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Preface 

 The analyses of this book began as an afterthought in the development of the material 

theory of induction. My goal with the theory was to resolve once and for all how inductive 

inference works. Its chief concern was the failure of the many competing accounts of inductive 

inference already in the literature to do justice to how evidence is actually used in science. The 

mature development of that project is provided by my earlier work, The Material Theory of 

Induction. 

 When the first sketch of the material theory of induction (Norton, 2003) was in a 

complete first draft, Jim Bogen pointed out to me that the material theory provides an escape 

from the problem of induction. The point was added to the final version in Section 6 of the paper. 

It was repeated more briefly in the conclusion to Norton (2005). In retrospect, my analysis was 

too hasty. The basic idea of the escape was sound, but the details were not well developed. 

 That this was so was brought home at a Philosophy of Science Association symposium in 

2008 organized by Peter Achinstein. Papers by John Worrall and Tom Kelly suggested that a 

version of the problem of induction still troubled the material theory. They were right. The 

escape as described was not adequately elaborated. I am grateful to them for pressing me. When 

I worked to clarify the escape, I saw that the escape from the problem of induction required a 

clarification of the large-scale structure of relations of inductive support. My first effort to 

provide a better account was Norton (2014). That paper already contains many of the ideas 

developed in this volume, including especially the non-hierarchical nature of relations of 

inductive support and the special role of hypotheses.  

 While that account greatly improved on the earlier versions, it contained a weakness. It 

did not adequately separate the idea of a logic of induction from an epistemology of belief. The 

problem of induction resides within the first, the logic of induction. It has a presence in the 

epistemology of belief only indirectly, when we use a logic of induction to reason from belief to 

belief. In failing to separate them clearly, I conformed with the corresponding failure in much of 

the present epistemology literature. 
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 Critiques of the material escape from the problem of induction continued. Nothing is as 

assured to attract critical responses as a claim of a solution to the problem of induction. Does not 

everyone know that it cannot be done?  Some of them appeared in a volume of Studies in History 

and Philosophy of Science dedicated to The Material Theory of Induction. (My replies are in 

Norton, 2021, through which the original papers can be identified.) Many of these critiques 

mislocated the material theory of induction as within the epistemology of belief and, as a result, 

conflated issues that should have been kept separate. This alerted me to the need to distinguish 

the two contexts more clearly. 

 In the present volume, I have done my best to distinguish the two. The easy way to 

discriminate is to note that the two contexts use different relata. The relata of the logic of 

induction are propositions. Their content and relations are independent of human thoughts and 

beliefs. The relata of the epistemology of beliefs are beliefs. They are related by psychological 

processes that may respect a logic, or may not. These issues are laid out as clearly as I can in 

Chapter 6, “The Problem of Induction,” and in Chapter 5, “Coherentism and the Material Theory 

of Induction.” 

 Addressing the problem of induction has been a major stimulus to the ideas developed in 

this volume. However, tracing a pathway from this origin to these ideas is a poor way of 

presenting them. The ideas about the large-scale structure of relations of inductive support are 

more important in their own right. They tell us how all the relations of inductive support fit 

together when we look at the entirety of science. They would retain this importance even if they 

had nothing to say about the problem of induction. Once the problem of induction is mentioned, 

however, it seems to mesmerize many philosophers so that they are unable to see anything else. 

For this reason, I avoided all mention of the problem of induction in The Material Theory of 

Induction until the Epilog, lest it distract readers from the substance laid out in its sixteen 

chapters. For this reason again, I have delayed discussion of the problem of induction until well 

into the present work. My hope is that this tactic will induce readers to consider the account 

developed here of the large-scale structure of inductive inference in its own right and not 

conceive it as yet another tiresome attempt to solve the problem of induction. No doubt I will fail 

in these hopes with some readers, but will you, dear reader, not be one of them? 

 During the writing of this text, I have been helped by colleagues and I have 

acknowledged their support in the context of the individual chapters. That identifies their 
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assistance more clearly than would a long, generic list here. However, I do now thank 

participants in my graduate seminar, HPS 2682 Theories of Confirmation, for their reading and 

critical reflections on Chapters 1, 2, 3, 4 and 6 in meetings of March 31 and April 7, 2021, and to 

Youness Ayaita for his reading of Chapters 1 to 6. My thanks also to Marc Lange for his careful 

reading in 2021 of many chapters and for his copious and helpful comments. 

 The material in this volume was collected over several years. Some of the chapters were 

written in their earliest forms when I thought it might be possible to include this discussion in the 

earlier volume, The Material Theory of Induction. Later chapters were written subsequently. 

Many of them were written in the COVID-19 pandemic years of 2020-2021. Immersion in 

writing them provided a little of the comfort and support needed during this awful time of bad 

news and isolation. 

 The greater support was provided by my wife, Eve, whose love and companionship 

brightened each day and to whom this volume is dedicated. 
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justify themselves or enter into an infinite regress of justification by distinct rules. The material theory of 
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problem in the regresses and vicious circularities within the non-hierarchical relations of support fail.  
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The instability of competition among competing theories is illustrated by the rivalry between proponents 
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Prolog 

1. The Project of this Volume 

 According to the material theory of induction, inductive inferences or relations of 

inductive support are not warranted in a way familiar from accounts of deductive logic. They are 

not warranted by conformity with some universally applicable schema or template. Rather, each 

is warranted by background facts, peculiar to the domain in which the inference arises. This idea 

was developed in my earlier monograph, The Material Theory of Induction. A key provision of 

the theory is that the warranting facts must be facts, that is, truths of the domain. If we seek to 

sustain an inductive inference by appealing to some warranting proposition in the domain that is 

false, then we are committing the inductive analog of a fallacy. The error is comparable to the 

deductive fallacy of appealing to the affirming of the consequent as if it were a valid deductive 

schema. 

 That warrants must be factual truths places a special burden on us when we assess the 

inductive inferences or relations of inductive support among the propositions of some science. 

To establish support fully, we must also establish the truth of the warranting propositions used. 

Since these warranting propositions are also contingencies of the domain, establishing their truth 

requires further inductive inferences. Thus, any claim that some particular item of evidence 

inductively supports some other proposition in a theory is not self-contained. To be sustained to 

the fullest extent, we must also establish the truth of these further warranting facts. Since those 

warranting facts are themselves contingent propositions, we must establish their truth with still 

further inductive inferences or relations of inductive support; and we must show that those 

inductive inferences are in turn warranted by further facts. And so on. All claims of inductive 

support are, in effect, claims that concern a large network of contingent propositions within the 

science of interest and, commonly, extending beyond it. 

 These considerations define the project of this work. Individual claims of inductive 

support must be made within a larger ecology of relations of inductive support. How is this 

larger ecology configured? What is the large-scale structure of inductive inference? What are its 

problems? Can a cogent account be supplied for it? The goal of this work is to answer these 

questions. 
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 Some may find this entanglement of inductive support with a larger inductive ecology 

disquieting and may want to retreat to formal approaches to escape it. Formal approaches that 

use universal schemas may appear to have an advantage. They can assess the cogency of an 

inductive inference without engaging a larger ecology. An inductive argument from analogy just 

has to show that it conforms with the relevant schema. A claim of probabilistic support may just 

have to show that the associated probabilities relate by Bayes’ theorem. 

 This advantage is illusory. According to the material theory of induction, it is dangerous 

to assume that each formal schema can be applied unconditionally everywhere. It exposes users 

to a significant risk of inductive fallacies, if the schemas are applied in domains that lack a 

material warrant. The common remedy by formalists is tacitly to limit the application of the 

schemas to where they are felt somehow to be appropriate. The remedy is poor since decisions 

on applicability depend on hunches and intuitions. Here material theorists have the advantage. 

The question of which inference forms are applicable where is decided by an explicit analysis of 

the prevailing facts. 

 Again, one might think that a better way to treat the large-scale structure of inductive 

support is mathematical. We merely need to identify the calculus that applies at this large scale. 

Questions about the large-scale structure would be answered mathematically by theorems in the 

calculus. Bayesians in philosophy of science may already believe that the probability calculus 

already does just this. 

 Hopes for some universal calculus of inductive inference fail and provably so. In recent 

work (Norton, 2019; The Material Theory of Induction. Ch. 12), I have shown the 

incompleteness of all calculi of inductive inference that meet some minimal conditions. Any 

such calculus will fail to discern non-trivially the inductive import of any body of evidence 

unless the computation is supplemented by inductive content supplied externally. The familiar 

example is that Bayesian analysis always requires prior probabilities. Their stipulation is 

antecedent to the application of Bayes’ theorem, yet their content exerts a strong influence on the 

outcome of the computations. Efforts have failed to supply Bayes’ theorem with vacuous priors 

that exert no such influence.  This incompleteness is not limited to the probability calculus. A 

form of it will arise in any calculus meeting minimal conditions. 

 In briefest form, the answer supplied by the material theory of induction to the question 

of the large-scale structure of inductive support is this: relations of inductive support within a 
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mature science form a massively entangled network without any clear hierarchical structure. 

Quine (1951, pp. 39-40), in his celebrated “Two Dogmas of Empiricism,” presented a similar 

structure for beliefs. However, his structure was variously a “fabric” and a “field of force” and 

later a “web of belief.” Its key attribute is its elasticity. A conflict with experience, according to 

this picture, can always be accommodated. The internal connections are, he supposes, so elastic 

that there are many ways to do this. This supposition has been responsible for much 

philosophical mischief. It has encouraged the idea that evidence, even in great measure, is unable 

to determine the propositions of a science. This indeterminacy is incompatible with our routine 

experiences of mature science and is not established by Quine’s analysis. The elasticity results 

from reliance on a naïve and inadequately weak hypothetico-deductive approach to inductive 

inference.1 

 The account developed in this volume differs sharply from Quine’s supposition of 

elasticity. The relations of inductive support in a mature science are better imagined as strong 

steel cables, not elastic threads. They are connected and interconnected in such a variety of ways 

that the integrity of the entire structure is threatened if an anomalous experience arises. The 

affirmation that some ordinary machines can be combined to produce a perpetual motion 

machine would overturn mechanics. Or consider the discovery of a new mineral not constituted 

by atoms or not compounded of elements found in the periodic table. It would destabilize 

chemistry and, after that, the quantum theory that underpins the atomic character of matter and 

the uniqueness of the elements in periodic table. Evolutionary theory would fail to accommodate 

a new species of living beings that spontaneously appears fully formed without any past history 

of development. The structure of inductive support of mature sciences is not elastic but rigid. A 

break in one place propagates with revolutionary import far into the structure. 

  This volume explores and examines this structure. The first chapter is a brief 

development of the material theory of induction. It does not replace the lengthier elaboration of 

the theory in The Material Theory of Induction. However, for readers interested in the issues 

raised in present work, it will serve well enough as a point of first contact. 

 Subsequent chapters are divided into two parts. The first part presents general 

propositions in philosophy of science concerning the large-scale structure of inductive inference 

 
1 Or so I argue in Norton (2008). 
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or inductive support. The second part presents historical case studies that provide detailed 

illustrations of the main claims of the first part and are also the source of many of its claims. 

Part 1. General Claims and Arguments 

 Chapter 2 advances four claims, whose support and elaboration occupy the remainder of 

the text: 

1. Relations of inductive support have a non-hierarchical structure. 

2. Hypotheses, initially without known support, are used to erect non-hierarchical structures. 

3. Locally deductive relations of support can be combined to produce an inductive totality. 

4. There are self-supporting inductive structures. 

The first claim renounces the idea that inductive support is hierarchical, structured by generality.  

In this renounced picture, propositions in a science are supported inductively just by propositions 

of lesser generality. We would then be able to trace a pathway of inductive support from the 

lowest levels closer to experience, gradually ascending unidirectionally up the hierarchy of 

generality to the most general propositions of the science. The actuality is that relations of 

inductive support in real science fail to respect any such hierarchy. They cross over in many 

complicated ways. The very idea of a hierarchy of generality is only sustainable in a crude way, 

if at all. 

 The second thesis pertains to the practices that are needed to identify these tangled 

inductive structures. In the early stages of the development of a new science, inductive 

inferences can commonly only proceed if we make use of warranting assumptions for which we 

do not yet have inductive support. They are introduced as hypotheses and their use is provisional. 

Their use comes with an obligation to secure their proper inductive support in subsequent 

investigations. Should that obligation not be met, the original claims of inductive support fail. 

This role attributed to hypotheses is not their traditional role given to them in accounts of 

hypothetico-deductive confirmation. In this latter case, the hypotheses themselves are confirmed 

by their success at entailing evidence. Here the hypotheses mediate in establishing inductive 

support for other propositions. The hypotheses themselves must accrue support by other means 

in another stage of investigation. 

 The third thesis asserts that it is possible to combine deductive relations of support to 

produce an overall relation of support that is inductive in character. This is a possibility that, in 
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the abstract, seems impossible. Yet, as the examples show, it arises quite commonly in the actual 

practice of science. If it can be achieved, it is a construction to be prized for its reduction in 

inductive risk. The more familiar construction involves intersecting relations of inductive support 

that are combined to produce an overall inductive import. An inductive risk is taken, first, in 

accepting each component relation or inductive inference and, second, in accepting their 

combined import. When the component inductive relations of support are replaced by deductive 

relation, that first inductive risk is eliminated. 

 Finally, the fourth thesis is a thesis of completeness. That many inductive inferences are 

materially warranted is undeniable; or at least so I feel after working through the many examples 

of The Material Theory of Induction. If one is eager to retain general schemas, it is tempting to 

suppose that these examples display only a part of the full inductive story. Materially warranted 

inductive inferences or relations of support alone, one might want to assert, are not enough to 

sustain all of a science inductively. A full accounting must include general schemas or general 

rules in some form. This fourth thesis asserts otherwise. It is possible for materially warranted 

propositions to form structures such that every proposition in the structure is inductively 

supported, without the need for general schemas or other devices outside the material theory of 

induction. 

 This completeness is already a corollary of the arguments given for the material theory in 

Chapter 2 of The Material Theory of Induction and repeated more briefly in Chapter 1 below. 

Any general schema must in some way factually expand on the premises supplied to it. This 

expansion can only be sustained in domains hospitable to the means of the expansion. For any 

such expansion can fail if the facts of the domain are such as to oppose it. The fact of that 

hospitality is, in the most general terms, the warranting fact of the inductive inference or relation 

of inductive support. This argument defeats every attempt to assert the existence of some 

universal inductive rule. There can be none that escape it. 

 In their place is a simpler picture. Each individual proposition of a mature science is 

inductively well supported. If we are willing to undertake the task of tracing it out, we can 

display the form that support takes and its material character. This is true of each of the 

propositions of a mature science, taken individually. Their totality is the full, material account of 

the inductive support of the mature science. Nothing further is needed, for no proposition has 

been left without an account of its inductive support. 
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 These four claims in turn raise further issues that need to be addressed. Relations of 

inductive support cross over one another in a myriad of ways. Tracing along the pathways of 

support, we routinely find circles that bring us back to our starting point. Philosophers, brought 

up in fear of vicious circularity, mistakenly find the mere existence of such circles automatically 

disqualifying for any system. Chapter 3 argues that this disqualification is hasty and mistaken. 

There are circles throughout our sciences. We routinely consider populations where the rate of 

growth of the population is proportional to the size of the population. This is a benign circle of 

self-reference. It is merely the most convenient definition of exponential growth. When a 

circularity is uncovered, there can be no default supposition of a systemic failure. Instead, we 

have a positive obligation to demonstrate that a circularity is harmful, if we seek to represent it as 

such. Is the circularity vicious and thus leads to a contradiction? Or does is lead to an 

underdetermination of theories? The chapter argues that the circularities in inductive relations of 

support within mature scientific theories do neither. They are benign.  

 The following Chapter 4 addresses a related issue. Mature sciences, it has been asserted, 

are inductively self-supporting. The evidence for them is sufficient to sustain relations of 

inductive support such that every proposition in the science is supported. That leaves open a 

troubling possibility. Might it be that there are multiple such sciences for a given body of 

evidence? Then the bearing of evidence would not be univocal, no matter how rich and varied 

the evidence. Might this be the harm that that circularities bring? The chapter argues otherwise. 

Mature sciences are uniquely supported by their evidence. There is only one periodic table of 

elements supported by the evidence in chemistry; and so on for the central claims of mature 

sciences. 

 This uniqueness arises from the empirical character of science. Any alternative is only a 

real alternative if it differs in some factual assertion. Since all such assertions are open to 

empirical test, competition among alternatives is transient, if only the evidence that can decide 

among them is pursued. The material character of inductive inference adds a mechanism that 

destabilizes any competition. If one theory in the competition gains a small advantage, the facts 

thereby secured can serve as warrants for further inductive inferences supporting the theory. The 

effect is that the advantage of the ascending theory is amplified. When the investigations 

continue, this amplification is repeated, at the repeated cost of its competitors. If the process 



 8 

continues long enough, it ends with one theory prevailing over all its competitors. It is this 

instability that promotes the uniqueness of mature sciences. 

 Circularities are a distinctive feature of coherentist accounts of justification. We might 

hope, as I originally did, that there would be results already developed there of use to the 

material theory. The differences between the two systems are so great that, it turns out, these 

expectations are not met. Chapter 5 explores these differences. The coherentist account is offered 

as an alternative to fundamentalist accounts of justification. Coherentists must eschew the 

fundamentalist supposition that some beliefs are justified primitively by the world. The material 

theory has no such obligation. It takes observations and experiences of the world to be the 

foundation upon which inductive structures are built. For coherentists, beliefs are justified by 

their inclusion in a coherent system. The judgment is essentially global. There is something 

similar in the material theory. Strong inductive support for a proposition does ultimately depend 

on the larger-scale integrity of the relations of inductive support. However, that integrity arises 

by the composition of many individual relations of support. Each of the propositions in the 

structure must be inductively well-supported individually; and considerable effort is expended in 

establishing each such individual relation of support. Finally, coherentist justifications concern 

relations among beliefs, that is, within cognitive states. The material theory is concerned with 

mind and belief independent relations of inductive support among propositions that assert some 

factual condition in the world. 

 Chapter 6 describes how the material theory of induction dissolves the classic problem of 

induction. The chapter provides a short history of the problem. It shows that the problem of 

induction is specifically a problem for accounts of induction based on universal schemas. Its 

dissolution by the material theory involves no exotic legerdemain. The material theory of 

induction does not posit universal schemas. It follows that the problem of induction cannot be set 

up in it. It is dissolved. While this claim of dissolution has already attracted considerable 

attention, it has come with the mistaken claim that the material was devised specifically to solve 

the problem of induction. As I have related on several occasions, that is not the history of it.2 My 

 
2 My first paper on the material theory (Norton, 2003) was already in a complete first draft when 

Jim Bogen pointed out the possibility of a dissolution of the problem of induction.  An imperfect 

sketch of that dissolution was added as a later section of the paper. 
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concern is that the claims of the material theory—on both the local and large scale—should be 

evaluated as an attempt to understand inductive inference better. That can be done independently 

of whether the theory dissolves the problem of induction. If it does not dissolve the problem, the 

failure merely puts it in good company with all the other failed attempts. The material theory’s 

other results still stand. 

 While the material theory’s dissolution of the problem of induction is straightforward, a 

common reaction is to treat it like other claimed solutions of the problem. Under scrutiny, these 

other solutions prove to depend on unfounded, hidden assumptions, comparable in import to 

those that produced the problem originally. This reflexive reaction leads to the supposition that 

the problem must reappear in the material theory in some way in the mutual dependencies of 

inductive support. The unmet challenge for this reflexive reaction has been to find a way that the 

problem of induction reappears. Perhaps circularities in the structure are harmful; or perhaps 

there is a fatal regress to warranting propositions of ever greater generality; or perhaps, if our 

starting point is meager, we have no warranting hypotheses that would allow inductive 

inferences to be initiated. All these suppositions fail to identify a problem for the material theory. 

There is little need for the chapter to argue the point in great detail since securing the theory 

against such objections was already undertaken in the earlier chapters. The theory’s circularities 

are benign, it was argued in Chapter 3. A fatal regress to warranting propositions of ever greater 

generality requires the presumption of a hierarchical structure that, it is argued in Chapter 2, is 

not present in the material theory. Finally, there is no difficulty starting the inductive project. 

When warranting premises are missing, they are introduced provisionally as hypotheses. 

Part 2. Historical Case Studies 

 The second part of this volume presents a set of case studies within the history science. 

They are quite detailed and reflect my commitment that an analysis of inductive inferences 

should be responsible to what actually happens in science. Here the analysis differs from much 

of what is found in the philosophical literature on inductive inference. There the analysis suffers 

from adaptation to a few oversimplified examples. We may infer from the observation that some 

crows are black to the conclusion that all are. But such inferences, analyzed in isolation, are 

oversimplified caricatures of the much more sophisticated inductive inferences of real science. 
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An account designed just to accommodate such oversimplified examples is destined to be 

woefully oversimplified itself. 

 Formal accounts of inductive inference in the philosophical literature face the same 

problem. An erudite formal analysis, no matter how technically clever, is only as good as the 

assumptions on which it is based. The inductive practice of real science is complicated and 

messy. Formal systems, if they are to be amenable to mathematical analysis, must be based on a 

few simple axioms. When these are naïve or oversimplified, then inevitably so also is the 

analysis. These failures are easily overlooked since, commonly, formal accounts are developed 

without close attention to the actual inductive practices in science. When a formally pretty 

system is proposed, it is easy to be distracted by the ingenuity of the technical details and 

beguiled by the lure of the abstract formal puzzles they pose. 

 This work takes seriously the obligation to connect its general claims with the actualities 

of the sciences. It is does this by melding general claims in philosophy of science with detailed 

historical studies of science. This practice embodies a conception of what it is to do history and 

philosophy of science. Theses in philosophy of science must withstand scrutiny in the history of 

science. That much is widely accepted as an abstract principle. It is much less widely practiced. 

The reverse relation is more interesting. I have repeatedly found that investigations in the history 

of science are a fertile means of identifying powerful and interesting theses in philosophy of 

science. The scientists often face daunting inductive challenges. Their ingenuity in meeting the 

challenges far outstrips the imaginings of philosophers of science, concerned only with 

ruminations on abstract principles and ideas. Careful attention to the history can yield ideas that 

otherwise would not emerge from mere armchair reflection. 

 Chapters 7 to 14 present cases studies that were selected, I must admit, simply because 

they are episodes that interest me and, I suspected, would prove fertile in supplying general 

theses for the first part. In almost all, we find relations of inductive support crossing over one 

another in a way that violates a hierarchy of generality. That is one of the most important facts 

provided by the studies. The individual studies typically each add extra points of special interest. 

 Chapter 7 recounts Hubble’s 1929 arguments for his celebrated “Hubble’s law.” It asserts 

that galaxies recede with a speed proportional to their distance from us. If one does not look at 

the details of his reporting, it is all too easy to represent his analysis as a simple act of 

generalization. He checked that the linear relation held for a sample of galaxies and then just 
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generalized. A little attention to his paper of 1929 shows that his analysis was neither so simple 

nor that easy. Hubble only had distance measurements for roughly half the galaxies in his data 

set. He needed maneuvers of great ingenuity to extend his law to all the galaxies in his data set. 

They involved reasoning that inverted the order of inference one would expect. In one part, they 

even employed the Hubble law itself as a premise. 

 Chapter 8 recounts some of Newton’s arguments for his inverse square law of gravity. 

Newton, we find, was quite adept at recovering inductive support for his claims by combining 

deductive relations. Such combinations figure in central portions of the evidential case Newton 

makes for his theory of universal gravitation. They arise in his moon test that argues for the 

identification of terrestrial gravity and the force that binds the moon to the earth; and they arise 

again in the details of his analysis of the inverse square law of gravity and its relation to the 

elliptical orbits of the planets. 

 Chapter 9 on atomic spectra shows how the numerical rules governing the series of lines 

in the hydrogen emission spectrum are supported by multiple relations of inductive support that 

cross over one another in many ways. Under the warranting authority of Ritz’ combination 

principle, the presence of some lines provided support for the presence of other lines; and entire 

infinite series of lines provided support for other entire infinite series of lines. A second crossing 

over of support occurs at a higher level. Ritz’s combination principle provided general support 

for the newly emerging quantum theory. It was the observable manifestation of the fundamental 

electronic process of Bohr’s quantum theory of atom: the stepwise descent of an excited electron 

through the allowed orbits of the theory. Soon this relation of support was inverted. The more 

fully developed quantum theory both entailed the Ritz combination principle and could specify 

the empirically found circumstances in which it failed. 

 Chapter 10 provides another illustration of the crossing over of relations of support. It 

arises among two sets of propositions that date historical artefacts. In one set, datings are 

provided by traditional historical and archaeological methods. In the other, datings are provided 

by radiocarbon methods. There are uncertainties in both. Historical methods can err when they 

rely on clues that are meager or equivocal. Carbon dating can err if the historically varying levels 

of atmospheric carbon 14 are not accurately known. For then the baseline from which the carbon 

14 decay started is uncertain. Each set can be used to correct and calibrate the other. The 

calibration curve for historical levels of atmospheric carbon 14 was derived from historical 
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dating methods, including, famously, the counting of tree rings in ancient bristle cone pines. 

Once well-calibrated, carbon 14 dating can then correct historical and archaelogical datings of 

artefacts. When the two sets of propositions are in agreement, each mutually supports the other. 

 Chapter 11 looks at the history of the determination of the relative atomic weights of the 

elements. The task proved recalcitrant and strained the resources of chemists for roughly the first 

half of the nineteenth century. The difficulty was that, after Dalton’s introduction of chemical 

atomism in 1808, chemists were trapped by an incompleteness in his atomic theory. The 

evidence that 8g of oxygen reacts with 1g of hydrogen to produce water does not tell us how 

many atoms of hydrogen combined with how many of oxygen to form water. Was the ratio one 

one, two to one, one to two, and so on? We are left uncertain over whether the molecular formula 

for water is HO, H2O, HO2, or something else again. To eliminate the uncertainty, we need also 

to know the relative weights of each atom of hydrogen and oxygen. But we cannot know those 

relative weights until we know the correct molecular formulae for water and other related 

substances. 

 Chemists struggled for roughly half a century to overcome this incompleteness. Matters 

were only settled with Cannizzaro’s results of 1858 and brought to the notice of chemists 

through an 1860 conference. Cannizzaro’s results depended on a careful selection of fertile 

hypotheses to break the evidential circle in which Dalton was trapped. The best known is 

Avogadro’s hypothesis on the numbers of molecules in equal volumes of gases. Applying this 

and other hypotheses to a wide array of elements and compounds, a unique set of atomic weights  

could be recovered. They emerged from a huge tangle of intersecting relations of support. There 

were so many that the chapter can only sample a few. They extend from intersecting relations of 

support among the molecular formulae of individual substances to mutual relations of support at 

the highest levels of abstract theory. The chemists found support for Avogadro’s hypothesis in 

the new physics of the kinetic theory of gases. Conversely, the physicists found support for their 

new physics in the chemists’ adherence to Avogadro’s hypothesis. 

 Chapter 12 provides another illustration of the importance of hypotheses in enabling 

inductive investigations to proceed. Since antiquity, astronomers have sought to determine the 

distances to the sun, moon and planets. Simple methods of geometric triangulation—called 

“parallax” when used astronomically—provided only meager results. The angles to be measured 

were too small for naked eye astronomy to resolve reliably. That changed when telescopic 
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observations became possible in the seventeenth century. The task remained formidable. 

Attempts to use parallax for this purpose still called for major scientific expeditions as late as the 

eighteenth and nineteenth centuries. 

 These observations and simple geometry alone were not enough. Hypotheses were 

required to warrant inferences from the observations to the distances sought. Distances so 

inferred remained provisional, until independent support was provided for the hypotheses. Early 

hypotheses used in these investigations failed to meet the requirement. Ptolemy derived his 

estimates of the distances to the sun, moon and planets using the hypothesis that space is filled 

with the spheres of his geocentric cosmology, packed together as closely as possible. His 

distance estimates collapsed when his geocentric cosmology failed to find the independent 

support needed. Reliable distance measurements were only subsequently recovered with the 

mediation of the Copernican hypothesis, which was in turn further supported by Newton’s theory 

of universal gravitation. These hypotheses did accrue the requisite independent evidence.  

 The last two chapters provide examples of theories in competition. They are intended to 

illustrate the claims of the instability of inductive competitions described in Chapter 4. Chapter 

13 examines the practice of dowsing. Miners in the Harz mountains of Germany in the 16th 

century believed that minerals underground can be detected by the deflections of a hazel twig. 

Over the centuries, dowsing migrated to the detection of underground water. 

 The competition recounted is between dowsers and their skeptical critics and how it 

turned to favor the skeptics. The case for dowsing was mostly secured anecdotally. It lay in 

repeated accounts of dowsing successes and even the mere existence of a profitable profession of 

dowsers. The critics were able eventually to challenge successfully the reliability of these 

accounts. The nineteenth century identification of ideo-motor effects explained how dowsers 

might erroneously come to believe the effect was real. On the theoretical side, by the 

rudimentary standards set by the early theories of electric and magnetic attraction, it was 

plausible that underground minerals may exert an influence above ground. Over the centuries, 

the growth of theories of electricity and magnetism left no theoretical space for the mechanism 

of dowsing. The critics’ successes in these two strands of phenomena and theory were mutually 

supporting and came at the cost of proponents of dowsing. By the early twentieth century, 

dowsing had been reduced to the status of a pseudoscience. 
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   Chapter 14 recounts a present-day case of systems of prediction in on-going 

competition. It recounts four systems, all of which are presently applied to predict the future 

movement of prices on the stock market. They are fundamental analysis, technical analysis 

(“chartists”), random walk/efficient market analysis and fractal/scale free analysis. The 

competition among the systems is lively. Proponents of each are aware of the competing systems 

and try to impugn them. The chapter provides a sample of their disagreements. The guiding 

principles of each system are hypotheses in the sense of Chapter 2. They are proposed 

provisionally to enable prediction to proceed. However, none has been secured evidentially such 

that it has found universal acceptance. That follows from the persistence of the disagreements 

among the proponents of the individual systems. However, these hypotheses are mutually 

exclusive: at most one can be true. The evidence that would single it out is available in 

abundance in the past history of trading on the stock market. Were this evidence to be pursued 

and evaluated without prejudice, the disputes would be resolved and at most one system would 

prevail. However instead we have the curious spectacle of proponents refusing this task. The 

disagreement continues in full display, so that we can continue to watch how each approach 

seeks to gain an evidential advantage over the others. 
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The Material Theory of Induction, Briefly 

1. Introduction 

 This volume describes how relations of inductive support are structured on the large 

scale. It does so in the context of a particular view of inductive inference, the material theory of 

induction. This account of inductive inference has been elaborated extensively in my earlier 

Material Theory of Induction (2021) to which the reader is referred. This chapter offers only a 

brief introduction to the material theory. It is a preliminary. The main claims of this volume are 

presented in the next chapter. 

 Section 2 below gives a motivation, summary and argument for the material theory of 

induction. The standard approach to inductive inference characterizes inductive inferences or 

relations of inductive support formally, by means of schemas or calculi that are purported to hold 

universally. They all fail to apply universally, or so I argue. For facts peculiar to each domain 

determine which are the good inductive inferences or proper relations of inductive support. There 

is no way to combine these disparate warranting facts into a single, universally applicable 

system. This is the central claim of the material theory of induction. 

 The remainder of the chapter illustrates how standard, formal approaches to inductive 

inference fail; and that a material approach can capture what made the formal approach seem 

viable without succumbing to the formal approaches’ difficulties. Since there are so many 

approaches to inductive inference, this chapter can discuss only a few of them. They are sampled 

from a survey of accounts of inductive inference in Norton (2005). 

 This survey divides accounts into three families. The first, “inductive generalization,” is 

based on the principle that we may infer from an instance to a generalization. It includes 

enumerative induction, discussed in Section 3, and analogical reasoning, discussed in Section 4. 

The second family, introduced in Section 5, is “hypothetical induction.” It is based on the 

principle that the capacity of an hypothesis to entail the evidence is a mark of its truth. Section 6 

reviews one example in which we are to accept the hypotheses that most simply entails the 

evidence. The third family has accounts in which a calculus governs strengths of inductive 
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support. The probability calculus is overwhelmingly the most popular candidate. Section 7 uses 

the example of Laplace’s rule of succession to sketch some limits of the account and shows how 

the material approach can escape them. 

2. The Material Theory of Induction 

2.1 Inductive Inference 

 Induction and inductive inference are understood here in their broadest senses. They 

apply to any inference that leads to a conclusion deductively stronger than the premises from 

which it proceeds. This conception automatically includes traditional forms of ampliative 

inference, such as enumerative induction. (“This A is B. Therefore all As are B.”) Ampliation is 

understood in its broadest sense as referring to any expansion of the conclusion beyond the 

deductive consequences of the premises. The terms “induction” and “inductive inference” will 

also be taken to encompass what is often called confirmation theory. It applies to accounts in 

which one does not proceed in the traditional manner of an inference to infer the truth of some 

conclusion, detached from the premises from which it was derived. Rather one merely reports a 

relation of inductive support of such and such a strength between two propositions. The most 

familiar application is probabilistic analysis. The measure P(A|B) is the strength of support 

proposition A accrues from proposition B. 

 The account here is restricted to the logical notion of inference. According to it, the 

relation of inductive support obtains between A and B, independently of human desires, beliefs 

and thoughts. It is not the “psychologized” notion of inference. There, to report an inference 

from A to B is merely to report a fact of our psychology. If we hold A true then we will assert B 

as well. Discussions of people inferring from A to B will appear in the text that follows, 

especially in the historical narratives. However, they will be treated throughout as attempts by 

the figures in question to conform their thinking with the appropriate logic of inductive 

inference. 

2.2 An Unmet Challenge 

 Any account of inductive inference must do two things. First, it must provide a means of 

distinguishing good inductive inferences from bad ones. Second, it must demonstrate that the 

inferences it designates as good really are so. 
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 My contention is that all principal accounts of inductive inference so far have failed to 

meet these challenges. Their failure derives from a pervasive presupposition: they assume that an 

account of inductive inference must be based on formal rules that can be applied everywhere. In 

this they copy a standard approach in deductive inference. Here is a deductive argument schema: 

All As are B. 

Therefore, some As are B. 

The schema is universally applicable since we can substitute any noun for A and any adjective 

for B and end up with a valid inference. The simplest account of inductive inference mimics this 

approach. Enumerative induction just inverts the order of the sentences in the schema: 

Some As are B. 

Therefore, all As are B. 

The account is universal in the sense that this schema can be applied everywhere. It is formal in 

the sense that the schema specifies the form only of valid inferences. It does not constrain the 

matter in the sense that any nouns and adjectives can be substituted for A and B. Probabilistic 

treatments of inductive support are similarly formal and universal. Sentences derived within the 

probability calculus play the role of universal schema. Consider for example the sentence 

P(not-A|E) = 1 – P(A|E) 

where P is the conditional probability of the propositions indicated. It will remain a theorem in 

the calculus no matter which propositions are substituted for A and E. These two examples 

reflect the standard practice in the literature. It is to seek schemas that are universal and formal. 

 The difficulty is that all these schemas eventually fail somewhere; and, as I shall argue 

below, the failure is inevitable. The failure of enumerative induction is widely known. Indeed, 

the schema almost never works. One has to choose substitutions for A and B very carefully if one 

is to recover any acceptable inductive inference at all. There are similar problems with the 

sentence in probability theory, although more analysis is required to show them. The sentence is 

unproblematic if the “P” represents a physical chance. If the chance of outcome A happening 

given background E is small, say P(A|E) = 0.01, then the chance of outcome A not happening is 

large: 

P(not-A|E) = 1 – P(A|E) = 1 – 0.01 = 0.99 

But now let “P” measure the inductive strength of support for the proposition A from the 

evidence E, where E is the totality of all evidence available. This last relation precludes the total 
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evidence E from being neutral in its inductive support of A. That would mean that it supplies no 

support for either A or its negation not-A. We would want that lack of support to be represented 

by a small or even zero magnitude for both A and not-A. However, if we set P(A|E) to some 

number close to zero or to zero itself, then the statement in the probability calculus forces us to 

set P(not-A|E) close to one or to one itself.3 

2.3 The Material Solution in Three Slogans 

 The material theory of induction addresses these problems at their root: they derive from 

the presumption that good inductive inferences or relations of support can be identified by a 

single set of rules or formal schemas that are applicable universally. That presumption is denied: 

There are no universal rules of inductive inference. 

Instead, the core claim is: 

All inductive inferences are warranted by facts. 

That is, what distinguishes a good inductive inference is not its conformity with some general 

schema, but with background facts of the pertinent domain. 

 The idea that an inference can be warranted by a fact is familiar from deductive 

inference. The factual proposition “If A then B.” is both a mundane fact but also a warrant for a 

deductive inference from A to B. The warrant derives fully from the meaning of the hypothetical, 

“if . . . then . . .” To assert “If A then B.” is also to assert that we can infer from the truth of the 

antecedent A to that of the consequent B. In the case of the material theory of induction, a 

corresponding background fact might be “Generally, A.” Such a proposition authorizes us to 

conclude A. The import of the “Generally” is that the inference is inductive. It conveys that there 

is a small possibility that the conclusion A may fail to be true. 

 Finally, there are no background warranting facts with universal scope. The warranting 

facts of each domain will, in general, warrant inductive inferences that are peculiar to that 

domain. This is expressed in the third slogan 

All inductive inference is local. 

 
3 Experts will recognize that this consideration is the starting point of a decades-long debate over 

the representation of the neutrality of support. My view is that it cannot be done satisfactorily 

using probabilities. See Norton (2008, 2010). 
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There may be similarities in the inductive inferences from different domains. However, these 

similarities will prove to be superficial and support no general rule. We must always seek the 

warrant for an inductive inference within the background facts of its domain. 

 To continue with the oversimplified example of “Generally, A.” it may seem that this fact 

might somehow be applied across all domains. However the meaning of “generally” will vary 

from domain to domain, so that any similarity is superficial. In a probabilistic domain, we would 

assert “Generally, ten successive coin tosses will not all be heads.” The “generally” encodes an 

objective probability of the possibility of failure such that we expect failure on average at a rate 

of 1/210 = 1/1024 in many cases of ten successive coin tosses.  In particle physics we may assert 

“Generally, the laws of particle interactions are time reversible.” In chemistry, we may assert 

“Generally, metallic elements are solids at room temperatures.” In these last two cases, we have 

no possibility of repetition. The laws of particle interactions of the standard model of particle 

physics are fixed, as is the set of metallic elements. Setting aside dubious contrivances, the 

“generally” does not lead to a meaningful notion of an expected rate of failure. Once we have 

scoured the periodic table for metallic elements, there is no other periodic table with different 

elements where we can repeat the search anew. 

