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What has gone wrong?

7. The gambler’s fallacy is to regard it as less probable that
there will be an A at the next trial if there has just been a
long run of A’s. Is this a fallacy? Is regarding another A as
more probable equally fallacious?

M CHAPTER 5
| Subjective Probability

B a DEGREES OF BELIEF AND THE PROBABILITY CALCULUS

a.1 Betting Quotients and Degrees of Belief

Our point of departure is the theory of betting odds. In actual
betting practice, odds are non-zero numbers ¢ which are
offered by one party (the bookmaker) to be accepted or not by
another (the punter). The odds are offered usually against the
occurrence of some event E, and the punter nominates a sum @
such that he or she will contract to receive from the bookmaker
the sum Q% if E occurs and forfeit @ if it does not.

In what follows we shall talk of the truth and falsity of
hypotheses rather than the occurrence and non-occurrence of
events. Our particular interest is going to be in those odds on a
hypothesis 4 which you believe confer no positive advantage or
disadvantage to either side of a bet on % at those odds, in the
ideal world in which the bet is immediately and veraciously
settled after the bet. We shall also suppose that these advan-
tage-equilibrating odds are unique: values above or below
would, you believe, confer advantage to one or other side. This
is a strong idealising assumption; we shall consider what
happens, in section b, when it is relaxed. For the time being
suppose it holds. Such odds, if you can determine them, we
shall call your subjectively fair odds on h.

This definition of subjectively fair odds does not presup-
pose that any odds are fair in fact. We shall discuss later the
question of whether any odds are actually fair. We assume only
that people do, rightly or wrongly, think that some odds are
fair, and we believe this assumption to be borne out in the fact
that people frequently bet. This is not, of course, to say that the
odds they bet at are the ones they find fair. Usually this will
not be the case, for most people bet only when they think the
odds advantageous to them. But this does mean that they have
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a notion of advantageous and disadvantageous odds, and
indeed in certain cases are capable of narrowing down the
band between the odds they deem advantageous and those
they think disadvantageous to a number correct to so many
places of decimals. One way this quantity can be elicited is by
asking people which they would prefer: a reward if the event in
question occurs or that same reward if another event with
agreed odds occurs, where the latter can be manipulated at
will (we give an example, due to Lindley, in section ¢.3 below).

We are less concerned with elicitation, however, than with
the fact that there are subjectively fair odds there to be
elicited, for it is this fact we shall exploit to provide a
convenient measure of people’s degrees of belief. For the odds
you take to be fair on 2 will clearly reflect the extent to which
you believe it likely that A will turn out to be true. Indeed, we
would make your assessment of the fair odds on 4 the measure
of your belief in A but for the inconvenient fact that on the odds
scale, length of interval will not measure the difference be-
tween degrees of belief. The odds scale goes from 0 to plus
infinity, with 1 as the point of indifference; hence the differ-
ence between being cognitively indifferent between 2 and ~h
and being certain that ~A is true is 1, whereas the difference
between being certain that h is true and being cognitively
indifferent between A and ~# is infinite. The standard solution
to the problem is to transform the semi-infinite odds scale,
with « appended, into the closed unit interval by means of the
k

3. Odds of m. that is to say, even

one-to-one mapping p =

money odds, go to w under this mapping; 0 goes to 0; and «

goes to 1, giving the desired symmetry about the point of
indifference between 2 and ~h.

The quantity p = }. where %k are the odds on & you
believe fair, will therefore be taken as the numerical measure of
your degree of belief in h. p is called the betting-quotient
associated with the odds k. Odds can be recovered uniquely
from betting-quotients by means of the reverse transformation
=P

(1-p)
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Characterising degrees of belief in terms of characteristic
odds or betting-quotients commenced with Ramsey (1931),
and most authors have since followed him in making a willing-
ness actually to bet in suitable circumstances the criterion of
strength of belief (Ramsey, 1931, p. 79). This leads, as we shall
see in section e.1 below, to severe if not intractable problems
when the question is posed why these behaviourally elicited
quantities should satisfy the probability calculus.

