B CHAPTER 7

_ Bayesian Versus
Non-Bayesian Approaches

In this chapter we shall consider how, by attributing positive
probabilities to hypotheses in the manner described in Chap-
ter 2, one can account for many of the characteristic features of
scientific practice, particularly as they relate to deterministic
theories.

B a THE BAYESIAN NOTION OF CONFIRMATION

Information gathered in the course of observation is often
considered to have a bearing on the acceptability of a theory or
hypothesis (we use the terms interchangeably), either by
confirming it or by disconfirming it. Such information may
either derive from casual observation or, more commonly, from
experiments deliberately contrived in the hope of obtaining
relevant evidence. The idea that evidence may count for or
against a theory, or be neutral towards it, is a central feature
of scientific inference, and the Bayesian account will clearly
need to start with a suitable interpretation of these concepts.

Fortunately, there is a suitable and very natural interpre-
tation, for if P(h) measures your belief in a hypothesis when
you do not know the evidence e, and P(h | e) is the correspond-
ing measure when you do, e surely confirms & when the latter
exceeds the former. So we shall adopt the following as our
definitions:

e confirms or supports 2 when P(h | e) > P(h)
e disconfirms or undermines & when P(h | e) < P(h)
e is neutral with respect to 2 when P(h | e) = P(h)

One might reasonably take P(h | e} — P(h) as measuring
the degree of e’s support for , though other measures have

117



118 PART il: BAYESIAN INDUCTION: DETERMINISTIC THEORIES

been suggested (e.g., Good, 1950); disagreements on this score
will not need to be settled in this book. We shall refer, in the
usual way, to P(h) as ‘the prior probability of A’ and to P(h | e)
as h’s ‘posterior probability’ relative to, or in the light of, e. The
reasons for this terminology are obvious, but it ought to be
noted that the terms have a meaning only in relation to
evidence: as Lindley (1970, p. 38) put it, “[t]loday’s posterior
distribution is tomorrow’s prior”. It should be remembered too
that all the probabilities are evaluated in relation to accepted
background knowledge. )

B b THE APPLICATION OF BAYES'S THEOREM

Bayes’s Theorem relates the posterior probability of a hypothe-
sis, P(h | e), to the terms P(h), P(e | h), and P(e). Hence,
knowing the values of these last three terms, it is possible to
determine whether e confirms h, and, more importantly, to
calculate P(h | e). In practice, of course, the various probabili-
ties may only be known rather imprecisely; we shall have more
to say about this practical aspect of the question later.

The dependence of the posterior probability on the three
terms referred to above is reflected in three striking phenome-
na of scientific inference. First, other things being equal, the
extent to which evidence e confirms a hypothesis & increases
with the likelihood of & on e, that is to say, with P(e | h). At one
extreme, where e refutes h, P(e | ) = 0; hence, disconfirmation
is at a maximum. The greatest confirmation is produced, for a
given P(e), when P(e | h) = 1, which will be met in practice
when 4 logically entails e. Statistical hypotheses, which will be
dealt with in Parts III, IV, and V of this book, are more
substantially confirmed the higher the value of P(e | h).

Secondly, the posterior probability of a hypothesis depends
on its prior probability, a dependence sometimes discernible in
scientific attitudes to ad hoc hypotheses and in frequently
expressed preferences for the simpler of two hypotheses. As we
shall see, scientists always discriminate, in advance of any
experimentation, between theories they regard as more-or-less
credible (and, so, worthy of attention) and others.

Thirdly, the power of e to confirm A depends on P(e), that is
to say, on the probability of e when it is not assumed that 4 is
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true (which, of course, is not the same as assuming A to be
false). This dependence is reflected in the scientific intuition
that the more surprising the evidence, the greater its confirm-
ing power. However, P(e) = P(e | h)P(h) + P(e | ~ h)P( ~ h) (as
we showed in Chapter 2, section ¢.3), so that really, the
posterior probability of 4 depends on the three basic quantities
P(h), P(e | h), and P(e | ~ h).

We shall deal in greater detail with each of these facets of
inductive reasoning in the course of this chapter.