 What is left open is the extent of the domains in which each specific sort of inductive 

inference is warranted. A narrowly specific warranting fact may only warrant a few inductive 

inferences in some narrow domain. A broader warranting fact may warrant a mathematical 

calculus, which would be applicable across a large range of cases, but still in some limited 

domain. 

 In sum, the two challenges for inductive inferences are met as follows. In any domain, the 

licit inductive inferences are those warranted by the facts of the domain. That they are properly 

warranted follows from the truth of those facts and is recovered from the meaning of the terms 

expressing the warranting facts. 

2.4 The Background Facts Decide, Not Our Beliefs About Them 

 Inductive warrants work in the same way as the formal schema of deductive inference. 

They pick out which are the licit inductive inferences or relations of inductive support, 

independently of our beliefs. If we reason deductively in accord with the schema modus ponens, 

we reason validly, even if we know nothing of deductive logic and its schemas. If we reason in 
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accord with the fallacy of affirming the consequent, we commit a deductive fallacy, even if we 

mistakenly believe that affirming the consequent is a licit deductive schema. 

  Correspondingly, we infer well inductively if our inference is warranted by a fact of the 

domain, independently of whether we know it. We infer poorly inductively if there is no fact of 

the domain that warrants the inference, even if we believe erroneously that there is such a fact. 

 In practice, conceived materially, our inductive inferences are guided by our best 

judgments of which are the prevailing facts in any domain. They are defeasible. Those judgments 

may prove incorrect and we may be inferring poorly. If we differ in our judgments and arrive at 

incompatible inductive inferences, at most one of us is correct. Which of us inferred well is 

decided by which truly are the facts of the domain. 

2.5 The Case for the Material Theory 

 There are two components of the material theory to be established: first, that facts 

provide the warrant for inductive inferences; and second, that each domain has its own set of 

warranting facts (“locality”). 

 First, that facts warrant inductive inferences follows from the inevitable failure of 

accounts of inductive inference that aspire to apply universally. They must fail because of the 

defining feature of inductive inferences: they are ampliative. That is they authorize us to more 

than can be deduced from the premises. Thus there will always be domains, inhospitable to each 

schema, in which the schema will fail systematically. Characterized most generally, the factual 

warrant for each inductive inference amounts to the factual contingency that the inference is 

conducted within a domain hospitable to it. 

  Standard connective-based deductive inferences are not prone to this mode of failure. 

Their warrant lies fully within the premises in the meaning of the connectives and is present 

whatever the domain of the inference.  

 Domains inhospitable to each formal account can arise in many ways. Philosophy’s 

fabled deceiving demon is a simple if contrived way to see that inhospitable domains are 

unavoidable in principle. The demon secretly intervenes to frustrate our inferences. The 

applicability of each account depends on a factual matter: that we are not in the grip of such a 

demon. While deceiving demons are fantasies, something close to them is not. Experimentalists 

must assume that their lab assistants are not disgruntled employees maliciously selecting and 

suppressing data such as to deceive them into false conclusions. Or they must assume that they 
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are not in the grip of a mechanical equivalent: a loose connection in their cabling that introduces 

enough noise in the results to obscure a regularity or create a spurious one.4 

 These are contrived examples, but with the mitigating virtue that they can be expressed 

tersely. They display the key point. Any account of inductive inference can only succeed if the 

conditions in the domain are hospitable. That they are so is a factual matter.  

 Second, the locality of inductive inference follows from there being no universally 

applicable warranting fact. An old hope, now long abandoned, was that the regularities of the 

world might be simple enough that they could be expressed in some sort of universal fact that 

would then underwrite all inductive inference. This was Mill’s principle of the uniformity of 

nature (Mill, 1904, Bk III, Ch. III, p. 223): 

The universe, so far as known to us, is so constituted that whatever is true in any 

one case is true in all cases of a certain description; the only difficulty is, to find 

what description.  

In the abstract, this principle has momentary appeal. Mill himself had already identified the fatal 

difficulty. For the principle to be something more than idle posturing, there must be a description 

of it that picks out when we can advance from one case to all. Finding it is an intractable 

problem. Any description that is precise enough to be applied is rife with counter-examples. A 

description that is immune to counterexamples can only do so by adopting vagueness to the point 

of vacuity.5 

2.6 An Illustration 

An example illustrates this general argument. Consider the deductive inference: 

Winters past have been snowy AND winters future will be snowy. 

Therefore, winters past have been snowy. 

The warrant for this deductive inference resides entirely within the premises. It come from the 

meaning of the connective “and.” It can only be used when the truth of the conjunction derives 

from the truth of each of the conjuncts individually. Hence, we are warranted to infer to each of 

 
4 In September 2011, the OPERA collaborative reported faster-than-light-neutrinos. As Reich 

(2012) reported, they were misled in part by a loose cable connection.  
5 For more of this critique, see Salmon (1953). 
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them individually. Since the entire burden is carried by the connective “and,” we can write a 

general schema for deductive inference, applicable in any domain: 

A and B. 

Therefore, A. 

Now consider a related inductive inference: 

Winters past have been snowy. 

Therefore, winters past have been snowy AND winters future will be snowy. 

The conclusion amplifies the premise. Thus there will be domains hospitable to the inference; 

and there will be inhospitable domains in which it fails. An inhospitable domain is one in which 

there is considerable climate change, including significant warming. A hospitable domain is one 

in which climate is unchanging. If ours is one of these hospitable domains, that fact would 

warrant the inference. 

 More generally, this fact licenses a schema for inductive inference that is restricted to a 

specific domain: 

In domains with unchanging climates, 

If climatic fact A has always held in the past, 

Climatic fact A will continue to hold. 

We can substitute A with facts applicable to domains with unchanging climates to recover a licit 

inductive inference: 

In domains with unchanging climates, 

If summers past have always been hot and dry, 

Then summers past and future will be hot and dry. 

This example also illustrates the inherently inductive character of the inference. We can make 

the warranting fact explicit and even add it to the premises displayed. However, we have not 

converted the argument into a deductive argument. Climatic conditions concern long-term 

regularities. An unchanging climate does not preclude a rare anomaly, such as an unusually 

warm winter among winters that are most commonly snowy.  We risk such an anomaly when we 

employ an inductive inference warranted by the fact of an unchanging climate. 

 The following sections illustrate at greater length the failure of the universal applicability 

of some formal accounts of inductive inference. We shall also see how identifying the warranting 
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material facts in some domain helps us delimit the domains of applicability of each inductive 

inference. 

3. Enumerative Induction 

 Enumerative inductions—the familiar inferences from “some… to all…”—are pervasive 

in science. Just as pervasive in the philosophy literature is a denunciation of the argument form. 

Francis Bacon’s (1620, First Book, §105) riposte is just the best known of many from antiquity 

to later times: 

The induction which proceeds by simple enumeration is puerile, leads to uncertain 

conclusions, and is exposed to danger from one contradictory instance, deciding 

generally from too small a number of facts, and those only the most obvious. 

This poses a puzzle. How is it these “some-all” inferences are used pervasively in science yet 

denounced pervasively by philosophers? 

 The puzzle is readily solved if the some-all inferences are approached materially. The 

whole problem derives from the mistaken assumption that all these some-all inferences are 

warranted by a single formal schema. For there is no formal schema that can serve to warrant 

them all. Efforts to formulate one that works universally collapse. It is that difficulty to which the 

philosophical literature responds. Rather, in so far as the some-all inference is warranted at all, 

that warrant derives from facts peculiar to the domain in which each some-all inference is 

executed. The unity of form of the many some-all inferences in science is superficial. It is not 

reflected in a unity of the warrants for the inferences. 

3.1 Curie’s Enumerative Induction 

 This material solution to the puzzle is illustrated in an enumerative induction of striking 

scope in Marie Curie’s doctoral dissertation, presented to the Faculté des Sciences de Paris in 

June 1903.6 There she reported on years of work with her husband, Pierre Curie. It included the 

laborious separation of tiny quantities of radium chloride from several tons of uranium ore 

residue. Mentioned only briefly were the crystalline properties of radium chloride (p. 26): “The 

crystals, which form in very acid solution, are elongated needles, those of barium chloride 

having exactly the same appearance as those of radium chloride.” This remark on the 

 
6 For further details on this example, see Norton (2021, Ch.1). 
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crystallographic properties of radium chloride became standard in the new literature that quickly 

sprang up around the excitement generated by Curie’s discovery of radium. 

 Since the remark is unlimited in scope, it results from an enumerative induction. Indeed it 

is one of rather extraordinary scope. Curie had initially prepared just a few tenths of a gram of 

radium chloride. Subsequent preparations would not have produced large quantities. Yet a 

general statement on the crystallographic properties of radium chloride was widely accepted 

without hesitation. Rutherford surveyed what was known of radioactive substances in 1913 and 

noted  (1913, p. 470) without qualification that: “Radium salts crystallise in exactly the same 

form as the corresponding salts of barium.” 

3.2 Failure of Formal Analysis 

 What can support an induction of such strength from these very few samples of radium 

chloride? We can see quite quickly that the universal schema proposed for enumerative induction 

above falls far short of what is needed: 

Some As are B. 

Therefore, all As are B. 

There are simply too many substitutions possible for A and B that lead to failed inductions: 

Some samples of radium chloride were prepared by Marie Curie. 

Some samples of radium chloride are in Paris. 

Some samples of radium chloride are at 25oC 

Some samples of radium chloride are less than 0.5g. 

Some radioactive substances crystallize like barium chloride. 

Some substances in Curie’s laboratory crystallize like barium chloride. 

None of these lead to credible inferences. One might be tempted to propose restrictions on what 

can be substituted for A and B. Might we insist that no nouns or adjectives with essentially 

spatiotemporal character can be substituted? That would block the substitution “substances in 

Curie’s lab” for A and “in Paris” for B. However it would also block what otherwise would be 

quite credible enumerative inductions. 

All known kangaroos are indigenous to Australia. 

Therefore, all kangaroos are indigenous to Australia. 

And 
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All known moons and planets in our solar system orbit in the same direction as Earth. 

Therefore all moons and planets in our solar system orbit in the same direction as Earth. 

The pattern here is evident. For each restriction we might contemplate on substitutions for A and 

B, it takes only a little imagination to find otherwise credible inferences that are blocked and 

arbitrarily so. We must abandon hope for an embellished version of the schema that can serve 

universally. 

3.3 Material Analysis 

 This failure should not make us pessimistic over the prospects of inductive inferences 

like Curie’s. It is a vanity of inductive logicians to imagine that Curie and Rutherford relied on 

the pronouncements of logicians in forming their inferences. Rather Curie and Rutherford knew 

precisely which crystallographic properties of radium chloride could enter into some-all 

inferences through a century of research in mineralogy on crystals. 

 Crystals grow in such a bewildering array of shapes that it was initially hard to see that 

any regularities could be found. If some crystalline sample of a mineral adopted a particular 

shape, it would be extraordinary to find another sample with exactly that shape. The problem is 

reminiscent of the old saw that no two snowflakes are alike. The problems are similar. What 

regularities can be found among snowflakes when they all differ? 
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Figure 1. Snowflakes7 

 

The answer is widely know and easily seen in Figure 1. Snowflakes all reflect the same regular 

hexagonal shape. More abstractly, they exhibit a discrete rotational symmetry. The shapes map 

back into themselves if we rotate them by 60o.  

 Essentially this is the regularity that was discovered during the 19th century investigation 

of crystalline forms, but promoted from the two dimensional forms of snowflakes to the three 

dimensional forms of most other crystals. Snowflakes are built around one shape, the regular 

hexagon. The more general three-dimensional theory, however, calls for six8 crystallographic 

systems, each with its own fundamental form and symmetries. The most familiar system is the 

 
7 Image source: https://commons.wikimedia.org/wiki/File:SnowflakesWilsonBentley.jpg which 

gives a provenance: Wilson Bentley, "Studies among the Snow Crystals ... " Plate XIX, "The 

Snowflake Man." From Annual Summary of the "Monthly Weather Review" for 1902.  
8 So was the count in Curie’s time as provided by Miers (1902, p. 38). 
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“cubic” system to which sodium chloride, common table salt, belongs. This membership does 

not mean that all the crystals of common table salt are just little cubes. Rather it means that they 

are all derived by geometric operations from the basic cubical form, just as all snowflakes derive 

from the regular hexagon. 

 By Curie’s time, it was a standard result that each crystalline substance generally belongs 

to a unique crystallographic system. The complication that underwrites the “generally” is that 

some crystalline substances manifest dimorphism or polymorphism. They may crystallize under 

different conditions into two (“di-“) or more (“poly-“) systems. This generally regular 

association of crystalline substances with one of the six systems is the material fact that 

warranted Curie’s inference. If she can identify the crystallographic system to which one sample 

of radium chloride belongs, then she can infer to the crystallographic system of all samples of 

radium chloride. Norton (2021, Ch.1) distinguishes this warranting fact as a principle named 

after René Juste Haüy, an early 19th century founder of crystallography: 

(Weakened Haüy’s Principle) Generally, each crystalline substance has a single 

characteristic crystallographic form. 

The “generally” that weakens the principle ensures that Curie’s inference is inductive. She takes 

the inductive risk of assuming that no polymorphism for radium chloride. 

 Curie does not mention by name the monoclinic system to which radium chloride 

belongs. Rather she uses an indirect locution: radium chloride crystallizes as does barium 

chloride. That is, the system to which radium chloride belongs is the same as that to which 

barium chloride belongs. That they should belong to the same system is quite plausible since the 

two salts are very similar in their chemical properties; and such similarities often manifest in 

crystallographic similarities. 

 What initially appeared as a simple enumerative induction by Curie can now be seen to 

be something richer. The specific generalization Curie makes on the crystalline form of radium 

chloride is informed by and warranted by facts uncovered in a century of research in mineralogy. 

That research solved the difficult and delicate problem of just which properties of crystals can be 

generalized in a some-all inference. The warranting fact of the Weakened Haüy’s Principle 

rested in turn on a considerable amount of science. It exploited the atomic theory of matter in 

picturing crystals as atoms arranged in regular lattices; and the mathematics of group theory in 

discerning how spatial symmetries led specifically to the different crystallographic families. 
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Curie’s inference was not grounded in any abstract logical schema, but in a considerable range of 

scientific facts.  

4. Analogy 

 Reasoning by analogy, like enumerative induction, is a long recognized form of inductive 

generalization. It too is recounted by Aristotle. It asserts in its simplest form that, when some 

system with property P also has property Q, this particular fact can be taken as an instance of the 

generalization that other systems with a similar property P will also have a similar property Q. 

The difficulties analogical reasoning faces are quite similar to those faced by enumerative 

induction. Simple schemas for analogical reasoning are not serviceable. A bare schema is too 

permissive in part through its simplicity and in part through the vagueness of essential terms like 

“similar.” The obvious repair is to strengthen the schema by careful elaborations, tuned to 

canonical examples of analogical inference. The results, however, are schemas of increasing 

complexity that turn out still to be prone to the same troubles. That this should happen is 

predicted by the material approach. According to it, the best we can have are different schemas 

that succeed only in different, factually delimited domains. There is no way to synthesize them 

into a single coherent schema that applies universally.9 

 There is a curious difference in the way philosophers approach analogy and the way 

scientists do. Philosophers treat analogy as a form of inductive inference and they seek the 

general rules governing it. Scientists treat analogies as facts that lead to useful results. For them 

an analogy is itself an empirical matter subject to normal scientific investigation. If one thinks 

formally about inductive inference, this difference is puzzling. It makes perfect sense, however, 

if one approaches inductive inference materially. For the scientists’ factual analogy is the 

material fact that warrants the analogical inference. 

4.1 The Bare Formal Schema 

 In his logical treatise, Joyce (1936, p. 260) gives a standard schema for analogical 

inference in its bare form: 

S1 is P. 

 
9 Here I discount the trivializing device of simply taking a huge, likely infinite disjunction of all 

the distinct locally applicable schemas and offering it as a single schema. 
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S2 resembles S1 in being M. 

[therefore] S2 is P. 

This schema fits many inferences in science. In the eighteenth century, it was noted that 

electricity resembled gravity in manifesting as a force between bodies that diminishes with 

distance. The analogy supported the conclusion that electrical forces like gravitational forces 

diminish with the inverse square of distance. This conclusion was experimentally affirmed by 

Coulomb. 

 As with the simple schema for enumerative induction, this bare analogical schema only 

returns good results when one makes careful substitutions. With little effort one finds many 

examples of failed analogical inference. Heat flows like a conserved fluid from hot to cold, but 

contrary to the eighteenth century supposition of the caloric fluid, it is not conserved and is not a 

fluid substance. Perhaps the most famous analogical failure concerns whales. They resemble fish 

in swimming in the oceans. However, since they are mammals they neither breathe with gills nor 

lay eggs as do fish. 

 As with enumerative induction, there is a long-standing tradition of deprecation of 

analogical inference, complete with sage warnings of the dangers of false analogies. Here is one 

example (Thouless, 1953, Ch. 12): 

Even the most successful analogies in the history of science break down at some 

point. Analogies are a valuable guide as to what facts we may expect, but are never 

final evidence as to what we shall discover. A guide whose reliability is certain to 

give out at some point must obviously be accepted with caution. We can never feel 

certain of a conclusion which rests only on analogy, and we must always look for 

more direct proof. Also we must examine all our methods of thought carefully, 

because thinking by analogy is much more extensive than many of us are inclined 

to suppose. 

4.2 The Two-Dimensional Model 

 If one thinks formally about analogical inference, the remedy is to embellish the bare 

schema in a way that will exclude the plethora of troublesome counterexamples. The dominant 

approach in the literature develops a two-dimensional account, so named by me because it lends 

itself to display in a two-dimensional array. It draws on Keynes’ (1921, Ch. XIX) notion of 

“positive analogy” and “negative analogy” and has been developed by Hesse (1966). The 
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account uses these notions to support inferences about a target system through its analogical 

relations with a suitable source system. It can be represented in a general tabular schema, 

provided by Bartha (2010, p.15): 

 
 Source Target  

 P P* (positive 

analogy) 

 A ~A* (negative 

 ~B B*   analogy) 

 Q   

  Q* (plausibly)  

 

The goal is to infer to some as yet unaffirmed property Q* of the target that corresponds with 

some property Q of the source. Whether we can do this is decided by the relative strengths of the 

positive and negative analogies. The positive analogy lies in properties P and P* of source and 

target agreeing. The negative analogy lies in the source exhibiting property A but the target 

lacking the analogous property A*; and conversely with properties B and B*. 

 Properties P and Q of the source stand in some relation, which may be causal, explanatory 

or something else. If the strength of the positive analogy outweighs the strength of the negative 

analogy, then that relation can be carried over to the analogous properties P* and Q* of the 

target. We can then affirm that the target system does indeed carry the property Q*. 

 While the bare schema has been considerably enriched, this tabular schema still falls well 

short of what is needed in a formal account that can mechanically separate the good from the bad 

analogical reasoning, the true from the false analogy. Rather it still relies throughout on users of 

schema just knowing intuitively when certain relations obtain. They are not given formal 

specifications that can be applied unambiguously. In the case of the relations laid out vertically 

in the table, just what is it to be a causal or explanatory relation between P and Q? And which 

other relations are admissible? The horizontal relations between P and P*, between A and A*, 

and so on, are relations of similarity. In formal terms, when are two properties similar? Finally 

and most troublesome, how are we to assess the relative strengths of the positive and negative 

analogies? For that balance decides whether we have a true or false analogy overall. These 



 32 

incompletenesses leave sufficient room for us to continue concocting dubious inferences that 

nonetheless conform with the explicit conditions of the schema. 

 Joyce’s bare schema for analogical reasoning contained just one term—“resembles”—in 

need of external, formal specification. In an effort to resolve the bare schema’s problems, the 

two-dimensional account has introduced many more terms and notions. They are each in turn in 

need of further formal specification. One might, as did Bartha, take this as a challenge to be 

resolved by still further elaboration. In this vein, Bartha’s (2010, Ch.4) “articulation model” adds 

considerably more structure to the two-dimensional model. The pattern already established 

continues. Each elaboration brings new conceptions with it; and each such conception requires in 

turn a further formal specification. 

 There is considerably more detail in both Hesse’s two-dimensional and Bartha’s 

articulation model than can be presented here. Norton (2021, Ch. 4) is my best effort to provide a 

richer account of both. However, the overall trend is quite evident. Each effort to conform the 

schema better to good and bad examples requires elaborations that employ new conceptions and 

artifices that are in turn in need of formal specification. Each effort to repair an inadequate 

schema does not solve the problems but multiplies them. 

4.3 The Material Approach to Analogy 

 According to the material approach, this mode of failure is inevitable. Each analogical 

inference is warranted by particular facts peculiar to the inference’s domain. Resemblances 

among analogical inferences from different domains will be superficial. Efforts to modify a 

schema to cover more examples of analogical inferences will degenerate into a growing 

multiplicity of clauses, each responding to particulars of the new examples added. There will be 

no end to this growth since there will always be new examples. 

 A material approach accommodates examples of analogical inference on a case by case 

basis. Whether the inference is good is determined by whether there is a background fact in the 

domain to warrant it. Such facts have an analogical character since they express similarities 

among systems. They are aptly named the “facts of analogy.” There is no requirement of an 

essential resemblance among different examples of analogical inferences that could be captured 

in a generally applicable formal schema. The different examples bear superficial resemblances 

only. 
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 Failed analogical inferences arise when there is no suitable fact of analogy. Relativity 

theory showed us that we should abandon the absoluteness of motion in favor of the relativity of 

inertial motion. By analogy, should we abandon the absoluteness of truth and of moral rectitude 

in favor of their relativity? The analogical argument fails since there is no fact of analogy 

connecting motion with truth and moral rectitude. The analogical inference attempted depends 

on a verbal coincidence in the repeated presence of the word “absolute.” 

4.4 The Mountains on the Moon 

 Galileo’s (1610) Siderius Nuncius—the Starry Messenger—reports an extraordinary 

finding among Galileo’s telescopic investigations of the heavens: there are mountains and seas 

on the moon. The mountains manifest when one tracks how the division between light and dark 

on the moon grows in a waxing moon. As the bright edge advances, bright points of light appear 

ahead of it, grow and merge with the advancing edge. This is just how mountains on the earth are 

illuminated by a rising run. Similar observations and analogies support the presence of 

depressions or “seas” on the moon. 

 Galileo’s analysis draws on an analogy between the moon and the earth. His inference fits 

the bare schema of analogical inference: 

The earth (S1) has mountains and seas (P). 

The moon (S1) resembles the earth (S2) in both showing the same 

patterns of surface illumination (M). 

Therefore, the moon (S2) has mountains and seas (P). 

The inadequacy of the schema as a warrant is easy to see. Nothing in the schema prevents us 

replacing 

P = “has mountains and seas.” 

with 

P = “has mountains with alpine ski resorts and water-filled seas with submarines.” 

It is hard to imagine anyone endorsing the resulting inference to ski resorts and submarines on 

the moon. The obvious objection is that the presence of ski resorts on earthly mountains plays no 

role in the formation of patterns of light and dark on the earth. The analogical inference succeeds 

only in so far as it uses the right sort of connection between the “M” and the “P” of the schema. 

With that remark, we have introduced the fact of analogy that warrants the inference: 
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The process that produces the patterns of light and dark on the moon is 

the same as the process that produces them on the earth. 

The similarity to the process on earth is inessential to the fact’s power to warrant the inference. 

What matters is that: 

The patterns of light and dark on the moon are produced as shadows in 

rectilinearly propagating light by opaque bodies. 

For that is how the patterns on the earth are produced. In principle, Galileo could proceed 

entirely using this reduced form of the fact of analogy. He could demonstrate by some simple 

geometric constructions that lunar mountains would illuminate in just the patterns he observed. 

The earth need never be mentioned. However, there is a shortcut. Galileo does not need to 

develop these constructions afresh for his readers. They are already familiar to earthbound 

observers who have experienced a sunrise. It is a rapid expository convenience to recall that 

experience. 

 This development oversimplifies Galileo’s analysis in that this last warranting fact in 

conjunction with his observations enables a deductive inference to the presence of mountains on 

the moon. The inductive character of Galileo’s investigation resides in an uncertainty over 

whether this warranting fact is true. We restore the inductive character of the analysis by 

inserting the word “likely” into the fact so it merely asserts “… are likely produced…” This 

reflects Galileo’s efforts to show that other possible accounts of the origin of the patterns of light 

and dark are unlikely. For further discussion, see Norton (2021, Ch.4, Section 8). 

5. Hypothetical Induction 

5.1 Saving the Appearances 

 Enumerative induction and analogical reasoning are forms of inductive generalization: 

we infer from an instance to the generalization. The weakness of this form of inductive inference 

is that the generalizations are most naturally expressed in the same vocabulary as are the 

instances. That makes it difficult to infer from evidence to hypotheses formulated with a quite 

different vocabulary.10 

 
10 It is difficult, but not impossible, as a survey (Norton, 2005) shows. 
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 Another form of inductive inference that I have called “hypothetical induction” is quite 

free from this limitation. According to it, the fact that some hypothesis with suitable adjuncts 

entails true evidence is a mark of the truth of the hypothesis itself. This form of inductive 

inference has long been used science. In ancient Greek Astronomy, “saving of the appearances” 

meant having hypotheses about the motion of celestial bodies whose observable consequences 

match and correctly predict what is seen in celestial motions. The Copernican planetary system 

used the astonishing hypothesis of the motion of the earth to save the appearances of the motion 

of the planets. This, according to the Copernicans, indicates its truth. Critics of this conclusion, 

such as Osiander writing in a preface to Copernicus’ work, urge that it merely shows the 

pragmatic utility of the hypothesis, but not its truth. 

 As scientific theories grew more remote from the evidence that supports them, the need 

for something stronger than mere inductive generalization grew. It was inescapable by the time 

of Einstein’s general theory of relativity. The planetary motions that provide evidence for the 

theory are expressed in the vocabulary of observational astronomers. It is quite remote from the 

vocabulary used to express the core statements of Einstein’s theory: metrical and stress-energy 

tensors, Christoffel symbols and Riemann’s four index symbols (now the curvature tensor). In 

November 1915, a jubilant Einstein reported the success of his theory with the long-standing 

astronomical anomaly in the perihelion motion of mercury. That anomalous motion could be 

deduced within his theory. It was, to use Einstein’s word of 1915, “explained.”11 There was no 

generalization from an instance. Einstein’s new theory saved the appearances and that was 

enough to make it one of the revered evidential coups of the twentieth century. 

5.2 Its Limitations 

 The strength of hypothetical induction is that it can lead to the confirmation of 

hypotheses remote from the evidence. That is also its weakness. It can lead to the confirmation of 

too much. We can keep adding as many epicycles and other devices as we wish to Ptolemy’s 

geocentric system. Do it cleverly enough and we create a suitably adjusted version that can also 

save the appearances of planetary motion just as well as Copernicus’ heliocentric system. Indeed 

so also can a Ptolemaic geocentric cosmology, larded with fanciful crystalline spheres, each 

 
11 The title of Einstein’s (1915) paper translates to “Explanation of the Perihelion Motion of 

Mercury by the General Theory of Relativity.” 
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powered in its rotation by angels. Does that fanciful hypothesis also earn a mark of truth? If 

saving the appearances is all that matters, then we must answer yes. 

 The near universal response is that merely saving the appearances is too permissive. They 

must be saved in the right way. Selecting this “right way” becomes almost the full substance of 

the rescued account. For otherwise, the appearances A are saved by every proposition of the form 

A&X, where X can be anything at all. The “right way” is what selects, among this overwhelming 

infinity of possibilities, just which is best favored by the evidence of the appearance. 

 A leading candidate is the requirement that the hypothesis must not merely entail the 

appearances but must explain them. This notion is the basis of abduction or “inference to the best 

explanation.”12  It was, according to this account, what distinguished Einstein’s treatment of the 

anomalous motion of Mercury from mere saving the appearances. His theory explained them. As 

my survey (Norton, 2005) recounts, there are other candidates for this “right way” promoted in 

different sectors of the literature. We shall pursue just one here. It is that the favored hypothesis 

is the one that saves the appearances in a simple and harmonious way. 

 One of Copernicus’ arguments for his system was based on considerations of simplicity, 

mixed with esthetics. In the Preface to his On the Revolutions of the Heavenly Spheres, he 

censured the Ptolemaic geocentric cosmology as monstrous (1543: 1992, p.4): 

[the geocentric astronomers’] experience was just like some one taking from 

various places hands, feet, a head, and other pieces, very well depicted, it may be, 

but not for the representation of a single person; since these fragments would not 

belong to one another at all, a monster rather than a man would be put together from 

them. 

A little later he exulted in the harmony of his heliocentric system (p. 9): 

 
12 Providing a material explication of inference to best explanation is difficult. There are many 

notions of explanation, so the approach is not univocal. My best efforts are given in Norton 

(2021, Ch. 8-9). Successful inferences to the best explanation do not draw on any special 

inductive powers of explanation. Rather their success comes from deprecating alternatives to the 

favored hypothesis, either as inconsistent with the evidence or as taking on undischarged 

evidential debts. 
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In this arrangement, therefore, we discover a marvelous symmetry of the universe, 

and an established harmonious linkage between the motion of the spheres and their 

size, such as can be found in no other way. 

Copernicus’ foremost proponent and expositor, Galileo, pointed directly to simplicity as the 

guide to probability in his dialog, Two Chief World Systems (1632). Having reviewed the virtues 

of the Copernican system, Salviati concluded in triumph (p. 327): 

See also what great simplicity is to be found in this rough sketch, yielding the 

reasons for so many weighty phenomena in the heavenly bodies. 

Sagredo immediately summarized Salviati’s logic (p. 327, my emphasis) 

I see this very well indeed. But just as you deduce from this simplicity a large 

probability of truth in this system, others may on the contrary make the opposite 

deduction from it. 

Needless to say, Salviati proceeded to a devastating criticism bordering on cruelty of those who 

resist his deductions. 

6 Simplicity13 

6.1 Principles of Parsimony 

 Invocations of simplicity are so common that we may barely be aware of how frequently 

they smooth the passage of our inductive inferences. We ask how a variable T is related to a 

variable t. We collect measurements and find that the measured T values increase linearly with 

the t values, near enough. We infer without apology to a linear relationship between T and t. The 

move is rarely challenged. If it is, who could resist the impatient retort: “It’s the simplest. What 

else could it be?” This instinctive retreat to simplicity falls short of what is needed if we seek 

explicit principles that separate the licit from the illicit inductive inferences. Merely being told to 

choose the simplest is empty without some specification of which is the simpler. And it has no 

inductive force unless some basis is provided for why that choice does lead to licit inferences. 

 When explicit statements of a governing principle of parsimony are required, perhaps the 

most commonly invoked is “Ockham’s razor.” It is usually reported as14 

 
13 The analysis of this section is developed in greater detail in Norton (2021, Ch. 6). 
14 William of Ockham’s original wording differed but conveyed essentially the same sentiment. 
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Entia non sunt multiplicanda praeter necessitatem. 

Entities must not be multiplied beyond necessity. 

Edifying as is William of Ockham’s sentiment, we may worry that it is merely the abstract 

speculation of a scholar who did not himself use it in any major scientific discover. We can have 

no similar hesitations over a formulation by Isaac Newton, surely one of the most accomplished 

scientists of all eras. In composing his magisterial Principia, he declared a principle of 

parsimony that would then be used in the development of his “System of the World.” Book III of 

this work introduces “Rules for Reasoning in Philosophy.” The first is a principle of parsimony 

(Newton, 1726, p. 398): 

Rule I 

We are to admit no more causes of natural things than such as are both true and 

sufficient to explain their appearances. 

To this purpose the philosophers say that Nature does nothing in vain, and more is 

in vain when less will serve; for Nature is pleased with simplicity, and affects not 

the pomp of superfluous causes. 

What are we to make of principles such as these? We cannot find much fault in them as pieces of 

homely advice. We may lighten the work of our inferential quests if we check the easy options 

first. However, that practicality falls short of what is needed if the principle is to be a guide to the 

truth. For the facts of the world feel no obligation to conform themselves to what is 

pragmatically convenient for us. To serve as this guide, the principle must express some 

fundamental fact about the world: the simpler is more likely true since nature is simple. And it 

must do it in an unambiguous manner so that it can be applied unambiguously. 

 These principles fail to meet both requirements. First, as a factual matter, Nature is often 

not pleased with simplicity and may employ a multiplicity of entities or causes. For millennia, 

traditional matter theories favored less to their detriment. The ancient Greeks presumed four 

elements: earth, air, fire, and water. The later alchemists presumed fewer still: Mercury, sulphur 

and salt. As long the element count was this small, there was little possibility of a serviceable 

chemistry. Matters were only rectified when Antoine Lavoisier proposed 33 elements in his 

Elements of Chemistry (1790, pp. 175-76 “Table of Simple Substances”). That set us towards the 

modern count that exceeds 90 elements. Even with this count secured, there are further 

multiplicities. All instances of each element are alike chemically. Thus parsimony would tell us 
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that carbon is made of entities all of the same type. However all carbon is not the same. It 

manifests in physically distinct but chemically identical isotopes: 12C, 13C and 14C. 

 Second, these proclamations are too ambiguous to be serviceable since they provide no 

definite means of counting causes and entities. Is the gravitational force of the sun one cause 

because it is the force exerted by one large object? Or is it very many causes, one for each 

gravitational force exerted by each atom of the sun? Is the designer god against whom Darwin 

railed, one cause of the many adaptations of living things? Or do we count each individual 

design decision as a separate cause? Do we understand the electric force of attraction between 

bodies as an action at a distance effect? Or is it as an interaction mediated by an electric field? In 

one way of counting, the action at a distance theory posits fewer entities. It posits electric 

charges only. The field view posits these charges and adds the mediating field. In another way of 

counting, the numbers reverse. If we consider the electric force on some a particular body the 

field view attributes it to one thing, the surrounding electric field. The action at a distance 

account, however, presents the force as the sum of all forces exerted by all of the very many 

charges in the universe.  

 There is a further ambiguity. We should not multiply entities “beyond necessity.” We 

should admit no more causes than “are both true and sufficient to explain the […] appearances 

[of natural things].” While we may have some intuitive notions of the key words “necessity” and 

“explain,” the principles are not objective rules until these terms are given unambiguous 

meanings. Until then, one person’s necessity may be another’s superfluity. 

6.2 Simplicity as a Surrogate 

 We face a familiar problem. Common inductive practice routinely employs appeals to 

simplicity. Yet we cannot articulate an explicit principle upon which this practice can rely. From 

the perspective of the material theory of induction, this failure is inevitable. For it asserts that 

there can be no such universally applicable principle of inductive inference. 

 Understood materially, inductively efficacious appeals to simplicity are always indirect 

appeals to further inductive inferences. Sometimes these further inductive inferences are 

sufficiently convoluted that a proclamation of simplicity is a convenient way of avoiding a 

convoluted narrative, or of summarizing one just given. We shall see below that this is the real 

basis of the Copernicans appeal to simplicity. In the most straightforward cases, appeals to 

simplicity are merely veiled appeals to specific background facts that provide the warrants for 
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the inductive inferences at issue. We shall see below that this is the basis of appeals to simplicity 

in curve fitting. 

 Simplicity is a surrogate for further inductive inferences. Appeals to simplicity are 

otherwise so varied in their details that material analysis cannot supply a more specific 

characterization. 

 The material approach resolves some of the ambiguity in Ockham’s razor. His 

“necessity” makes sense as a veiled reference to something inductive: we should not infer to 

more entities than those to which we are authorized inductively by the evidence. Similarly, 

Newton’s Rule limits causes to those sufficient to explain the appearances. If we understand 

explanation in the abductive tradition, the minimal causes sufficient to explain the appearances 

are just those to which we should infer inductively as the best explanation. In both cases, the 

principles of parsimony amount to a simple assertion: infer only to what the evidence permits. 

Do not go beyond. This assertion is merely a truism of inductive inference. It is a good practice 

to follow. The truism replaces and can contradict an independent principle of parsimony. The 

evidence may well require us to adopt something far from simple. Our best model of particle 

physics, the standard model, has nineteen independent constants. 

6.3 Curves, Tides and Comets 

 The most straightforward and most familiar appeal to simplicity arises in curve fitting. 

We plot measured data points for two variables x and y and then seek the curve that fits them 

best. Routinely, the curves explored are given by polynomial functions y of x: 

linear, quadratic, cubic, quartic, …, 

where the functions become less simple as we proceed up the list, in the sense that their 

definitions require more independent parameters. 

 The familiar difficulty is that we can always secure a better fit to the data by employing 

functions further up this list. At some point, inevitably, our curve fit is merely accommodating 

noise in the data. We are overfitting. The familiar solution is that we forgo some accuracy of fit 

by choosing a function earlier in the list, usually guided by some explicit statistical criterion. 

This decision is conceived as balancing accuracy against simplicity. 

 This description of a familiar inductive practice makes no explicit reference to any 

particular case. It appears to implement some sort of universal inductive rule that is grounded in 

simplicity. This appearance is an illusion however. For without a context, the above prescription 
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gives incoherent results. We can represent these same data by transformed variables such that the 

results of the analysis of the transformed problem contradict those of the original problem. For 

example,15 we can replace x in the data set by another variable z = sin-1(x) and then proceed as 

before. If we found in the first problem that the simple linear function, y = x is the curve of best 

fit, that same function in the second problem is y = sin(z). It is not to be found anywhere among 

the finite order polynomial functions y of z since it corresponds to an infinite order polynomial 

y = sin(z) = z – (1/3!)z3 + (1/5!)z5– (1/7!)z7 + … 

The standard procedures will never find this infinite order polynomial for inevitably a procedure 

will halt at some finite polynomial. 

 The material theory of induction offers a straightforward escape. The decision over which 

is the right variable—x or z—is determined by the particular facts of the case at hand. Indeed the 

entirety of the analysis is governed by these facts; and they do it without resorting to an 

independent principle of parsimony. These facts control even the most basic supposition of 

whether it makes sense to seek a curve of best fit at all. Take the example of the variables T and t 

mentioned above. Suppose that T is the air temperature taken at times t that happen to coincide 

with midday over the period of a week or two in the spring. This T may increase linearly with t. 

A curve of best fit would interpolate linearly between the successive temperature measurements 

and give us quite incorrect results for times t corresponding to the intervening midnights.  