We emphasise that we are not assuming that the intellec-
tual judgment that odds are fair commits the judge to any
behavioural display whatever. To believe odds fair is tanta-
mount to believing the price of a gamble a fair one. But you can
certainly believe a price fair without buying the good in
question, and only in special circumstances would you actually
do so. This may sound an obvious point, but it has been
traditional in the literature to measure the strength of belief in
terms of a willingness to bet at all odds up to some maximum
value. Kyburg, for example, writes (1983, p. 64) that “The
time-honored way of finding out how seriously someone be-
lieves what he says he believes is to invite him to put his money
where his mouth is”. But even equipped with enough capital to
withstand betting losses, backing up judgments with financial
commitment is not to everyone’s taste, and declining to do so is
no necessary indicator of belief.

Attempts to measure the values of options in terms of
utilities are traditionally the way people have sought to forge a
link between belief and action, and much contemporary
Bayesian literature takes this as its starting point. We do not
want to deny that beliefs have behavioural consequences in
appropriate conditions, they clearly do, but stating what those
conditions are with any precision is a task fraught with
difficulty, if not impossible. Qur view is that the fewer special
—and questionable—assumptions that have to be made, the
better, and the more secure the conclusions that one draws.
Fortunately, we can derive our desired conclusion without
assuming, or presuming, anything at all about the nature of
the link between belief and action. For the conclusion we want
to derive, that beliefs infringing a certain condition are incon-
sistent, can be drawn merely by looking at the consequences of
what would happen if anyone were to bet in the manner and in
the conditions specified.



78 PART |: BAYESIAN PRINCIPLES

a.2 Why Should Degrees of Belief Obey the Probabllity
Calculus?

Following de Finetti (1937), we are going to assume a canoni-
cal form for bets between two individuals A and B as a contract
whereby A pays the sum pS (dollars, pounds, or whatever) to B
in exchange for the payment of the sum § if the hypothesis bet
on is true, and O if it is not (we shall assume that S is
arbitrarily finely divisible). The payoff conditions therefore

look like this
h _ Payoff to A
T _ S - pS
Fl -pS

where T stands for ‘true’ and F stands for ‘false’. A is clearly
betting on h at odds pS:S — pS = p:1 — p, and B is betting
against h at the reciprocal odds 1 — p:p; p can therefore be
identified as the betting-quotient on 4. In future when we refer
to a bet on h with betting-quotient p we shall mean a contract of
the above form. S is often called the stake. We can also speak of
A buying from B a bet on a paying S for the price pS. Clearly, B
strictly speaking needs no separate name; he or she is merely
the other side of the bet.

Such bets can be brought into the traditional form de-
scribed at the beginning of the chapter, given by the payoff

table
h _ Payoff to A
T _ Qk
Fl -Q

where k& = PWN& by writing @ = pS. We use the de Finetti

(S,p) representation for bets rather than the (Q,%) one since
our focus of interest is p rather than %, and the constraints to
be imposed on p emerge more simply in that formalism.

Now define a betting strategy with respect to a set of
hypotheses {h,h, . . .] to be a set of instructions of the form
‘bet on (against) h/, for each i. Suppose that PPz -..18 a
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set of betting-quotients on the A. A celebrated theorem,
proved independently by F. P. Ramsey and B. de Finetti,
shows that

if the p, do not satisfy the probability axioms, then there is
a betting strategy and a set §, of stakes such that whoever
follows this betting strategy will lose a finite sum whatever
the truth-values of the hypotheses turn out to be.

The Ramsey-de Finetti theorem is often also called the
Dutch Book Theorem, because a Dutch Book is a system of
stakes which ensures a net loss.