B c FALSIFYING HYPOTHESES

A characteristic pattern of scientific inference is the refutation
of a theory, when one of a theory’s empirical consequences has
been shown to be false in an experiment. As we saw, this kind
of reasoning, with its straightforward and unimpeachable
logical structure, exercised such an influence on Popper that
he made it the centrepiece of his scientific philosophy.

Although the Bayesian approach was not conceived specifi-
cally with this aspect of scientific reasoning in view, it has a
ready explanation for it. The explanation relies on the fact that
if, relative to background knowledge, a hypothesis A entails a
consequence ¢, then (relative to the same background knowl-
edge) P(h | ~ e) = 0. Interpreted in the Bayesian fashion, this
means that A is maximally disconfirmed when it is refuted.
Moreover, as we should expect, once a theory is refuted, no
further evidence can ever confirm it, unless the refuting
evidence or some portion of the background assumptions is
revoked. (The straightforward proofs of these claims are sug-
gested as an exercise.)

B d CHECKING A CONSEQUENCE

A standard method of investigating a deterministic hypothesis
is to draw out some of its logical consequences, relative to a
stock of background knowledge, and check whether they are
true or not. For instance, the General Theory of Relativity was
confirmed by establishing that light is deflected when it passes
near the sun, as the theory predicts. It is easy to show, by
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means of Bayes’s Theorem, why and under what circumstances
a theory is confirmed by its consequences.

If h entails e, then, as may be simply shown, Ple | h) = 1.

Hence, from Bayes’s Theorem: P(e | h) = W«hﬁm Thus, if 0 < P(e)
e

<1, and if P(h) > 0, then P(h | e) > P(h). It follows that any

evidence whose probability is neither of the extreme values

must confirm every hypothesis with a non-zero probability of

which it is a logical consequence.

Succeeding confirmations must eventually diminish in
force, for the theory has an upper limit of probability beyond
which no amount of evidence can push it. This too follows from
Bayes’s Theorem. Supposee, e,, . . . , e, . . . are consequences
of h. Then Bayes’s Theorem asserts that

Phle,&e,&... &e,)= P(r) .
Phle,&e,&... &e,)

Now

P, &e,&...&e,)=Pe)Pe,&...&e,|e)

and

Ple,& ... &e,|e,) =Ple;|e))Ple; & ... &e, | e, &e,)
Thus, in general,

Pe,&e, &...&e,) =
P(e,)P(e;|e,) ... Ple,|e, & ... &e,_,).

Hence,

Phle,&e,; & ... &e,)
_ P(h)
P(e))P(e,|e)) ... Ple,|e, & ... &e,_,)

Provided P(h) > 0, the term Ple, |e, & ... & e, _,) must
tend to 1 as n increases. If it did not, the posterior probability
of h would at some point exceed 1, which is impossible
(Jeffreys, 1961, pp. 43—44). This explains why it is not sensible
to test a hypothesis indefinitely, though without more detailed
information on the individual’s belief-structure, in particular
regarding the values of Ple, |e; & ... & e, _,), one could not
know the precise point beyond which further predictions of
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the hypothesis were sufficiently probable not to be worth
examining.

Specific categories of a theory’s consequences also have a
restricted capacity to confirm (Urbach, 1981). Suppose A is the
theory under discussion and that A, is a substantial restriction
of that theory. A substantial restriction of Newton’s theory
might, for example, express the idea that freely falling bodies
near the earth descend with a constant acceleration or that the
period and length of a pendulum are related by the familiar
formula. Since h entails h,, P(h) < P(h,)—(see Chapter 2,
section ¢.83)—and if A, is much less speculative than its
progenitor, it will often be significantly more probable.

Now consider a series of predictions derived from A, but
which also follow from A,. If the predictions are verified, they
may confirm both theories, whose posterior probabilities are
given by Bayes’s Theorem, thus:

P(h)
Ple,&e, & ... &e,)

Phle,&e,&...&e,) =

and

P(h,)
&. .. = ) .
NUN}:._Q-&QN @N:w mﬁaaﬁw@...@&:w

Combining these two equations to eliminate the common
denominator, one obtains

5_9@9&.:?1HM«NN},_&?E.:?L

Since the maximum value of the last probability term in
this equation is 1, it follows that however many predictions of
h. have been verified, the main theory, &, can never acquire a
P(h)
P(h,)
evidence characterised by entailment from A, may well be
limited in its capacity to confirm A.