 Along with the choice of variables, these facts must also specify the list of functions to be 

used in the curve fitting procedure. The family chosen must be such that we should expect the 

true curve to lie earlier in the list. These curve-fitting procedures also depend upon a statistical 

model of the errors confounding the data. A common model assumes independent, normally 

distributed errors. Any such model is applicable only in so far as it reflects the conditions 

factually prevailing in the case at hand. 

 Comet hunting, at least as practiced in the nineteenth century, gives a simple example of 

how the background facts provide the list of functions to be used in curve fitting.16 Newtonian 

mechanics tells us that the trajectory of a comet is a conic section: an ellipse, an hyperbola or the 

 
15 A quantitative illustration of this example is given in Norton (2021. Ch.6). 
16 This example and the example of tidal prediction are developed in greater detail in Norton 

(2021, Ch.6). 
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intermediate parabola. Since the background facts tell us that comets tend to have highly 

eccentric trajectories, it is hard to distinguish whether they are ellipses or hyperbolas. So the first 

curve fitted is the intermediate parabola. Then, if the fit is poor, the next curve fitted is an ellipse. 

It chosen since an ellipse is the trajectory of comets gravitationally bound to our sun. Such 

comets return regularly and are more likely to be encountered by us. Should the ellipse not fit 

then finally the comet hunter reverts to an hyperbola, which is the trajectory of a comet that will 

visit us just once. 

 While polynomials are familiar in curve fitting, they are inappropriate for systems with 

periodic behaviors, such as tides at various coastal locations. Since these tides are periodic, one 

might expect that the appropriate functions of time t are just sin(t) and cos(t) and their 

harmonics, sin(2t), sin(3t), …, cos(2t), cos(3t), … For we know from the theory of Fourier 

analysis that linear combinations of these harmonics will return even the most complicated of the 

possible periodic tidal motions. This expectation underestimates how strongly background facts 

control the choice of functions fitted to tidal data in the actual practice of tide prediction. The 

functions routinely fitted to tidal data consist of a sum of harmonics, each with an identifiable 

physical basis in the background facts. The most important harmonic constituent is the “principal 

lunar semidiurnal M2” that arises from the tidal bulge raised by the moon. The next most 

important is the “principal solar semidiurnal S2” that arises from the lesser tidal bulge raised by 

the sun. These two harmonic constituents are just the first of very many. In the nineteenth 

century, Thomson, who initiated this form of analysis, employed 23 constituents, each with a 

physical basis. For tidal predictions in US coastal regions, the United States National Oceanic 

and Atmospheric Administration (NOAA) expanded this set to a standard set of 37 constituents. 

Difficult locations may require over 100 constituents. 

6.4 Ptolemy and Copernicus, Understood Materially. 

 The Copernican heliocentric system is favored inductively over the Ptolemaic geocentric 

system. That favoring is not secured, however, by a factual simplicity of the world. Whatever 

may be the simple merits of the geometry of Copernican astronomy, those simple merits must be 

balanced against something that is far from simple. It requires a sixteenth century natural 

philosopher to accept that, contrary to all appearances, the earth spins on its axis and careens 

through space around the sun. Making sense of that is—dare I say—no simple matter. 
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 Providing a proper foundation for the invisibility of this compound motion required the 

creation of a new science of dynamics in over a century of work by Galileo, Newton and others. 

Until this dynamical problem was solved, Tycho Brahe’s astronomical system was momentarily 

a credible compromise. In it, the planets orbit the sun; and the sun orbits the earth, carrying the 

planets with it. This compromise keeps all the geometric advantages of the Copernican system 

while avoiding its dynamical drawbacks. While in some informal sense, Brahe is trading 

simplicity and complexity, there is no formal scheme balancing them and there is no appeal to a 

fact of simplicity of the world whose import was unambiguous. Other natural philosophers such 

as Galileo found a different balance. Brahe was merely seeking an account that fitted best with 

his background facts: the appearance of the motions and the appearance of a resting earth. 

 Nonetheless the Copernicans were indicating correctly an evidential superiority of the 

Copernican heliocentric system over the Ptolemaic geocentric system as far as purely 

astronomical considerations were concerned. If we view the comparison materially, we find that 

the individual elements of the Copernican system were better supported evidentially than those 

of the Ptolemaic system. The background assumption that warrants inferences in the Ptolemaic 

system is that, qualitatively, the retrograde motion of the planets is explained in each case by an 

epicycle-deferent construction. The corresponding inferences in the Copernican system are 

warranted by the assumption that the planets maintain roughly circular obits, but that the 

retrograde motion of the planets arises from an imposition of the motion of the earth upon them. 

 In the Copernican system, the appearances of planetary motions then fix many of the 

details. Corresponding details must be set by independent stipulation in the Ptolemaic system. 

The relative sizes of the planetary orbits are fixed in the Copernican system; but these sizes must 

be set by independent stipulation in the Ptolemaic system.17 In the Copernican system there are 

only two possibilities for planets: either their mean positions align with the sun and their 

retrograde motions carries them to and fro across the sun; or they exhibit retrograde motion only 

when in opposition to the sun. This conforms with the appearances. The Ptolemic system can 

make no corresponding assurance. This conformity must be built in by independent supposition 

 
17 For an extended account, see the Chapter, “The Use of Hypotheses in Determining Distances 

in Our Planetary System.” 



 44 

for each planet. These and more differences give the Copernican system a strong evidential 

advantage.  

 These last remarks are merely a sketch of a lengthy and complicated collection of 

inferences that demonstrate the evidential superiority of Copernican system. Laying it out in 

detail is challenging, especially if one is engaged in polemics. There the rhetoric calls for a 

compelling synopsis. How better to convey the Copernican advantage than by pointing to its 

simplicity and harmony in comparison with the Ptolemaic system? Yet it is simpler only in 

requiring fewer independent posits and more harmonious in that the determination of some 

features necessitates others. There is no manifestation of a deeper principle of parsimony in 

nature. 

7. Bayes 

7.1 The Problem 

 The forms of inductive inference examined so far have been qualitative. If the 

Copernican system is better supported by the astronomical evidence than the Ptolemaic because 

it requires fewer independent assumptions, just how much better is that support? Merely reciting 

“much better” may be all we can say. To many that will fall short of what is wanted. Can we not 

measure support quantitatively? And if we can, might questions of strength of support be 

reduced to objective computations? 

 This is the promise of Bayesian analysis. The founding tenet of objective Bayesianism is 

that degrees of inductive support are measured by conditional probabilities. A typical analysis 

begins with some prior probability distribution, which represents the support accrued by some 

hypothesis prior to inclusion of the evidence at issue. The import of the evidence on the 

inductive support of the hypothesis is found by conditionalizing on the evidence, usually through 

Bayes’ theorem, to form the posterior probability. There is, I hope, no need to elaborate since, of 

all schemes in the modern literature, this one is now best known. 

 The difficulty with the Bayesian system is that it is too precise and irremediably so. There 

will be cases in which degrees of support can be represented responsibly by probabilities. They 

arise in narrowly prescribed problems. For example, since we can recover population frequencies 

for various genes, we can ask what is the probability that this sample of DNA was drawn from 

some donor randomly selected from the population. However evidential questions of a more 
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foundational character are rarely given to us in a context rich in probabilities. Then insisting on a 

Bayesian analysis can be satisfying in the sense that we replace vague notions of strength of 

support by precise, numerical probabilities. However, the impression of progress is an illusion. 

The prized numerical precision has been introduced by our own assumptions that do not reflect a 

corresponding precision in the system investigated. We risk mistaking our manufactured 

precision for that of the world. 

 The standard view of a Bayesian account is that probabilities are supplied by default and 

in abundance. The material approach reverses this. According to it, we are not authorized to any 

probabilities by default. Probabilities can only be introduced when the background facts warrant 

it; and a thorough analysis displays the pertinent warrants. Adopting that new default protects us 

from the spurious precision that troubles so much of Bayesian analysis. For we can only 

introduce precise probabilities if the precision of the facts of the context allows it. To do 

otherwise is to risk asserting results that are merely artefacts of applying an inductive logic ill-

suited to the problem at hand.18 

7.2 Sunrises and Laplace’s Rule of Succession 

 The problem of spurious precision has been with Bayesian analysis from the outset. It can 

already be seen in one of the earliest Bayesian analyses. Laplace asked after the probability that 

the sun will rise tomorrow morning, given the past history of sunrises. This was already an 

established question. Before him, Hume had urged that our past history of sunrises gave no 

assurance of future risings. Richard Price, author of an appendix to Bayes’ posthumously 

published paper, used Bayes’ inverse method to compute the odds of a future sunrise.19 Laplace 

would now give his application of the probability calculus to the problem. His 1814 analysis 

(1902, p. 19) is a celebrated application of his “rule of succession.” To put some formulae on 

Laplace’s non-symbolic narrative, the analysis depended on several assumptions. We assign a 

probability q to the rising of the sun. 

 
18 The Material Theory of Induction, Ch. 10, §4 gives examples of such spurious results in the 

form of the inductive disjunctive fallacy (“Why is there something rather than nothing?”) and the 

lamentable doomsday argument. 
19 For more on Hume and Price, see the chapter, “The Problem of Induction,” below. See Zabell 

(1989) for more of the history of the rule of succession. 
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P(rising) = q                                                                   (1) 

 Antecedent to all evidence of any risings, we allow that q can have any value from 0 to 1. We 

represent that latitude by assigning a uniform probability density p to the interval. That is,20 

p(q) = 1     for 0 £ q £ 1                                                          (2) 

Next Laplace assumed that the individual occurrences or otherwise of a sunrise are 

probabilistically independent events. These assumptions were sufficient to enable Laplace to 

compute the probability of a sunrise on the (n+1)th occasion, given a history of s risings on n 

past occasions:21 

P((n+1)th rising | s risings on n past occasions) = (s + 1)/(n + 2)                 (3) 

If the sun rose on all past n occasions, then the rule of succession gives us 

P((n+1)th rising | n risings on n past occasions) = (n + 1)/(n + 2)                 (4) 

The more risings we see, the better supported evidentially is the next rising. Its probability 

approaches one arbitrarily closely with enough risings. Laplace immediately translated this 

probability into a wager: 

Placing the most ancient epoch of history at five thousand years ago, or at 182623 

days, and the sun having risen constantly in the interval at each revolution of twenty-

four hours, it is a bet of 1826214 to one that it will rise again to-morrow.22 

7.3 What is Wrong With It? 

 This precise quantitative result and its operationalization in a bet is momentarily 

satisfying and perhaps even thrilling, if numerical precision is the goal. Yet a moment’s more 

reflection reveals that the precision attained is fabricated and fanciful. There are two problems, to 

be addressed in the next two sections: 

 
20 Lest it pass unnoticed, the probability P and probability density p are distinct and should not 

be conflated. 
21 See the Appendix for a summary of the computation. 
22 The computation of the number of days in 5000 years as 182623 is an obvious error, too low 

by a factor of 10. Five thousand years corresponds to 5,000 x 365 = 1,825,000 days or 5,000 x 

365.2422 = 1,826,211 days depending on how one counts days in the year. The odds reported by 

Laplace of 1,826,214 to one indicate that Laplace’s real estimate of the number of days in 5,000 

years is 1,826,213. The erroneous 182,623 results from dropping the tens digit 1. 
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• First, the impression of recovery of a result of some generality is illusory. 

• Second, a probabilistic analysis is the wrong analysis for the problem as actually posed by 

Laplace. 

Laplace’s analysis has been chosen for scrutiny here since its simplicity enables us to see both 

problems quickly. We might imagine that the development of the Bayesian approach after 

Laplace has addressed and resolved these problems. To some extent, this has happened. Where 

these problems persist most notably, however, is in Bayesian analyses in philosophy of science. 

There these methods are routinely applied to problems with vague specifications. The goal is to 

supplant their vagueness with mathematical precision. This laudable goal, however, can only be 

achieved by imposing assumptions whose precision is unwarranted by the problems posed. As 

with Laplace’s sunrises, the precision of the ensuing analysis is an illusion of our own 

manufacture. 

7.4 Failure of Generality 

 Laplace’s “rule of succession” is presented with a suggestion of some sort of general 

applicability. Perhaps it is a general demonstration that probabilistic analysis defeats Hume’s 

skeptical challenge to inductive inference. While the application to sunrises specifically is far-

fetched, perhaps it shows that probabilistic analysis can solve the sort of inductive problems 

Hume identified as insoluble. Or perhaps more modestly it is, at least in simple cases, a 

convenient starting point for how we are to think of projecting a record of successes and failures 

inductively into the future. 

 From the perspective of the material theory of induction, it does none of these. It is a 

theorem in probability theory, untroubling merely as a piece of mathematics. However, as an 

instance of inductive inference, it is untethered from real problems in the world. Any inductive 

rule, such as the rule of succession, can only be applied to some particular problem if the 

background facts of the domain warrant it. Without that tethering, it is just a piece of 

mathematics. 
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 To which inductive problems can the rule be tethered? That is, which problems are such 

that their background facts warrant the rule. We find that there are very few and they are 

artificial.23 

 It is no surprise that the rule of succession fails for the real problem of sunrise prediction. 

The pertinent background facts are rich. Sunrises come about from the rotation of the earth on its 

axis; and this rotation is one that can only be disrupted by the most cataclysmic of cosmic events. 

Absent such a cataclysm, successive risings are perfectly correlated; and after such a cataclysm, 

successive failures to rise are perfectly correlated. Laplace’s assumption of the probabilistic 

independence of each sunrise fails. If we are serious about predicting such a cataclysm from, say, 

an errant galactic body, then our analysis must ask about the distribution of such bodies in our 

neighborhood. What results has to be rich enough to provide a factual basis for any probabilities 

that might be assigned in predictions of cataclysmic collisions with earth. 

 Laplace had no illusions that his analysis was close to one that accommodated what we 

know factually of sunrises. He continued the report on the bet quoted above by saying: 

But this number is incomparably greater for him who, recognizing in the totality of 

phenomena the principal regulator of days and seasons, sees that nothing at the 

present moment can arrest the course of it. 

This does not appear to be a retraction of his analysis, but may merely be a statement that it gives 

an excessively modest lower bound to the probability appropriate to our real epistemic situation. 

 If not sunrises, then might Laplace’s analysis apply to the expectation of live human 

awakening? Then biological facts as summarized in mortality tables provide the background 

facts needed to assess the probability of a human awakening tomorrow, given some past history 

of awakenings. A 20 year old male has a 20 year history of successful awakenings. Mortality 

tables24 tell us that a male has a probability of 0.998827 of surviving the next year. Taking the 

approximation that the probability of a successful awakening each morning in the year is the 

 
23 We might compare this rule with the ideal gas law in the thermodynamics of gases. It is 

derived from highly idealized assumptions. Unlike the rule of succession, the ideal gas law 

applies to a wide range of ordinary gases in ordinary circumstances. 
24 Provided by the US Social Security Administration at 

https://www.ssa.gov/oact/STATS/table4c6.html 
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same, the probability of success on the next morning is 0.9988271/365 = 0.999996784. The same 

computation for a 100 year old female gives us a smaller probability of awakening the next 

morning as 0.698451/365 = 0.99901722. These results differ from what an application of the rule 

of succession supplies. The rule gives an increase in the probability of awakening with age, not 

the decrease recovered from mortality tables. 

 These examples may be multiplied. Laplace’s analysis is almost never warranted by 

background facts. Where does it apply? Laplace’s own text shows us a way. The problem of 

sunrises comes at the end of Laplace’s Chapter 3. Virtually all the other examples in that chapter 

are of familiar games of chance and associated randomizers: the tossing of coins, the throwing of 

dice and the drawing of black or white balls randomly from an urn. Consider this problem: 

An urn contains a very large number of coins, which are biased in all possible ways. 

The biases are uniformly distributed over all possible values: coins with a chance of 

heads q appear in the urn with the same frequency for all q in the entire range from 

0 to 1. We select a coin at random from the urn.25 We toss it 1,826,213 times and 

find heads on every toss. What is the probability that the next toss is a heads? 

It requires only a little reflection to see that all the conditions for Laplace’s rule of succession are 

satisfied. The background facts warrant the application of Laplace’s rule of succession. It assures 

us that the odds of a head on the next toss are 1,826,214 to one. 

 Laplace’s analysis illustrates a common problem with Bayesian analysis. It has a small 

repertoire of tractable templates. They include sampling problems, such as drawings from urns; 

and problems in games of chance, which are based on physical randomizers, like thrown dice, 

shuffled cards and tossed coins. The supposition is these templates can be applied to problems 

that bear only superficial resemblance to the original problems of sampling or games of chance. 

This supposition mostly fails. Inductive problems in the real world—especially the more 

interesting ones—are rarely structurally like simple problems of sampling or games of chance. 

 
25 I follow Laplace in overlooking the practical and principled difficulties of selecting randomly 

from an urn with an infinity (here uncountable) of balls or coins. A safer system spins a pointer 

on a dial to select a number randomly between 0 and 1. We then construct a coin with that 

number as its bias. 
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7.5 Probabilities are Inapplicable 

 Laplace’s mention of his analysis as applying to sunrises can and, indeed, should be taken 

only as a colorful embellishment intended to make an arid technical problem appear less dry. For 

the problems is posed by assumption in a factually barren landscape. The problem’s formulation 

fails to provide the background facts that are required to warrant an inductive inference. To 

describe the problem as inferring from the evidence of 182623 sunrises is misleading, if taken 

seriously. Calling them “sunrises” triggers the sorts of background knowledge mentioned above 

that we are supposed to discount. Successive sunrises are very strongly correlated, yet Laplace’s 

analysis makes them probabilistically independent. A better description might be the vaguer 

evidence statement: 

We have 1,826,213 successes. Will the next occasion be a success? 

The only answer we can give is that we cannot say. The evidence is given in a vacuity of 

background facts. It supports no inductive inference. We need background facts on the nature of 

the occurrences to warrant an inductive inference. When they are supplied, we can determine just 

which inductive inferences are warranted. Which they are will vary from circumstance to 

circumstance. Laplace’s analysis will almost never apply. 

 If we persist in applying a Bayesian analysis and recover results of any strength, where 

none are warranted, all we can conclude is that these results are artefacts of a misapplied 

inductive logic. Once we are alerted to the danger, it is easy to see how Bayesian analysis 

introduces factual presumptions under the guise of benign analytic machinery. The idea that the 

unspecified occurrence can be represented by a probability distribution at all is an example. It 

commits us to factual restrictions that go beyond the factual barrenness presumed. To assign a 

middling value to the probability, P(rising) = q = 0.5, is not to be neutral. It is to say that, loosely 

speaking, in situations similar to that of the analysis, we should expect an occurrence in roughly 

half of them. 

 Then there is the attempt to represent the complete openness over which value of q 

applies. Laplace does his best here by assuming a uniform probability distribution (2) over q. 

This uniform distribution once again goes beyond the factual barrenness presumed. For that 

distribution makes many strong claims. It says that a value of q in the interval (0, 0.1) is as 

probable as a value of q in the interval (0.5, 0.6) but only half as probable as a value of q in the 

interval (0.5, 0.7). The interval (0, 0.99) is highly probable and its complement (0.99, 1.0) highly 
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improbable. These are strong statements. The absence of background facts means that none of 

them are authorized. 

 The difficulty of representing evidential neutrality in a probabilistic analysis is well-

known. Various techniques known as “imprecise probability” can be used to ameliorate the 

failure of a uniform probability density to represent adequately a complete indifference over the 

values of the parameter q.26 In one approach, we replace the single prior probability density (2) 

over q by the set of all27 probability densities over the interval [0, 1]. When we apply the rule of 

succession, instead of recovering a single probability for the next occurrence, we recover a set of 

probabilities. In general, there is one for each of the probability densities in the set. That we 

admit all probability densities gives the appearance of the requisite independence from 

background facts. That appearance is illusory since we are still assuming that the probability 

calculus applies at all, even in weakened form. The introduction of this imprecision is fatal, 

however, to the recovery of a non-trivial result. For, as we see in the Appendix, the set of all 

prior densities includes ones that lead to all possible probabilities from zero to one for the next 

sunrise. We start assuming that this probability can lie anywhere between 0 and 1 and must end 

without any restriction on this range. We will have learned nothing from the evidence, no matter 

how extensive our history of sunrises may be. 

7.6 Bayesian Analysis within the Material Theory of Induction 

 What are the prospects for Bayesian analysis from the perspective of the material theory 

of induction? Bayesian analyses can be applied profitably to many, specific inductive problems. 

Given what we know about errant galactic bodies, what should our expectations be for a 

 
26 Might we escape these problems by adopting subjective Bayesianism? Then the prior 

probability distribution is merely uninformed opinion and may be freely chosen, as long as it 

preserves compatibility with the probability calculus. This popular approach has had a malign 

effect if one’s interest is inductive support and bearing of evidence. For once one allows opinion 

free admission into one’s system, it becomes very difficult to remove its taint from one’s 

judgments of inductive support. The limit theorems that are supposed to purge the subjectivity 

apply in limited, contrived circumstances that do not match the real practice of science. 
27 The scope of “all” is vague, but that vagueness is immaterial to the points made here. As a first 

pass, it designates all integrable functions with unit norm. 
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cataclysmic collision with the earth that will disrupt our sunrises? Given patients with such and 

such prognosis, what is their life expectancy? These and many more problems like it are all 

welcomed by the material theory of induction. For in each case there are identifiable background 

facts that warrant the application of a probabilistic analysis. 

 Where Bayesian analysis fails is that it cannot provide an all-embracing framework with 

formal rules applicable to all problems of inductive inference. It will work well on specific 

problems, where the background facts warrant it. But any claim of general applicability, such as 

is sought in the philosophy of science literature, requires that the framework must be applicable 

to inductive problems whose background facts fail to authorize a probabilistic analysis. In these 

cases, persisting in applying a probabilistic analysis risks producing spurious results that are 

artefacts of an inapplicable inductive logic. 

8. Conclusion 

 In reviewing the material theory of induction, this chapter has been restricted to particular 

instances of inductive inference. In each case, the warrant for the inferences is found in 

background facts. For the inference to be licit, these background facts must be truths. Since these 

facts make claims that commonly extend well beyond direct experience, we must ask what 

supports the truth of these background facts. The material theory of induction is uncompromising 

in its answer. The only way these facts can be supported is by further inductive inferences; and 

those further inductive inferences will in turn require a warrant in still further inductive 

inferences. How do all these inferences fit together? That is the subject of this volume and is 

taken up in the next chapter.  

Appendix: Laplace’s Rule of Succession 

 Consider n+1 probabilistically independent trials, each with a probability of success q, 

where q is itself uniformly distributed over the interval [0,1] according to (2). If there are s 

successes only among the first n trials, then the probability of success on the (n+1)th trial is 

given by 

P = P(success on (n+1)th trial | s successes in first n trials) 

=  P(success on (n+1)th trial AND s successes in first n trials) / P(s successes in first n 

trials) 
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Since the number of successes s is binomially distributed, we have: 

 

The integrals may be evaluated using the integral identity 

                                               (A1) 

for whole numbers A and B. We recover 

                                                (2) 

It is the rule of succession (2) of the text. 

 To show that alternatives to the prior probability distribution (1) can lead to P = r for any 

r between 0 and 1, consider the family of prior probability distributions:28 

  where 0 £ q £ 1 

for A and B whole numbers. Repeating the above calculation for P, we find 

 

Rewriting P as 

 

it follows that P à r in the limit of A, B à ∞ such that A/(A+B) à r. That is, we can bring P 

arbitrarily close to any nominated  0 £ r £ 1, merely by selecting A and B large enough in this 

limiting process. The prior probability p(q) masses all the probability arbitrarily closely to 

A/(A+B) in the process of taking the limit. The limit itself is no longer a function, but a 

distribution, the Dirac delta “function.” That is 

 
28 Identity (A1) assures normalization to unity. 
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Selection of this distribution as a prior would force P to the value of r exactly, since all intervals 

of values not containing r would be assigned a zero prior probability. 
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Large-Scale Structure: Four Claims 

1. Introduction 

 The previous chapter recounted how the material theory of induction treats relations of 

inductive support individually. That is, to what extent does this specific item of evidence support 

that proposition? If we think of inductive inference formally, this purely local examination might 

be sufficient. For all we need for a valid inference, according to a formal theory, is that the 

evidence and the supported proposition fit appropriately into the empty slots of some licit 

schema. This local appraisal is incomplete, however, when inductive inference is understood 

materially. For in this approach, there is no fixed repertoire of warranted schemas that is 

applicable in all domains. In their place, (true) background facts in each domain warrant the 

inductive inferences supported in that domain. It follows that the affirmation that some inductive 

inference is licit requires a further affirmation of the truth of the background fact or facts that 

warrant the inference. These last facts are themselves contingent and, in the fullest account, must 

also be secured inductively with appropriate evidence. 

 Thus, when understood materially, the cogency of inductive inferences and relations of 

inductive support cannot be appraised fully in isolation. They must be appraised within the 

context of a larger ecology of relations of inductive support. This book investigates how that 

larger ecology is configured. This chapter lays the foundation of the material analysis of this 

large-scale structure. It consists of the following four claims. They will be introduced and 

defended in this chapter: 

 

1. Relations of inductive support have a non-hierarchical structure. 

2. Hypotheses, initially without known support, are used to erect non-hierarchical structures. 

3. Locally deductive relations of support can be combined to produce an inductive totality. 

4. There are self-supporting inductive structures. 
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The defense of these four claims will employ extended examples drawn from the history of 

science. Providing a sufficiently detailed account of these examples within the confines of this 

chapter is impractical. My approach is to give these accounts in later chapters in Part II, with one 

chapter devoted to each of the case studies. Their results will be recalled in this chapter briefly 

only in so far as they are needed.  

 In this chapter, Section 2 argues for the first and most important of the foundational 

claims listed above, the non-hierarchical structure of relations of inductive support. It addresses a 

supposition that relations of inductive support in science or in individual sciences are 

unidirectional, always proceeding from the less to the more general. Under this supposition, 

these relations of support are akin the relations of support among the successive courses of 

stones in a tower. Each course is supported only by those beneath it. In its place is a conception 

of greatly tangled relations of support that cross over one another, failing to respect any orderly 

hierarchy. They are akin to the relations of support in an arch or vaulted ceiling. Each stone is 

supported by those beneath it and many others, above it and elsewhere distributed over the whole 

structure. That relations of inductive support form such a massively entangled system is the most 

prominent feature of the large-scale structure of relations of inductive support according to the 

material theory. Many further features will depend upon it. 

 Section 3 asks how these entangled structures can be discovered. A central result of the 

material theory is that we need first to know something before we can infer inductively. For 

otherwise we have no secure warranting facts for inductive inferences. If we initially know 

nothing in some domain, how can we ever learn inductively generalities of infinite scope in the 

domain? An examination of episodes of scientific discovery gives the answer of the second 

claim: we proceed by hypothesis. That is, we introduce as hypotheses the facts that would be 

needed to warrant suitable inductive inferences; and then we make the inferences. In proceeding 

this way, however, we take on the obligation eventually to return to the hypotheses and provide 

independent support for them. Only then are our inductive inferences properly secured. The 

arches or vaulted ceilings of the analogy cannot be constructed simply by piling one stone upon 

another.  To build them, we prop up some stones provisionally by scaffolding and complete the 

construction. Only then can the scaffolding be removed. The result is a structure, each of whose 

stones, examined individually, are properly supported by masonry. This use of hypotheses is 

distinct from their use in hypothetico-deductive confirmation. There, they are introduced in order 
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to be confirmed themselves. Here they are introduced to mediate in the confirmation of other 

propositions. 

 Section 4 analyzes the intriguing possibility asserted in the third claim that is found 

repeatedly realized in cases of inductive support in science. In many, the component relations 

among propositions are individually deductive, even though their combined import is inductive. 

The section will recall some examples that show how combinations of deductive relations among 

propositions can, overall, have inductive import. 

 As a prelude to discussion of the fourth claim, Section 5 characterizes a mature science as 

inductively rigid. That means that each proposition of the mature science enjoys strong inductive 

support from the evidence and that the evidence admits no alternatives. Such a system is 

intolerant of challenges and generally repels them.  If they are successful, they have a 

destructive, revolutionary effect. A cascade of strong relations of evidential support propagating 

through the science will have to be undone. 

  Section 6 develops the fourth claim of the possibility of a self-supporting inductive 

structure. It is a closed structure, in which each proposition is well-supported inductively by 

evidence in the structure through warranting propositions also in the structure. A mature science 

forms such a structure, if we expand its compass to include all the propositions warranting its 

inductive inferences; and the evidence and warrants for them; and so on to closure. To see the 

self-supporting inductive structure, pick any proposition in the science. All the evidence and 

warranting propositions needed for its inductive support will be in the structure. That is just the 

condition that it is inductively self-supporting. 

 Section 7 considers the possibility of non-empirical conditions that might be a necessary 

supplement for a complete account of the large-scale structure of inductive inference. One might 

look to a priori principles like a principle of causality or to the remarkable success of 

mathematics in formulating physical theories. Such added components, it is argued, fail in so far 

as they have no empirical foundation; and if they do have an empirical foundation, then they lie 

within the material theory. 

 Section 8 provides a brief preview of what is to come. 
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2. Non-Hierarchical Relations of Inductive Support 

Relations of inductive support have a non-hierarchical structure. 

2.1 The  Hierarchical Conception: The Tower 

 The original and simplest notion of inductive inference is the notion of generalization 

from instances. It is codified in the schema of enumerative induction and employed in 

embellished form by time-honored procedures such as Bacon’s tables and Mill’s methods. It 

promotes an oversimplified image of science as an accumulation of generalizations of 

successively broader scope. 

 Here is how it looks. In biology, we might start with the particular observations of the 

flora and fauna of Europe and form generalizations over them. We then expand our inductive 

base with particular observations of the flora and fauna of the Middle East, Africa and Asia. 

Generalizations concerning them are combined with the earlier generalizations concerning 

European flora and fauna. We then expand our inductive base even further by introducing 

knowledge of biological species in the Americas and then the Antipodes. New generalizations 

concerning them are combined with those achieved earlier to yield generalization of still greater 

scope.  

 We can find similar structures in other sciences. In physical astronomy, we note with 

Newton that all bodies on earth gravitate; and that all celestial bodies gravitate. We combine the 

two generalizations to arrive at the greater generalization that all matter gravitates. We note that 

our moon and the moons visible to us are near spherical, so we infer that all moons are near 

spherical. We infer the same for planets and then eventually for suns and stars. 

 The result is a stratification of the propositions of a science according to their generality. 

At the bottom are the least general, the particular facts, commonly conceived as facts of 

experience or possible experience. As we ascend the hierarchy, we pass to generalizations from 

them; and then generalizations from them; and so on. The generalizations of the higher layers are 

supported inductively by those of the lower layers. We descend in the hierarchy by making 

deductive inferences. They take us from generalizations, higher in the hierarchy, to those lower.  

 This hierarchy is analogous to the structural support relations among stones in a tower, 

shown in Figure 1. The first course of stones sits on firm ground. It supports the next course of 

stones, which supports the one above it; and so on to the top of the tower. The firm ground is 
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analogous to experience. It supports the simplest propositions of experience, which are 

commonly conceived as propositions about particulars. Each course of stones structurally 

supports those above it, just as generalizations lower in the hierarchy inductively support those 

higher up. 

 
Figure 1. A Tower 

 

 While a hierarchical structure of this sort sometimes appears in science, overall it is a 

poor representation of the organization of propositions in science and the inductive relations 

among them. It fails for at least two reasons. First (to be developed in Section 2.2), contrary to 

the tacit supposition, relations of inductive support do not respect the hierarchy of generality. 

Second (to be developed in Section 2.3), the propositions of science are sufficiently varied in 

content that their strict partitioning and ordering by generality is unsustainable.  

2.2 Relations of Inductive Support do not Respect the Hierarchy 

 The hierarchical presumption is that relations of inductive support are unidirectional: they 

proceed from the less to the more general. A closer examination of the relations of inductive 

support within a science shows that this unidirectionality is not respected. Relations of support 

typically cross over one another. Speaking now only loosely of comparisons of greater and lesser 

generality, propositions that at one level of generality can be supported by a combination of 
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propositions of lesser, equal or greater generality. The relations are commonly so tangled that no 

simple ordering of their direction by generality amongst the propositions of a science is possible. 

 We shall see more examples below of this lack of respect in this chapter. It is worth 

pausing here to visit an especially striking example. It is provided in the Chapter 7, “The 

Recession of the Nebulae.” In 1929, Edwin Hubble announced the result that would become the 

observational foundation of modern cosmological models. Nebulae29 recede from us with 

velocities linearly proportional to their distances. Superficially, his analysis looks like the 

simplest of generalizations. He reported as data the velocities of recession of individual nebulae, 

as inferred from red shifts in their light, and the distances to these nebulae. This is the level of 

lesser generality in the hierarchy. He then formed a generalization over all nebulae: their 

velocities of recession vary linearly with their distances. This generalization resides in a higher 

level of greater generality in the hierarchy. 

 Hubble’s generalization, it would seem, proceeded as we may naively expect, 

unidirectionally up the hierarchy. As the later chapter shows, Hubble’s actual inferences were far 

more complicated and were quite unconstrained by this hierarchy. Most troublesome of several 

problems was that Hubble lacked almost half the requisite independent distance measurements. 

His data set reported velocities for 46 nebulae, but included independently derived distance 

estimates for only 24 of them. Hubble was, however, determined to include all 46 nebulae in his 

analysis and employed inductive stratagems of some ingenuity and complexity to proceed. In one 

prominent case, he assumed the generality of a linear relationship between the velocities and 

distances and used it to infer the unknown distances. This inference mixed elements from the less 

general and more general levels to infer propositions in the less general level. He could then test 

that the inference was successful by using the inferred distances to recover the absolute 

magnitudes of the nebulae concerned. He checked that these inferred absolute magnitudes 

conformed with other nebulae of independently known absolute magnitudes. 

2.3 The Hierarchy of Generalizations is Unsustainable. 

 The second false presumption in the hierarchical conception is that it is possible 

everywhere to partition and order the propositions of a science by generality. While something 

like this may be possible in simpler contexts, the presumed partitioning and ordering becomes 

 
29 Hubble’s “extragalactic nebulae” or just “nebulae” are, of course, now called “galaxies.” 
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impossible to maintain as the propositions of science become more abstract and remote from the 

specific propositions of observation and experiment. No simple sequence of successive 

generalizations takes us from the chemical reactions observed in a laboratory to the bonding 

theory of the complex molecules of organic chemistry; or from the observed emission spectra of 

gases to the quantum mechanics of the electrons of atoms; or from the motions of the planets to 

the curved spacetime geometry of general relativity. The inductive pathways from simpler 

observations and experimental results to the completed theories are sufficiently convoluted that 

there is no evident basis for comparisons of generality among the intermediate propositions. 

 For example, ordinary Newtonian mechanics in its various parts treats the distribution of 

stresses in bodies, the motion of terrestrial projectiles, the flow of fluids, the motions of planets 

and much more. How do we rank their many propositions according to their generality? Is the 

theory of the distribution of the many stress forces in a complicated architectural structure more 

general than the analysis of the few gravitational forces acting in a simple problem in orbital 

mechanics? Or is the latter more general since it treats not just forces but the motions they 

produce? In chemistry, the energy states of a single hydrogen atom are treated by quantum 

mechanics. Prior to its quantum treatment, the chemistry of hydrogen is treated by a simple 

phenomenological theory that tells us that gaseous hydrogen consists of molecules in which two 

hydrogen atoms bond. Is the phenomenological theory of the hydrogen molecule more general 

because it treats bonded hydrogen, whereas the quantum theory of individual atoms does not? Or 

is the quantum treatment of the hydrogen atom more general since it is part of the more advanced 

quantum treatment of chemical bonding in which the energy levels of the hydrogen atom play a 

central role? These questions, and many more like them across the sciences, admit no well-

founded answers. 

2.4 The Arch 

 There is no overall partitioning and ordering of the propositions of science by generality. 

Even when such local orderings appear, relations of inductive support do not respect them. 

Instead, relations of inductive support are distributed over the propositions of science in a 

massively entangled network. The simplest instances of this entangled network arise in a 

crossing over of relations of support whenever we have properties that are highly correlated. 

Then a proposition concerning one property can provide support for others at what we might 

loosely judge to be a comparable level of generality; and those others can provide support in 
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reverse for the original proposition. These relations of support are warranted in turn by the more 

general proposition of the correlation itself. 

 For example, stars may vary in many properties, including their effective temperatures, 

masses, sizes and elemental spectral lines. A class O star in the Harvard spectral classification 

system is a rare star type, characterized by very high effective temperature of the order of 

30,000K or greater. Many other properties of stars are strongly correlated with this temperature. 

A class O star will also have a very large mass and a very large luminosity. 

 Exactly because all these properties are highly correlated and otherwise unusual, finding 

one of them in some new star is strong evidence for each of the others. For example, finding that 

a newly observed star has a very high effective temperature greater than 30,000K is strong 

evidence that the star is very massive. The converse holds: finding that the star is very massive is 

strong evidence that it has a very high effective temperature. This crossing over of evidential 

support can be continued for other pairings of properties of class O stars. 

 There is an architectural analogy to this pair of propositions, each of which provides 

inductive warrant for the other. It replaces the analogy to the tower. It is an arch, shown in Figure 

2. 

 

 
Figure 2. An Arch 
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Each side of the arch rests on the firm ground of experience. However none of the stones higher 

in the arch is merely supported by the stones beneath it. They are also supported by stones still 

higher in the arch and ultimately by the stones of the other side. One side of the arch, if built 

without the other, would simple fall down. The two sides mutually support one another.  

2.5 Arches Illustrated 

 Later chapters describe more examples of this arch-like crossing over of relations of 

inductive support. Chapter 8, “Newton on Universal Gravitation,” describes two cases of pairs of 

propositions that mutually support each other. The first arises in Newton’s “moon test.” There he 

argues for the identity of the force of gravity and the celestial force that holds the moon in its 

orbit around the earth. The observational evidence is the observed accelerations of the moon 

towards the earth and falling bodies at the surface of the earth. Newton computes the acceleration 

the celestial force would yield if it acted at the earth’s surface, while strengthening according to 

an inverse square law. He finds that acceleration to match the observed acceleration of fall 

bodies at the earth’s surface. 

  Consider the proposition that the celestial force on the moon strengthens according to an 

inverse square law with distance. In this first inference, it is used as an inferential warrant in 

arriving at the identity of the celestial and terrestrial forces. This usage can be reversed. The 

proposition of the identity of the celestial and terrestrial forces can also be used as a warrant. 

Then one can infer from the observed motions that the celestial-gravitational force acting on the 

moon strengthens with distance according to an inverse square law. 