The significance of the theorem lies in its corollary that
betting-quotients which do not satisfy the probability axioms
cannot consistently be regarded as fair. For (i) fair odds have
been characterised as odds which offer zero advantage to
either side of a bet; (ii) the sum of finitely (or even denumer-
ably) many zeros is zero; hence the net advantage of a set of
bets at fair odds is zero; and, finally, (iii) if a particular betting
strategy is assured of a positive net gain or loss. for whoever
adopts it, then the net advantage in betting at the odds
involved cannot be zero. We conclude that the assurance of a
net gain or loss from finitely many simultaneous bets implies
that they cannot all be fair. It follows immediately that if your
degrees of belief are measured by the betting-quotients you
think fair, then consistency demands that they satisfy the
probability axioms. Thus agreement with the probability axi-
oms is a necessary condition of consistency; in section a.6
below we shall show that it is also sufficient.

a.3 The Ramsey-de Finettli Theorem

Ramsey’s and de Finetti’s theorem involves only elementary
algebra and is very simple to prove, as we shall now show (the
proof we give here owes much to Skyrms [1977, Ch. VI]). For
each axiom of the probability calculus we shall show how its
infraction entails the existence of a betting strategy leading to
a necessary loss for one of the bettors.

(1) Axiom 4. Suppose that p < 0 and that you buy a bet on a
proposition a paying one dollar, for the price p. Clearly, you
will make a sure gain of 1 + |p| if a is true, and |p| if a is false.
Hence your fair betting-quotient on @ must be non-negative.
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(D] .>x_03 2. Suppose that you buy a bet on a tautology ¢
paying one dollar for a price p. If p < 1, then you will make a
certain gain of 1 — p; if p > 1, then you will make a certain loss

of p — 1. So the only fair betting-quotient on ¢ is 1.

() >1_o=. 3. Suppose that you buy bets on two mutually
exclusive propositions a and b, each bet paying one dollar, for
the prices p and q respectively. Then your net gain is as below
(remember that a and b cannot both be true):

net gain

b
Fl1-p-q=1-(p+aq)
“

—p+1-g=1-(p+gq)

a
T
\.u
F -p-g=-(p+q)

This diagram is clearly equivalent to the following:

avb _ net gain

ﬂ _ T:ie
F =(p + q)

A.._.:wm your separate bets on a and b determine a bet on the
disjunction a v b paying one dollar and with betting-quotient p
+ q. Were you now also to bet against that disjunction with a
betting-quotient r not to equal p + ¢, where the stake is also
one dollar, then you will have a net gain of r — (p + q) (positive
or negative) whatever the truth-values of a and b. For if the first
fwﬁw bets are labelled (i) and (ii), and the bet against the
Mﬂwhcsn_uob is (iii), then the net gain from (i) + (ii) + (iii) is as
elow:

avb _ () (i) + (iii)
T _T€+£|:|eu78+e
F -p+q+r =r—-{(p+q)

Ewbam if your fair betting-quotient on a is p and on b is q, your.
fair betting-quotient on the disjunction can only be p+q, and
we have proved the additivity axiom.
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Before we turn to the remaining axiom, that of conditional
probability, we shall show that the same type of argument
requires not merely finite but also countable additivity. Con-
sider a class of mutually exclusive hypotheses ki = 1,2,3,. . ..
Suppose that a unit stake is placed on each of the ‘even-
number’ hypotheses A, and that you bet on all these hypothe-
ses simultaneously, with betting-quotients p,,p,, etc. If the
infinite ‘disjunction’ of those hypotheses is true, then exactly
one of them, hy; say, is true, and the net gain is —p, —p; . . .
+(A-py)— ... = 1=yt ... +Put ... ), which is indepen-
dent of j. Hence if 4 is true, the net gain from all these bets is 1
— (Dt ... +Py,t ... ). Ifhisfalse, then you lose the quantity
pat ... +Dyt+. ... Soasetof simultaneous bets on all the hy,
with the same stake on each is equivalent to a bet on A with
betting-quotient (p,+p,+ ... ). Thefair betting-quotient on A
must equal (p, + p,+ ...). QED.

There are, however, vigorous critics of the thesis that
subjective probabilities are countably additive. De Finetti, for
example, has produced many counter-arguments. To reassure
the reader that we are not dismissing out of hand these
objections from someone whose authority is certainly not to be
considered lightly, let us consider briefly one of the most
seductive of these counter-arguments.