This result explains the familiar phenomenon that repeti-
tions of a particular experiment often confirm a general theory
only to a limited extent, for the predictions verified by means
of a given kind of experiment (that is, an experiment designed
to a specified pattern) do normally follow from and confirm a

posterior probability in excess of . Hence, the type of
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much-restricted version of the predicting theory. When an
experiment’s capacity to generate confirming evidence has
been exhausted through repetition, further support for h
would have to be sought from other experiments, experiments
whose outcomes were predicted by different parts of A. .

The arguments and explanations in this section rely on the
possibility that evidence already accumulated from an experi-
ment may increase the probability of further performances of
the experiment producing similar results. Such a possibility is
denied by Popperians on the grounds that the probabilities
involved are subjective. How then do they explain the fact,
attested by every scientist, that by repeating some experiment,
one eventually (usually quickly) exhausts its capacity to con-
firm a given hypothesis? Alan Musgrave (1975) attempted an
explanation designed on Popperian lines. He claimed that
after a certain, unspecified number of repetitions of an experi-
ment, the scientist would form a generalisation to the effect
that whenever the experiment was performed, it would yield a
similar result. Musgrave then proposed that the generalisation
should be entered into ‘background knowledge’. Relative to
this newly augmented background knowledge, the experiment
is certain to produce a similar result at its next performance.
Musgrave then appealed to the principle that evidence con-
firms a hypothesis in proportion to the difference between its
probability relative to the hypothesis together with back-
ground knowledge and its probability relative to background
knowledge alone. That is, the degree to which e confirms % is
proportional to P(e | h & b) — P(e | b), b being background
knowledge. Musgrave then inferred that even if the experi-
ment did produce the expected result when next performed,
the hypothesis would receive no new confirmation. Watkins
(1984, p. 297) has endorsed this account.

A number of decisive objections may be raised against it,
though. First, as we shall show in the next section, although it
seems to be a fact and is an essential constituent of Bayesian
reasoning, there is no basis in Popperian methodology for
confirmation to depend on the probability of the evidence;
Popper simply invoked the principle ad hoc. Secondly, Mus-
grave’s suggestion takes no account of the fact that particular
experimental results may be generalised in infinitely many
ways. This is a substantial objection, since different generali-
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sations give rise to different expectations about the oﬁaomsmm
of future experiments. Musgrave’s account is 588234 3.3-
out a rule to specify in each case the appropriate generalisation
that should be formulated and adopted, and it is hard to
imagine how such a rule could be justified within nr.o confines
of Popperian philosophy. Finally, the decision to designate the
generalisation background knowledge, with the consequent
effect on our evaluation of other theories and on our future
conduct regarding, for example, whether to repeat certain
experiments, is comprehensible only if we have invested some

- confidence in the theory. But then Musgrave’s account tacitly

calls on the same kind of inductive considerations as it was
designed to circumvent, so its aim is defeated.

B e THE PROBABILITY OF THE EVIDENCE

The degree to which & is confirmed by e depends, according to
Bayesian theory, on the extent to which P(e | h) oxommmm.w?.».
An equivalent way of putting this is to say that confirmation is
correlated with the difference between P(e | k) and Ple | ~ h),
that is, with how much more probable the evidence is if the
hypothesis is true than if it is false. This is obvious from the
third form of Bayes’s Theorem (see Chapter 2):
Plh|e) _ 1 .
P(h)  ppy + Ple |~ R p(~p)
Ple | h)

These facts are reflected in the everyday experience that
information that is particularly unexpected or surprising,
unless some hypothesis is assumed to be true, supports that
hypothesis with particular force. Thus, if a soothsayer predicts
that you will meet a dark stranger sometime and you do, your
faith in his powers of precognition would not be Bsor.mb-
hanced: you would probably continue to think his vnm&me:wum
were just the result of guesswork. However, if the prediction
also gave the correct number of hairs on the head of that
stranger, your previous scepticism would no doubt be severely
shaken. .