 That is, the proposition of the identity of celestial and gravitational force and the 

proposition of the inverse square law mutually support one another. 

 In a second example in Newton’s account, Newton fits elliptical orbits to the observed 

positions of the planets. The inference from these positions to their specific elliptical orbits is 

warranted by the proposition that the planets are acted on by an inverse square law of gravity. 

Excluding perturbations, that law entails that planets move in conic sections: ellipses, hyperbolas 

or parabolas. However a second argument reverses the proposition that warrants the proposition 

supported. The key warranting fact is that the elliptical orbits are re-entrant. Each planetary year, 

a planet follows the same elliptical orbit. This re-entrance, Newton shows, can only arise with an 

inverse square law of gravity. Taken together, we find the specific elliptical orbits of the planets 
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support the inverse square law; and the inverse square law supports the specific elliptical orbits 

of the planets. 

 Radiocarbon dating of artifacts provides another illustration of this crossing over of 

relations of support. It is described in Chapter 10, “Mutually Supporting Evidence in 

Radiocarbon Dating.” In the simplest description, there are two sorts of propositions concerning 

the dating of artifacts. The “H” propositions date them by the traditional methods of historical 

analysis and archaeology. The “R” propositions date them by estimating how long was taken for 

their content of the radioactively unstable isotope of 14C to decay to the measured levels. The R 

propositions depend on an accurate knowledge of the original content of 14C captured in artifacts 

at their formation in different epochs. This knowledge is provided by H propositions: the dating 

of artifacts by traditional methods. Here, H propositions provide evidential support for R 

propositions. However, the reverse can also happen. Are we sure that no error has crept into the 

historical methods used to arrive at a traditionally established dating? Then radiocarbon dating 

can reassure us or correct us. Now R propositions are providing evidential support for H 

propositions. 

 Details of more examples of mutually supporting pairs of hypotheses can be found in 

other chapters. The Chapter 11, “The Determination of Atomic Weights,” we see how 

Avogadro’s hypothesis and the Law of Dulong and Petit supported each other in chemical 

investigations of the early nineteenth century. This same relation of mutual support later arose 

among the chemists’ version of Avogadro’s hypothesis and the physicists’ version of the 

hypothesis within the kinetic theory of gases. In Chapter 9, “Mutually Supporting Evidence in 

Atomic Spectra,” we find the Ritz combination principle providing support for the quantum 

theory. Then, later, the quantum theory provides support for a corrected version of the Ritz 

combination principle. 

2.6 The Vaulted Ceiling 

 The examples above of pairs of mutually supporting propositions are exceptional for their 

simplicity. It is far more common for these relations of mutual support to be embedded within a 

much larger network of inductive relations of support in a science. The Newtonian example is 

not of an isolated structure since the various hypotheses in it figure in relations of support for 
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other propositions in science.30 In general, relations of support cross over one another in many 

different ways and at many different levels. One then finds that even a small part of science can 

be part of a prodigious array of relations of support connecting it with neighboring sciences and 

then beyond them to the farthest reaches of science. 

 The analogy to a single arch does not capture this richness. An analogy to a dome is a 

little better. Stones in each part of the dome depend for their support on stones in many other 

parts. A still better analogy is to a massively complicated vaulted ceiling, as shown in Figure 3. It 

consists of many interconnected domes and arches. The integrity of the entire structure depends 

on the mutual support of all its parts.  

 
Figure 3. A Vaulted Ceiling31 

 

 
30 For example, an inverse square law is presumed in the computations associated with 

Cavendish type experiments that determine the magnitude of the gravitational constant G. The 

law is also used to infer that spherical planets act gravitationally as if their masses were 

concentrated at their centers, to infer that certain comets move on hyperbolas and compute the 

behavior of terrestrial tides. 
31 Image: John D. Norton, Commons Room, Cathedral of Learning, University of Pittsburgh 
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 This interconnectedness of relations of inductive support provides mature science with its 

monolithic structure. One cannot reverse one part without destabilizing the remainder of the 

structure. A vivid example of an effort to reverse one part comes with the persistent creationist 

efforts to remove evolutionary theory from biology. The problem they face is that evolutionary 

theory is inductively entangled with the other sciences. In their challenge to evolutionary theory, 

the creationists find they need to impugn the great age of the earth in favor of a much younger 

earth, whose age is determined from biblical scholarship. Hence, they must impugn modern 

uniformitarian geology. It is based on an old earth whose major geological features were formed 

slowly over eons. They must impugn the radiological methods used to date both organic artifacts 

and rocks, which will ultimately lead to conflicts with radiochemistry. They must also dispute 

standard cosmology since it also calls for an ancient earth. This then forces them to question 

observational and theoretical astronomy and the physics on which it depends. 

 The size of the network of support relations in mature sciences leads to a combinatorial 

explosion in the number of support relations that directly or indirectly bear upon the propositions 

of the component sciences. This effect gives depth to the inductive security of each part. A fully 

worked out example would help us to see this security more clearly. Unfortunately, displaying 

the complexity of such a network in all its detail is an immense task too large for this chapter or 

this book. However, we can get a good sense of the density and richness of these structures by 

visiting just small pieces of it in the examples developed in the chapters that follow. 

2.7 Vaulted Ceilings Illustrated 

 Chapter 11, “The Determination of Atomic Weights,” recounts the immense difficulties 

faced by the chemists in the early nineteenth century in determining relative weights of atoms. 

The problem had arisen in Dalton’s New System of Chemical Philosophy of 1808 and 1810. He 

knew, for example, that 8 grams of oxygen combines with one gram of hydrogen to make water. 

To infer from this that the molecular formula of water is H2O, Dalton would need to know that 

an oxygen atom is 16 times as massive as a hydrogen atom. Dalton had no table of atomic 

weights to consult and no way to determine them, so he just assumed that the ratio was eight to 

one. The result was that, famously, he arrived at the molecular formula for water of HO. Dalton 

was trapped in a circularity: to know the correct molecular formulae, he needed to know the 

relative weights of atoms; but he could only learn the relative weights of atoms from the 

molecular formulae. 
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 One might imagine that this circularity was easily broken. It was not. The task required 

the efforts of chemists over roughly a half century. The chapter recounts Cannizzaro’s celebrated 

solution, which he circulated at the 1860 Karlsruhe conference of chemists. He relied on 

Avogadro’s hypothesis, the law of Dulong and Petit and an extensive set of measurements of the 

physical properties of a wide range of substances to determine their molecular formulae. The 

determinations were quite complicated and I have done my best to present them in Chapter 11. 

For our purposes here, the key fact was that the molecular formulae were not just determined but 

overdetermined. That meant that some subset of them could be used to provide inductive support 

from some other part; and vice versa. 

 For example, once Cannizzaro had determined that hydrogen and oxygen gases are 

diatomic, H2 and O2, his gas density data enabled him to fix the molecular formula for water as 

H2O. Or, he could start with this molecular formula for water and find that oxygen and hydrogen 

are diatomic. This is just a glimpse of a massive tangle of relations of inductive support in 

Cannizzaro’s analysis. For example, that hydrogen gas is diatomic entered into similar 

overdetermined relations of support concerning compounds of the halogens: chlorine, bromine 

and iodine. 

 Chapter 9, “Mutually Supporting Evidence in Atomic Spectra,” provides another 

illustration of this sort of tangle of relations of inductive support. Energetically excited hydrogen 

gas emits light. It emits only very specific frequencies of light whose measurement became an 

important project for spectroscopists in the late nineteenth and early twentieth centuries. Those 

frequencies divided into well-structured sets of lines, found in different parts of the 

electromagnetic spectrum: the infrared, the visible and the ultraviolet. These sets or “series” were 

named after the spectroscopists who measured them: the Lyman, Balmer, Paschen, Brackett and 

Pfund series. 

 The series were connected by a simple arithmetic relationship first noted by Rydberg but 

exploited by Ritz in 1908 as his “principle of combination.” The key fact was that the lines of all 

the series could be generated by taking the arithmetic differences of a set of terms. For Ritz, this 

fact provided a useful heuristic. He could apply his combination principle to the lines of a known 

series and predict a new, hitherto unobserved series. The approach proved successful and, 

immediately, Ritz could report a new line conforming with his prediction. 
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 For our purposes, what is important is that full set of lines in all these series is 

overdetermined, once one adopts Ritz’s principle. That means that one can take the lines of one 

series and, from them, infer to the existence another series. What results is a tangle of relations of 

inductive support. This structure is, fortunately, much easier to comprehend, as the chapter 

shows, since it is recoverable by simple arithmetic additions and subtractions.  

2.8 The Firm Ground of Experience 

 In the arch and vaulted ceiling analogy, the ground that supports the masonry corresponds 

to the empirical basis of the science. This basis does not depend on any, simple-minded, strict 

distinction between observational and theoretical propositions, for I follow the now common 

view that a clear distinction between them cannot be made. Rather I mean by it what is 

commonly taken in a present science as its supporting empirical facts. These can be very far 

removed from direct human observations. 

 For example, one of the most stable and most important observational facts supporting 

modern cosmology is that space is filled with a 2.7K background of thermal radiation. This 

simple sounding fact was only secured over decades after extraordinary efforts, some of which 

are recounting in Chapter 9, “Inference to the Best Explanation: Examples,” of The Material 

Theory of Induction. Among the difficulties faced, to establish a thermal character in a radiation 

field, one must have measurements made at many different frequencies. Only then can the 

energy distribution characteristic of thermal radiation be established. 

 A related observational fact of modern cosmology is that galaxies are observed to recede 

from us with a velocity that increases linearly with distance. While the observation is now 

routinely reported without much hesitation in modern treatments, it was subject to a searching 

critique in the later 20th century by Halton Arp. He argued that the red shift in light from the 

galaxies could not be interpreted as resulting from a velocity of recession since objects with very 

different red shifts appeared to be connected spatially. A quite extensive debate was needed to 

refute his hesitations. For details, see Norton (manuscript). 

 The analysis of just what might be meant by the empirical facts of a science is a project 

that goes beyond present concerns. My view is that Nora Boyd’s (2018, 2018a) analysis provides 

the best, modern treatment. She allows that all such empirical facts are entangled with theory 

However, she argues, these facts can still be used to decide among competing theories through a 

process of winding back to the provenance of the facts. When we seek to use some empirical fact 
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to decide between two theories, we wind back through the various stages of the formation of the 

fact. If sufficient data has been preserved, we eventually come to a point at which enough of the 

theoretical encumbrance has been removed for the fact to provide a neutral basis of comparison 

for the two theories. 

3. The Role of Hypotheses in Discovery of Inductive Relations of Support 

Hypotheses, initially without known support, are used to erect non-hierarchical structures 

3.1 The Discovery Problem 

 The discussion of the last section concerns relations of inductive support, independent of 

human knowledge of them. A further question of great importance is how we can learn these 

relations. For only then do they assist us in our inductive exploration of the world. If the totality 

of facts connected by relations of inductive support were delivered to us as a completed whole, it 

would be a straightforward matter to check that all the requisite relations of inductive support 

obtain. This is a science fiction scenario. It is what would happen were we to stumble onto a 

copy of the fictional Encyclopedia Galactica of some advanced alien civilization. In it, entire 

sciences hitherto unknown to us would be delivered to us in their totality. 

  In real life, our explorations proceed more haltingly. The guiding rule of the material 

theory of induction is: “You must already know something to be able to infer inductively.” For 

we cannot know that some inductive inference is licit unless we are assured of the truth of the 

warranting fact. Yet if we are in the early stages of investigation in some new field, we 

commonly know rather little and it is likely too little to proceed with assured inductive 

inferences of any great reach. 

 This is a problem faced by all new sciences. The strategy that has been used almost 

universally is to proceed provisionally. We may not know which are the general facts of some 

domain, but we can sometime determine which propositions are plausible candidates for the facts 

that would warrant the inductive inferences sought. To use a familiar term, these plausible 

propositions are “hypotheses.” We can then proceed provisionally under the supposition that our 

hypothesis is a fact and infer to the propositions it would warrant, were it a fact. The key element 

is that the supposition is provisional. Conclusions drawn or inductively supported using it 

themselves have provisional status only. They will remain so until we find inductive support for 

the warranting hypothesis. We have incurred an inductive debt in proceeding to the conclusions 
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and they are properly secured only when that inductive debt is discharged by finding support for 

the warranting hypothesis. 

 Hypotheses have a natural analog in the procedures for building arches, domes and 

vaulted ceilings. A masonry arch, dome or vaulted ceiling cannot be built simply by piling 

stones, one upon another. For as soon as a few stones have been placed, the highest ones would 

be without adequate support and would fall. The standard procedure is to use scaffolding, known 

technically as “centring.” As shown in Figure 4, it consists traditionally of a wooden framework. 

The stones are set on top of the framework. Prior to the completion of an arch, these stones are 

not properly supported by the other stones of the arch. Their support is only provisional, since 

the wooden centring will eventually be removed. Here they are analogous to hypotheses whose 

support is also only provisional. When all the stones of the arch have been placed, the centring 

can be removed. For now the remaining stones of the arch fully support each other. This final 

stage of construction is analogous to the discharging of the evidential debt taken by introducing 

the hypothesis. As the full investigation is completed, further inductive support, anchored 

eventually in experience, is provided for it. 

 
Figure 4. Wooden Centring used in the Construction of the Waterloo Bridge 
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3.2 Hypotheses Illustrated 

 The chapters that follow provide illustrations of this use of hypotheses. In several of 

them, the use of hypotheses is invited by a specific problem. Scientists find themselves trapped 

in an evidential circle. Commonly there are two related quantities to be determined. To find one, 

the scientists need to know the second. But, it seems initially, that they cannot know the second 

unless they already know the first.  They are trapped. A suitably chosen hypothesis is used 

routinely to break the circle. 

 Chapter 12, “The Use of Hypotheses in Determining Distances in Our Planetary System,” 

is an extended study of this use of hypotheses. Consider the earliest efforts to determine 

distances to celestial bodies. The moon subtends an angle of about 1/2 degree in our visual field. 

If we knew the diameter of the moon, simple geometry would then let us compute the distance to 

the moon. However, we do not know the diameter of the moon precisely because we do not 

know how far distant it is from us. Determining its distance and diameter forms the troublesome 

evidential circle. The sun also subtends an angle of about 1/2 degree in our visual field. 

Determining its distance from us is blocked by the same evidential circle. Determining distances 

to the planets is even harder since naked eye astronomy cannot resolve their disks. They are just 

points of light in the sky. 

 The chapter recounts how ancient and later astronomers sought to break out of this 

evidential circle by ingenious geometrical triangulations, or, as it is known in the astronomical 

context, measuring parallax. These efforts met with limited success. Ancient astronomers were 

unable to measure the tiny parallactic angles accurately enough. In the seventeenth century, 

using telescopic aids, a fairly good parallactic measurement of the distance to Mars was 

achieved. However, even with telescopic aids, direct parallactic measurements of the key earth-

sun distance were not achieved as late as the nineteenth century.  

 From the outset, to fill the gaps, hypotheses were called into service. They were not used 

to fix the distances directly, but only to provide hypothetical estimates of the ratios of the 

distances. Then all that was needed was a single distance determination, such as the distance to 

the moon or to Mars, and the remaining distances could be computed from the ratios. What 

makes this case study revealing is that, in addition to a success story, it recounts failures. They 

arose when independent evidential support could not be secured for the hypotheses and they 

were eventually rejected. The chapter recounts three attempts. 
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 The earliest were Pythagorean/Platonic proposals that recovered the ratios from musical 

harmonies and simple arithmetic relations. A later proposal was incorporated into Ptolemy’s 

geocentric cosmology. He proposed a plausible distance ordering for the celestial bodies and 

recovered the ratios of their distances from the further hypothesis that were packed together as 

closely as the geometry of his system allowed. Neither Pythagorean nor Ptolemaic proposals 

were able to secure independent evidence. Their inductive debt was not discharged and they 

were abandoned. 

 They were replaced by the Copernican, heliocentric hypothesis. Through it, the ratios of 

the planetary orbital distances were readily recoverable from terrestrial measurements. Unlike 

the earlier systems, the Copernican hypotheses gained evidential support both from within and 

without. Most important was its conformity with Newton’s mechanics. Newton had used the 

more fully developed heliocentric astronomy of his time as an essential premise of his argument 

for universal gravitation. In another example of the crossing over of relations of inductive 

support, the direction of inductive support was reversed. Newton’s mechanics soon became 

strong evidence for the details of Copernican astronomy.32 

 The dependence of solar system distance measurements on the heliocentric theory 

persisted. The most accurate estimates of the key earth-sun distance in the eighteenth and 

nineteenth centuries came from careful measurements of the transits of Venus across the face of 

the sun. The earth-sun distance could then be recovered from them by geometric triangulations. 

These calculations still relied upon the heliocentric theory’s determination of the ratios of the 

orbits of the earth and Venus. 

 Further illustrations of the use of hypotheses to break evidential impasses have already 

appeared in examples earlier in this chapter. We saw how Dalton was trapped in an evidential 

circle concerning atomic weights and molecular formulae. He sought to break the circularity by 

hypothesizing that the correct molecular formulae used the simplest ratios available. The 

 
32 The inversion in this relationship is seen most clearly in the ability of the Newtonian system to 

provide corrections to the heliocentric astronomy of Newton’s time. The planets do not orbit in 

ellipses but in precessing ellipses. What came to be known as Kepler’s third harmonic law was 

corrected to accommodate the finite mass of the sun. The importance of successive 

approximations in Newton’s and later work has been explored by Smith (2002, 2014). 
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hypothesis failed to secure independent support and was abandoned. The circularity was broken 

later through two hypotheses: Avogadro’s hypothesis and the law of Dulong and Petit. The 

evidential debt incurred in supposing them was eventually discharged through the mutual support 

of these two hypotheses and the support provided for them from the emergence of the statistical 

mechanical treatment of gases in physics. 

 We also saw that Hubble was stymied in his efforts to use the data from all 46 nebulae for 

which he had measurements by a lack of independent distance measurement for 22 of them. 

Chapter 7, “The Recession of the Nebulae,” recounts how Hubble was still able to incorporate 

these 22 nebulae in his analysis by means of hypotheses that gave him indirect indications of 

their distances. At various stages of his analysis, he hypothesized that the linear relationship 

among the other 24 nebulae held also for these 22; that the absolute magnitude of the brightest 

star in each nebula is the same; and that the range of absolute magnitudes of nebulae in a cluster 

is confined to a small range common to all nebulae. 

 In the early twentieth century analysis of atomic spectra, we saw how the discovery of 

new series was advanced by the Ritz combination principle. It was introduced as an hypothesis. 

It gained the requisite independent evidential support with the emergence of modern quantum 

theory, where it was recovered as a consequence of Bohr’s atomic theory. 

 These last illustrations have been mostly of successes secured at least eventually. This 

happy outcome is not assured. A prominent example of a failure is provided by the steady state 

cosmology of the mid twentieth century. It was based on the hypothesis of the “perfect 

cosmological principle,” which was first advanced by Bondi and Gold (1948). According to it, 

the universe is homogeneous on the large scale, not just spatially but over time as well. The way 

we see the universe now, on the large scale, is the way it has always been and will always be. A 

quite definite cosmology now follows. Most striking of its features is the continuous creation of 

matter. For unless matter is continually created throughout space, the expansion of the galaxies 

would lead to a dilution of its average matter density and violate the perfect cosmological 

principle. The steady state cosmologists took on a quite massive evidential debt in hypothesizing 

the perfect cosmological principle. They were never able to establish independent evidence for 

the hypothesis; they were never able to repay the debt. Most notable was the failure of the steady 

state theorists to accommodate Penzias and Wilson’s 1965 discovery of the cosmic background 
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radiation, while the competing “big bang” or “primeval fireball” hypothesis eventually proved to 

accommodate it handily.33 

3.3 This is NOT Hypothetico-Deductive Confirmation 

 This use of hypotheses may appear similar to the hypothetico-deductive approach to 

confirmation. These are accounts of confirmation based on the principle that an hypothesis is 

inductively supported when it successfully entails true evidence deductively.34 The essential 

difference lies in the goal of introducing the hypotheses into an evidential analysis. In 

hypothetico-deductive confirmation, hypotheses are introduced so that the evidence can confirm 

them according to the hypothetico-deductive principle. In the applications within the material 

theory, hypotheses are introduced to mediate in the confirmation of other propositions. The 

confirmation of the hypothesis is a task reserved for later investigations. The hypothesis is 

expected to be confirmed not hypothetico-deductively, but by other inductive inferences with 

their own material warranting facts. 

4. Deductive Inferences in Inductive Structures 

Locally deductive relations of support can be combined to produce an inductive totality. 

4.1 Inferences that Are or Are Nearly Deductive 

 There is a striking feature of many of the inferences in this text and in the earlier text, The 

Material Theory of Induction. While the inferences contribute to relations of inductive support, 

many of them are close to being deductive inferences or may actually be deductive inferences. 

That is, when combined with the warranting fact, the inference from the evidence to the 

conclusion to be supported is often deductive. The direction of the inference here is important. It 

is not merely the deductive inferences of hypothetico-deductive support. For in the latter, the 

deduction passes from the hypothesis or theory to the evidence. That direction has now been 

reversed. 

 
33 For a brief account of this last competition, see Chapter 9 “Inference to the Best Explanation: 

Examples” in The Material Theory of Induction. 
34 For an elaboration on this principle and the extensive problems associated with it, see Norton 

(2005). 
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 Here are some examples. Chapter one of The Material Theory of Induction recalled 

Curie’s inference from the crystallographic properties of the few samples of radium chloride at 

her disposal. She inferred to the generality of these crystallographic properties. I identified the 

warrant for her inference as: 

(Weakened Haüy’s Principle) Generally, each crystalline substance has a single 

characteristic crystallographic form. 

When this weakened principle is used to warrant Curie’s inference, it is the qualification 

“Generally” that makes the inference inductive. For it accommodates the possibility of 

polymorphism, that one crystalline substance may manifest in more than one crystallographic 

form. The inductive risk taken by Curie is quite small, especially if we assume that her 

generalization was tacitly limited to crystals of radium chloride prepared under conditions 

comparable to those in her laboratory.35 If we drop this qualification and revert to Haüy’s 

original conception, the warranting fact would be: 

(Haüy’s Principle) Each crystalline substance has a single characteristic crystallographic 

form. 

Under this warrant, Curie’s inference would be a deduction. 

 Chapter two of The Material Theory of Induction recounted Galileo’s inference 

concerning his law of fall. He had found that, in equal time intervals, a body in free fall 

successively covers distances in the ratios of 1 to 3 to 5 to 7. He generalized this sequence of 

ratios to the sequence of odd numbers. In this inference, I argued Galileo had used the warranting 

fact that the ratios of 1 to 3 to 5 to 7 were present no matter the time interval used in 

measurement. It then followed, deductively, that the only possible general law was of the 

sequence of odd numbers. Indeed the deductive inference needs as a premise only the ratio of 1 

to 3 and its invariance under a change of the unit of time. 

 There are, it turns out, other well-recognized, historically important examples in which 

the inference from evidence to our theories is deductive. These cases have been codified as 

“demonstrative inductions.” Their inferences are demonstrative in the sense that they are 

deductions. However they are called “inductions” to reflect an older usage of the term as 

referring to inferences from particulars to generalities. My contribution to this literature in 

 
35 I thank Pat Corvini for emphasizing this point to me. 
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Norton (1993) was to trace how quantum discontinuity was established in the early decades of 

the twentieth century. The essential datum was Planck’s 1900 formula for the distribution of 

energy over the different frequencies of black body radiation. In the early analysis, it was shown 

that assuming discontinuities in energies enabled one to deduce the Planck formula. Poincaré and 

Ehrenfest soon showed that the direction of deduction could be reversed. With suitable 

background facts, it was possible to deduce quantum discontinuity from the evidence of the 

Planck formula. 

4.2 Support that is Locally Deductive, but Globally Inductive 

 In deductive inferences, the conclusions are at best logically equivalent deductively to the 

premises or logically weaker than them. So it appears that deductive or near deductive inferences 

to our conclusions cannot give what we seek from inductive investigations. We seek an 

expansion of our knowledge. These deductive inferences are merely rearranging and returning to 

us all or part of what we have already supposed. 

 This pessimistic expectation is not realized, however, once we recall that relations of 

support within inductive structures are not hierarchical but massively entangled. That enables the 

entangled relations of deductive support to combine to provide inductive support in the overall 

structure. This circumstance arises when we have sets of propositions that mutually support each 

other, deductively. Nonetheless, accepting the totality is to accept propositions logically stronger 

than the evidence. 

 Striking examples of this combination of deductions arise in Newton’s arguments for 

universal gravitation and his inverse square law of gravity. They have already been sketched 

above and a more detailed exposition is provided in Chapter 8, “Newton on Universal 

Gravitation.” To recall, the first example arises in Newton’s “moon test.” In it, he shows that 

terrestrial gravity is the same force as the celestial force holding the moon in its orbit around the 

earth. To show it, Newton reckoned that, if the force acting on the moon strengthens with the 

inverse square of distance as the earth is approached, it would accelerate terrestrial bodies with 

just the accelerations actually found at the earth’s surface. The logic of the moon test involves 

two hypotheses: 

Hinv. square: The celestial force acting on the moon is strengthened by an inverse square law 

with distance at the earth’s surface. 

Hidentity: Terrestrial gravitation and the lunar celestial force are the same. 
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In the context of Newton’s moon test, drawing on the evidence of the accelerations of the moon 

and terrestrial bodies in free fall towards the earth, each of these hypotheses can be deduced from 

the other. That is, each hypothesis provides a warrant for a deductive inference from the 

evidence to the other hypothesis. The two hypotheses combined are the result of the moon test 

analysis. Their conjunction is inductively supported by the evidence of lunar and terrestrial 

accelerations. 

 The second example has a similar structure. The most basic results of Newton’s celestial 

mechanics reside in two hypotheses: 

Hellipses:  The planets move in their specific elliptical orbits. 

Hinv. square: The Planets are attracted to the sun by a force that varies with 

the inverse square of distance. 

Against the background of the observed positions of the planets and the laws of Newton’s 

mechanics, each hypothesis could be deduced from the other. Indeed, Newton employed a quite 

subtle variant of the usual way of inferring among these two hypotheses. In the case of the near 

circular orbits of the planets, he needed only the datum that the planetary orbits are re-entrant. 

That is, in a planetary year, each planet returns to its starting point. He could then show that this 

re-entrance was a sensitive test for deviations from the inverse square law. The observed 

exactness of the re-entrance entailed the exactness of the inverse square law. Once again, the 

overall inductive import of the analysis was that the evidence of the observed positions of the 

planets supported inductively the conjunction of the two hypotheses. 

 Chapter 9, “Mutually Supporting Evidence in Atomic Spectra,” provides another example 

with a similar structure. It was noted above that the Ritz combination principle enables 

inferences of support among the different series of the hydrogen spectrum. As the chapter details, 

these inferences are deductive. Using the Ritz combination principle as a premise, from the 

Balmer series, we can deduce the Paschen, Bracket and Pfund series. These deductions can be 

reversed as well. Adding the premise of only a single line from the Balmer series, we can deduce 

the entire, infinite Balmer series from the Paschen series. There are infinitely many series in the 

hydrogen spectrum, although only finitely many have been observed. The series are closely 

connected by further deductive relations such that we can infer deductively from any series to 

any other by means of the Ritz combination principle and, if needed, the additional premise of a 

finite set of suitably selected lines. While these interrelations are deductive, the final import is 
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inductive. The Ritz combination principle and the finitely many spectral lines observed provide 

inductive support for the entire system of infinitely many series, each with infinitely many lines. 

 There might be, for some, an air of paradox in the idea that we can combine deductive 

relations to yield a structure with inductive import. That impression is mistaken. These cases are 

actually more secure inductively than many considered in earlier sections. In those earlier cases, 

inductive relations of support are combined to produce structures with overall inductive import. 

Inductive risk is introduced in both the component relations of inductive support and in the 

combined structure. If those component relations of support are deductive, this first source of 

inductive risk is eliminated. 

5 The Maturity of a Science 

5.1 Inductive Rigidity 

 A preparation for the discussion of the fourth and final claim is the characterization of 

what constitutes mature sciences. They are characterized by inductive rigidity. That is, each 

proposition of the science is well-supported evidentially, so that a change in the proposition is 

not allowed by the evidence for the science. There is no assurance that a science can achieve 

maturity. In the early stages of the development of a science, important propositions are 

entertained hypothetically. They are not fixed rigidly. As the development continues, further 

relations of inductive support are found, the hypotheses gain evidential support and their 

provisional status is discharged. If this process proceeds to completion, the science achieves 

maturity such that each of its propositions is well-supported. 

 Once this maturity is achieved, the inductive rigidity of a mature science is widely 

recognized amongst its practitioners. Challenges to the science are treated as tiresome, moribund 

exercises. A skeptic may doubt some proposition in a mature science. In response, someone 

competent in the science would be able to display the evidence that supports the proposition. In 

the case of special relativity, this is a dialog with which I have some personal experience. The 

theory has been routinely challenged by critics since its inception over a century ago. Many of its 

foundational propositions have, at one time or another, been disputed, unsuccessfully. The light 

postulate of the theory asserts that all inertially moving observers find the same speed “c” for 

light in vacuo. It is initially a puzzling postulate. Imagine an inertially moving observer who is 

chasing at high speed after a light signal that moves at c. That observer will not find the light 
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signal slowed from c, even in the slightest. This perplexing result makes the postulate a favored 

target. However, that postulate has direct support from de Sitter’s 1913 analysis of light emitted 

from distant double stars. Its deeper support derives from the Lorentz covariance recoverable 

from Maxwell’s electrodynamics. That dynamics is in turn supported by a plethora of individual 

experiments in electricity and magnetism.36 

 This maturity is a goal that proponents of a theory strive to achieve; and standard text-

book sciences commonly come very close to achieving it. It is not uncommon, however, for the 

full achievement of the goal to be incomplete in parts of the theory. There, propositions may 

achieve general acceptance while lacking proper support. The falsification of such a proposition 

is usually associated with great excitement and even a momentary sense of crisis. However, 

precisely because the falsified propositions never were strongly supported, their failure can be 

absorbed into theory. 

 On September 19, 1957, Francis Crick announced what came to be called the “central 

dogma” of molecular biology. It speaks, in various forms of a unidirectional synthesis pathway 

within cells from DNA to RNA to proteins. The reverse pathway is prohibited. While the dogma 

was widely adopted, there was little real evidence for it. It was a simple and comfortable idea 

that fitted with a denial of the Lamarckian inheritance of acquired characteristics.37 When it was 

discovered that certain viruses could implement the reversed pathway from RNA to DNA, the 

result was readily incorporated into molecular biology. Nature (Anon., 1970) published an 

excited editorial “Central Dogma Reversed.” 

 In the course of the twentieth century, many new particles were discovered. It was 

routinely assumed that the laws governing them would respect parity.  That is, they would not 

distinguish left from right. In retrospect, there was no good evidence for this assumption other 

than it had become routine in the physical laws discovered earlier. Then, in 1964, Cronin and 

Fitch discovered experimentally that the weak interaction in particle physics can violate charge-

parity conservation. In another example, the hard-to-detect neutrinos had long been attributed a 

zero rest mass. This had seemed a reasonable assumption. The early determinations of the 

neutrino rest mass pointed to a quantity that was in the neighborhood of zero. However, as 

 
36 For historical details, see Norton (2014). 
37 Here I rely on Cobb (2017). 
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neutrino physics developed, it became clear that a very small mass had to be attributed to 

neutrinos. That would enable the process of neutrino oscillation in which neutrinos migrate over 

the three different flavors in which neutrinos manifest. This oscillation explained experimental 

and observational anomalies, most notably a dearth of measured electron neutrinos emitted by 

the sun. (For a review, see Gonzalez-Garcia, 2003.) 

 In these last cases, anomalous evidence could be absorbed into the existing theories since 

the propositions that they contradicted lacked the strength of evidential support of other parts of 

the theory. Had these other better-supported parts been contradicted, the outcome would have 

been more troublesome. For a well-supported proposition is tightly bound with so much more of 

the theory. Should it fail, it will bring down much more of the theory with it. 

 While particle physics could absorb non-zero neutrino masses, matters would have been 

quite different had the OPERA Collaboration (2011) measurement proved correct. Their 

measurements, they announced, appeared to show that neutrinos were propagating faster than 

light. Their correctness would have destabilized particle physics. It would have contradicted a 

fundamental posit of the governing quantum field theory, the locality of quantum field operators. 

Particle physics was saved, for now. 

 The inductive rigidity of a mature science does not make the science incorrigible. It is 

simply a statement of the best that can be gleaned from the evidence. No matter how strong the 

inductive support of a science, some inductive risk is associated with it. When incontrovertible 

evidence does emerge that contradicts a well-supported proposition within a mature theory, the 

result can and usually is a breakdown of the theory. Rigid steel cables have some elasticity, but 

they will snap if over extended. What ensues is a revolution in science, such as has been a 

popular topic of investigation in history of science. 

 These revolutions commonly occur when the science is extended beyond domains in 

which it was first developed and in which its evidential base is found. Newton’s seventeenth 

century mechanics was developed on an evidential base of slow-moving objects, such as falling 

stones and orbiting planets. Special relativity emerged when developments in nineteenth century 

electrodynamics gave reliable results concerning much faster propagations at the speed of light. 

Special relativity, in turn, fails when we move to domains of intense gravitation, as Einstein 

found through his general theory of relativity. All these superseded theories, however, remain 

evidentially well-supported as long as we consider only the evidence of the domains for which 
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they were devised. While general relativity and relativistic cosmology now tells us that 

Euclidean geometry may fail when applied to spaces of cosmic extent, Pythagoras’ ancient 

theorem remains as reliable as it ever was for the builders of houses, castles and skyscrapers. 

5.2 A Distributed Vindication 

 While the inductive rigidity of a mature science is a commonplace for its practitioners, its 

demonstration would be a massive task. The network of interrelated propositions is enormous for 

any real science. A full display of the evidence and inductive relations supporting each goes well 

beyond what is possible in a book chapter. Indeed, for a well-developed science of great scope, 

displaying this rigidity in all detail would likely be beyond the capacities of any single author. 

Rather, the requisite knowledge, while likely not fully known to any one scientist, is distributed 

over the full community. 

 This distribution is illustrated by our proper confidence in the laws of conservation of 

energy and momentum; and our expectation that no proposal for a perpetual motion machine can 

succeed. Given the variety of types of proposals that have been advanced over the centuries, a 

full inventory of the evidence against them would be prohibitively long. In each case, it is not 

enough merely to assert generically that the conservation of energy and momentum prohibits the 

operation of the machine. A full analysis requires us to display where the details of the 

mechanism proposed conflicts with other propositions in established science.38 Different 

proposals will call on expertises in the different sciences in which the proposals are formulated. 

We can be confident however that, for each new proposal, there is an expert in the community 

familiar with the pertinent science and able to respond. 

 A recent illustration is the “EmDrive” proposal for spaceship propulsion that was brought 

to the attention of a larger scientific community by a New Scientist article of 2006 (Mullins, 

2006). It consists of microwaves in a chamber such that, it is proposed, the forces exerted by the 

microwaves in many directions on the chamber walls do not entirely cancel out. They leave a 

small net force that can propel the chamber. In this, it is unlike any other propulsion scheme 

known. For all known schemes produce propulsion by driving some form of matter in the 

opposite direction to the thrust sought. A rocket expels hot gases. An airplane projects a current 

of air or hot gases behind it. A ship’s propeller projects a stream of water behind it. The forward 

 
38 For a history of these proposals, see Ord-Hume (1977). 
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force on the rocket, airplane or ship is balanced by an equal and opposite, reaction force on the 

driven matter, as required by Newton’s third law of motion. This driven matter carries rearward 

momentum. The conservation of momentum then assures us that the rocket, airplane or ship 

gains forward momentum in the opposite direction. That is what accelerates it. 

 The EmDrive violates the conservation of momentum. It is a closed device that is 

supposed to set itself into motion, without ejected matter or a reaction force. While the proposal 

is prima facie extremely implausible, interest in it has proven remarkably stable and is matched 

only by the tenacity of skeptical critics. Part of the positive interest lies in wishful thinking. If it 

works, it is a device that could power starships! Another reason for its endurance lies in the small 

magnitude of the force predicted. Detecting it requires the most delicate experiments. As critics 

have pointed out, such experiments can easily produce spurious results, if all confounding 

effects39 are not properly controlled. 

 The resulting literature here is too extensive to survey. Recounting one exchange, 

however, is sufficient to illustrate how the distribution of expertise works. Harold White and his 

collaborators of the NASA Johnson Space Center are proponents of these microwave propulsion 

systems. In a technical paper, White and March (2012) proposed that the reactionless thrust 

might arise through the Casimir force of the quantum vacuum. This is specialized physics. As 

White and March acknowledge in their introductory paragraph, classical electrodynamics 

precludes a reactionless force. Indeed, that classical electrodynamics conserves momentum is a 

result readily accessible to anyone with a serious, college level course in electrodynamics. The 

Casimir effect, however, is more arcane. It is a force produced by quantum fields in a vacuum. 

Its basic mechanism is not so obscure. However, it is more demanding to develop a theoretical 

analysis of it that would securely preclude the reactionless force proposed by White and March. 

Such an analysis is within the expertise of Trevor Lafleur, a physicist specializing in plasma 

physics. His analysis (Lafleur, 2014) finds no basis for the reactionless force in the quantum 

vacuum. 

 
39 Such confounders can be subtle. For example, Tajmar et al. (2018) report such a confounder in 

the coupling between electrical cables in the experimental set-up and the earth’s magnetic field. 
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6. Inductively Self-Supporting Structures 

There are self-supporting inductive structures. 

6.1 Inductive Closure: That is All There Is. 

 A self-supporting inductive structure is a set of propositions such that: each proposition 

in the set is well supported evidentially; the evidence supporting them is in the set of 

propositions; and the propositions that warrant the relations of inductive support are also 

propositions within the set. This set is inductively closed. 

 We have already seen such self-supporting inductive systems in the small. If we take the 

backgrounds propositions among which they proceed as fixed, they are found in the examples 

above of pairs of hypotheses that are mutually supporting; and of networks of inductive support 

such that the relations of support cross over one another in a bewildering tangle. The more 

difficult problem and the more interesting one is whether such systems arise on the large scale 

and whether they are embodied by our mature sciences. I will argue in the subsection below that, 

if a mature science is properly characterized by the rigidity described in the last section, then the 

material theory entails that it is a self-supporting inductive structure. 