This considers the example of a positive integer chosen ‘at
random’. It might seem natural in these circumstances to
require a uniform, zero, degree of belief in each integer being
selected. This is quite consistent with finite additivity, but not
countable additivity, as we saw in Chapter 2, section h. But, as
Spielman (1977) points out, it is not at all clear what selecting
an integer at random could possibly amount to: any actual
process would inevitably be biased toward the ‘front end’ of the
sequence of positive integers, and so there is in reality little
force in de Finetti’s counter-example. Let us now move on to
consider the remaining probability axiom, axiom 4.

a.4 Conditional Betting-@uotients

Axiom 4 we shall take to impose a condition on so-called
conditional betting-quotients. A conditional betting-quotient is
a betting quotient for a conditional bet, where a conditional bet
on a given b is a bet on a which is to proceed in the event of b’s
turning out true and is called off if b is false. We imagine a
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scenario in which the truth-value of b is announced as soon as
the contract has been made. The payoff conditions for the
bettor-on in such a bet, with conditional betting quotient p and
stake S, are therefore:

a b | payoff

T T 1| S1-p)

F T | -pS
Flo

We shall define your conditional degree of belief in a given
b to be the betting rate you think fair in a conditional bet of
this type. We can interpret this in a possibly more illuminating
way as follows. Your degree of belief in a proposition ¢ is what
you believe the fair betting-quotient on ¢ to be. This is less a
personal statement about yourself than a claim about which
betting-quotient you believe to be fair relative to the informa-
tion which you happen to possess. So we can gloss your
conditional degree in a given b to be what you believe the fair
betting-rate on a would be relative to the same information
stock augmented by the additional information consisting of
the statement that b is true. Note that this is not the same as
saying that your conditional degree of belief in a given b is
what you now believe the fair betting-quotient on a would be
were you to come to know b in addition to what you already
know, and no more (as we erroneously stated in the first
edition of this book).

It is tempting to think of a conditional degree of belief in a
given b as a degree of belief in a conditional ‘proposition’a | &.
The temptation should be resisted. We shall show in this
section that consistent conditional degrees of belief, as we have
defined them, are formally conditional probabilities, and
David Lewis (1976) has shown that the usual rules of the
probability calculus will not permit an interpretation of a
conditional probability as the probability of a conditional
sentence, even a non-truth-functional one.

We shall now proceed to show that axiom 4 of the probabili-
ty calculus is a consistency condition for conditional degrees of
belief as defined. In particular, we shall show that if axiom 4 is
not satisfied, then there is a betting strategy involving condi-
tional bets which will lead to an inevitable loss for one party.
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The proof proceeds by showing that bets on a suitable combi-
nation of hypotheses determine some other bet, in this case a
conditional bet. To be precise, we shall show that by setting
appropriate stakes on b and a & b, simultaneous bets on those
two statements are equivalent to a bet on a conditional on b,
and that any odds placed on b and a & b can therefore be made
to determine the odds for a bet on a conditional on b.

Suppose your fair betting-quotients on @ & b and b are q
and r respectively, where r>0. Suppose you were to bet at
these rates on a & b with stake r and against b with stake gq.
Your net payoff is as follows:

a&b b { net payoff

T T ilelo:-cui-w

FooT|-ra=a(t-r=-q=-r(})
Fl-rg+qr=20

But this is clearly the payoff matrix of a bet on a conditional on

b, with stake r and conditional betting-quotient m. i.e., the ratio

of the betting quotients q on a & b and r on b. As with two
mutually exclusive hypotheses, therefore, simultaneous bets
with appropriate stakes also determine a further bet—in this
case, a conditional one. Hence, if you were to state a fair

conditional betting-quotient which differed from m., you would
implicitly be assigning different conditional betting-quotients
to the same hypothesis. .
It does not follow, however, that you would bmommmmu..n%
make a positive net loss by buying a bet-on at your dearer price
and selling one at your cheaper, with the same stake. For b
may turn out to be false, whereupon the net gain from all the
bets would be zero; the net gain is only non-zero if  is true.
Nevertheless, anyone who believes that the betting-quotients
g,r, and the conditional betting-quotient p # m. are all fair is no
less inconsistent in that belief; indeed, it is quite easy to show
that by suitably extending A’s bets, a non-zero (positive or
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M.E_mma?& net gain is assured whether b turns out to be true or
alse.