Cox (1961, p. 92) illustrated this point with an incident in
Macbeth. The three witches, using their special brand of
divination, predicted to Macbeth that he would soon become
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both Thane of Cawdor and King of Scotland. Macbeth finds
Vo_z_ these prognostications almost impossible to believe:

By Sinel’s death, | know | am Thane of Glamis,
But how of Cawdor?
The Thane of Cawdor lives, a prosperous gentleman,

And to be King stands not within the prospe
ct of
No more than to be Cawdor. prosp bellef

.

But a short time later he learns that the Thane of Cawdor
prospered no longer, was in fact dead, and that he, Macbeth
has 9.88&3 to the title. As a result, Macbeth’s attitude &
m?w S#owom. powers .mm entirely altered, and he comes to believe
M.We“w”w other predictions and in their ability to foresee the
The following, more scientific, example was use
(1874, <om. 1, pp. 278-79) to Ezmﬁ.mmm the m&.m%mﬂ“ﬂcﬂw
oou.gm:amso: on the improbability of the evidence. The distin-
m..c_mgm scientist Charles Babbage examined numerous loga-
rithmic tables published over two centuries in various parts of
the world. He was interested in whether they derived from the
same source or had been worked out independently. Babbage
.A. .Hqu V found the same six errors in all but two and drew the
irresistible” conclusion that, apart from these two, all the
_UmEMm mwmmmbmnmm in a common source. .
abbage’s reasoning was interpreted by Jevons ro
follows. The theory ¢,, which says of moB@M.mw. of _omMMWWbMM
mmEn.wm that they shared a common origin, is moderately likely
in view of the immense amount of labour needed to compile
such Sv._mm ab initio, and for a number of other reasons. The
alternative, independence theory might take a variety of
forms, each attributing different probabilities to the occur-
rence of errors in various positions in the table. The only one of
these which seems at all likely would assign each place an
equal probability of exhibiting an error and would, moreover
regard those errors as more-or-less independent. Call eEm
theory ¢, and let ¢’ be the evidence of i common errors in the
emEmm.. HW@.vomnmEou probability of ¢, is inversely proportional
to P(¢'), which, under the assumption of only two rival hypoth-
eses, can be expressed as P(e') = P(¢' | t,) P(t,) + P(e' | t,)P(t,)
A,Ez.m is the theorem of total probability—see Ormmemn ~N.
section ¢.3.) Since ¢, entails ¢, P(e') = P(t,) + P(e' | t,)P(t,). The

CHAPTER 7: BAYESIAN VERSUS NON-BAYESIAN APPROACHES 125

quantity P(e' | t,) clearly decreases with increasing i. Hence
P(¢') diminishes and approaches P(t,), as i increases; and so ¢
becomes increasingly powerful evidence for ¢;, a result which
agrees with scientific intuition.

In fact, scientists seem to regard a few shared mistakes in
different mathematical tables as so strongly indicative of a
common source that at least one compiler of such tables
attempted to protect his copyright by deliberately incorporat-
ing three minor errors “as a trap for would-be plagiarists”
(L. J. Comrie, quoted by Bowden, 1953, p. 4).

The relationship between how surprising a piece of evi-
dence is on background assumptions and its power to confirm a
hypothesis is a natural consequence of Bayesian theory and
was not deliberately built in. On the other hand, methodolo-
gies that eschew probabilistic assessments of hypotheses seem
constitutionally incapable of accounting for the phenomenon.
Such approaches would need to be able, first, to discriminate
between items of evidence on grounds other than their deduc-
tive or probabilistic relation to a hypothesis. And having
established such a basis for discriminating, they must show a
connection with confirmation. The objectivist school has more-
or-less dodged this challenge. An exception is Popper. In
tackling the problem, he moved partway towards Bayesianism;
however, the concessions he made were insufficient. Thus
Popper conceded that, in regard to confirmation, the signifi-
cant quantities are P(e | h) and P(e), and as we have already
reported, he even measured the amount of confirmation (or
«corroboration”, to use Popper’s preferred term) which e con-
fers on h by the difference between these quantities (Popper,

1959a, appendix *ix).

But Popper never stated explicitly what he meant by the
probability of evidence. On the one hand, he would never have
allowed it to have a subjective connotation, for that would have
compromised the supposed objectivity of science; on the other
hand, he never worked out what objective significance the term
could have. His writings suggest that he had in mind some
purely logical notion of probability, but as we saw in Chapter 4,
there is no adequate account of logical probability. Popper also
never explained satisfactorily why a hypothesis benefits from
improbable evidence or, to put the objection another way, he
failed to provide a foundation in non-Bayesian terms for the
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Bayesian confirmation function which he appropriated. (For a
discussion and decisive criticism of Popper’s account, see
Griinbaum, 1976.)