 Before proceeding, it will be helpful to address directly the sense that such structures are 

paradoxical. They may sound akin to lifting oneself into the air by pulling on one’s own 

bootstraps. However, there is no paradox. If one can affirm that each proposition in the set is, 

individually, well-supported in virtue of other propositions in the set, then there is nothing more 

that can be asked. The analogy to pulling oneself up by one’s own bootstraps fails.40 A better 

architectural analogy is to some elaborate sculpture, whose total stability appears impossible, but 

yet it still stands. A simple example is the tensegrity icosahedron of Figure 5: 

 
40 In the imagined scenario, we hover in midair by pulling on our bootstraps. The pulling force is 

supposed to counter the force of gravity. This analysis neglects another force. The upward force 

from the bootstraps in tension is balanced by the downward force from the corresponding 

compression in our legs. The force of gravity remains unbalanced and the eager bootstrap puller 

falls to earth.  
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Figure 5. Plan and Elevation of a Tensegrity Icosahedron41 

 

 
41 Model and photographs, John D. Norton. 
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On a superficial description, it seems impossible that such a tensegrity structure can stand. There 

are six rods connected only by cords in tension. One end of each of three rods rests on the table 

surface. All the remaining rods and their parts are held suspended above the table surface. No rod 

directly touches any other rod. Their sole connections are through cords in tension. Such a 

structure, it would seem, must collapse into a pile of rods and cords. Must not a rod, supported 

only by cords in tension, anchor those chords on another rod that is still higher in the structure; 

and must not that rod be held by cords tied to another still higher rod; and so on in an infinite 

regress? Yet there are only six rods; and it stands. 

 On closer examination, we can inspect any rod individually and affirm that it is supported 

securely by cords attached to both ends. That is true for any rod we examine. That is all that is 

needed for the structure to stand. We need no additional, holistic condition, beyond the condition 

that each rod individually is supported. 

 It is the same with self-supporting inductive structures. If we can affirm that each 

proposition individually is well supported inductively, nothing further need be demanded. Of 

course, if we were tacitly to assume a hierarchical structure for relations of inductive support, 

then these self-supporting inductive structures are impossible. For then at least some of the 

propositions needed to warrant all the inductive inferences in the structure could not themselves 

be inductively supported within a finite structure. An infinite regress would ensue. However, as 

argued in detail above, this hierarchical assumption is incorrect.  

 One might still harbor reservations. These self-supporting inductive structures necessarily 

harbor circularities in the relations of support. That these circularities are benign is argued at 

length in the following Chapter 3, “Circularity.” Or one might accept that such structures exist, 

but that they make the import of evidence equivocal since our evidence might support many such 

systems. In Chapter 4, “The Uniqueness of Domain-Specific Inductive Logics,” it is argued that 

a mechanism, native to the material theory of induction, precludes this danger. 

6.2 Mature Sciences are Self-supporting Inductive Structures 

 We can now see that mature sciences are inductively self-supporting. This conclusion 

requires that the compass of a mature science is expanded enough, possibly even to embrace 

neighboring sciences, so that inductive closure is secured. That means that we can select any 

proposition in the mature science and we will find, within that compass, the evidence that 
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inductively supports the proposition along with the propositions that warrant the inductive 

support.  

 This assertion of self-support supposes that we can expand the compass of a mature 

science sufficiently to secure closure. We could imagine that sequences of inductive inferences 

and warranting propositions form an infinite chain that outstrips finite description so that no 

finite expansion would be adequate. I do not see how, as a matter of inductive logic, such a chain 

can be dismissed without further examination of its details. Perhaps it is possible. However, I do 

not see that it arises in actual practice in our mature sciences. For, if that were the case, the 

inductive rigidity of a mature science would not be humanly accessible. Yet our repeated 

experience in the history of science is that we do have mature sciences that display just the 

inductive rigidity described here. 

7. Non-Empirical Components of the Large-Scale Structure of Inductive 

Support 

 This chapter provides an account of the large-scale structure of inductive support that 

uses only materially warranted inductive inferences or relations of inductive support. One might 

accept that much of this large-scale structure is captured by the material theory. However, it may 

be tempting to imagine that the material account still needs to be supplemented by deeper, non-

empirical truths if the account of the large-scale structure is to be complete. Such deeper truths 

would be beyond normal evidential scrutiny and thus outside the reach of the material theory. 

 To make plausible that no such added components are viable, this section considers and 

reject some candidates. 

7.1 Universal Logic of Induction 

 The least adventurous proposal for the added component is that the large-scale structure 

requires at least some universal rules of inductive inference or some general calculus of 

induction. Perhaps we do need to assume the universal applicability of the probability calculus to 

all relations of inductive support, as Bayesians seem to hold. The failure of all such universal 

rules have been argued for at length in the Material Theory of Induction and reviewed in chapter 

1 above. There is no need for these arguments to be repeated here. 
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7.2 Kantian synthetic, a priori propositions 

 Might the very viability of induction at all depend on a Kantian synthetic a priori 

proposition? Such a proposition would be factual, but it would require no evidence since its 

truth—supposedly--can be established a priori, that is, independently of experience. Since the 

literature on this one idea could absorb many lifetimes, I dare only express my view that this 

literature has failed to provide viable examples of synthetic a priori propositions that could serve 

this function. Kant’s original proposals did not fare well. It may have been appealing to imagine 

in the eighteenth century that, as an a priori certainty, space could never manifest to us other than 

as Euclidean. However, those who have absorbed the variant spatial geometries brought by 

general relativity find it otherwise. The geometry of space is not something determinable a priori, 

but a subject for empirical investigation.  

 The mode of failure of this one proposal for a synthetic a priori proposition afflicts all the 

proposals. If they make a definite, factual assertion, they end up failing empirically. If they 

escape empirical refutation by vagueness, they make no factual assertion and are empty. 

7.3 Causality 

 Might we seek such a condition in a principle of causality? It is a Kantian principle and 

also has an enduring popularity outside Kantian circles. The principle asserts that every effect is 

brought about in a regular manner by some cause.  Might such a supposition be a precondition 

for science and thus for inductive inferences in science? I have criticized this conception at 

length elsewhere. See for example Norton (2003, 2016, manuscript a). In short, the problem is 

that the terms “cause” and “effect” are so poorly specified that the principle is factually vacuous. 

We can always implement the principle in any scenario simply by artful choices for what the 

terms designate. Things in the world do connect in a myriad of interesting ways. What those 

ways are cannot be stipulated a priori, but must be discovered empirically. 

7.4 Mathematics 

 It is often found remarkable that mathematical descriptions of the world prove so fertile 

and powerful. Might the supposition of a mathematical structure of the world be a prior condition 

necessary at least for the physical sciences? There is much to say on this supposition. The main 

point of relevance is that the supposition itself is open to empirical test. We have tested it and 

found that it applies to a surprisingly large range of phenomena. This means that, in the absence 
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of any deeper, a priori vindication, it is a contingent fact to be learned inductively. In this regard, 

it is no different from the other warranting facts of the physical sciences. It is not an obstacle to 

the material warranting of inferences, but a part of it. 

 As an illustration shows how the proposition is not an priori principle but open to the 

possibility of failure empirically. Much of modern physics presumes that its basic laws are to be 

written as differential equations. That fundamental presumption has been challenged by Stephen 

Wolfram (2002). His “new kind of science” seeks to replace these differential equations in 

physics by discrete algorithms and cellular automata. It is a most radical proposal. Wolfram has 

continued to press his approach, but its reception amongst physicists remains poor. Their 

skepticism is not based on an assertion that, as an a priori matter, the physical world must be 

governed by differential equations. Rather, as Becker (2020) reports briefly, the doubt is driven 

by doubt that Wolfram’s methods can recover the present results of physics with the same scope 

and accuracy. The concern is empirical. The proposal lacks powerful enough inductive support 

to supplant existing methods. 

 Nonetheless, we can still ask what are the prospects for an a priori justification of the 

mathematical character of nature. These prospects are poor, in my view, since it is doubtful that 

there is a deep truth in the supposed mathematical character of nature. Rather I harbor an 

enduring concern that our deference for the power of mathematical descriptions is excessive. The 

supposed truth is empty unless the specific mathematics favored by nature is specified. Yet the 

only way we know to identify the right mathematics among very many choices is empirical. 

Thus, I find it hard to be moved by a celebrated and poetic confession attributed to Heinrich 

Hertz:42 

One cannot escape the feeling that these mathematical formulas have an 

independent existence and an intelligence of their own, that they are wiser that we 

are, wiser even than their discoverers, that we get more out of them than was 

originally put into them. 

 
42 As quoted in Bell (1937, p. 16). The quote is unsourced and seems to be the origin of later 

repetitions. Shour (2021) has recently tracked down the origin of the remark in Hertz’s published 

writings. (I thank Marc Lange for letting me know of Shour’s paper.) 
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On the contrary, I am in awe not at the formulae but at the creativity of mathematicians who 

formulated them. For new physical theories commonly come in clumsy mathematical clothing. 

Each new physical theory is taken as a challenge by mathematicians to find formulations in 

which the new theory looks mathematically simple and natural. The ensuing mathematics fits the 

world not through some pre-ordained harmony, but merely retrospectively through our ingenious 

and artful contrivances.43 

 To see the process, one need only recall the inadequacies of geometry as Euclid 

formulated it for the celestial mechanics of the seventeenth century. Kepler sought to use the 

Platonic solids in a nestled geometric structure to explain the relative orbital sizes of the planets. 

Far from reflecting the inner mathematical constitution of the world, we now regard the whole 

project as dependent on barren mathematical coincidences. One can only wonder at Newton’s 

labors in his Principia to develop his celestial mechanics using simple Euclidean geometry that 

was so poorly suited to the task. The theory becomes so much more elegant and transparent 

when re-expressed in the later methods of vector calculus, contrived in part precisely for this 

purpose. 

7.5 The Ineffable 

 Finally, when explicit attempts to identify these non-empirical conditions fail, one might 

be tempted by the idea that these conditions are present, but ineffable. They are so deeply 

enmeshed in our ways of thinking that, it is speculated, we cannot discern them. This appears to 

me to be the last defense of a failing program. These conditions have powerful consequences in 

connecting facts and these connections are fully accessible to us. Yet the conditions that 

underwrite these connections are supposed to be opaque to us. The supposition of their 

invisibility makes them irrelevant. What matters are the contingent connections they supposedly 

induce among the facts of the science; and we can only be secure in accepting these connections 

if we can affirm or support them through methods accessible to us. 

 
43 For another expression of this view in counterpoint to Einstein’s later Platonism, see Norton 

(2000, Appendix D). 
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8. Conclusion 

 The four claims defended in this chapter form the basis of the material understanding of 

the large-scale structure of relations of inductive support. These claims by no means exhaust the 

questions one might raise about this large-scale structure and the accompanying skeptical 

challenges to the material understanding. Some of these questions and challenges will be raised 

in the chapters to come in Part I; and the claims defended in this chapter will be used to answer 

them. We will ask in Chapter 3, if the structure is non-hierarchical, does it harbor circularities? 

(Yes.) Are they benign? (Yes.) What of uniqueness, we will ask in Chapter 4. That is, can a finite 

body of empirical evidence, even if extensive, yield a unique, self-supporting structure? (Yes.) 

Or must we forever contend with multiple, competing self-supporting structures? (No.) Relations 

of inductive support are non-hierarchical and circular. Does this mean, we will ask in Chapter 5, 

that the material theory of induction is just a coherentist epistemology? (No) And finally in 

Chapter 6, what of the problem of induction? Is the material theory prone to the traditional 

problem? (No) Is there an analogous problem residing in a fatal regress of warrants? (No) 

 These are all good questions and worthy challenges. I will show that the material 

approach to inductive inference has ample resources for answering them. 
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Circularity 

1. Fear of Circles 

 The non-hierarchical structure of relations of inductive support admits circularities. They 

are inevitable once we examine a large enough set of these relations. The circles may be small, 

when two propositions mutually support. The circles may be large, when extended chains of 

relations of support eventually connect back to their starting points. Some will find the mere 

presence of these circles, in itself, disturbing. They do so, apparently, with good reason. In 

debates, philosophical or not, defeat is assured if your opponent can expose your reasoning as 

circular. In formal structures, circularities are vicious and they must be eliminated, often by the 

most elaborate of novel theorizing. The damning verdict is automatic and unanswerable. You 

have found a circularity? There is no need to waste any more thought on the enterprise. It  

fatally flawed. The perpetrator of a circularity may be expected to resort to all manner of 

sophistry. But escape is impossible and the ultimate collapse of the enterprise is inevitable. 

 Such is the fear of circles, horror circulorum. This chapter is written for those in its grip. 

The goal is to provide them therapy. For the horror is based on an oversimplified view of 

circularities. It neglects the many forms that circularities can take. Some are as fatal as this dark 

view fears. Many are benign and, we shall see, others are even essential to a theoretical structure. 

To ban them unilaterally would restrict unnecessarily the scope of our theorizing. To show this, 

the chapter provides a small classification of circularities, according to how they affect the logic 

of the structure in which they appear. It will show that the circularities of relations of inductive 

support are benign and even essential. 

 There are three categories. First are the “vicious” circularities to be explored in Section 2. 

They lead to logical inconsistencies and underwrite the dark view of circularities as fatal defects. 

When such circularities arise in inductive structures, they are transient and eliminated by suitable 

adjustments to the propositions in the structure. The second, explored in Section 3, are 

circularities in structures whose content is left indeterminate. These may merely be failed 

arguments or intermediate stages of development on the way to the third type. Or, if they are 

ineliminable, they may be the basis of a convention. In the third case, described in Section 4, the 
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circularities are part of a well-behaved structure whose content is uniquely defined, without 

contradiction. This is the case of the relations of inductive support of a mature science. A final 

Section 5 summarizes how the circularities in relations of inductive support appear in the 

taxonomy. The mechanism identified in the next Chapter 4, “The Uniqueness of Domain-

Specific Inductive Logics,” leads to a convergence towards inductive structures with univocal 

import. 

 That benign circularities are possible is the tonic that can cure horror circulorum. It tells 

us that mere identification of a circularity in some system is a starting point, not an endpoint. If 

you want to take the next step and damn the system for the circularity, there is a positive 

obligation on you to establish that the specific form of circularity present is harmful. This cannot 

be done, I believe, for the circularities in a mature science. They are benign. 

2. Vicious Circularity 

 A vicious circularity, as I shall use the term here, is a set of circular relations in some 

formal structure that leads to a contradiction. 

2.1 The Idea 

 The term “vicious circle” has long been familiar in treatises on logic. Kirwan (1807) 

already found its usage established. Curiously, the formal definition he gave was merely of 

question begging, “petitio principii,” which is described in more detail below in Section 3. 

Kirwan wrote of (pp. 441-42, his emphasis): 

… that mode of argumentation called the vitious circle [sic], in which one point is 

proved by another, and this other is proved solely by the first; so that the proofs are 

mutual and under the same point of view. 

That what is described is really question begging is made quite clear by Munro’s (1850) treatise 

whose exposition follows Kirwan’s closely. Munro (1850, p. 231) illustrated the circle as: 

The whole of Dr. Brown’s elaborate lectures on the nature of virtue amounts to 

nothing more than a vicious circle. We approve of actions, because they are right; 

and they are right, because we approve of them. 

More curiously, Kirwan’s own example was of a circle that produced a contradiction. His 

definition of “vitious circle” is immediately illustrated by the self-refutation of skeptics: 
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… Thus the sceptics argue, that we ought to doubt of every thing, because human 

reason is fallible, and may deceive us. And since reason may deceive us, we should 

doubt of the validity of the reasons that induce us to doubt. 

 The idea of a vicious circle as essentially leading to a contradiction was cemented by 

Bertrand Russell’s work in mathematical logic. In reflecting on Cantor’s proof that there can be 

no greatest cardinal number, he arrived at what came to be known as Russell’s paradox. It is 

given an early elaboration in Russell (1903, Ch. X), “The Contradiction.” The paradox concerns 

sets and their members. Some sets may have other sets as their members. Naively, we easily 

accept that some may even be members of themselves. A set of sets can be a member of itself, 

for example. But what of those sets that are not members of themselves? What of the set of all 

such sets? The supposition that there is such a set immediately produces a contradiction. If it is a 

member of itself, then it is not a member of itself. But if it is not a member of itself, then it is a 

member of itself. The contradiction arises essentially through the circular relationship between 

the set and its members. 

 While the paradox looks at first like a minor annoyance that is easy to circumvent, it was 

immediately recognized as a deep problem for set theory and the foundations of mathematics. 

For it shows that sets could not be defined merely as the extension of any property. That is, we 

could not say “Consider the set of all things that have property P.” where property P, expressed 

as some formula, could be freely chosen.44 The most searching and elaborate investigations were 

needed to give set theory a non-contradictory foundation. One avenue was the development of 

the axioms of Zermelo-Fraenkel set theory. Russell’s path led to the theory of types, found in his 

joint work with Alfred North Whitehead, Principia Mathematica. There Russell and Whitehead 

reinforced the odious character of vicious circles. The first named section in Volume I, Chapter 2 

was entitled “The Vicious-Circle Principle” and one of its formulations was (Russell and 

Whitehead, 1910, p. 40) “Whatever involves all of a collection must not be one the collection.” 

Breaches of this principle, they announced, were to be called “vicious-circle fallacies.” 

 
44 This troublesome principle has been called “the intuitive principle of abstraction” in Stoll 

(1963, p. 6). 
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 The vicious circle of Russell’s paradox derived from its imprudent use of self-reference. 

Such imprudence proved to be a fertile source of analogous paradoxes. Russell (1908) provided a 

convenient compendium. It began with the now classic Epimenides (p. 222): 

Epimenides the Cretan said that all Cretans were liars, and all other statements 

made by Cretans were certainly lies. Was this a lie? The simplest form of this 

contradiction is afforded by the man who says “I am lying;” if he is lying, he is 

speaking the truth, and vice versa. 

Its structure matches that of Kirwan’s example of the self-refuting skeptics. The inventory 

continued with Russell’s set paradox and a list of other related paradoxes familiar to readers of 

the literature, including Berry’s paradox, Richard’s paradox and the Burali-Forti contradiction. 

These paradoxes provided the impetus for a century of philosophical work on truth in the 

foundations of formal logic. It was designed to find ways of precluding paradoxical sentences 

like “This sentence is false.” or finding unparadoxical ways of including them. The 

contradictions that follow from self-reference became one of the most powerful tools of formal 

logic. They are the basic device used in Gödel’s famous demonstration of the incompleteness of 

arithmetic. 

 To philosophers who have any interest in formal matters, all this is so elementary as to 

have become part of “what everyone knows.” At the same time, these foundational investigations 

have forged an automatic and enduring link between circularity and contradiction. And so the 

horror circulorum is established. 

2.2 Vicious Circles in the Material Theory of Induction? 

 Are the circularities of inductive support vicious? Nothing compels it. As we shall see 

below, one can have circularities that are not vicious, that is, that produce no contradictions. 

Such are the circles arising among the relations of inductive support for mature sciences. The 

inductive support of these mature sciences is secure and even unassailable; and they would not 

be so if contradictions could be found within them. 

 This is the situation with the evidential support of a mature science. However, prior to 

this mature stabilization, contradictions can and do arise among the relations of support. 

Developing sciences are commonly built upon hypotheses, whose evidential grounding has not 

been secured. Sometimes these hypotheses fail and that failure manifests in contradictions. In 

1917, Einstein presented the first relativistic cosmology, using the assumption that the universe 
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is static. His hypothesis was soon contradicted by Hubble’s discovery of the recession of the 

galaxies. 

 These contradictions are not manifestations of an ineliminable, foundational flaw in the 

very idea of inductive support. They are unlike the vicious circularities of naïve set theory, 

whose circularities forced us to reconceive the very idea of a set and of the truth of propositions. 

Rather they are a natural part of the work of fallible investigators. The structures they produce 

are fallible but malleable, and it is a routine part of investigations to reform the structures to 

eliminate them. Einstein discarded his assumption of a static universe, while other theorists 

began to explore the dynamic, expanding universes compatible with general relativity. These 

contradictions and adaptations are of no more concern than an accounting error in a budget. 

Perhaps a receipt was mistyped, or an expense neglected. It is a simple but tedious exercise to 

find the error and correct it. There has been no fundamental breach of a principle of arithmetic 

that would forever preclude the use of budgets. 

 The radiocarbon dating of historical artifacts, described in Chapter 10, “Mutually 

Supporting Evidence in Radiocarbon Dating,” shows how these contradictions arise within a 

circle and are remedied. Artifacts are dated by two means. The first derive from traditional 

historical analysis. The second derive from the measurement of the radioactive 14C (“carbon 

14”) content of the artifact. What results are two sets of propositions, one historical and the other 

radiocarbon. Each should support the other. When radiocarbon dating methods were first 

explored, it soon became apparent that there were recalcitrant discrepancies in the dating 

provided by the two means. That is, there were contradictions within the circular relations of 

mutual support among the radiocarbon dates and historical dates. 

 The elimination of these contradictions became a major focus of research in radiocarbon 

dating methods. Radiocarbon dating depends essentially on knowing the original 14C content of 

the artifact. That content is halved for each 14C half-life of 5730 years. It was natural to suppose 

that these original levels match those of artifacts formed today. It soon became apparent that this 

assumption was the source of the contradictions. These levels have varied over historical times. 

Theoretically grounded reconstruction of these original levels proved unworkable. Instead, these 

levels were reconstructed by means of the historically known age of artifacts. The corrections 

needed were collected in a calibration curve, such as is shown in the later chapter. Using such 

curves, the radiocarbon and historical datings of artifacts were adapted to one another in the 
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precise manner needed to eliminate the contradiction. After that adaptation, each set of datings 

could be used to check and affirm the other. The circularity among the two sets of propositions 

remained, but without contradictions. 

 In a similar vein, the structures of inductive support for a mature science can be disrupted 

by new, empirical discoveries. The disruption manifests as contradictions that can be removed by 

adjustments to the inductive structure. Because of the rigidity of relations of inductive support in 

a mature science discussed in Chapter 2 above, the adjustments will likely propagate through the 

entire structure. They will have revolutionary import. 

 Newton’s seventeenth century mechanics prevailed for over two centuries. Its inductive 

support was, apparently, unassailable. One of its basic results was that the velocity of a uniform 

observer was to be added or subtracted from that of any propagation to recover the velocity the 

observer would find for it. The new evidence of Maxwell and Lorentz’s nineteenth century 

electrodynamics destabilized Newton’s mechanics. For, under Einstein’s careful scrutiny, the 

electrodynamics revealed that light propagation violated this simple Newtonian result. The speed 

of propagating light was always the same, no matter the uniform motion of the observer.  

 The contradiction was resolved when Einstein realized that space and time themselves, at 

high speeds, do not behave as Newton had concluded. The evidence and relations of evidential 

support leading to Newton’s theory were not discarded. Rather their limited scope was now 

recognized. They could be applied only to systems moving at much less than the speed of light. 

This restriction was readily implemented. Newton drew the evidence for his mechanics from the 

motions of ordinary falling bodies, moons and planets. These are all bodies whose speeds are 

much less than that of light. The evidential base of Einstein’s special relativity embraced that of 

Newton’s mechanics for small speeds and that of electrodynamics for higher speeds. Einstein’s 

new physics required alterations to every physical theory in which space and time played a role. 

The alterations propagated through physics with revolutionary import. 

3. Indeterminate Circularities 

 A less troublesome form of circularity arises when the circles produce no contradictions 

but leave the structure indeterminate. The indeterminacy may not be obvious, since the analysis 

may be offered as determinate. 
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3.1 Begging the Question 

 A familiar example, known since Aristotle, is circular reasoning, “begging the 

question”45 or the petitio principii. It is a form of reasoning that pretends to establish a 

conclusion, while only giving the illusion of doing so. Richard Whately’s (1865) Elements of 

Logic gives what seems to be a standard definition for nineteenth century work.46 Alerting us in a 

preface (“advertisement”) that he uses square brackets “[…]” to indicate equivalent meanings, he 

tells us (1856, p. 184) 

… “petitio principii” [“begging the question,”] takes place when a premiss, whether 

true or false, is either plainly equivalent to the conclusion, or depends on it for its 

own reception. 

He continues to note the delicacy of the identification. For unobjectionable deductive inferences 

will have this this character in case a premise entails the conclusion and conversely. Such is the 

case for inferences that demonstrate the equivalence of two physical conditions, such as the 

equivalence of the “Thomson” and “Clausius” forms of the second law of thermodynamics. To 

be worthy of the label petitio principii, there must be some sense that the inference is used 

deceptively, to pretend that more is gained than really is. Whately (1856, p. 222) notes 

“Obliquity and disguise being of course of most importance to the success of petitio principii…” 

 Examples are easy to find. One is a religious figure or tract for which infallibility is to be 

concluded, since the figure or tract themselves declare their infallibility. The more interesting 

cases of begging the question arise when the circularity is sufficiently hidden that its presence is 

easily overlooked. Mill (1882, p. 574; his emphasis) provides an example: 

Plato, in the Sophistes, attempts to prove that things may exist which are 

incorporeal, by the argument that justice and wisdom are incorporeal, and justice 

and wisdom must be something. Here, if by something be meant, as Plato did in fact 

mean, a thing capable of existing in and by itself, and not as a quality of some other 

thing, he begs the question in asserting that justice and wisdom must be something ; 

if he means any thing else, his conclusion is not proved.  

 
45 This is the original sense, to which I adhere. A recent usage gives the expression the meaning 

“inviting the question.”  
46 Mill (1882, p. 571) reports Whately’s treatment extensively. 
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Another more extended example, I contend, arises in the many demonstrations of probabilism: 

Dutch book arguments, decision theoretic representations, the accuracy-based scoring rule 

argument, and so on. In The Material Theory of Induction, Chapters 10 and 11, I argue that all 

these proofs proceed by employing premises in which the basic assumptions of probabilism are 

already present in disguised form. When their presence is identified, the demonstration collapses. 

It then becomes easy to see that arbitrary adjustments to the rules of the betting scenario, to the 

properties of the preferences assumed or to the scoring rule used, can lead to variant, non-

probabilistic calculi. 

 For present purposes, the essential fact is that this sort of circular reasoning fails to 

determine the conclusion sought. Nonetheless, the conclusion sought may be true, or it may be 

false.  

3.2 Circularities that Produce Conventions 

 Similar indeterminacy-producing circularities arise among magnitudes in science. The 

indeterminacy is then often taken as evidence that the magnitude of some quantity can be set as a 

convention. Perhaps the best-known examples arise in relativity theory and in geometry. In his 

1905 special relativity paper, Einstein argued that we could not affirm the simultaneity of 

spatially separated events, factually, by light signals (or, analogously, by any other means). For 

any scheme that uses light signals to ascertain the relative timing of such events requires that we 

know how fast light propagates in one direction. A natural scheme requires, for example, that we 

know that light propagates at the same speed from a place A to a place B as it does in the reverse 

direction. Yet to know this, we must be able to determine how quickly light propagates from one 

place to another. This determination requires that we can already compare the timing of events at 

these two places. 

 Einstein (1920, pp.22-23) summarized our predicament: “It would thus appear as though 

we were moving here in a logical circle.”47 The significance of this circle is that there are no 

independent facts separately for the simultaneity of spatially separated events and the speed of 

light propagating between them. Rather we can choose freely as a convention either the 

simultaneity relation or this speed. Then the other is determined. Here is how Einstein (p. 23, his 

emphasis) put it: 

 
47 “Man scheint sich also hier in einem logischen Zirkel zu bewegen.” 
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That light requires the same time to traverse [the forward path] as for [the reverse 

path] is in reality neither a supposition nor a hypothesis about the physical nature of 

light, but a stipulation which I can make of my own free will in order to arrive at a 

definition of simultaneity. 

Einstein’s foremost expositor in this matter, Hans Reichenbach (1958, pp. 126-27), summarized 

a more extensive analysis of the same circularity as: 

Thus we are faced with a circular argument. To determine the simultaneity of 

distant events we need to know a velocity, and to measure a velocity we require 

knowledge of the simultaneity of distant events. The occurrence of this circularity 

proves that simultaneity is not a matter of knowledge, but of a coordinative 

definition, since the logical circle shows that a knowledge of simultaneity is 

impossible in principle. 

Under Poincaré and Einstein’s inspiration, Reichenbach (1958, §30) argued for a structurally 

analogous convention he called the “relativity of geometry.” It depends on a similar logical 

circle. One can determine that the geometry of a space is Euclidean or otherwise by the 

expedient of surveying it with measuring rods. The essential condition is that the rods are rigid 

ones that measure distances truly. The complication, Reichenbach urged, is that rods may be 

acted upon by what he called “universal forces” that equally distort all bodies. This complication 

creates the circle. We cannot know which universal forces, if any, are acting on a rod unless we 

already know the true geometry of the space. The circle is resolved by declaring that we may 

select the geometry of space conventionally. We merely posit the universal forces needed so that 

our rod measurements give us that geometry. 

 For completeness, I should mention that both conventionality theses were hotly debated 

in the later part of the twentieth century, without any clear resolution. Those opposed to the 

conventionality claims urged that there were other non-conventional means to break the circles. 

We do not need to take sides in this debate for present concerns.48 All we need to see is that these 

 
48 However, I incline towards the anti-conventionalist view. For an elaboration, see the chapter 

“The  Conventionality of Simultaneity” and “Geometric Morals” in my online text, Einstein for 

Everyone, http://www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/index.html Reichenbach’s 

supposition of universal forces is troublesome since, if the mode of analysis is accepted, 



 106 

circular dependencies among physical quantities can leave the quantities indeterminate. Even a 

fairly modest empiricism must be troubled by the idea of quantities whose values cannot be 

determined by any physical measurement or observation. If the indeterminacy is sustained, the 

comfortable resolution is to assert that there is no physical fact for these values. They may be 

chosen arbitrarily, that is, as a convention. 

3.3 Indeterminate Circularities in Relations of Inductive Support 

 It is quite possible for this sort of circularity to arise among relations of inductive support. 

If they prove to be ineliminable, then we might expect an empirically-minded scientist to 

proceed as above. If we are sure that no evidence can break the circle, we have concluded that 

these are propositions whose truth is immune to evidential scrutiny. Such propositions are 

leading candidates for conventional stipulation. Indeed, conventional stipulation will, by the 

supposition of the case, make no difference empirically.  

 The more common situation is the one that arises in the examples of circular 

dependencies recounted in the earlier chapters and explored in greater detail in later chapters. 

The circularities may initially be such as to leave the quantities of interest indeterminate. 

However further investigation brings new facts to bear that break the circularity. A focus on 

exactly such investigations can become a major stimulus for further research.  

 Dalton’s original proposal of his atomic theory was trapped in a circle, as detailed in 

Chapter 11. To know the correct molecular formulae of substances, he needed to know the 

relative weights of the atoms combined in them. But he could only know those relative weights if 

he already knew the molecular formulae. This meant that his theory was compatible with water 

having a huge array of different molecular formulae: H2O, HO, HO2, and many more. He was 

free to stipulate any of them, without fear that the meager evidence at his disposal would 

contradict his choice. He chose HO. Had the circularity proved unbreakable, we might eventually 

have settled onto a curious sort of atomic theory in which the relative masses of the atoms could 

be set arbitrarily, much as we arbitrarily set the zero point for the potential of a Newtonian 

gravitational field. As we now know, this freedom was transient. It still took over half a century 

of further work to bring enough additional facts to bear to break the circle and recover H2O. 

 
analogous suppositions can be used to establish the conventionality of any physical magnitude 

that is measured by some instrument. 
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 The determination of celestial distances involved similar indeterminacy-producing 

circularities. Our earliest efforts to determine the distance to the moon and sun were troubled by 

one. We could measure the angular sizes of these bodies, so that, if we knew their diameters, we 

could infer the distances to them. However, we needed to know just these distances to determine 

their diameters. Chapter 12, “The Use of Hypotheses in Determining Distances in Our Planetary 

System,” describes how diligent analysis by ancient astronomers was able to break the circularity 

and produce estimates of the diameters and distances. 

 Another circularity of a similar type appeared in Hubble’s classic 1929 paper on the 

recession of the nebulae. Hubble had apparent brightness measurements for 46 nebulae. To 

convert these to distances, he needed to know the absolute brightness of these nebulae. Then, 

using the fact that brightness diminishes with the inverse square of distance, the distances to the 

nebulae are recovered by comparing how bright the nebulae seem with how bright they really 

are. However, for 22 of them, Hubble lacked absolute brightness determinations. Absent other 

information, to know their absolute brightness, he needed first to know how distant they are. This 

closes the circle, leaving the distances to these 22 nebulae indeterminate. As recounted in 

Chapter 7, “The Recession of the Nebulae,” Hubble brought further statistical considerations to 

bear to break the circularity and recover determinate, if fallible, distances for these 22 nebulae. 

 In sum, this sort of indeterminacy-producing circularity can arise among relations of 

inductive support. It presents no foundational challenge to the very notion of inductive support. 

There are several possibilities, none foundationally troublesome. The circularities may be broken 

by further scientific investigations. If ineliminable, they may prove to arise from conventions. Or 

they may be ineliminable simply because of a paucity of evidence. Certain sorts of historical 

facts are obvious candidates. We might like to know many details of some ancient civilization. 

However, if sufficient archaeological evidence has not been preserved, we have no choice but to 

settle for indeterminacy, not of the facts but of what the evidence can determine about them. That 

is just how it should be. 

4. Determinate Circularities 

 The most benign circularities are those that arise in determinate structures. Then none of 

the issues of contradiction or indeterminacy arise. This sort of circularity is widespread and so 

familiar that they rarely arouse complaints. 
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4.1 Elementary Examples 

 Simple computations of determinate magnitudes often involve circularities. An easy 

example is the computation of the black area “B” and the white area “W” of the yin-yang symbol 

of Figure 1 

 
Figure 1. the Yin-Yang Symbol 

From the symmetry of the figure we have 

B = W 

It is one half of a circular dependency. Assuming the total figure has unit area we also have 

W = 1 - B 

This is the second half of the circular dependency. There is nothing troublesome in the 

circularity. The two equations are solved uniquely to give 

B = W = 1/2 

 A slightly fancier computation is the standard way that the following infinite sum is 

evaluated: 

S = 1/2 + 1/4 + 1/8 + 1/16 + … 

In a familiar manipulation, the sum is doubled to yield 

2S = 1 + 1/2 + 1/4 + 1/8 + … = 1 + S 

This last equation expresses a circular dependence, but is readily solved to give us the sum S = 1.  

 The only danger in this otherwise benign computation is that we must antecedently be 

assured that the infinite sum does have a definite, finite value. Even if we are not assured that the 

sum is finite, the circularity can still give us a determinate result. Consider 

S = 1 + 2 + 4 + 8 + … 

It is doubled to yield 

2S = 2 + 4 + 8 + 16 + … =  S – 1. 

This circular equation in S has two solutions. S = -1 can be discarded if we preclude a negative 

sum. The applicable solution is S = infinity. 
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 Finally, we might ask whether these circularities could mislead us when the sum sought 

is badly behaved. Such is the case with the Grandi’s series, whose sum we might try to write as: 

S = 1 – 1 + 1 – 1 + … 

Of course, there is no such sum. The partial sums oscillate indefinitely between 0 and 1. If we 

proceed formally, we might write  

S = 1 – 1 + 1 – 1 + … =  1 – (1 – 1 + 1 – …) = 1 - S 

This circular equation in S has a unique, finite solution, S = 1/2. This value cannot be the 

ordinary arithmetic sum of Grandi’s series, for there is no such sum. However, if we consider 

generalized notions of summation that might be applied here, we could then take this circular 

dependency as part of the conditions of adequacy of the generalized notion. An example of such 

a generalized notion is the Cesàro sum. It proceeds by taking the arithmetic average of the first n 

terms in the series. The sum of the entire series is just the limit of this average as n goes to 

infinity. The Cesàro sum for the Grandi series is 1/2.49 

4.2 An Extreme Example 

 These examples of benign circularity have been elementary. They serve to show, 

however, that circularities within well-defined structures are common and unremarkable. At the 

other extreme, we can have similarly benign circularities in quite exotic structures. Most striking 

of these is one that directly challenges the historical stimulus of horror circulorum, Russell’s 

Vicious-Circle Principle. The principle prohibits circularities, such as sets that are members of 

themselves. In response, the edifice of modern set theory, as exemplified in the Zermelo-

Fraenkel system, was built precisely to preclude such circularities. 

 All this changed with the appearance of Peter Aczel’s non-wellfounded set theory or 

hyperset theory. It provides an account of sets that allows for just the sort of circularities 

prohibited by Russell’s principle, but without inducing his paradoxes. The details of the theory 

go well beyond what can be reviewed here. Most briefly, the approach drops the Foundation 

Axiom of the Zermelo-Fraenkel system and replaces it with the Anti-Foundation Axiom. The 

import of the transition can be seen in the case of the simplest circularity in set membership. 

 
49 In another approach, we consider S(a) = 1 – a + a2 – a3 + a4 - … = 1/(1+a) for 0<a<1. We 

define S(1) = Limaà1 S(a) and it does have the value 1/2. 
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Following Barwise and Etchemendy (1987, pp. 37-41), it is the set W, defined circularly by the 

fact of its self-membership: 

W = {W} 

That is, the set W is defined as that set that has itself as its sole member. If we substitute for W, 

we can rewrite the set as W = {{W}}. Continuing, we have  W = {{W}} = {{{W}}} = 

{{{{W}}}}. A full substitution leads to an infinite nestling of set memberships: 

W = {{{{{{{ …}}}}}}} 

Precisely this infinite nestling of set memberships is prohibited by Zermelo and Fraenkel’s 

Axiom of Foundation. All such nestlings, according to it, must terminate finitely. Aczel’s Anti-

Foundation Axiom allows it because it can be given a definite graph theoretic representation50 

and, moreover the axiom asserts its uniqueness. 

 In this set W, we have just the sort of circularity that should trigger horror circulorum, a 

set that is its own member. However, that very circularity defines a determinate, unique structure 

in non-wellfounded set theory. 

