLr (W) = (prarg W) )? (2.13)

the fraction of Swedes who are very tall may be expressed as

g = [ phars @) pw) du . (2.14)
v

Consequently, the determination of g reduces to the solution of the variational problem

my(v) = max, @ pracs (@) plu) du) (2.15)

subject to
v = .—.tmsﬁ () p(u) du
U
As shown in [67], the solution of this problem is given by

q = MOST? |, (2.16)

where MOST? is the product of the fuzzy number MOST with itself in fuzzy arithmetic
(Fig. 2). More explicitly,

Buosr? (W) = puost V) . 217
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most®

—— most

onuo: ion

Fig. 2. Possibility distributions of most and most?,

Thus, from the proposition most Swedes are tall, we can infer -- through the use of fuz

logic -- that most? Swedes are very tall.

4. Consider the question stated in Section 1, in which the problem is how to chain a fuz
fact of the form

X is F, (2.1¢

where X is a variable taking values in U and F is a possibility distribution in U whic
constrains X, with a fuzzy rule of the form

ifX is GthenY is H | (2.1

where Y is a variable taking values in V, and G and H are possibility distributions in
and V, respectively.

A basic rule of inference is fuzzy logic which is applicable to this problem is the genera
ized modus ponens [53]. Specifically, it can be shown that the elastic constraints on X ar
Y defined by (2.18) and (2.19) induce a constraint on ¥ which may be expressed as tl
proposition

Y is R, 2.2

in which R is a possibility distribution in V given by

R=Fo(G®H) . 2.2
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In this expression, G' is the complement of G, @ is the bounded sum and o is the operation
of composition [53]. In terms of the possibility distribution functions of F, G, H and R,
(2.21) may be expressed more explicitly as

ar (W) =V, (@ W AQ ~ 76 () + 75 (w))) . (2.22)

This expression for the possibility distribution function of R answers the question in Sec-
tion 1.

5. From py, p, and p; defined below, compute the likelihood that Maria is not old.
p1: it is unlikely that Maria is very young
Py it is likely that Maria is young

Pa: it is very unlikely that Maria is old
g : How likely is it that Maria is not old?

Solution. To find the answer to the posed question, we shall reduce the stated problem to
the solution of a nonlinear program [65].

First, each of the premises is translated into a constraint on the probability density, p, of
Maria’s age. Thus, as in Examples 2 and 3, we have

p1: it is unlikely that Maria is very young —

100

m ®) = puxkery O — [ pdoune @) p(i) du) (2.23)
0
100
73 () = prery ([ pyoune ) pw) du) (2.24)
o
100
73 ®) = Bypepyr 4 —  porp @) pw) du) , (2.25)
[1)

100
where ._. tyoune (u) p(u) du represents the probability of the fuzzy event Maria is young,
0

with the understanding that the range of the variable Age(Maria) is the interval [0,100].
Next, we must translate the answer to the posed question, which we assume to be of the

form it is A that Maria is not old, where A is a fuzzy probability. Thus

g > 7,(p) = py (2.26)

where p, is the unknown membership function of A.

Finally, by using the conjunction of =, 7, and =3, the problem in question is reduced to
the solution of the nonlinear program
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100
IO max, { Cprmey U — [ ndoune @) plu) du ) (2.27)
°

100
A prikery ( ._. tyoung (1) plu) du )
)

100
A ptery (1 = [ porp @) plu) du )}
0

subject to

100
v=f - pop W p du
0

where v is the numerical probability of the fuzzy event Maria is not old.

Concluding Remark

The above examples are merely a small sample of problems which do not lend themselves
to solution by conventional probabilistic methods. What these examples are intended t
demonstrate is that classical probability theory makes us provision for inference from
fuzzy data, and that to deal with such data it is necessary to employ the conceptual frame
work of fuzzy logic. In general, the employment of fuzzy logic for purposes of inferencs
requires the solution of a nonlinear program which involves the possibility distribution:
induced by both the premises and the query.
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CONFIDENCE FACTORS, EMPIRICISM AND THE DEMPSTER-SHAFE
THEORY OF EVIDENCE

John F. LEMMER
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The issue of confidence factors in Knowledge Based Systen
has become increasingly important and Dempster-Shafer (D
theory has become increasingly popuiar as a basis for the:
factors. This paper discusses the need for an empiric
interpretation of any theory of confidence factors applied
Knowledge Based Systems and describes an empiric
interpretation of DS theory suggesting that the theory h
been extensively misinterpreted. For the essentially syntact
DS theory, a model is developed based on sample spaces, tl
traditional semantic model of probability theory. This model
used to show that, if belief functions are based on reasonab
accurate sampling or observation of a sample space, then t
beliefs and upper probabilities as computed according to I
theory cannot be interpreted as frequency ratios. Since ma
proposed applications of DS theory use belief functions
situations with statistically derived evidence (wWesley [1]) a
seem to appeal to statistical intuition to provide
interpretation of the results as has Garvey [2], it may
argued that DS theory has often been misapplied.

The success of the scientific approach is generally attributed
philosophers such as Popper to its insistence on empirical verification
theories (Davis [3]). Stated from a different point of view, theories whi
do not make empirically verifiable predictions about reality are n
scientific. when one builds Knowledge Based Systems for applications a
includes the use of confidence factors, these confidence factc
presumably are present to make some statement about the real world.
such Knowledge Based Systems are to be considered scientific, we mu
face the problem of empirically testing these statements. Argumer
advanced in support of the various theories of confidence factors e
almest never empirically testable. Some arguments often presented