The Bayesian position has recently been misunderstood to
imply that if some evidence is known, then it cannot support
any hypothesis, on the grounds that known evidence must
have unit probability. That the objection is based on a misun-
derstanding is shown in Chapter 15, where a number of other
criticisms of the Bayesian approach will be rebutted.

M f THE RAVENS PARADOX

That evidence supports a hypothesis more the greater the ratio
P(e | h)
P(e)
and known as the Paradox of Confirmation or sometimes as
the Ravens Paradox. It was called a paradox because its
premisses were regarded as extremely plausible, despite their
counter-intuitive, or in some versions contradictory, implica-
tions, and the reference to ravens stems from the paradigm
hypothesis (‘All ravens are black’) which is frequently used to
expound the problem. The difficulty arises from three assump-

tions about confirmation. They are as follows:

scotches a famous puzzle first posed by Hempel (1945)

1. Hypotheses of the form ‘All Rs are B’ are confirmed
by the evidence of something that is both R and B.
For example, ‘All ravens are black’ is confirmed by
the observation of a black raven. (Hempel called this
Nicod’s condition, after the philosopher Jean Nicod.)

2. Logically equivalent hypotheses are confirmed by
the same evidence. (This is the Equivalence
condition.)

3. Evidence of some object not being R does not
confirm ‘All Rs are B’.

We shall describe an object that is both black and a raven
with the term RB. Similarly, a non-black, non-raven will be
denoted R B. A contradiction arises for the following reasons:
an RB confirms ‘All Rs are B’, on account of the Nicod
condition. According to the Equivalence condition, it also
confirms ‘All non-Bs are non-Rs’, since the two hypotheses are
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logically equivalent. But contradicting this, the third condition
implies that RB does not confirm ‘All non-Bs are non-Rs’.

The contradiction may be avoided by revoking the third
condition, as is sometimes done. (We shall note later another
reason for not holding on to it.) However, although the remain-
ing conditions are compatible, they have a consequence which
many philosophers have regarded as blatantly false, namely,
that by observing a non-black, non-raven (say, a red herring or
a white shoe) one confirms the hypothesis that all ravens are
black. (The argument is this: ‘All non-Bs are non-R’ is equiva-
lent to ‘All Rs are B’; according to the Nicod condition, the first
is confirmed by R B; hence, by the Equivalence condition, so is
the second.)

If non-black, non-ravens support the raven hypothesis, this
seems to imply the paradoxical result that one could investi-
gate that and other generalisations of a similar form just as
well by observing white paper and red ink from the comfort of
one’s writing desk as by studying ravens on the wing. However,
this would be a non sequitur. For the fact that RB and R B both
confirm a hypothesis does not imply that they do so with equal
force. Once it is recognised that confirmation is a matter of
degree, the conclusion is no longer so counter-intuitive, be-
cause it is compatible with R B confirming ‘All Rs are B’, but to
a minuscule and negligible degree.

Indeed, most people do have a strong intuition that an RB
confirms the ravens hypothesis (2) more than an B B. We can
appreciate why that might be by consulting Bayes’s Theorem
as it applies to the two types of datum:

P(h|RB) _P(RB|h) ¢ P(h|RB)_PRB|h
P(h) P(RB) P(h) PRB)

These expressions can be simplified. First, P(RB | h) =
P(B|h & R)IP(R| k) = P(R | h) = P(R). We arrived at the last
equality by assuming that whether some arbitrary object is a
raven is independent of the truth of h, which seems plausible to
us, at any rate as a good approximation, though Horwich
(1982, p. 59) thinks it has no plausibility. By similar reason-
ing, PRB|h) = P(B|h) = P(B). Also P(RB) = P(B| R)P(R), and
PB|R) = Mwaw | R & §)P(6| R) = (assuming independence
between ¢ and R) Mwﬁw | R & 6)P(6), where @ represents
possible values of the percentage of ravens in the universe that
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