4.3 Intermediate Examples 

 Between these elementary and exotic instances of benign circularities, there are many 

more instances, all of them part of unremarkable, routine science. A great achievement of 

nineteenth century physics was Maxwell’s electrodynamics. Its basis, in modern formulation, are 

the four vector differential equations knows as “Maxwell’s equations.” In the simplest case of 

electric and magnetic fields in vacuo, these equations fix the electric field strength vector E and 

the magnetic field strength vector H. Using the older Gaussian system of units (in which the 

equations are simpler) and standard notational conventions, the first two equations are just 

Ñ.E = 0 and Ñ.H = 0 

These equations do not govern how the fields evolve in time, such as when electromagnetic 

waves propagate. Their time evolution is recovered from the next two equations, which exhibit a  

tight circular dependence. The third is 

ÑxH =  (1/c) ∂E/∂t 

 
50 It is just W ® W ® W ® W ® ... 
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It asserts that a time-varying electric field produces a rotational magnetic field, whose lines of 

force form circles around those of the electric field. The fourth equation is 

ÑxE = - (1/c) ∂H/∂t 

It asserts an analogous process: a time-varying magnetic field produces a rotational electric field, 

whose lines of force form circles around those of the magnetic field. 

 This circular dependence among quantities like E and H is common. A second and much 

more elaborate set of circularities arises in Einstein’s gravitational field equations for his general 

theory of relativity. They are used to determine the basic quantity of the theory, the metric 

tensor. It is, expressed in coordinate based components, a matrix of 10 quantities: gik = (g00, g01 

= g10, g02 = g20, … , g33). These ten quantities are fixed by Einstein’s ten, second order, 

coupled, non-linear partial differential equations. Through their coupling, they harbor an 

elaborate set of circular interdependencies among the components gik. 

 While circularity is inherent in both Maxwell’s equations and the Einstein’s equations, 

they produce quite determinate structures. That is, allowing for standard gauge freedoms, they 

both admit well-posed initial value problems. Loosely speaking, that means that if we determine 

the configuration of fields for the present moment, then their evolution into the future is uniquely 

determined. We have no trouble using these equations to determine precisely how radiowaves 

propagate and how black holes form. 

4.4 Determinate Circularities among Relations of Inductive Support 

 Circularities among physical quantities arise routinely as a benign feature of determinate 

structures in physical theories. Similarly, it is routine for the structures of inductive relations in a 

science to harbor circularities, even as the bearing of those relations is univocal. Such is the most 

common case among the examples of circularities in inductive structures seen in this chapter and 

elsewhere in this book. For example, Dalton’s original atomic theory was beset with a 

circularity. Subsequent research removed it and gave us determinate molecular formulae and 

atomic weights. The ancient circularities that troubled the determination of distances to celestial 

bodies were resolved, so that we now have very precise determinations of them. Hubble’s 1929 

analysis was hampered by a circularity that precluded the direct determination of distances to 22 

of the 46 nebulae in his data set. After further investigations, the distances to these closer nebulae 

are no longer in any doubt. While radiocarbon and historical dating of artifacts enter into circular 
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dependencies, we now have sufficient cross-checking of the methods that the original 

uncertainties have been eliminated. 

5. Conclusion 

 Circularities arise routinely among rich structures of evidential support. They are no mere 

accident. Rather they are part of what enables a mature science to establish the familiar solidity 

of its evidential support. For those in the grip of horror circulorum, their presence is a source of 

concern and doubt. In this chapter, I have sought to demonstrate that this fear is unfounded.  

 Some circularities are worrisome. Such are the vicious circularities whose contradictions 

forced us to abandon the naïve notion of a set and to develop elaborate theories of truth. We saw 

in Section 2 that there can be circularities that produce contradictions in relations of inductive 

support. However, they are not of the same type that would force us to abandon the very idea of 

inductive support. They are transient difficulties that are resolved by further investigations. 

 Other circularities do not produce contradictions but leave their structures 

underdetermined. That is troublesome only if it is pretended otherwise. It is this deception that 

renders begging the question objectionable. Otherwise, these circularities can be employed 

usefully to establish the conventionality of a physical magnitude. In the case of relations of 

inductive support, these indeterminacies can arise in intermediate stages of investigation. If they 

prove ineliminable, it may be that we have found a hidden convention; or it may be just that 

insufficient evidence exists for us to learn definitively about the target system.  

 Most commonly, the indeterminancies are eliminated by further investigations. They lead 

to an inductive structure with univocal import that is characteristic of a mature science. As 

Section 4 recounts, in this they are like many of the circularities among physical quantities in 

science that are untroubled by indeterminacies. That they arise commonly in mature sciences is 

not happenstance. In the next chapter, “The Uniqueness of Domain-Specific Inductive Logics,” I 

will argue that this uniqueness results from a definite mechanism. If there are competing 

systems, the competition is unstable. If one system gains an advantage by learning facts 

favorable to it but weakening its competitor, it follows from the material conception of inductive 

inference that this strengthens the inductive reach of the first, while diminishing that of the 

competitor. As long as further evidence is available and investigators pursue it, this instability is 

self-reinforcing and leads to the unique admissibility of the first system. 
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The Uniqueness of Domain-Specific Inductive Logics 

1. Introduction: The Challenge Posed 

 According to the material theory of induction, the inductive relations within a mature 

science form a self-supporting structure.51 That is, the propositions of the science derive their 

inductive support entirely from an extensive body of empirical evidence, such that each 

proposition in a theory is supported individually by this body of evidence through the mediation 

of other propositions. Those other propositions are in turn supported in the same way. 

 This raises the challenge: what assurance do we have of the uniqueness of the resulting 

relations of inductive support? We should not expect such an assurance for a developing science 

that is sustained only by a fragmentary body of evidence. For in such cases the evidence is too 

weak to determine unique relations. But what of the case of a mature science in which the body 

of evidence is sufficiently expansive to provide strong evidential support for all the propositions 

of the science? Is such a science uniquely supported? Might there be a second science whose 

propositions contradict the first science but is equally strongly supported in all its parts by the 

same body of evidence? 

 Were there to be such cases, the result would be inductive anarchy and it would be of a 

an especially troublesome kind within the context of the material theory of induction. For the sets 

of facts proposed by each of the two sciences would each support its own inductive logic. Since 

the facts disagree, the resulting logics would not agree on the bearing of evidence. One could 

find propositions in a science supported inductively or not according to which of the inductive 

logics is employed. 

 Perhaps we can find reasons to expect such multiple systems. If one thinks of relations of 

support as analogous to the relations of structural support in a building, we can erect very 

different self-supporting systems of masonry on the same foundations. So why do we not have 

 
51 My thanks to James Woodward for helpful comments on an earlier draft. 
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multiple systems of inductive logic?52 The underdetermination thesis in its strongest form is the 

grim speculation that no body of evidence, no matter how extensive, can determine the content 

of a theory. Inductive pessimists who find this speculation appealing will expect multiple 

systems as a matter of course.  

 The goal of this chapter is to refute this inductive pessimism by means of three 

arguments. 

First, if the underdetermination thesis were true, all sciences, even the most mature, 

would be awash in incompatible competitor sciences that enjoy comparable inductive support by 

the evidence. As a matter of history, this is not the case. Rather as will be reviewed briefly in 

Section 2, once a science achieves maturity, its competitors are discarded and a single science 

prevails and endures. Since the underdetermination thesis is accepted in some literatures as a 

truism of evidence, Section 7 reviews briefly why it is really a poorly grounded speculation, 

better called the underdetermination conjecture. 

 Second, competing relations of support derive from competing theories that make 

incompatible factual assertions. As will be argued in Section 3, the empirical character of science 

requires that such factual differences must be reflected in differences of empirical evidence, else 

they lie outside the scope of empirical sciences. It follows that empirical evidence can always 

decide for some and against others of the competing theories. (This concern will be developed in 

Sections 7 and 8 in the further discussion of the underdetermination thesis.) 

 Third, as will be related in Section 4, there is a natural mechanism peculiar to the material 

theory of induction that favors the emergence of uniqueness. Understood materially, the 

competition between scientific theories is dynamically unstable, as long as continuing attention 

 
52 Here the analogy to buildings is weak and misleading. For, in the analogy, we imagine a flat 

terrain on which we could erect many great cathedrals of differing design, selected according to 

our whims. However a body of evidence analogous to this featureless terrain is bereft of 

evidential value. It can sustain only the thinnest of inductive logics such as the relations of 

“completely neutral support” described in the Material Theory of Induction. The analogy 

improves somewhat if we imagine building on a complicated and richly structured terrain that 

admits only quite specific modes of construction. For the empirical foundation of our science 

should be structured richly enough to direct us to fuller content of the science itself. 
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is given to the full exploration of the evidence. If one theory gains an evidential advantage over 

another, that theory’s inferential powers are enhanced. For, according to the material theory of 

induction, facts warrant inductive inferences. Thus, the evidentially strengthened theory has 

secured more facts and with them a strengthened warrant to infer inductively to still more. The 

competing theory is correspondingly weakened. If this process continues, it amplifies the 

advantage in a positive feedback loop, and leads one theory to dominate and to eliminate its 

competitors. 

 These instabilities are illustrated in Section 5 by brief sketches of several examples. Two 

later chapters provide more extended examples. In Chapter 14, “Stock Market Prediction: When 

Inductive Logics Compete,” we see that there are multiple systems presently in use for predicting 

price movements in the stock market. The chapter shows that they are in unstable competition 

and that a proper pursuit and weighing of the evidence would lead to one dominating. Chapter 

13, “Dowsing: the Instabilities of Evidential Competition,” recounts how the practice of dowsing 

emerged in the sixteenth century. It was even then a controversial practice. Two views competed: 

the proponents of dowsing and skeptics who argued that the practice was ineffective. Over the 

ensuing centuries, the evidential case for the skeptics made self-reinforcing advances that 

successively undermined the scientific credibility of dowsing, until it collapsed. 

 Concluding sections consider standard challenges in the literature to the uniqueness 

claimed in this chapter. What of challenges to any theory by unconceived alternatives? Does not 

the already mentioned underdetermination thesis preclude uniqueness? What of observationally 

equivalent theories? Sections 6, 7 and 8 discuss each and argue that none support a cogent 

challenge. Section 9 argues that a material approach to inductive inference fares better at 

accommodating the uniqueness of inductive support of mature science than do formal accounts. 

Section 10 is a brief summary and conclusion. 

2. The Uniqueness of Mature Sciences 

 Once a science reaches maturity in its domain of application, it stabilizes and remains 

fixed. The effect is so familiar that we need to recall only a few familiar instances. At the level of 

precision required for virtually all applications, Euclid’s ancient geometry suffices up to the 

present day. Deviations from it arise, according to general relativity, only when we venture well 

beyond the realm in which Euclid’s geometry found its evidential support; that is, we explore 
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systems with intense gravity or those on cosmological scales. At the level of precision for even 

the most exacting dynamical systems, Newton’s seventeenth century mechanics suffices up to 

the present day. Deviations appear only in domains remote from those in which Newton’s 

mechanics is well supported evidentially. Examples of these remote domains are systems moving 

close to the speed of light or those at atomic scales, where quantum effects are important. The 

chemistry of common materials is based on a system of elements secured in the nineteenth 

century, deriving from the work of Lavoisier and its codification in the periodic table of 

Mendeleev. The diversity of geological structures derives from Lyell’s early nineteenth century 

uniformitarianism and the variety of life forms derives from Darwin’s mid nineteenth century 

evolutionary theory. The examples can be multiplied. The uniqueness of mature sciences 

contradicts the proliferation predicted by the underdetermination conjecture. 

 It may be tempting to imagine that the dominance of one mature science does not derive 

from the weight of evidence. It is, we may speculate darkly, merely a reflection of local 

conditions, such as external social factors or political pressures or even the concerted fraud of 

scientists. Of course, aberrations are possible when local conditions eclipse the proper weighing 

of evidence. When they arise, such aberrations do not survive changes of location and time. 

Trofim Lysenko’s mid twentieth century corruption of biology in Soviet Russia depended on his 

political power and political support. Lysenkoism failed when that support was lost. It was bad 

science, unsupported by the evidence. What is distinctive about mature sciences is their 

uniformity across cultures and across time. The geometry of Euclid may have been codified in 

fourth century BCE Alexandria. Yet it long escaped its Alexandrian roots to become the 

geometry used internationally and for millennia, without serious challenge, until tiny corrections 

were required by general relativity in the twentieth century. 

3. Competition is Empirically Decidable 

 Competing systems of relations of evidential support derive from competing theories. 

They compete in the sense that they make incompatible factual claims about the world. Since 

science is empirical, such competition cannot be sustained indefinitely. For the empirical 

character of science requires that the factual claims of a theory must be supported inductively by 
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the evidence of observation and experiment.53 To respect this empirical character, the 

competition among incompatible factual claims of competing theories must be resolvable by 

observation and experiment. If their factual differences are beyond observation or experiment, 

then whatever constitutes these differences lies outside empirical science.54 It follows that there 

must be some possible observation or experiment capable of deciding among competing theories. 

The competition will be resolved, as long as scientists are diligent and inventive enough in their 

pursuit of empirical evidence. 

 A radical, skeptical view holds that there are limited prospects for this sort of 

comparison. The worry is that observations are so theory laden that they are useless for theory 

comparison. Theories become, to use Kuhn’s expression for paradigms, “incommensurable” or, 

more simply, beyond cogent comparison. I do not share this skepticism. Theories can be 

compared on their adequacy to the empirical evidence and are routinely so compared. The best 

account of this comparison is provided by Nora Boyd’s (2018, 2018a) empiricism, already 

mentioned in Chapter 2. She shows that, if we are to decide between two theories on the basis of 

some item of evidence, the procedure is to wind back towards the provenance of the evidence. 

We continue until we have stripped away enough of the theoretical encumbrances to have freed 

the evidence statements of entanglement with the theoretical presumptions of either theory. 

 These decisions need not be immediate. However, when empirical evidence favors one 

theory over another, it introduces an instability that must be resolved. For competing theories are 

responsible to all the empirical evidence in their domains of application. A faltering theory can 

choose to ignore or discount unfavorable empirical evidence only temporarily, while awaiting 

rescue from further evidence. Alternatively, the faltering theory may make internal adjustments 

 
53 To preclude confusion, the empiricism advocated here is what I call a “small e” empiricism. It 

the widely held view that we can only learn our sciences from experience. It is distinct from 

antirealist versions of “big E” empiricism, such as van Fraassens’ (1980) constructive 

empiricism in which all that we know of the world is only what we can or could experience 

directly. 
54 Further analysis may be needed, however. The two theories may only appear different since 

they merely represent the same facts in different guises. Perhaps one or both theories contain 

content superfluous to the empirical successes of the theories. 
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to accommodate the unfavorable evidence. Such adjustments weaken the theory and make it 

more prone to further weakening. 

 These considerations would not apply to pairs of theories in one domain whose empirical 

content is so disjoint that they never disagree on what is observable, while still retaining their 

identity as distinct theories. While I grant this possibility in principle, I have had trouble finding 

real examples. Candidates might be sought in theories that treat some domain at very different 

scales both in size and time. Perhaps neuroscience and psychology is a case in which both 

theories treat what is essentially just brain activities. They use different theoretical devices 

without intersecting or intersecting much empirically. While this disjoint character is possible, 

neuroscientists in particular are working energetically to breach it. Another candidate is 

discussed briefly in Chapter 14, “Stock Market Prediction: When Inductive Logics Compete.” 

There are different systems for predictions of moves in stock prices. In so far as one system may 

make predictions only in the shorter term and another may make them over the longer term, it 

may be possible for them to proceed from disjoint factual bases. While this is a possibility in 

principle, it does not seem to have been realized. 

4. Inductive Competition is Unstable 

 When one theory, in competition with another, gains a slight evidential advantage, it 

follows from the material nature of inductive inference that this advantage will be amplified. For 

facts warrant inductive inference and the more facts a theory has secured the more it can infer 

inductively.  

  The role of hypotheses in a developing science can make this process of amplification 

potent. As we have seen, when the body of evidence supporting a science is meager or the import 

of the existing evidence has not yet been fully explored, the scientists proceed in their 

investigations by positing hypotheses of suitable strength to warrant their inferences. These 

hypotheses must eventually be given suitably strong evidential support. During the preliminary 

period, it is possible to sustain multiple systems of facts and the inductive logics they induce. 

Systems in competition will be distinguished by their employment of incompatible hypotheses. 

The viability of these multiple systems is fragile and unstable. If one system gains a small 

advantage through the import of novel evidence or a novel interpretation of existing evidence, 

that small gain strengthens the system, in particular, lending more support to its founding 
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hypotheses. The competing systems are correspondingly weakened. This momentary advantage 

may persist and be amplified; or a weakened system may itself find new evidence that restores its 

support. However the competition may play out, its dynamics is unstable and overall tends to 

favor further strengthening of the system that has gained a small inductive advantage. The 

tendency then is for the advantaged system to be strengthened still further, while those in 

competition find it harder to recover. The dynamics drives towards dominance of one system and 

the elimination of the others. 

5. Illustrations of Instability 

 A detailed examination of the competition described in Section 4 in particular cases 

would be lengthy. Later chapters provide such examinations in the cases of competing systems 

of stock market prediction and the historical competition between proponents and skeptics of 

dowsing. Here, other cases can be described only briefly. To do this, we can draw on the 

convenience provided by Chapter 9 of The Material Theory of Induction. As part of its analysis 

of the argument form “inference to the best explanation,” the chapter reviews pairs or sets of 

theories in competition. We can see in these examples how each theory gains an evidential 

advantage, while disadvantaging its competitors. Here I will not recount the details of the 

competing theories, but only the dynamics of the competition. Readers are referred to this 

chapter in the The Material Theory of Induction for further details and citations to the pertinent 

literature. 

5.1 Darwin’s Origin of Species 

 In his Origin of Species, Charles Darwin developed his theory of the origin of diverse 

biological forms through natural selection. It is portrayed throughout as in competition with the 

proposal that this diversity arises from the independent creation of each these forms. Darwin 

argued that advantageous features of organisms arise through one process, their selection by 

nature. However independent creation must attribute each new feature to a new decision by a 

Designer to create each organism just as it is. More telling are examples of organisms with 

features that have no apparent advantage. Why do terrestrial geese, for example, have webbed 

feet, where webbing is useful only in water? Darwin gives an evolutionary account: terrestrial 

geese evolved from aquatic geese. Independent creation can only attribute the webbed feet to a 

capricious decision by the Designer. 
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 With each successful accounting of advantageous and otherwise anomalous attributes, 

Darwin’s original hypothesis of natural selection gains evidential support. Each of these 

successes weakens the competing hypothesis of independent design, which accumulates a 

growing burden of independent and capricious design decisions. The accumulation of these 

successes amplifies the evidential advantage of natural selection. It is moved from plausible 

speculation to a well-supported proposition, while its competitor, independent creation, 

languishes.  

5.2 Lyell’s Principles of Geology 

 Uniformitarian geology asserts that present day geological features were produced slowly 

by processes still acting in the present. Lyell’s Principles of Geology made the case for it. He 

was in a polemical dispute with competing catastrophist theories. They accounted for these same 

features by processes not presently acting and often of great violence. The initial advantage of 

the catastrophists was that it is natural to imagine great mountains and deep valleys as created by 

sudden, momentous events. Lyell chips away at this advantage by showing how one geological 

feature after another can arise from presently acting processes. To use an example promoted by 

Lyell, a competing account of fossils is that they arise in stone from a “plastic virtue, or some 

other mysterious agency.” Lyell, however, accounted for them in terms of the fossilization of 

ordinary living things. 

 The evidential dynamic is similar to that of Darwin’s case for natural selection.55 With 

each uniformitarian success, Lyell’s uniformitarian hypothesis is strengthened and its evidential 

advantage amplified, while support for special and even mysterious catastrophist processes is 

weakened.  

5.3 Thomson’s Cathode Rays 

 J. J. Thomson’s 1896 paper “Cathode Rays” is celebrated as the paper that establishes 

that cathode rays consist of negatively charged particles, soon to be known as “electrons.” 

Thomson was, at this time, embroiled in a debate with Philipp Lenard over the nature of these 

cathode rays. Thomson advocated for a particle account. Lenard defended the competing view 

that they are radiative, which then meant that they were waves propagating in the ether. Lenard 

had argued against a matter theory of cathode rays akin to Thomson’s, by noting that the rays 

 
55 That is not surprising since Lyell’s work was an inspiration for Darwin. 
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persist even when the cathode ray tubes are completely evacuated. That is, there is no matter in 

the tubes to comprise the rays. Only ether remains. The rays, he concluded, had to be processes 

in the ether. Thomson’s analysis depended on his experimental results that cathode rays are 

deflected by magnetic and electric fields exactly as if they are charged particles in rapid motion. 

Lenard struggled to accommodate these items of evidence in his ether account. He could only 

speculate that Thomson’s magnetic field had somehow disturbed the ether so that the rays would 

bend. This vagueness further weakened his retreating theory. 

 Thomson pressed his advantage with a coup de grace. Waves in the ether bend because 

their velocity varies from place to place. This is how light is refracted by media of differing 

optical density. A uniform magnetic field would disturb the ether in the same way in every place. 

Thus elementary wave optics precludes it bending cathode rays. However uniform magnetic 

fields do bend the rays. Thus the evidence that gave strong support to Thomson’s particle theory 

is the same evidence that undid Lenard’s ether wave theory. 

 The evidential advantage of Thomson’s hypothesis is amplified by its accommodation of 

further evidence. For example, a metal vessel catching cathode rays becomes negatively charged, 

as one would expect if the rays are streams of negatively charged particles. An ether wave 

theorist might seek to dismiss this as an accidental artifact of the experimental arrangement. That 

escape ceases to be plausible once the charged particle hypothesis already has an evidential 

advantage. 

5.4 Einstein and the Anomalous Motion of Mercury 

 In November 1915, an exhausted Einstein was putting the finishing touches to his general 

theory of relativity. In that month he found to his great joy that his new theory accounted exactly 

for a long-standing anomaly in the orbit of Mercury that had, so far, resisted explanation. His 

theory’s success with Mercury was immediately recognized as an evidential triumph. The history 

does not follow the pattern of one theory gaining a slight evidential edge, which is then 

amplified. For the accounts competing with Einstein’s theory had all been discredited by the time 

of Einstein’s completion of general relativity. However, if we consider the logical relations 

among the competing theories, independently of their order of emergence historically, we see the 

same pattern of competition and amplification of slight evidential advantages. 

 The natural competitor to Einstein’s theory is that the anomalous motion of Mercury 

arises from gravitational effects fully within Newtonian theory. It results from the perturbative 



 124 

effects of further, unrecognized matter. The “further matter” hypothesis has an initial advantage. 

For it had become routine for astronomical anomalies to be resolved by the identification of 

further matter. For example, irregularities in the orbit of Uranus could be accounted for as due to 

the mass of a more distant, unrecognized planet. That led to the discovery of the planet Neptune. 

General relativity, however, is an exotic theory of extraordinary complexity, mathematically. 

That it happens to return precisely the anomalous motion of Mercury is interesting. But it is 

hardly decisive evidence for the theory when standard Newtonian theory has a proven track 

record of accommodating just such anomalies by prosaic means. 

 However, these prosaic means falter. The various formulations of the favored, further 

matter hypothesis successively fail, when evidence capable of separating the competing 

formulations is accommodated. If the further matter is located in a planet, “Vulcan,” its position 

was calculable; but no planet was observed there. Further possibilities locate the matter in a 

slightly flattened sun; or in a dispersed cloud of matter surrounding the sun that produces the 

zodiacal light. Neither proved viable. With each failure of the further matter hypothesis, the 

fortunes of Einstein’s theory rises. Another possibility was an adjustment to the exponent in 

Newton’s inverse square law of gravity. While that exponent can be adjusted to accommodate 

the anomalous motion of Mercury, it fails to fit well with the motions of the remaining planets. 

Einstein’s theory, however, has no adjustable parameters. It could not accommodate any other 

motion of Mercury. Seen against this accumulation of failures of competitors, Einstein’s theory 

rises as the only viable alternative. 

5.5 Big Bang and Steady State Cosmology 

 In the mid twentieth century, the prominent decision for cosmology was between the big 

bang and steady state theories. Later textbook accounts point to Penzias and Wilson’s 1965 

announcement of their discovery of cosmic background radiation. It was, they say, the 

observational fact that confirmed the big bang theory and refuted the steady state theory. We are 

led to image the competition as ending abruptly. 

 That is not what happened. There was no immediate decision favoring big bang 

cosmology. It did gain a small advantage since the big bang cosmologists of the time—notably 

Dicke’s group in Princeton—had predicted something like it. However, the big bang 

cosmologists of the 1960s were reluctant to claim a definitive victory in print and with good 
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reason. For the import of the evidence was still equivocal. Rather it took roughly three decades 

for the decision between the two to be definitive.  

 Three developments were needed during these decades. First, considerably more 

observational work was needed. We now report Penzias and Wilson as observing thermal 

radiation of a cosmic origin of 2.7K. However, to affirm that a radiation field is thermal requires 

measurements across the spectrum. Penzias and Wilson had only measured one wavelength, 

7.4cm. Many more measurements were needed and were undertaken in the decades following. 

The incontrovertible evidence of a thermal spectrum was provided by NASA’s COBE satellite of 

1989. 

 Second, big bang cosmology needed to establish that it did indeed predict such thermal 

radiation. This required the development of precise cosmological models. In them the radiation 

we now measure is the remnant of radiation in a hot early universe that decoupled from matter 

when the cosmic fireball had cooled to 3000K. That decoupled radiation is cooled to 2.7K by the 

expansion of the universe. Many components of this big bang account have to work correctly. 

The most troublesome is establishing that the early cosmic fireball is an equilibrium thermal 

system to which a temperature can be assigned in the first place. One could simply assume 

thermal equilibrium from the outset. It would be better, however, if cosmic processes in the early 

universe would produce this equilibrium. That was precluded in the cosmological models 

popular in the 1960s and 1970s by the so-called “horizon problem.” It showed that matter in 

those models was expanding so fast that it could not interact enough to achieve thermal 

equilibrium. The standard solution has been to invoke an early inflationary phase in the 

expansion of the universe. 

 The ready acceptance of this inflationary account illustrates the amplification of earlier 

successes. Until a big bang cosmology has some strong support, the inflationary addition would 

be merely a speculative supplement to an already speculative theory. Once the big bang 

dynamics is supported, however, an inflationary phase is easy to accept as its natural 

completion.56 

 
56 However doubts linger over whether a period of inflation really does solve the horizon 

problem; or whether it merely relocates it into the need to fine tune initial conditions in a still 

earlier phase of cosmic expansion. 
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 Third, it needed to be shown that steady state cosmology could not accommodate the 

cosmic background radiation. This was by no means obvious, for thermal radiation can be 

acquired cheaply by theorists. All they need is some system to come to thermal equilibrium. 

Steady state theorists sought this through various avenues. One was that there was a slight 

opacity to space itself. Radiation created by the continuous creation process of steady state 

cosmology would be absorbed and reradiated through this slight opacity, thereby arriving at a 

thermal equilibrium. This proposal failed since the amount of opacity needed would be too great 

to allow observation of distant radio sources. Other efforts by steady state theorists, such as iron 

whiskers to thermalize starlight, also failed. This illustrates how an evidentially disadvantaged 

theory is further weakened by the need for successively more far-fetched repairs. 

 These three developments led to the decision in favor of big bang cosmology. That 

decision grew slowly. Big bang cosmology enjoyed only a slight advantage at the outset. It grew 

steadily as observational results and theoretical developments favored it, while efforts by steady 

state theorists to accommodate the same evidence faltered. 

5.6 Arp and Bahcall on the Origin of Galactic Red Shifts 

 While the publicly more visible debate between big bang and steady state cosmologies 

proceeded, a narrower, less visible debate unfolded amongst astrophysicists and astronomers on 

the observational foundations of these cosmologies. Both big bang and steady state cosmologies 

assumed an expansion of the universe. Its evidential support lay in the finding by astronomers, 

starting most prominently with Hubble in 1929, that the galaxies are receding from our galaxy 

with a velocity that is, on average, increasing linearly with distance from our galaxy. (Details of 

Hubble’s 1929 analysis is the subject of Chapter 7, “The Recession of the Nebulae.”) An 

inference to a distance-dependent velocity of recession proceeded from the observation that light 

from the galaxies is uniformly shifted to the red end of the spectrum, with the shift increasing 

linearly with distance. This red shift was interpreted as deriving from a velocity of recession.  

 That the red shift in a galaxy’s light was due to its velocity of recession was disputed 

energetically by Halton Arp, a well-established astronomer. His case against this association 

grew in the course of the 1960s and was regarded as sufficiently serious to merit a direct 

confrontation at the meeting of the American Association for the Advancement of Science on 

December 30, 1972, in Washington DC. There Halton Arp faced John Bahcall, an astronomer at 

the Institute for Advanced Study in Princeton, who was to defend the standard view. 
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 We need not here rehearse the details of the debate. I have recounted them elsewhere in 

Norton (ms). The reader is referred to this source for elaborations. What matters for our purposes 

here is that the confrontation of Arp and Bahcall provides another illustration of the unstable 

dynamics of competition among theories. Is the red shift of light from galaxies due to their 

motion of recession, as Bahcall affirmed? Or is due to some other source, as Arp argued. Each 

laid out their cases. 

 Bahcall based his case on the evidence, available in multiple forms, that the red shift of 

light from the galaxies varies roughly linearly with the distance to the galaxies. Establishing that 

linear dependence was his major concern. The connection to a velocity of recession was 

provided by the then favored, expanding universe cosmologies: they all required a linear relation 

between the velocity of recession of a galaxy in our vicinity and its distance from us. 

 Arp’s case depended on his own very extensive observations of galaxies. He had amassed 

an extensive collection of cases of galaxies that appeared to be physically connected, but had 

very different red shifts. A physical connection would mean that the associated galaxies must be 

at roughly the same distance from us. Their marked difference in red shift could not then derive 

from a linear dependence of red shift on distance. 

 Each of the two views in competition was then sufficiently strong to merit serious 

examination at the 1972 AAAS meeting. However, the competition was unstable. Bahcall’s view 

was already the recognized view. As his position strengthened subsequently, Arp’s dissenting 

view was correspondingly weakened. 

 We can trace this instability in the competition in three areas. First, new astronomical 

data continued to conform with Bahcall’s view. Arp’s view, however, was weakened by 

investigations that indicated that the physical associations so central to Arp’s case were merely 

fortuitous alignments in our sky of objects separated by great distances. 

 Second was the connection to cosmology. Bahcall’s view conformed with then standard 

cosmologies. If one applies general relativity to the sorts of matter distributions observed by the 

astronomers, a dynamic cosmology ensues. It may be contracting or expanding. However, a 

static universe, such as Einstein had originally proposed in 1917 and Bahcall needed, was 

unstable and thus precluded. 

 Just as Bahcall’s view was supported by then standard cosmology, his view of the linear 

dependence of red shift and distance provided support for the cosmology. It was the 
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observational basis of the expansion of the universe. The outcome is a magnification of Bahcall’s 

evidential advantage. His evidential success strengthened support for expanding universe 

cosmologies; and their strengthened support then further enhanced Bahcall’s position. 

 Arp’s view, however, found no support in existing cosmology. If the red shift was not 

derived from a velocity of recession, then the ensuing cosmology was one of an overall static 

mass distribution that lay outside standard cosmology. To preserve the viability of his critique, 

Arp needed to presume a static cosmology for which there was no real independent support. The 

evidential processes that were enhancing support for Bahcall’s view were simultaneously 

weakening support for Arp’s. 

 The third area in which the instability manifested was in the physical basis of the red 

shift. Bahcall’s standard view could employ a simple one, ready to hand. The velocity of 

recession of galaxies in an expanding universe cosmology led directly to it. With that source 

precluded, Arp had no correspondingly established physics from which to derive the red shifts. 

He resorted briefly to speculation, such as “tired light.” 

 Quasars proved to be a decisive test. They are luminous bodies with very great red shifts. 

On the standard view, they must be very distant from us and thus have enormous intrinsic 

luminosity. Initially, the standard view found it hard to explain the enormous energies it 

supposed for these bodies. Arp’s alternative was that they are merely nearby objects, highly red 

shifted, but not of such great intrinsic luminosity. Quasars were subsequently identified as the 

enormously energetic nuclei of a galaxy, likely holding a supermassive blackhole. Once again, 

the evidential success of Bahcall’s standard view was magnified. The view supported the 

immense energy and distance of quasars; and the establishing of a physical basis for their 

immense energy then enhanced support for Bahcall’s standard view. Arp, however, was unable 

to provide a cogent physical basis for the high red shift of quasars, if they are supposed to be 

nearby objects. 

 As Bahcall’s standard view went from strength to strength, Arp’s dissident view faltered 

and was dropped from serious consideration.  

5.7 More 

 The chapter of The Material Theory of Induction recounts two more competitions: 

oxygen versus phlogiston theory in the late eighteenth century and corpuscular versus wave 
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theories of light in the nineteenth century. The details of their competition are too involved to 

admit compact summaries. We can extract one result, however. 

 At the crudest level, oxygen theory prevailed over phlogiston when Lavoisier’s 

experiments required that oxygen must be attributed a conserved weight. Phlogiston theory 

faltered since these same experiments required that phlogiston be attributed a dubious negative 

weight, levity. Similarly, a major factor in the decision over theories of light came with Fizeau 

and Foucault’s measurements of the speed of light in air and water. The corpuscular theory 

required the speed to increase in a denser medium, whereas the wave theory required it to 

decrease. The experiments found a decrease in the speed. 

 What we see here is that theories in competition are responsible to the same experiments 

and that careful exploration can find experiments that only one of the theories can accommodate. 

While we may doubt that just one experiment can be decisive, that responsibility still plays a 

major role in the dynamics that leads one theory to prevail over its competitors. 

6. Unconceived Alternatives 

 The instability illustrated in these examples arises in the competition between two 

theories. Is that enough to make the case? Might we worry that there is a third, fourth or fifth, as 

yet unimagined or unarticulated theory lurking in the wings, such that evidence cannot separate 

one of them from our favorite theory? The possibility of such further theories has been defended 

notably by Stanford (2006) as “unconceived alternatives.” 

 They do not provide the sort of threat one might imagine. They open the possibility that 

our current best theory might not be the one that is truly best supported by the evidence. That is 

not the question here. The present question is whether the best supported theory is unique. That 

can be the case even when the theory we happen to favor most strongly is not the best supported. 

 For unconceived alternatives to challenge uniqueness, these unconceived alternatives 

must provide us a challenger theory to our favored theory that is equally well supported, 

assuming that our favored theory is the best supported on the evidence; or it must provide us 

with two unconceived alternatives that are equally well supported and still better supported than 

our favored theory. 

 The analysis already given indicates that such an achievement lies beyond what 

unconceived alternatives can supply. As long as these alternatives theories differ in some factual 
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claim, their difference must be open to adjudication by observation and experiment, even if that 

adjudication may not be practical immediately. For otherwise their differences lie outside 

empirical science.57 

7. The Underdetermination Conjecture 

 If one seeks literature to contradict this chapter’s claim of uniqueness, the natural 

reference is the so-called “underdetermination thesis.” 58  Loosely speaking, the thesis asserts that 

no body of evidence, no matter how extensive, can pick out a theory uniquely as the one best 

supported inductively. The thesis is then used to advance the tendentious claim that our 

commitment to any theory, even those of the most mature sciences, always relies on the addition 

of other factors, possibly social, psychological, pragmatic or conspiratorial. The thesis is 

mislabeled as a “thesis,” in so far as theses are commonly taken to be propositions for which we 

have good evidence. It is, as I will now argue, merely a conjecture that has never secured proper 

support. It can be stated for present purposes as: 

Underdetermination  Conjecture: any body of empirical evidence, no matter how 

extensive, will provide inductive support for multiple, mutually exclusive sets of 

propositions such that no one set is distinguished as enjoying the strongest support. 

This conjecture should be distinguished from the weak, de facto claim that at some definite 

moment, the extant evidence for a theory may fail to determine it. This circumstance arises 

commonly in newly emerging sciences. If the science matures, it is merely a transient 

shortcoming. Otherwise, it is not. 

 The full conjecture is remarkably strong in its pessimism. It applies to all bodies of 

evidence and theory. Thus it is astonishing that the conjecture has never advanced beyond what 

for many is merely a comfortable hunch. For them, the conjecture seems plausible and welcome. 

If one is inclined to it, easy but inadequate examples may be enough motivation. The evidence 

may tell us of a correlation between children who watch cartoons and children who behave 

 
57 The closest that the literature can provide for these theories, balanced perfectly evidentially, 

arise as the observationally equivalent theories used to support the underdetermination thesis. In 

Section 7 below, I explain why these examples fail in their purpose. 
58 For an introduction, see Stanford (2017). 
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violently in the playground.59 That evidence leaves undetermined which causes which, or if there 

is a common cause for both, or if the correlation itself is mere happenstance. The example 

merely illustrates de facto underdetermination. Randomized control trials can decide among the 

possibilities. 

 Once it has been mentioned enough in the literature, the plausibility of the conjecture for 

some makes it easy to lose sight of the fact that there is no cogent demonstration of the 

conjecture.  The arguments offered in favor of the underdetermination conjecture have been 

subject to repeated analysis and have failed scrutiny. The arguments can be shown to neglect 

much of the existing work in inductive inference and also to make dubious claims concerning 

observationally equivalent theories. See Laudan and Leplin (1991) and Norton (2008) for an 

exploration of these failures, which are too extensive to be developed in all details here. 

 The simplest and most common demonstration of the conjecture rests on an inadequate 

account of inductive inference. A single body of empirical evidence can be entailed by many 

different sets of hypotheses, with suitable boundary conditions and auxiliary assumptions. With a 

naïve hypothetico-deductive account of confirmation, it would then follow that they are all 

equally well supported inductively. This naïve account has long been subjected to criticism from 

many perspectives. Consider the standard geological and evolutionary account of the origin of 

fossils. Compare it with a revisionary theory that says that the earth and its rock strata were all 

created five minutes ago, complete with an intact fossil record. Since both entail the same 

evidence, we would have to say both are equally well supported. The standard response in the 

literature is sketched in Section 5 “Hypothetical Induction” in Chapter 1 above. It is that bare 

hypothetico-deductive confirmation must be supplemented by further conditions to enable 

discrimination in such cases. We may be told, for example, to assign greater support to the more 

explanatory hypothesis, or to the simpler one. 

 Within the material theory of induction, merely entailing the evidence does not by itself 

confer inductive support on a hypothesis or theory. The entailment must happen in the right way: 

each of the parts of the propositions in the theory must itself be supported inductively in accord 

with the requirements of the material theory. The supposition that the creation occurred exactly 

five minutes ago, as opposed to ten or fifteen minutes or a millennium ago, must be supported. 

 
59 This example is from the opening paragraph of Stanford (2017). 
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The revisionary theory can provide no discriminating evidence. In comparison, standard geology 

does provide extensive evidence for its chronology of the formation of the earth. 