For suppose you were to bet (i) on a & b with stake r, (ii)
against b with stake g, (iii) conditionally against a given b,
with stake r, and finally (iv) on b with stake ¢ — pr. As before,
suppose your fair betting-quotient ona & bisq, on b is r, and
on a given b is p. Bets (i) and (ii) above determine, as we saw, a
conditional bet on a given b with stake r and betting-quotient

m. Taking on bet (iii) simultaneously with (i) and (ii) guaran-
tees, as we also saw, a net gain of pr — q if b is true, with zero
gain if not. It is straightforward to work out that making bet
(iv) simultaneously with all the others guarantees an overall
net gain (positive or negative) equal to r(pr — q) whatever the
truth-values of ¢ and b. Given r > 0, this will be zero if and
only ifp = m. i.e.,ifand only if P(a | b) = %. (Note, if you
have not already done so, that a positive net gain can be turned
into a positive net loss of the same magnitude by reversing the
direction of all the bets.)

This completes the proof that if a set of betting-quotients
does not satisfy the probability calculus, then they cannot all
be fair (in a.6 below we shall prove a form of converse to this).
As we pointed out earlier, this result is independent of any
formal characterisation of fairness of odds beyond the stipula-
tion that they confer no advantage to either side of a bet at
those odds. To round off the discussion, we shall now consider a
particular method, used since the eighteenth century, of
computing the advantage to taking a particular side in a bet.

a.5 Fair Odds and Zero Expectations

Laplace (1820, p.20) defined the advantage to taking a given
side in a wager to be the expected value of the bet. Thus
advantage, so defined, is calculated in the same units as the
stake S, and so can be subjected to straightforward arithmeti-
cal operations, like taking sums of separate advantages. Car-
nap, Laplace’s twentieth-century successor, calls that same
expected value the “estimated gain” (1950, p. 170), and a bet
\_a.z.w just when the “estimated gain” is zero, where the expecta-
tion is computed relative to an appropriate Carnapian c-
function.
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Assuming your fair betting-quotients are consistent, a bet
on a with stake S is formally a random variable X, which takes
the value S(1 — p) if a is true and —pS if not, where p is your
fair betting-quotient on a. A bet against a with the same stake
is —X,. Simultaneously making bets on or against n hypothe-
ses is the arithmetical sum of the corresponding random
variables. Thus if we explicitly define the advantage of the bet
represented by X, to be its expected value, relative to your
subjective probability distribution, then we deduce as theor-
ems (i) that the advantage, as you see it, of betting at odds
determined by your degree of belief is zero, and (ii) that the
advantage attached to a betting strategy, as we defined it in
the previous section, is the sum of the advantages of each of
the bets separately which comprise that strategy (because the
expectation of a sum of random variables is equal to the sum of
their expected values). (i) is very easily seen, since E(X,) =
S(1 —p)p — pS(1—p)=0.

We have, in other words, found a mathematical representa-
tion of the informal notion of advantage which yields as a
consequence the results that degrees of belief are subjectively
fair betting-quotients and that the net advantage to placing n
bets is the sum of each separately. These results do not of
course prove anything substantially new. They merely show
that the informal notion of subjective fairness can, to use
Carnapian terminology, be given a formal explication which
preserves all the desired consequences.