 The transition from hypotheses that merely entail the evidence to an evidentially well-

supported body of propositions is difficult and can take a long time. We see in Chapter 12, “The 

Use of Hypotheses in Determining Distances in Our Planetary System,” that, in spite of sustained 

and ingenious efforts, a system of orbital sizes for the planets of our solar system was not firmly 

established until the eighteenth and nineteenth centuries. Indeed, at the most general level, the 

nature of inductive inference is sufficiently irregular, according to the material theory of 

induction, that there can be no sufficiently expansive framework that is sufficiently precise as to 

admit a cogent demonstration of the conjecture. 

 Subsequent to the drafting of this chapter, Sam Mitchell sent me his Mitchell (2020). It 

also seeks to undo the skepticism concerning the reach of evidence associated with Duhem and 

Quine. His concern is specifically to respond to the claim that the import of evidence is always 

holistic. We cannot be assured that contradicting evidence refutes any specific hypothesis, the 

inductive pessimists insist. They suppose that any such judgment requires auxiliary hypotheses 

that may be the real culprit in the contradiction. Mitchell disagrees. His analysis agrees on many 

points with the one developed here and is most welcome. 

8. Observationally Equivalent Theories 

 Theories that have exactly the same observable consequences are frequently displayed in 

the literature on the underdetermination thesis as “observationally equivalent theories” or 

“empirically equivalent theories.”60 They serve to illustrate the underdetermination thesis since, 

it is asserted erroneously, no evidence can favor one over the other; and they are used in an 

attempt to make the case for the underdetermination thesis.  

 Do these observationally equivalent theories pose a threat to the uniqueness urged in this 

chapter? Here I will recount briefly why they do not. I will use a simple example of a pair of 

 
60 Here I resist this latter expression for its vagueness. If two theories have identical 

observational consequences, it does not follow that they are supported equally by observations. 

That is, one can still be favored empirically over the other, as was argued in the preceding 

section. 
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observationally equivalent theories. For a more expansive inventory of examples and for more 

detailed, critical analysis of the underdetermination thesis along the lines below, see Norton 

(2008). 

 In the early seventeenth century, purely astronomical observations of the relative 

positions of the sun, moon and planets could not discriminate two systems. The first was the 

familiar Copernican, heliocentric system. The second was the Tychonic, geocentric system. The 

observational equivalence followed assuredly from the simple fact that the Tychonic system 

could be generated merely by relocating the point of rest in the Copernican system from the sun 

to the earth, but otherwise preserving all relative motions. 

 This example and the others like it fail to sustain any interesting conclusions about the 

limited reach of evidence for two reasons. 

 First, if the competing theories differ in something factual, then the empirical character of 

science requires that the difference should manifest in something observable. The Copernican 

and Tychonic systems differ in which of the earth or sun is at rest. Purely astronomical facts 

about the relative positions of the sun, moon, earth and planets cannot decide, for they provide 

no notion of rest. They can be separated however if we ask after the physical forces acting 

among the bodies of the solar system. Newton’s later physics distinguished bodies moving 

inertially from those that accelerate. Inertial motion becomes the Newtonian surrogate for rest. 

At most one of the earth and sun can be in inertial motion. When we seek the gravitational forces 

acting between the bodies of the solar system, that body must be the sun and not the earth. We 

decide in favor of the Copernican system.61 

 This decision was possible because subsequent investigations in a broader domain, that of 

gravitational physics, provided the further evidence needed to separate the systems. This 

 
61 As an exercise, one might like to contemplate whether some distribution of masses might 

enable the Tychonic system to conform with Newtonian gravitation theory. One would require, 

for example, that the earth must be very much more massive than the sun, so that the sun orbits 

the earth and not vice versa. We can then no longer account for the motion of Venus, whose 

maximum elongation from the sun is between 45 and 47 degrees. It would be pulled out of its 

orbit around the sun by the far greater attraction of the earth; or, fail that, display significant 

perturbations due to the earth’s attraction. 
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possibility remains for every case of observationally equivalent theories. In so far as they differ 

on anything factual and they lie within empirical science, we cannot preclude new evidence 

separating them. Indeed, we should expect determined investigators to find such evidence.62 

Should we become convinced that no future investigation could separate them, we invite the 

second failing of observationally equivalent theories. 

 Second, if we set aside the possibility of new evidence, there is a second failing of all the 

cases of observationally equivalent theories in the literature. For, if the case is to be presented in 

the literature, it must be possible to demonstrate in the confines of tractable publication that the 

two theories really are observationally equivalent. For example, there is a simple recipe for 

converting the Copernican system into the Tychonic system. We take the motions of the 

Copernican system and simply subtract vectorially from them the motion of the earth. The result 

is a system of motions with the earth at rest, but agreeing with the Copernican system in all 

relative motions. 

 When such a translation is available, we cannot preclude the possibility that the two 

theories do not differ in anything factual. Rather they are merely different presentations of the 

same theory. If we restrict considerations only to the relative positions of bodies in the solar 

system, this is the case for the Copernican and Tychonic systems. They differ only in the 

designation of which body is at rest. But that designation lies outside the body of facts pertinent 

to our restricted domain. It is, as far as they are concerned, merely an empty stipulation. 

 This possibility threatens all cases of observationally equivalent theories. That they can 

be interconverted opens the possibility that they are merely the same theory. They differ only in 

their descriptions and in superfluous posits of no factual import. It is possible and sometimes 

enticing to mistake these posits as having factual import, even though they manifest in nothing 

observable. The most familiar example in real science concerns a suitably refined version of 

Lorentz’s ether-based electrodynamics and the relativistic electrodynamics Einstein introduced 

in 1905 with his special theory of relativity. The two are observationally equivalent and, as far as 

experiment was concerned in the first decade of the twentieth century, they were treated as the 

 
62 Here the historical sciences may provide an exception. The totality of evidence recoverable 

from some archaeological site, for example, may leave questions about the site unanswered. The 

failure is not due to a lack of power of inductive inference but merely the paucity of evidence. 
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same theory. However, Lorentz insisted that the ether factually has a state of rest, contrary to 

Einstein’s principle of relativity. The difficulty was that nothing observable—no experiment—

could determine just which of the infinity of inertial states of motion was that ether state of rest. 

The mainstream of physics soon came to discount the ether state of rest as fictional. 

9. Formal Accounts 

 Since the material theory of induction can meet the challenge, it is well to ask if formal 

accounts of inductive inference can also meet it. They do not do well with it and for reasons 

associated directly with their formal character. 

 First, as has been argued at some length in The Material Theory of Induction, the rules of 

various formal systems are poorly articulated, so that an ambiguity in their import is inevitable. 

Consider, for example, the use of arguments by analogy to infer the properties of light. Light is 

analogous to sound in that both have a wave character. The pitch of sound is analogous to the 

color of light. However, sound needs a medium in which to propagate, the air, and this air would 

be analogous to the discredited nineteenth century luminiferous ether. This difficulty does not 

arise in a different analogy. In it, light is taken as analogous to rapidly moving corpuscles. Then 

light, like corpuscles, can propagate in vacuo without the support of a medium. Yet the 

corpuscles of the nineteenth century and earlier theories have no wavelike properties. Just how 

are we to weigh the conflicting successes and failures of these different analogies? The general 

rules in the literature are too vague and hedged to give us a definite answer.63 

 Second, there are multiple formal schemes for inductive inference and no clear guides as 

to which to use in any application. Take for example argument by analogy and inference to the 

best explanation. Neither of the analogies of light to sound and light to rapidly moving 

corpuscles recovers the phenomenon of light polarization. Sound waves are longitudinal, 

whereas polarization derives from the transverse character of light waves. That is, neither of the 

familiar analogies provides an explanation of polarization. Rather the best explanation of 

polarization is that light is disanalogous to both sound and corpuscles.64 

 
63 For more, see Chapter 2 above and Chapter 4 “Analogy” in The Material Theory of Induction. 
64 Might we try the analogy to waves propagating along a flexible rope since they are waves of 

transverse displacement. This analogy fails to recover the behavior of polarized light in 
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 Which formal scheme should be applied where? In particular cases, we may use prudence 

to decide and have things work out tolerably well. However, we do that in the absence of 

unambiguous metalogical rules. 

  Finally the Bayesians are confident that they have a solution. Their scheme, they believe, 

embraces and explains all others and can recover uniqueness through various limit theorems. 

This confidence can only be sustained as long they ignore the enduring and insoluble problem of 

the priors. The Bayesian system is not and cannot be self-contained. The selection of prior 

probabilities must be made outside the normal processes of conditionalization by Bayes’ 

theorem. Yet these priors can be so selected as to protect almost any bias. The simplest 

illustration arises when we have two theories T1 and T2 that both deductively entail the same 

evidence E. Then we have equal likelihoods: P(E| T1) = P(E| T2) = 1. An application of Bayes’ 

theorem then tells us that 

P(T1|E) / P(T2|E) = P(T1) / P(T2) 

That is, our comparative assessment of the relative support afforded the two theories by the 

evidence, the ratio of posterior probabilities P(T1|E) / P(T2|E), is determined entirely by 

whatever external judgments led us to the ratio of prior probabilities P(T1) / P(T2). Bayesians 

face an unwelcome dilemma. Either set these priors arbitrarily so that the final judgment is 

arbitrary or seek guidance from other accounts of inductive inference. This problem is one that 

troubles all formal calculi of inductive inference. Or so I have argued in Chapter 12 “No Place to 

Stand: The Incompleteness of All Calculi of Inductive Inference,” in The Material Theory of 

Induction. None can be self-contained but can only return non-trivial results in so far as non-

trivial inductive content is introduced from outside the scope of the calculus. 

 It is fortunate that scientists do not try to conform their judgments of inductive support 

algorithmically to these conflicting and ambiguous formal schemes, for that would induce 

inductive anarchy. 

 
polarizing filters. The best explanation of the behavior is that, when it comes to polarizing filters, 

light is disanalogous to waves on a flexible rope. 
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10. Conclusion 

 This chapter has sought to establish that the threat of multiple equally well supported 

systems of inductive inference has been parried. The escape derives from the empirical character 

of science. Competing systems of inductive logic derive their competing factual warrants from 

different theories within science. When these warranting facts differ, their differences must 

manifest in something accessible to possible observation, else they lie outside empirical science. 

When the pertinent observations are secured, they will strengthen one of the theories while at the 

same time weakening its competitors. 

 This escape is enhanced by the close integration of the facts of a science and its relations 

of inductive support, asserted by the material theory of induction. The integration promotes a 

positive feedback dynamic that accelerates the strengthening of one system of relations of 

support at the expense of its competitors. As more of the factual claims of a science are sustained 

by the evidence, the growing body of supported fact authorizes stronger inductive inferences 

within the domain of the science. That in turn leads to inductive support for still further facts. As 

one theory ascends, even if haltingly, its competitors will fall. When sufficient evidence is 

available, the accumulation of these processes will lead to the dominance of one science and its 

associated relations of inductive support, while its competitors are eliminated. The uniqueness 

and inductive solidity of mature sciences in their domains is expected and explained. 
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Coherentism and the Material Theory of Induction 

1. Introduction 

 On the large scale, relations of inductive support within the material theory of induction 

are non-hierarchical and admit circles. In this aspect, these relations are similar to the relations of 

justification within coherentist theories of epistemic justification in epistemology. This was, to 

me, a welcome coincidence and offered the possibility that the coherentist literature would be 

useful in addressing outstanding issues in the large-scale structure of material relations of 

inductive support. Are circularities in the overall structure troublesome? Are they vicious? Do 

they leave inductive structures underdetermined? These questions do have satisfactory answers 

within the material theory. They have been developed in the two preceding chapters. In 

developing these solutions, it became apparent that the coherentist literature was consistently 

unhelpful in solving these problems. Further investigation showed that this was no mere 

oversight by coherentist philosophers. Rather the framework of coherentism in epistemology is 

sufficiently different from that of the material theory of induction that its problems are only 

similar to those of the material theory, but not identical. Moreover, the resources accessible to 

coherentist analysis prove to be weaker than those accessible in the material theory, so that 

coherentists can at best provide weaker solutions to the problems. 

 This chapter will review the similarities and dissimilarities between the two approaches 

with the purpose of substantiating the appraisal just given. Section 2 below will recall the basic 

claims of coherentist theories of justification and Section 3 will note the aspects in which they 

are similar to the large-scale structure of relations of inductive support of the material theory. 

Section 4 will catalog the many dissimilarities. Coherentism is holistic, whereas the material 

theory is local (Section 4.1). Coherentism takes global coherence as its basic relation, where the 

material theory takes a local relation of inductive support as its basic relation (Section 4.2). 

Coherentism defines itself by its opposition to foundationalism in epistemology.  As a result, it 

faces significant difficulties in accommodating the role of the world in its justifications. The 

material theory has no corresponding problem. (Section 4.3) Where the material theory is a 

theory of inductive logic independent of human cognition, coherentism takes beliefs as the relata 
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for relations of justification and must in addition give an account of how these relations appear in 

an agent’s cognition. (Section 4.4). Finally, in a lesser concern, the common exemplars of beliefs 

for coherentism are prosaic beliefs in ordinary life. The material theory is designed to be an 

account of evidential relations in the sciences. The result is that coherentists identify different 

problems from material theorists as pressing and emphasize different aspects of the relations of 

support. (Section 4.5) 

 Section 5 reviews the common problems facing both coherentism and the material 

analysis: Are the circularities in their structures harmful? Do these structures allow multiple, 

equally admissible systems? How does the world inform the relations of support and 

justification? Are the structure’s justifications indicative of truth? In their efforts to answer to 

these problems, it is argued that coherentism has fared poorly, where the material theory has not. 

 Sections 6 reviews the recent Bayesian literature on coherentism. The primary goal of 

that literature is to vindicate or disprove the idea that overall coherence leads to truth-conducive 

justification. That means that it proceeds from the holism of coherentism. Since the material 

analysis of the large-scale structure of inductive support is not holistic, the Bayesian analyses are 

tangential to it. Section 7 arrives at a negative appraisal of the entire Bayesian project of 

examining coherentism. It is misplaced, since the notion of coherence is not itself a probabilistic 

notion. The probabilistic formalization is premature since the notion of coherence remains poorly 

articulated. And finally, it follows from the material theory of induction that a probabilistic 

framework is not general enough to provide any universally applicable results on coherence. 

Results derived using the false presumption of universal applicability are ill-founded. 

2. Coherentist Theories of Epistemic Justification 

 Coherentist theories of justification came to prominence in the later part of the twentieth 

century through the work of several philosophers, most notably Keith Lehrer (1974, 1990, 2000) 

and Laurence BonJour (1985). The literature seems to have lost its momentum in the early 

2000s. Presumably part of the reason was that BonJour (1999) abandoned the approach after 
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recognizing the gravity of the problems facing it.65 The coherentist approach was subsequently 

revived by Bayesians, notably Bovens and Hartmann (2003) and Olsson (2005). These Bayesian 

accounts proceed from the assumption that a coherentist approach is already at hand. They seek 

to express and assess the core notion of coherence in probabilistic terms. Often, their results 

contradict coherentism. My impression is that BonJour’s (1985), The Structure of Empirical 

Knowledge, provides the best articulated version of coherentism and in a form that can be 

connected most readily with the concerns of the material theory of induction. Hence, I will draw 

on his treatment. 

 The coherentist theories of justification (here, henceforth just “coherentism”) should be 

distinguished from a coherentist theory of truth, such as is articulated in Rescher (1973). The 

latter gives an account of what it is for a proposition to be true,66 whereas the coherentist theories 

of justification seek only the grounds under which an agent is justified in holding a belief.  

 The core claim of coherentism has been stable over the decades. Lehrer (1974, p. 154) 

gives it as 

… justification is a reciprocal relation of coherence among beliefs belonging to a 

system. According to a coherence theory, a belief is completely justified if and only 

if it coheres with a system of beliefs. 

More recently, Olsson (2017) in his article in the Stanford Encyclopedia of Philosophy gives it 

as: 

According to the coherence theory of justification, also known as coherentism, a 

belief or set of beliefs is justified, or justifiably held, just in case the belief coheres 

with a set of beliefs, the set forms a coherent system or some variation on these 

themes. 

The stipulation (Lehrer) “if and only if” and (Olsson) “just in case” is strong and will prove 

troublesome. It reflects the conception of coherentism as the alternative to foundationalism. 

 
65 Murphy (2020, §6) “With the exception of work being done by Bayesians, few epistemologists 

are presently working on coherentism.” BonJour (1999, p. 139) “… coherentism is pretty 

obviously untenable, indeed hopeless…” 
66 Bonjour (1985, p.88, his emphasis): They “hold that truth is to be simply identified with 

coherence.” 
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In the foundationalist conception, beliefs are justified inferentially by other beliefs. A regress 

ensues as we trace back along the chains of the justificatory inferences. The regress is halted by 

positing basic beliefs that terminate the chains, since they are not themselves justified 

inferentially. The obvious candidate for these basic beliefs are those somehow given to us 

directly by experience. This direct connection with experience is what allows us or even compels 

us to accept them. The existence of some form of basic beliefs is the distinctive thesis of 

foundationalists. 

 In opposing foundationalism, coherentists seek to escape the regress argument by 

denying the linearity of relations of justification. Instead of tracing the chains of justification 

back to these anchoring beliefs, coherentists urge that tracing the chains merely takes us on a 

tour of our system of beliefs that will eventually cycle back to our starting point. There is no 

need for terminal beliefs to anchor our chains of justification. All that is needed is that our full 

system of beliefs forms a coherent system. 

3. Similarities 

 It is in the articulation of this last conception that coherentist writing comes closest to 

resembling the description of Chapter 2 here of the large-scale relations of inductive support in 

the material theory of induction. BonJour (1985) introduces the coherentist escape from the 

foundationalist’s regress argument as follows (pp. 91-92, his emphasis): 

According to the envisaged coherence theory, the relation between the various 

particular beliefs is correctly to be conceived, not as one of linear dependence, but 

rather as one of mutual or reciprocal support. There is no ultimate relation of 

epistemic priority among the members of such a system and consequently no basis 

for a true regress. Rather the component beliefs of such a coherent system will 

ideally be so related that each can be justified in terms of the others, with the 

direction of argument on a particular occasion of local justification depending on 

which belief (or set of beliefs) has actually been challenged in that particular 

situation. And hence, a coherence theory will claim, the apparent circle of 

justification is not in fact vicious because it is not genuinely a circle: the 

justification of a particular empirical belief finally depends, not on other particular 
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beliefs as the linear conception of justification would have it, but instead on the 

overall system and its coherence. 

Correspondingly, as we saw in Chapter 2, the material theory of induction introduces a large-

scale structure of relations of inductive support that is non-hierarchical and contains circles of 

dependency of all sizes. 

4. Dissimilarities 

 While the similarities noted in the last section are striking, there are many dissimilarities 

between coherentism and the material theory of induction. They differ on so much that they are 

best understood as distinct theories. This section will review the main differences. 

4.1 Holism versus Localism 

 BonJour (1985, p. 91) distinguishes “local” and “global” levels of justification. The local 

level contains justifications for a belief or small set of them that take the larger belief system for 

granted. The global level concerns the justification of the belief system in its entirety. It is this 

global level, BonJour argues, that has been neglected and becomes the basis of coherentism. He 

had earlier given priority to the global over the local (p. 24): 

According to a holistic view [coherence theory], it is such a system of beliefs which 

is the primary unit of justification; particular beliefs are justified only derivatively, 

by virtue of membership in such a system. 

He then insists on the importance of the global level for any admissible view (p. 91): 

For the sort of coherence theory which will be developed here—and indeed, I 

would argue, for any comprehensive, nonskeptical epistemology—it is the issue of 

justification as it arises at the latter, global, level which is in the final analysis 

decisive for the determination of empirical justification in general. 

More tersely, Bonjour (p.103) avers that “the basic unit of justification for a coherence theory is 

an entire system of beliefs.” 

 The conception is holistic. The justification of a belief derives from its relationship to a 

belief system that is, in its totality, coherent. This large-scale coherence is constitutive for 

justification. 

 This holistic conception brings recalcitrant problems for coherentism. For the strength of 

a belief system is gauged by its coherence at the global level. The obvious and immediate 
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difficulty is that systems can vary in the strength of their coherence in different parts. How are 

these varying strengths to be combined into a single global measure? There are many ways to 

provide synoptic measures of a varying quantity. When the quantities are numerical, we can 

choose among arithmetic means, geometric means, medians, modes and much more. Since we do 

not have a precise measure of coherence, we cannot even begin to ask which is the appropriate 

synoptic assessment. Thus, the strength of the justification of any particular belief in the system 

depends on a univocal judgment of the strength of its coherence, where no such univocal 

judgment is available. The problem is compounded when we seek to decide among competing 

belief systems. We must arrive at judgments of each system’s coherence clear enough to sustain 

univocal comparison.67 This difficulty will return below when we report that Bayesians have 

found it impossible to identify a single probabilistic measure of coherence. 

 The material theory of induction is, by its constitution, a local theory. It inverts BonJour’s 

conception of the global as the primary unit and the local as derivative. That is, materially, the 

basic relation is the inductive support accrued to each proposition by the evidence and 

warranting facts. The totality of all these relations is the large-scale structure. Whatever notion of 

support applies to this structure as a whole is derivative. It results from the combination of the 

local relations of inductive support. Similarly, that there are circular interdependencies is not 

constitutive of inductive support. It is a derivative result recovered only after all the local 

relations of inductive support are combined.  

 Since the material theory does not anchor the support of individual propositions to the 

coherence of the entire system, it escapes the difficulty just sketched for coherentists. The 

inductive support for some proposition is in turn dependent on the inductive support for its 

evidence and warranting fact. We can trace this support back through the support for further 

propositions and may end up touring through much of the pertinent science. The overall strength 

of support for the original proposition derives from the summation of these relations of support. 

These summations can deliver different overall strengths of inductive support for different 

 
67 BonJour (1985, pp. 93-94, his emphasis) concedes this problem: “But the main work of giving 

such an account [of coherence], and in particular one which will provide some relatively clear 

basis for comparative assessments of coherence, has scarcely been begun, despite the long 

history of the concept.” 
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propositions. They do not depend, as a holist would require, on a single measure of the 

coherence of the science as a whole. 

 Thus the material theory accommodates cases of sciences in which coherence is strong in 

some places but not in others. It allows the strength of inductive support for individual 

propositions to reflect these differences, as it should if coherence matters at all. 

 Quantum mechanics is one of our most successful scientific theories. It underpins much 

of modern science, from particle physics, to the physics of condensed matter and 

semiconductors, to modern theories of chemical structure and reactions; and more. However, in 

places it lacks coherence. Most notably, quantum measurement is a recalcitrant unsolved 

problem. There are multiple, competing accounts of it. Their persistence is a clear sign that none 

is correct or, at least, that none is demonstrably so. A second area of difficulty is that quantum 

field theory breaks down at sufficiently high energies. This is revealed by the appearance of 

infinite energies whose presence needs to be controlled by computational techniques such as 

renormalization. 

 These weaknesses reflect a lack of coherence in those parts of quantum theory. They will 

affect some results of quantum theory more than others. These differences will then be reflected 

in differences of inductive support assigned by the material theory. For example, quantum theory 

has met with extraordinary success in accounting for the emission spectra of the elements. 

According to the material theory, the support for this account propagates through much of 

quantum theory. It does so in a way that is insensitive to the vagaries of quantum measurement 

and thus can be very strong. Matters are different with the familiar claim that quantum 

measurement as “collapse of the wave packet” consists in an instantaneous effect that has 

propagations faster than light. The strength of inductive support for this superluminal 

propagation in turn depends on the strength of support for this particular approach to quantum 

measurement. Its status remains unclear and there are competing accounts of quantum 

measurement that do not include this collapse as a physical process. 

  The differences in inductive support for these two propositions is recovered fully from 

summation of the iterated supports. Neither is traced back to a univocal measure of the coherence 

of quantum theory as a whole. 
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4.2 Coherence versus Inductive Support 

 The problems just sketched for coherence theories derive from the supposition that 

coherence is assessed holistically. Those problems are compounded by a lack of a clear 

articulation of the notion of coherence, whether understood holistically or locally. At an intuitive 

level, the idea is simple enough. Coherence is a matter of how well “a body of beliefs ‘hangs 

together’…,” to use BonJour’s (1985, p. 93) expression. Giving a clearer account, however, 

presented BonJour with so many obstacles that he began with a disclaimer that his response is 

“deliberate—though I think, justified—evasion.” (p. 94) What follows (pp. 94-100) is a four 

component “outline” of the notion of coherence. A system of belief is coherent to the extent that 

it is: 

• logically consistent; 

• probabilistically consistent; 

• explanatory; 

• and includes significant conceptual change. 

Logical and probabilistic consistency are enhanced by the extent of inferential relations among 

beliefs. The explanatory strength of the system rises as the extent of the explanatory anomalies 

falls. Finally, the inclusion of significant conceptual change is justified by noting that such 

changes commonly come with scientific advances. 

 The difficulties of this outline are all too clear. Since it depends on four conditions, the 

possibilities for internal conflict are great. For example, the early forms of quantum theory in the 

first decades of the twentieth century were extraordinarily explanatory. That was their appeal. 

However, equally clearly, they were logically inconsistent. 

 The deeper problem is that the articulation of the notion of consistency now depends on 

further theories, most notably of probability and explanation. The presumption is that, elsewhere, 

there are cogent accounts of each.68 That is not so. These are troubled notions. I spent 

considerable effort in The Material Theory of Induction on showing that these notions fail to 

function as routinely expected. There is a default presumption that, whenever we have some sort 

 
68 BonJour (1985, p. 93) writes: “Thus various detailed investigations by philosophers and 

logicians of such topics as explanation, confirmation, probability, and so on, may be reasonably 

taken to provide some of the ingredients for a general account of coherence.” 
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of uncertainty or indefiniteness, then probabilities capture it. Chapters 10-16 were devoted to 

showing that this presumption has no good foundation and leads to mistaken judgments. As to 

explanation, there is no single, universal understanding of the term. Chapters 8-9 argued that 

there is no distinctive notion of explanation that proves able to power inductive support, even in 

the canonical and celebrated examples of inference to the best explanation. 

 BonJour has no stomach for any real defense of his account. “A fully adequate 

explication of coherence,” he admits (1985, p. 93), “is unfortunately not possible within the 

scope of this book (nor, one may well suspect, within the scope of any work of manageable 

length).” Matters have not improved by the time of the writing of BonJour (1999) where he tells 

us that (p. 124) “the precise nature of coherence remains a largely unsolved problem.” 

 Lehrer (1990, 2000) offers a different account of coherence. It is narrower and takes 

explanation as the core notion within what he calls (Ch.5) “The Explanatory Coherence Theory 

of Truth.” The basic definition is (2000, p. 105): 

S is justified in accepting that p if and only if the belief of S that p is consistent with 

that system C of beliefs having a maximum of explanatory coherence among those 

systems of beliefs understood by S, and the belief that p either explains something 

relative to C that is not explained better by anything which contradicts p or the 

belief that p is explained by something relative to C and nothing which contradicts 

it is explained better relative to C. 

Impressive as this definition appears, its content is obscure as long as the core notion of 

explanation invoked in it remains vague. Subsequent discussion of the then current state of 

accounts of explanation prove to be no help in clarifying the notion. Lehrer reviews the 

“immense literature” on the topic and arrives at the sober conclusion (2000, p.106): 

This literature illustrates most clearly the futility of hoping to find an explication of 

explanation to which we can fruitfully appeal in our articulation of the explanatory 

coherence theory. 
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Lehrer (1999) provides a correction to his earlier accounts.69 Using formulations similar to his 

(1990, Ch.6; 2000, Ch. 6), coherence is derived from the notion of an “acceptance system.” He 

writes (p. 247) 

To summarize, my acceptance of p coheres with my evaluation system if and only if 

all objections to my acceptance of p are beaten or neutralized on the basis of my 

evaluation system. 

There is considerable discussion of how this coherence with the evaluation system is to be 

understood. The overall import is not clear, at least to me. Lehrer allows (p. 246), for example, 

that logical inconsistency does not preclude further acceptance. There are repeated allusions to 

what is “reasonable,” while “reasonable” is left as primitive term.70 Curiously, the notion of 

explanation has all but disappeared from the account. 

 Thagard’s (2000) account of coherence as constraint satisfaction is heavily influenced by 

computational perspectives. It is a significant work that deserves more attention than I have 

space here. However, it shares the weakness of other accounts discussed here. It relies on further 

relations whose nature is unclear. The constraints that figure centrally in the account include 

those expressed in terms of explanatory and analogical relations. Their import is translated into 

summable weights that provide an holistic measure of the system’s overall coherence. (See for 

example pp. 7, 38, 43.) Explanation and analogy are commonly invoked in such discussions, 

while their principled nature and relation to inductive support remains obscure, as I have argued 

at some length in The Material Theory of Induction, Ch 4, 8 and 9. 

 In sum, these accounts of coherentism are compromised by a failure to articulate clearly 

the core, global notion of coherence. Their efforts rely on invoking local relations, notably 

probabilistic and explanatory relations, while neglecting to give cogent accounts of them or 

admitting that none are at hand. 

 
69 It is presumably Lehrer (1990), although the second edition Lehrer (2000) has only minor 

changes. 
70 An earlier treatment, Lehrer (1989) based coherence on a notion of “comparative 

reasonableness.” Lehrer (p. 253) suggests that comparative reasonableness could be explicated in 

terms of comparative expected epistemic utility “but no such account, including ones I have 

articulated, strikes me as quite adequate to my purposes.” 
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 The material theory of induction faces no comparable problem. Its core notion is not 

global, but the local relation of inductive support. That notion has been elaborated extensively in 

The Material Theory of Induction. The material theory succeeds just where coherentism fails. 

For the material analysis of probabilistic, explanatory and analogical relations, as they figure in 

evidential support, supercedes the vaguer notions appealed to by BonJour and Lehrer above. 

4.3 Coherentism versus Foundationalism 

 A principal motivation of coherentism is its opposition to foundationalism. The latter, as 

we saw above, asserts that there are certain basic beliefs that are foundational in the sense that 

they do not require further justification for belief. This concept has proven to be the Achilles heel 

of coherentism. It leads directly to what BonJour calls the “input objection” (1985, p. 108) or the 

“isolation objection” (1999, p. 127). It is the obvious problem that one can have entirely fictional 

narratives that exhibit considerable coherence while having nothing to do with the real world. 

Creating such artifices is the trade of writers of fiction. In BonJour’s (1985, p. 108) version, it 

asserts: 

Nothing about any requirement of coherence dictates that a coherent system of 

beliefs need receive any sort of input from the world or be in any way causally 

influenced by the world. … Such a self-enclosed system of beliefs, entirely immune 

from any external influence, cannot constitute empirical knowledge of an 

independent world… 

The difficulty facing coherentists is that they need to allow for input from the world without 

conceding to foundationalists. Chapters 6 and 7 of BonJour (1985) contain a labored, extended 

struggle to allow worldly input to beliefs without being forced to this concession. The result, as 

summarized by Murphy (2020, §5a), is that this input arises through “cognitively spontaneous 

beliefs” that arise non-voluntarily and also an “observation requirement” that stipulates that such 

input is required. 

 This challenge of allowing wordly input without conceding to foundationalists has been a 

defining issue for coherentism. It is, as far as I can see, based on a false dilemma that demands 

that we choose either to be coherentists or foundationalists. Haack (1993) has argued cogently 

that a quite serviceable epistemology arises from a combination of foundationalist and 

coherentist positions. Her “foundherentism” is initially formulated as (p. 19): 

Foundherentism may be approximately characterized thus: 
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(FHl) A subject's experience is relevant to the justification of his empirical 

beliefs, but there need be no privileged class of empirical beliefs justified 

exclusively by the support of experience, independently of the support of other 

beliefs; 

and: 

(FH2) Justification is not exclusively one-directional, but involves pervasive 

relations of mutual support. 

 The material theory of induction is almost entirely indifferent to this issue, which has so 

controlled coherentist thinking. On the local level, the theory proceeds without any need for 

input from the world. The theory can authorize inductive inferences in mathematics.71 When 

treating the large-scale structure of inductive support for a science, the analyses of this volume 

do presume that science is empirical. That is, that the content of the science is to be supported by 

empirically accessible facts of the world. That condition is essential to the argument of Chapter 4 

for the uniqueness of the inductive structures of a mature science. According to it, the decision 

among competing theories will eventually be made empirically, as long as those theories are 

genuinely distinct empirically. 

 This application of the material theory requires only that the overall system of 

propositions in some way gains input from the world in order that the resulting science is 

empirical. The epistemologies presently under discussion are foundationalism, coherentism 

modified to allow wordly input and foundherentism. All allow for input from the world. In so far 

as each of their schemes can be reimplemented within relations of inductive support, the material 

theory of induction can work with all of them. 

 
71 Goldbach’s unproven but widely believed conjecture is that any even number can be expressed 

as a sum of two prime numbers. A familiar heuristic argument for it notes that, the larger the 

number, the more ways it can arise as the sum of two numbers, which increases the chances that 

two of them are prime. This is an inductive argument warranted by the supposition that the two 

numbers summed are distributed independently enough of the distribution of primes that it is 

highly likely always to include a pair of primes. For this and more examples, see Franklin (2013, 

p. 18). 
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 Indeed, coherentism and material theory differ in the role that circularities play in their 

structures. For coherentism, the circularities among relations of justification arise explicitly as a 

way to block the foundationalist regress argument for basic beliefs. (For example, see BonJour’s 

introduction of circularities in his (1985, p. 87).) For the material theory, as we saw in Chapter 2, 

circularities block a different regress argument. Without them, warranting facts would require 

further warranting facts of ever greater generality. 

4.4 Beliefs versus Propositions 

 A major difference, implicit in the discussion above, will now be made explicit. It 

concerns the relata of the relations of justification or inductive support. For coherentists, the 

relata are beliefs consciously held by some agent. For the material theory of induction, the relata 

are the propositions of an inductive logic, independent of any agent’s thoughts. There is no 

presumption that these propositions are the objects of belief in any consciousness. Both BonJour 

and Lehrer are internalists in their coherentism. That is, the justification of some belief must be 

accessible cognitively to the agent. In this regard they are closest to the relations of inductive 

support of the material theory of induction, for it is also supposed that these relations can be 

made explicit. In an externalist version of coherentism, if there is such a thing, the justifications 

of beliefs would not always be accessible.72 They may arise through some causal process that 

connects with the world, while that process is not cognitively accessible to the agent. 

 This difference adds a burdensome extra layer of complications to coherentism. Here is 

how BonJour (1985, p.102) expresses it: 

But if the fact of coherence is to be accessible to the believer, it follows that he 

must somehow have an adequate grasp of his total system of beliefs, since it is 

coherence with this system which is at issue. One problem which we will eventually 

have to confront is that it seems abundantly clear that no actual believer possesses 

an explicit grasp of his overall belief system; if such a grasp exists at all, it must be 

construed as tacit or implicit, which creates obvious problems for the claim that he 

is actually, as opposed to potentially, justified. 

 
72 BonJour (1985, pp. 101-102) dismisses an externalist coherentism as unacceptable since it 

would be weaker than an externalist foundationalism. 
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That the relations of justification must be consciously thought or at least cognitively accessible73 

to some agent does indeed visit problems on coherentism (and internalist epistemologies in 

general). The difficulties are so well known that I need only briefly mention them here. Such 

epistemologies face a dilemma. Are the justificatory relations those of an ideally rational agent? 

Or are they those of the actual cognitive processes of real people? 

 If the relations are those of ideal rationality, then the normative injunctions of the theory 

are unrealizable by ordinary human cognition. For establishing the logical consistency of even a 

fairly small set of beliefs is so computationally burdensome that ordinary minds cannot do it.74 

These complications arise already in the easiest case of deductive relations. They will be no 

easier when it comes to securing probabilistic and explanatory consistency as varieties of 

coherentism require. 

 If, instead, coherentism pertains to the actual reasoning processes of human agents, then 

the method of analysis is misplaced. How we humans actually reason is properly the subject of 

empirical psychology.75 A long-standing and well-established tradition in empirical psychology 

has shown just how poor we folk are in ordinary deductive and probabilistic reasoning.76 That we 

human reasoners conform with the conditions of coherence requires that we have achieved 

deductive and probabilistic consistency in our belief systems or aspire to it. According to 

empirical studies in psychology, this goal seems beyond the reach of most human agents. 

 BonJour does not, as far as I can see, directly address this dilemma. Instead he identifies 

a reflexive concern of the type that seems to trouble inward looking philosophers, but few others. 

The believer must have a correct grasp of the believer’s own system; and the correctness of this 

grasp is in turn a further belief that requires justification. The impending regress is blocked, 

according to BonJour, by a presumption, called the “Doxastic Presumption.” Its content is 

 
73 For example, BonJour (1985, p. 19, his emphasis) writes: “A person for whom a belief is 

inferentially justified need not have explicitly rehearsed the justifying argument in question—to 

others or even to himself. … What is required is rather that the inference be available to the 

person in question, so that he would be able in principle to rehearse it …” 
74 For details, see Cherniak (1984). 
75 Goldman (1985) has investigated the relationship of epistemology and psychology. 
76 For a small sample of this enormous literature, see Kahneman et al. (2002). 



 154 

developed over several pages and, in one formulation (p.105), asserts: “I assume that the beliefs 

constituting my overall grasp of my system of beliefs are, by and large, correct.” 

 The material theory of induction is merely as a codification of inductive logic. It escapes 

all these problems. There is no requirement that its relations of inductive support are to figure in 

their totality in some agent’s consciousness. This abstract conception, however, brings the 

danger that the theory is one of ideal rationality as inaccessible to human agents as the ideal 

rationality of coherentism. While that danger is present, the burden taken by material theory is 

considerably less than that of coherentism. 

 In the simplest cases, the material theory allows scientists to answer specific questions. 

Does the evidence of the cosmic background radiation provide more support inductively for big 

bang cosmology than steady state cosmology? The material theory of induction can answer that 

question without taking on the burden of establishing the coherence of the entirety of the 

scientist’s belief system. 

 The more complicated case does concern the entirety of the inductive support for a 

particular science. Is it, informally speaking, coherent? Coherentism requires a single agent to be 

able to affirm coherence for the totality of that agent’s belief system. The corresponding 

coherence of the evidential support of a science does not reside in the satisfaction of some 

overarching concept of coherence. Rather it is simply the summation of many local relations of 

support, such that, in mature sciences, each proposition is well supported. Since the overall 

burden consists merely of many local parts, there is no requirement that any individual scientist 

has a grasp of their totality. Rather the task is distributed over the entire community of scientists. 