a.6 Fairness and Consistency

We have laid a foundation for a theory of consistent degrees of
belief, characterised as subjectively fair odds, whose methodo-
logical consequences we shall explore in the subsequent chap-
ters. A natural question to arise at this point is whether there
are any odds other than those on tautologies and contradic-
tions which are in some clear and objective sense fair. One
candidate for a criterion of objective fairness was, as we have
seen, having zero expectation relative to a ‘logical’ probability
distribution of the type Laplace, Keynes, and Carnap tried to
define. We have seen that their attempts foundered on the
rock of pure arbitrariness. However, there is famously an alter-
native criterion: odds are fair when they are determined by
the real physical probabilities of the events concerned, where
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QS.% probabilities exist. We believe that, with certain qualifi-
cations, this claim is true, and indeed we shall base our
theory oﬁ statistical inference on it. But any argument for
that ar.m.m_m must await a discussion of the notion of physical
vmowmcm:@ #mo:.. a notion which, as we shall see, is fraught
Mwﬁmveﬂwﬂw.&am. We shall take up that discussion again in
Ramsey (1931) used the term “consistent” i
degrees of belief having the formal structure oﬂoﬁﬂﬂﬂﬂﬂ%ﬂwﬂw
im. rm<.¢ _.wrois in sections a.2 and a.3 that your system &..
beliefs is ioobmwmamaﬁ if the betting quotients you believe fair
do not satisfy the probability axioms. But what about the
converse—are we justified in claiming that your belief system
is oobmgm_xm.:u if the betting-quotients you believe fair do satisf:
g.m probability axioms? This would amount to the claim that m.
.mv isa m..& of betting-quotients over a set H of n hypotheses, and
if P satisfies the probability axioms 1-4, then for any vwwasm
strategy and any system of stakes, it is not the case that for
every .nwcoré&:m distribution over the members of H the net
gain is uniformly negative (or positive: remember that a
bmmm_u.é net gain can be transformed into a positive one by
reversing the directions of the bets). For consider any set of
vmem with arbitrary stakes on or against each of the hypotheses
in m These, as we know from the Previous section, are random
variables X, ..., X and if the value of their sum Y were
always negative, say, then the expected value of Y would
clearly be negative also. But as we also know, E(Y) = SE(X)
and E(X;) = 0 for each i, by (i) of the previous section. Hence .mm.
M_“-W:mmn om. meabmﬂn:MSmam satisfies the probability c&nc_—.-m
no betting strate iti ive
cain oo irmm o gY can generate a positive or negative
. So, consistency for partial beliefs is equi i
_,.x..uEm .mo«B»:% probabilities. Today it is :wzm,_‘wﬁﬂwoeﬁbwpﬂm
5:.39. to use the adjective ‘coherent’ to mean that partial
wwrmmm satisfy the probability axioms. This seems to us to
direct the attention away from the all-important logical fact
gma.arm probability calculus is a complete axiomatisation of
oobmnmeo.b» partial belief. The probability axioms, as Ramse
emphasised, do have therefore a purely logical mbmm%«mamnmob&
not, as Keynes and Carnap believed, as a calculus of wm&&.
entailment, but as the logic of consistent partial belief,
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B b UPPER AND LOWER PROBABILITIES

We promised that we would return to discuss those hypotheses
and data sets where it might seem to be unrealistic to suppose
that one would have point-valued degrees of belief. To borrow
an example from Suppes (1981, p. 41): if we consider the
question of whether it will rain at some specified time in Fiji,
we can certainly suggest a value &, such that odds less than &,
on that hypothesis are, in our opinion, unrealistically low, and
we can also suggest odds &,, such that odds greater than k, are
unrealistically high. But we might also say that there is an
intermediate interval of odds between which we feel quite
unable to discriminate. The typical indefiniteness of one’s
knowledge would, it seems, be more faithfully reflected by an
interval-valued function which only in certain cases takes
degenerate intervals, or points, as values.

We believe that this suggestion reveals a confusion as to
what subjective probabilities actually are. The whole point of
introducing the apparatus of subjective probability is precisely
because one’s knowledge is typically indefinite: subjective
probabilities express that indefiniteness by taking non-ex-
treme values. Nevertheless, we have defined your subjective
probability of A as the betting-quotient on /4 you believe to be
fair in the present circumstances, and this does leave open the
possibility that you may feel unable to specify an exact value.
Indeed, the occasions on which you feel that you can specify a
unique number with confidence may well turn out to be
exceptions rather than the rule.

It turns out that very little is lost in conceding that what
we have supposed to be point-valued degrees of belief are
actually interval-valued, so long as the intervals are small.
Suppose that P+(a) is the least upper bound (supremum) of all
the betting quotients on a at which you definitely think a bet
on a advantageous to the bettor-on, and P*(a) is the greatest
lower bound (infimum) of betting-quotients at which you
definitely think a bet on a would be advantageous to the
bettor-against. For all intermediate values you have no opinion

at all about the relative advantages of either side of the bet.
P+(a) is called your lower probability of a and P*(a) is your
upper probabdility of a.

We can define consistency for upper and lower probabil-
ities analogously to consistency for point-probabilities. We then
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