For a modern science of any depth, this distribution is inevitable, for full comprehension of all 

the details of its evidential support lies outside the cognitive powers of a single scientist. Experts 

in one wing of the science rely on the affirmations of experts in the other wings; and conversely. 

The process continues over time. Great professional rewards await a scientist who can find 

evidence of internal inconsistencies that threaten or overturn an existing science. The result is 

that new generations of scientists scrutinize the consistency and evidential foundations of 

existing sciences anew. Mature sciences generally survive this scrutiny, indicating their solidity. 

When they do not, a new science emerges. 
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4.5 Examples 

  Associated with these last differences is one of lesser importance that I find, nonetheless, 

to be striking. Coherentist epistemology is designed to apply to beliefs of the most mundane 

variety. Here are a few examples from Bonjour (1985) that are typical of the literature in the 

epistemology of belief: 

“I believe that the piece of paper upon which I am now typing is the very same piece of 

paper upon which I was typing late yesterday afternoon.” (p.20) 

“As I sit at my desk (or so I believe), I come to have the belief, among very many others, 

that there is a red book on the desk.” (p. 117) 

“…the car going by is a Lotus…” (p. 119) 

“… a figure …  coming towards me … is my friend Frank…” (p. 119) 

“There is a man lurking in the bushes.” (p. 120) 

The material theory of induction is designed for relations of inductive support in science. There, 

typical propositions that count as empirical evidence are things like: 

Space is filled with electromagnetic radiation of a thermal character with a temperature of 

2.7K 

The perihelion of Mercury advances by 43 seconds of arc per century more than predicted 

by Newtonian gravitation theory, after perturbations from other planets are accommodated. 

The difference is that the exemplar beliefs of coherentism concern ordinary experience. The 

corresponding empirical propositions in the material theory of induction are quite remote from 

ordinary experience. No one just notices a 2.7K radiation heat bath in the depths of space; or that 

Mercury is moving just a little bit too fast over the span of a century. These propositions are 

secured only after considerable investigation and analysis and are major pieces of science in their 

own right. 

 It would be rash to infer from these differences that justification in the epistemology of 

belief and in inductive science are qualitatively different. Indeed, I incline towards the idea that 

justification in both are the same in their basic natures. Einstein (1936, p. 349) remarked: “All of 

science is nothing more than the refinement of everyday thinking.” However, there may still be 

very great differences in the refinement, that is, the details and thoroughness of execution. When 

someone accepts that there is a red book on the table, their justifications may proceed with 

similar principles as that of the cosmologist who accepts the 2.7K background microwave 
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radiation. Where the first is a snap judgment happening in moments, the second is underpinned 

by decades of careful, explicit analysis. These differences matter greatly. In judging there to be a 

red book on the table, we pay scant attention to the possibility that our experience is due to some 

other cause. For the cosmologists, it took decades of measurements at many frequencies before 

the cosmic radiation could be affirmed to be thermal at 2.7K and not of some other nature. 

 Further, the differences in the exemplars indicate that the two approaches will prioritize 

different aspects of the relations. Hence BonJour frets extensively on the reflexive problem of 

whether we are justified in our own beliefs about our justifications (which is addressed in the 

“Doxastic Presumption.”) By contrast, quantitative methods, such as can be found in elaborate 

statistical testing, are important in inductive inferences in science, but do not figure in the simple 

examples routinely used in coherentist epistemology.  

5. Problems of Coherentism 

 My initial hope, upon recognizing the similarities between coherentism and the large-

scale structure of inductive inference, was that coherentist analyses might be a useful resource in 

resolving problems in the material theory. These hopes have not been realized. The two ventures 

do share similar problems. However, it seems to me that coherentism has fared worse in 

addressing them, either because of its weaker suppositions or its failure to address the problems 

better. 

 The most serious problem facing both systems, in my view, is that they harbor 

circularities of justification and support. As noted in Chapter 3, it is all too common to find that 

the mere presence of such circles is sufficient for rejection without any further analysis. 

Bonjour’s (1985, pp. 91-92) response has already been quoted in Section 3 above, to which the 

reader is now referred. The specific response to the threat of circularities in that passage is: 

 And hence, a coherence theory will claim, the apparent circle of justification is not 

in fact vicious because it is not genuinely a circle: the justification of a particular 

empirical belief finally depends, not on other particular beliefs as the linear 

conception of justification would have it, but instead on the overall system and its 

coherence. 

BonJour’s later (1999, p. 123, his emphasis) analysis gives the same response: 
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…justification, when properly understood, is ultimately nonlinear or holistic in 

character, with all of the beliefs in the system standing in relations of mutual 

support, but none being epistemically prior to the others. In this way, it is alleged, 

any true circularity is avoided. Such a view amounts to making the system itself the 

primary unit of justification, with its component beliefs being justified only 

derivatively, by virtue of their membership in an appropriate sort of system. 

This response has been quoted here at length to make its inadequacy clear. The rejection of a 

linear dependence of relations of justification does not eliminate circularities in the 

interdependencies within the overall system. We are urged, incorrectly, to think that the potential 

harm of these circularities evaporates because the justification of particular empirical beliefs 

depends on the whole system. Murphy’s (2020) encyclopedia review recalls BonJour’s holistic 

attempt at escape, finds it lacking and suggests (§2b) that circularities are benign if they are 

within sufficiently strong relations of mutual support. Of course, nothing about strength 

precludes a vicious circularity or the possibility of arbitrariness. 

 A stronger response could have been given by coherentists along the lines given in 

Chapter 3 here. First, benign circularities are prevalent enough in science that there can be no 

default supposition that a circularity is harmful. Rather we have a positive obligation to establish 

that some specific circularity is harmful and how it is so. The two dangers explored in Chapter 3 

were the contradictions of vicious circularities and its opposite, indeterminateness through the 

possibility of multiple structures that satisfy the circular relationships. In Chapter 3, I argued that 

both dangers are precluded in the support relations of a material theory of induction by the 

dynamical character of scientific investigation. Vicious circularities are removed when found and 

indeterminateness triggers further investigations that eliminate it (unless we have a true 

convention). Surely a similar argument can be made concerning circularities among the 

justifications of beliefs. 

 This concern over circularity does not figure in BonJour’s (1985, p. 106) list of “three 

standard and extremely forceful objections.” They are: 

(I) The alternative coherent systems objection. 

(II) The input objection. 

(III) The problem of truth. 

Bonjour’s narrative struggles with all three, where the material theory does not. 
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 The second “input” objection has already been discussed in Section 4.3 above. It is an 

unnecessary weakness the derives from the damaging conception of coherentism as opposed to 

foundationalism. There is no corresponding problem for the material theory. 

 The first objection is that there might be multiple, equally admissible coherent systems, 

which would undermine the justification of the one chosen. The difficulty BonJour finds in 

answering derives directly from his conception of coherentism as the alternative to 

foundationalism. As a result, his coherentist analyses seek to favor coherence over some sort of 

foundational input from experience. As we saw in Chapter 4, the material theory can argue for 

the uniqueness of relations of support in mature science precisely by relying heavily on empirical 

evidence to decide among competing systems. BonJour (1985, p. 143) does start to make an 

argument along these lines. He argues that, once observational input is considered, “it is no 

longer clear” that multiple, equally admissible systems can be sustained in the long run. That it is 

no longer clear, is not enough. The possibility is there. In Chapter 4 where empirical evidence is 

given a greater role, this long-term possibility is eliminated through the empirical character of 

science: if the long-term accumulation of empirical evidence cannot separate two theories, we 

have grounds for concluding that they are not distinct in their physical content in the first place. 

The material character of inductive inference also provides an added resource: it induces an 

instability in competition among theories such that, when one theory has gained an advantage 

evidentially, that advantage would be amplified, driving the competition towards resolution in its 

favor. 

 The third objection is that mere coherence among beliefs is not enough to establish that 

they are truths of the world. The obvious counterexamples are the coherent narratives of works 

of fiction. Mere coherence does not establish truth, unless one is willing to adopt a coherence 

theory of truth, which BonJour (p. 109) is prudently unwilling to do. This problem could be 

ameliorated if coherentism where not conceived as opposed to foundationalism, for then truths of 

the world could enter more freely as foundational experiences. 

 The material theory has no corresponding problem of truth. It does not seek truth 

conduciveness in some single, global property of the relations of inductive support, such as 

coherence. Rather the task is distributed over all the inductive relations. It is the burden of the 

individual warranting facts of an inductive inference to be truth conducive for that inference. 

When a fact warrants an inference to a proposition or warrants its inductive support, what is 
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inferred or supported is the truth of the proposition. The truth conduciveness of the full structure 

of relations simply results from the accumulated truth conduciveness of the individual relations 

of support. 

6. Probabilistic Accounts of Coherence 

 In recent decades, there has been vigorous activity in writing on coherentism amongst 

Bayesian philosophers of science. There have been two strands of analysis. In one, probabilistic 

vindication or its negation is sought for the coherentist’s notion that coherence among beliefs 

either constitutes their justification or, more weakly, enhances their justification. Olsson (2005), 

for example, argues that this notion is not vindicated probabilistically but disproven. Huemer 

(2011) finds that the probabilistic analysis is inadequate for a disproof, while providing an 

apparently cogent probabilistic implementation of coherentism. Further possibilities of 

probabilistic implementation are considered in Wheeler (2012). In the second strand, a single 

probabilistic measure of coherence is sought, such that belief systems that score higher are better 

justified. Once again, the leading results are negative. Bovens and Hartmann (2003) offer a proof 

that no single probabilistic measure of coherence can serve this function, but suggest that a 

quasi-ordering77 by probabilistically defined coherence is possible. These negative results have 

been disputed. Schupbach (2011) defends a coherence measure devised by Shogenji. To 

complicate matters, Shogenji (2013, p. 2544) then uses probabilistic analysis to argue for an anti-

coherentism in which coherence reduces the transmission of probabilistic support. These last 

contributions are only part of a vigorous debate. For a survey, see Olsson (2017, §§6-8). 

 Since there is no consensus among Bayesians on these results, it would be of little value 

to pursue the details any further. Rather I will assess at the most general level the relevance of 

this work to my project. The principal goal of the Bayesian analyses has been to capture the 

essential intuitions of coherentism within a probabilistic framework and thereby to provide some 

deeper foundation for it; or, pessimistically, a definite refutation of it. That is, they seek to 

vindicate probabilistically the holistic approach of coherentism; or to refute it. As I have 

indicated above, the material theory does not adopt that coherentism’s holism. This means that 

 
77 That is, the relation is reflexive, transitive but not complete. 
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these probabilistic proofs or refutations are of tangential relevance only to the project of this 

book. 

 However, since the probabilistic analysis aspires to conclusions concerning justification 

considered on the large scale, we might wonder if it can somehow connect with the large-scale 

conceptions of the material theory concerning relations of inductive support. My overall 

assessment is that these Bayesian analyses provide very little of value to someone who does not 

share the radical Bayesian goal of reducing as much as possible of epistemology and philosophy 

of science to repeated applications of Bayes’ theorem. This assessment is defended in the next 

section. 

7. Why the Bayesian Analysis of Coherence Fails 

 Overall, the Bayesian analysis of coherentism has proven to be, at best, an infertile but 

benign distraction for non-Bayesians; and at worst a positive misdirection. There are three 

reasons for this. 

7.1 The Coherence of Coherentism is not a Probabilistic Notion 

 Non-Bayesian coherentists have included probabilistic notions in their efforts to explain 

coherence. Sometimes coherence is manifested within a system of probabilistically related 

beliefs. However, the notion of coherence itself is not fundamentally a probabilistic notion, such 

that all its cases can be reduced to results expressible probabilistically. 

 This non-probabilistic character is evident in important examples. One of the best known 

arises in the competition between Ptolemaic and Copernican astronomy. The two systems could 

be adjusted so that they provide the same predictions for planetary motions. However, as detailed 

in Chapter 12, “The Use of Hypotheses in Determining Distances in Our Planetary System,” the 

Copernican system was more coherent than the Ptolemaic. The Ptolemaic system needed an 

independent epicycle-deferent construction for each planet. The Copernican system resulted 

from the recognition that many of the Ptolemaic circles were not independent motions, but 

actually the superposition of the Earth’s orbital circle on that of the other planets. 

 This greater coherence of the Copernican system was a key argument in its favor. It was 

widely recognized in the century after Copernicus’ death. Most importantly, it was not 

probabilistic in nature. It was then expressed and debated without any need for probabilistic 

conceptions.  



 161 

7.2 Formalization is Premature 

 Coherentism proceeds on the assumption that the coherence of this last example and 

others like it, is a manifestation of a general notion of coherence that can serve to justify the 

system of beliefs in which is arises. The problem for coherentists is that a general 

characterization of coherence remains elusive and is one of the recalcitrant problems of 

coherentism. Just what is coherence? 

 It is easy to become impatient with the recalcitrance of a problem like this. Then one can 

be tempted by the idea of a formal framework in which the solution of the problem is reducible 

to a precise mathematical question whose answer is provided by mathematical demonstration. In 

the seventeenth century, Leibniz offered the prospect of a universal language with this 

perspective in mind. He wrote: “when there are disputes among persons, we can simply say: Let 

us calculate, without further ado, and see who is right.”78 A similar optimism motivates the 

Bayesian analysis. Olsson (2017, §5) writes: 

The arguably most significant development of the coherence theory in recent years 

has been the revival of C. I. Lewis’s work and the research program he inspired by 

translating parts of the coherence theory into the language of probability. 

He proceeds to promise the benefits of the translation: 

The probabilistic translation(s) of coherence theory has made it possible to define 

concepts and prove results with mathematical precision. 

My assessment of this development is that it is retrograde. It is, of course, both satisfying and 

decisive when mathematical demonstrations in a formal system can resolve vexing, informal 

confusions. I will celebrate all such successes. However, such a resolution requires that the 

original problem is one that admits precise mathematical formulation in the first place. This is 

not the case with coherentism in epistemology. Just what is its notion of coherence remains 

poorly understood. Instead of a successful clarification of the notion of coherence, we have an 

intemperate rush to formalization. To superimpose a veneer of probabilities over an imprecisely 

understood notion is not to illuminate it but to obscure it and its problems. 

 
78 As quoted by Kulstad and Carlin (2020, §3), with the citation The Art of Discovery (1685); C 

176/W 51. 
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 The focus of the present probabilistic analyses of coherence has drifted away from 

clarifying coherence. It has been replaced by extended and apparently fruitless debates on just 

how to represent probabilistically some simple notions to do with coherence. Because 

probabilistic independence is a major component of strong results in the probability calculus, 

there is a premium on giving it a place in the probabilistic analysis. The opportunity for 

introducing it comes from a notion in coherence theory of the independence of witnesses. How 

can that independence be expressed probabilistically? Olsson (2005, p.25) considers witness 

testimonials E1 and E2 agree in that both assert H. The independence of the testimony is then 

represented probabilistically by independencies of the conditional probabilities P(E2|E1, H) = 

P(E2| H) and P(E2|E1, ~H) = P(E2| ~H). This seems odd, since we expect it to be more probable 

that witness 1 and witness 2 will agree on H, if H is the case, than they would if H is not the case. 

We then learn (p. 45) that, under correction from other authors, the representation is incorrect 

since it assumes perfect reliability or unreliability of the witnesses. A more elaborate model turns 

out to be needed. Then Huemer (2011, p. 40) argued that the independence of testimonies is too 

strong a condition in the first place for the probabilistic representation of coherence. All that is 

needed is that the truth of H makes agreement among the witnesses more likely: P(E2|E1, H) > 

P(E2|E1, ~H). That is, the attempt to base a probabilistic treatment on the probabilistic 

independence of testimonies was too hasty in the first place. 

 These are just the beginning of familiar problems peculiar to Bayesian probabilitistic 

representations. A non-Bayesian might be willing to admit a probability P(E2| H) that represents 

the chance that witness 2 testifies to H when H is the case. But what are we to make of P(E2|~H), 

the probability that witness 2 testifies to H, when H is not the case? We might imagine all sorts 

of scenarios in which H might be false, so that ~H is true. How likely is the aberrant testimony in 

each? How likely is each scenario? Have we exhausted all the scenarios? All the quantities 

arising here must be multiplied and summed. And when all this is done and we sum up all our 

quantities, do we have a resultant with sufficient probabilistic meaning that it can figure in the 

precise computations that follow? It requires quite an indulgence to imagine so. 

 The issue here is not just the problem of assigning a precise value to P(E2| ~H). It is the 

very idea that we have a quantity here, well represented by any additive measure at all, and 

moreover that it is one with sufficient commonality of meaning with the additive measure 
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P(E2|H) for it to be combined freely with it in subsequent computations. It is a standard 

presumption that all these maneuvers are admissible, for otherwise Bayes’ theorem could not be 

applied. Presumption and a familiarity bred of necessity, however, is not the same as a well-

founded resolution of an enduring problem. 

 Thagard (2000, Ch. 8, 2004, 2005) has mounted a related critique of the Bayesian 

treatment of coherence as a part of a defense of his account of coherence as constraint 

satisfaction. Among his many concerns is that Bayesian analysis requires “a host of conditional 

probabilities that people would be hard pressed to specify.” (2005, p. 311)  

 Matters become worse when we consider the second strand of the probabilistic analysis, 

the attempts to define a single numerical measure of coherence in some system that is a function 

solely of the probabilities in that system. They go beyond problems associated with the mere use 

of probabilities. It is a risky speculation that any single measure of coherence is possible in the 

first place. And it is an even riskier speculation that probabilities alone suffice to define it when 

the notion itself is not probabilistic. It is hardly surprising that no consensus has emerged from 

the dense fog of elementary theorems in probability and counterexamples that constitute this 

literature. 

 For Bayesians who are committed to the idea that fundamental notions like coherence are 

reducible to probabilistic notions, all these complications are simply work proceeding as usual. 

The path is not easy, but they are convinced that a happy outcome awaits them eventually. They 

must persist. They must calculate more. 

 For those who are not Bayesians, the entire enterprise is one of premature haste in the 

pursuit of an illusion of precision. The original problem of the nature of coherence has faded 

away. In its place, are exercises in elementary probability theory, endless revisions of them, all 

with increasingly dubious connections to the original problem. That no consensus has emerged 

over these probabilistic conjurings is no surprise if one doubts the appropriateness of the 

formalization in the first place.  

  Setting Bayesian or non-Bayesian commitments aside, let us recall that we have good 

reason to think that the notion of coherence is not a probabilistic notion. Is it really wise to 

persist in efforts to find a probabilistic basis for it? 
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7.3 A Probabilistic Framework is not Sufficiently General 

 The Bayesian analysis of coherence aims at general results. If a probabilistic foundation 

can be found for coherentism, then it is vindicated universally. If coherentism is refuted in the 

Bayesian analysis, then it is refuted everywhere. 

 The problem is that a probabilistic framework is not sufficiently general to support 

universal conclusions of this type. This is one of the main consequences of The Material Theory 

of Induction. It asserts that a case by case examination of the warranting facts of each domain 

determines whether relations of inductive support of the domain are probabilistic. There are 

many domains in which the relations are probabilistic. And there are many in which they are not. 

Chapters 10-16 of The Material Theory of Induction gives extended examples. They do not need 

to be rehearsed here. Insofar as credences are set by strengths of inductive support, the same 

conclusion applies to them. Thus, one cannot proceed with probabilities as the automatic default 

when it comes to representing uncertainties in inductive support or credences. There is a positive 

obligation in each domain to display the facts warranting the probabilistic representation. 

 When such warranting facts are present, the justification of the results of the probabilistic 

analysis can in part ultimately be traced back to the facts warranting the probabilities. 

Figuratively, there should be a disclaimer attached to the Bayesian analysis that says: “Applies in 

domains only where probabilities are warranted.” To omit this disclaimer is to advance 

conclusions without proper basis. To suggest that the results have universal applicability is a 

misrepresentation. 

 These concerns can be reformulated as a general argument against the possibility of a 

universally applicable Bayesian epistemology or Bayesian philosophy of science. Any analysis 

of this type will begin with general framing assumptions. Commonly, the probabilistic analyses 

of coherentism presume a collection of witnesses testifying to various facts. Further assumptions 

concern the reliability of the witnesses and the extent to which their testimonies are related, other 

than through the truth or falsity of facts to which they testify. Any conclusions drawn from these 

assumptions alone are secure in the sense that they are merely restating what is asserted by the 

framing assumptions of the analysis. 

 The delicate part comes when the probabilistic analysis gives us results that go beyond 

the framing assumptions. If these results are to have universal applicability, their derivation is 

flawed since it depends essentially on the assumption that probabilistic relations can apply 
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everywhere. Thus, for any result claimed to have universal validity, we cannot preclude the 

possibility that it is merely an artefact of an illegitimate assumption.79 We end up believing that 

we have proven results, when we have not. 

 Once we are alerted to the danger, examples of this sort of fallacy are easy to find. Here 

are several. The principle of indifference is a truism of evidence and credence. If you have no 

basis for distinguishing the support of two outcomes and find them equally favored, then you 

should accord equal support or equal credence to them. This framing assumption is as anodyne a 

principle as one can imagine. Yet—famously—it cannot be implemented in a probabilistic 

system. We end up with the widely known paradoxes of indifference. What is their origin? 

Perversely, the routine conclusion is that there is some fault in this truism of evidence. The fault 

lies elsewhere. It is the assumption that probabilities can capture support or credence within this 

framing. Rather this framing requires different relations of support or credence. For details, see 

Norton (2008, 2010). 

 Another example arises in Chapter 1 above, through Laplace’s rule of succession. The 

rule tells us that, as a general matter, if we have had 1,826,213 successes, we should expect a 

success on the next trial with very high odds of 1,826,214 to 1. As I point out in the chapter, the 

framing is bare and simply assumes 1,826,213 unrelated successes. Nothing in it warrants the 

application of probabilities. As a result, nothing more can be inferred using probabilities about 

future successes. The inference to the very high odds of future successes is fallacious and simply 

an artefact of applying probabilities without a warrant. 

 A related example concerns an hypothesis H and its deductive consequences E1, E 2, E 3, 

…. It is a well-known result of Bayesian analysis, reviewed in Norton (2011, pp. 430-31), that it 

entails either an excessive pessimism or an excessive optimism concerning projectability of the 

 
79 Another potential source of error lies in the translation of non-probabilistic framing 

assumptions into probabilistic relations. The translation may be erroneous, but correctibly so. 

More seriously, there may be no good probabilistic translation. This is the case for a state of 

complete ignorance or completely neutral support. It leads to the failure of probabilistic analysis 

to accommodate the principle of indifference, as discussed in the main text and Norton (2008, 

2010). 
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hypothesis and its consequences, but nothing in between. If we set the prior probability of H to 

zero as P(H) = 0, then conditionalizing on any evidence whatever fails to alter the zero 

probability. We are dogmatically committed to the failure of any evidence to support H. If 

however we set P(H) > 0, even if P(H) is as small as we care to make it, we commit to an 

excessive optimism in the projectability of its consequences. That is, if the first 10n of these 

consequences have obtained, we become arbitrarily certain that the next 10n+1-10n will obtain, as 

n increases, for it is easy to show that: 

Lim n®¥ P(E(10n)+1 + E(10n)+2 + … + E(10n+1) | E 1 + E 2 + E 3 + … + E(10n)) = 1 

That is, we become arbitrarily confident of roughly a tenfold increase in the number of 

consequences we expect to obtain. That this is excessively optimistic, even credulous, is clear 

once we recall that the framing assumptions are sparse. They allow the set {E1, E 2, E 3, …} to 

be any non-contradictory set of propositions whatever (and then H could merely be their 

conjunction). This excess of optimism or pessimism is an artifact of the application of 

probabilistic analysis where the framing assumptions are too sparse to authorize them. They far 

outstrip what the framing assumptions authorize. 

 There is an easy escape from this difficulty. Bayesians should renounce the illusion that 

they are able to deliver results of universal applicability in epistemology and philosophy of 

science. Rather, their results apply only in domains in which probabilities are warranted by some 

positive factual basis. Then strong and interesting, domain specific results will be recoverable 

and their basis will not be mysterious. They will rest ultimately on the factual warrant for 

probabilities in the domain. 

8. Conclusion 

 It appears initially that much is shared by the material account of the large-scale structure 

of inductive support and coherentism, that is, coherence based accounts of the justification of 

beliefs in epistemology. For both require that their respective relations of support are non-

hierarchical or non-linear. That agreement gave some hope of further, fruitful connections. These 

hopes were dashed by the rather negative results of this chapter. The similarities in the two 

projects, we find, scarcely extend beyond the initial agreement on non-hierarchical structures. 

 The main difference is that coherentism bases justification on a holistic property, the 

overall coherence of belief systems. The material analysis bases inductive support on local 
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relations; and the overall non-hierarchical structure is derived from them. There a many further 

differences: coherentism assumes various, poorly articulated accounts of justification at the local 

level, where the material analysis is devoted to a full articulation of a relation of inductive 

support at the local level. Coherentism is formulated as an alternative to foundationalism. That 

conception creates the enduring problem for coherentism of discerning how the world impinges 

on beliefs without conceding to foundationalism. The material analysis has no corresponding 

problem. Coherentism concerns beliefs and thus struggles to accommodate the limits of 

cognition of any one cognizer. The material theory concerns abstract relations of inductive 

support as matters of inductive logic and escapes these problems. Partly through these 

differences, coherentism has proven less able than the material theory to respond to the standard 

problems that face both systems. 

 This chapter has reviewed Bayesian analyses of coherentism. Since these analyses accept 

the holistic conception of coherentism, they are of little relevance to the material analysis of the 

large-scale structure of inductive support. The review finds the Bayesian analyses to be over-

reaching. There is a powerful negative result: in so far as a Bayesian analysis offers universally 

applicable results on coherentism that go beyond the non-probabilistic framing assumptions, they 

are without proper foundation. 

 Finally, this chapter indicates how the material theory of induction relates to the more 

general literature in the epistemology of belief. While the chapter focused on coherentism 

specifically, much of what it concludes applies more generally. Two more general conclusions 

can be recovered: 

 Epistemologists of all varieties treat local relations of justification and inductive support 

as antecedently understood. They use notions such a probabilistic and explanatory relations in 

their accounts, while leaving the elucidation of such relations to others. The goal of the material 

theory of induction is to elucidate these very relations and others like them. Hence the two 

projects proceed at different levels. 

 Epistemology concerns beliefs held by cognizers and how these beliefs are justified. The 

material theory avoids belief as much as possible. It gives an account of what inductively 

supports what, independent of beliefs and knowing agents, as matters of independent inductive 

logic. How some agent can use those relations to inform belief is a further problem left largely to 

the epistemologists. 
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The Problem of Induction 

1. Synopsis 

 Since the problem of induction is so widely known, I expect many readers will want a 

simple summary of the main claims instead of the more usual, orienting introduction. This 

synopsis is for those readers.80 

The Traditional Problem 

 The problem of induction is taken here to be a quite specific difficulty in any logic of 

inductive inference, where “inference” is understood to be a mind and belief independent relation 

of logical support over propositions. Logics prone to the problem are based on universal rules of 

induction. Traditionally, the rule is enumerative induction: we are authorized to infer from the 

proposition that some cases bear a property to the proposition that all cases do. Other rules might 

be abductive: we are authorized to infer to the best explanation; or the supposition that relations 

of inductive support are numerical and conform with the probability calculus. 

 The problem resides in a short and sharp demonstration that no inductive rule can be 

justified. The demonstration uses either a circularity or a regress. The rule of enumerative 

induction is itself justified by some version of that same rule: enumerative induction has worked, 

so we should expect it to continue to work. Hence its justification is circular. If we consider other 

rules of inductive inference, then we encounter a similar circularity, if the rule is used to justify 

itself. Alternatively, the rule may be justified by applying a second rule; and that second rule is 

justified by a third; and so on in an infinite regress. The regress is fanciful since taking even just 

one or two steps is strained and unrealistic. 

 Probabilistic accounts of inductive support and analyses of the problem do not escape the 

fundamental difficulty. For there must in turn be some justification for a logic whose basic rule is 

that inductive relations of support are probabilistic. Chapter 10 (especially Section 10) of The 

 
80 My thanks to James Norton and Anil Gupta for helpful remarks and reactions. 



 172 

Material Theory of Induction argues that all the standard justifications of this basic rule are 

circular. 

The Material Dissolution 

 The material theory of induction dissolves the problem by denying one of its premises. 

The problem of induction depends essentially on the presupposition that inductive inference is 

governed by universal rules. The material theory of induction asserts that there are no universal 

rules of inductive inference. Inductive inferences are warranted by local facts, not rules. With 

this understanding, the problem of induction can no longer be set up. It is dissolved. 

Attempts to Recreate It in the Material Theory 

 A common rejoinder to this dissolution is the proposal that there is an analogous problem 

for the material theory of induction. It derives from the circumstance that background facts can 

only warrant an inductive inference if they are true. Thus, they should also be warranted; and the 

inferences that warranted them, must also be warranted. Somehow, lurking in this circumstance, 

is supposed to be a regress or circularity as devastating as the original problem of induction. 

Here are three versions of the problem supposed: 

 (regress end) Each inductive inference requires a warranting fact of greater generality 

than the conclusion. The resulting succession of warranting inductive inferences requires a 

sequence of warranting facts of increasing generality that admits no benign termination. 

 (regress start) Inductive inference cannot get started: any inductive inference that 

attempts to go beyond some small, given set of particular propositions requires an unavailable 

warranting fact of greater generality outside the given set. 

 (circularity) These successive warranting inferences will eventually form circles of large 

or small extent. They are supposed to be as harmful as those of the original circularity in the 

problem of induction. 

Why They Fail  

 Earlier chapters have described the large-scale structure of relations of inductive support 

in science afforded by the material theory of induction. Briefly, in the material theory of 

induction, inductive inferences are warranted by facts that are in turn supported inductively; and 

those inductive inferences are warranted by further facts; and so on. What results is the 

massively entangled structure of inductive support relations of a mature science. This structure 

does not respect any hierarchy of generality. Relations of support routinely cross over one 
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another. It follows that tracing back successively the facts that support some nominated inference 

leads to a journey through the propositions of the science. There are many forks in the journey’s 

paths as its extent grows rapidly and may soon come to embrace much of science. There is no 

inexorable and unsustainable ascent to warranting propositions of ever greater generality. Hence 

the supposition of “regress end” above fails. 

 This massively entangled structure can be created by hypothesizing provisionally 

propositions needed to warrant some initial inductive inference. The provisional character of the 

hypotheses must be discharged by further investigations that provide inductive support for them. 

This mechanism makes warranting hypotheses of greater generality available when the inductive 

project of some science is initiated. Hence the supposition of “regress start” fails. 

 There are circularities both large and small in this massively entangled structure of 

relations of inductive support. However, as I argued in Chapter 3, we cannot automatically 

assume that the mere presence of circularities is harmful. There are benign circularities 

throughout science. One must establish by positive argumentation that the circularities here are 

harmful. These harms arise in two ways: as a contradiction of a vicious circularity or as an 

underdetermination. If either arise, they are eliminated by routine adjustments in the science. In 

place of self-defeating circularities, all we find in the entangled structure is how one result in a 

mature science is supported by others; and those by others still; and so on. The exercise merely 

recapitulates, over and over, ordinary relations of inductive support in mature sciences. Hence 

the supposition of “circularity” above fails. 

Local versus Distributed Justifications of Inductive Inference 

 The problem of justifying inductive inference has a different character according to 

whether inductive inference is conceived as warranted by universal rules or by material facts. 

 If inductive inferences are warranted by universal rules, then the project of justifying 

them reduces to that of justifying those few universal rules. All attention is devoted to a small 

sector of the sciences where the inductive power is localized. We learn from the endurance of the 

traditional problem of induction that this localized version of the problem is intractable. 

 If inductive inferences are warranted by facts, then the justification of inductive 

inferences is not localized. It is distributed over the entirety of the sciences. In a mature science, 

the justification for some chosen inductive inference lies in the applicable warranting facts. It is 

an unproblematic application of the material theory to a particular case. This is true for every 
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inductive inference in the mature science; and that is all there is to the justification of induction, 

understood materially.  The totality of the justification of inductive inference lies entirely in the 

accumulation of many such unproblematic justifications; and thus is itself unproblematic. When 

the justification is so distributed, the difficulty is reversed. Efforts to set up the problem of 

induction fail repeatedly. 

2. Introduction 

 The synopsis above is merely a summary sketch of an analysis to be developed in greater 

detail in this chapter. My hope is that readers who might be unsatisfied by its brevity will be 

satisfied by the lengthier analysis below. Its first step is a more precise statement of the original 

problem. While the problem of induction is widely recognized, I have no confidence that we all 

address the same problem. Before a claim of a dissolution of the problem of induction can be 

sustained, the problem itself must be clearly delineated. That delineation is the task undertaken in 

Sections 3 to 10 below. The task is largely historical and readers who are quite confident that 

they know the history may want to skip ahead to Section 10. 

 Since inductive inference has traditionally been regarded as generally troublesome, 

Section 3 will seek to sweep away some preliminary distractions that may be mistakenly taken to 

be the problem of induction. In recalling a collection of what I call “inductive anxieties,” the 

section identifies what the problem of induction is not. It is not, for example, the problem that 

enumerative induction is capricious. An inference from some A’s are B to all A’s are B can 

sometimes be sustained by only a few cases of A’s that are B; or it may fail to be sustained even 

by very many. 

 Section 4 reviews Hume’s own presentation of the celebrated argument. It was a 

masterpiece of philosophical writing, still justly admired today. His argument was narrower than 

the version modern authors have taken from his analysis: he limited all inductive inference to 

causal inferences. And it was broader since he posed the problem largely in psychological terms. 

He characterized inferences as mental processes, as the “operation of thought.” In his celebrated 

fork, Hume divided all such operations as concerning relations of ideas or matters of fact. 

Neither could justify inductive inferences about the future, he urged. The first cannot since we 

can conceive it failing. The second cannot since it requires that we presume in advance the very 

thing to be justified, that the future will resemble the past. 
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 Sections 5 and 6 review the early reception of Hume’s analysis. After an initial response, 

notably from Kant and even possibly Thomas Bayes, the analysis faded and merited only passing 

mention in nineteenth century discussions of induction. The term “the problem of induction” did 

not univocally have its modern meaning. Rather, it was a marker for more general inductive 

anxieties. For Mill, it denoted the capriciousness of inductive inference. Section 7 reviews the 

twentieth century revival of Hume’s problem, first in the writing of Bertrand Russell and then, 

with greater focus, in that of Hans Reichenbach and his student, Wesley Salmon. They advocated 

a “circularity” version, reminiscent of Hume’s own. Briefly, inductive inference, now understood 

in Salmon’s formulation as any form of ampliative inference, cannot be justified by deduction, 

since then it would not be inductive; and it cannot be justified inductively, for that would be 

circular. Section 8 recalls the “regress” version, delineated most thoroughly by Karl Popper. 

Instead of the circularity of a rule of inductive inference justifying itself, Popper imagined a rule 

of inductive inference being justified by another rule, and that by another rule, and so on in an 

unsustainable infinite regress. 

 Section 9 reports that both Russell and Salmon insisted that their modern version of the 

problem of induction drops the psychological clothing Hume gave it. The problem is purely one 

of inductive logic, which pertains to relations over propositions, independent of our thoughts and 

beliefs. While modern epistemologists run together logical inference and mental operations, I 

was pleased to find that this rarely caused confusions. The exception is noted in Section 10, 

where I review failed attempts to argue that an externalist epistemology of beliefs can solve the 

problem of induction. 

 The material dissolution of the problem of induction is presented again in Section 11. 

Sections 12 and 13 respond to the concern that the harmful regresses and circularities of the 

problem of induction reappear in the tangle of relations of inductive support of the material 

theory of induction. Section 12 argues that the regress of the problem of induction is fanciful and 

dubious already in its first steps, whereas that of the material theory is merely the recapitulation 

of ordinary relations of inductive support in familiar science. Section 13 argues that the 

circularities of the problem of induction are harmful since they leave its rules of induction 

indeterminate. Drawing on the analyses of Chapters 3 and 4, it is argued that the circularities of 

the material theory do not create analogous problems of indeterminacy. 
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 Elliott Sober and Samir Okasha have given responses to the problem of induction that are 

close to this material dissolution. Their work is reviewed briefly in Section 14. Since it is 

claimed that there is no problem for the material theory in justifying inductive inference, Section 

15 gives a short summary of the character of the positive justification. 

 Finally, the present material dissolution of the problem of induction appeared in its 

earliest form in my paper, Norton (2003). It has attracted some small, continuing critical 

attention. This attention has been stimulating and has led to refinements of the material 

dissolution. Section 16 reviews the critical reception of the material dissolution in the literature 

and shows how the refinements respond to and answer the negative criticism. Section 17 is a 

short conclusion. 

3. What the Modern Problem of Induction is NOT: Inductive Anxiety 

 The very idea of inductive inference has been a long-standing target of hesitation and 

vilification. The dissolution of the problem of induction advocated here is not designed to 

address all hesitations about induction. To preclude confusion, this section reports two of these 

other hesitations. One is simply the observation that inductive inference is not deductive 

inference and thus must admit the possibility of failure. The second is that a particular form of 

induction, enumerative induction, is capricious. Sometimes it works well. Sometimes it does not; 

and then it encourages ill-advised hastiness. Beyond these two identifiable hesitations, for many, 

induction is surrounded by an unfocussed but nonetheless menacing miasma. In it, induction 

simply is a problem. I will call the totality of these hesitations “inductive anxiety.” 

 The first hesitation already has clear expression in the ancient tradition of skepticism. As 

part of his broadly spread critique of all forms of justification, the skeptic, Sextus Empiricus 

himself, gave a terse statement that still serves well today (Annas and Barnes, p. 123): 

It is easy, I think, to reject the method of induction. For since by way of it they want 

to make universals convincing on the basis of particulars, they will do this by 

surveying either all the particulars or some of them. But if some, the induction will 

be infirm, it being possible that some of the particulars omitted in the induction 

should be contrary to the universal; and if all, they will labour at an impossible task, 

since the particulars are infinite and indeterminate. Thus in either case it results, I 

think, that induction totters. 
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Earlier in his text, Sextus Empiricus had already given a colorful illustration of how induction 

totters (p. 120): “since most animals move their lower jaw but the crocodile alone moves its 

upper jaw, the proposition 'Every animal moves its lower jaw' is not true.” 

 We need not linger over this first hesitation. It is constitutive of (ampliative) inductive 

inference that it can sometimes fail. That fact does not impugn its utility, as long as the 

inferences are secure enough that their failures are tolerably rare. To abandon inductive inference 

entirely would destroy science, all of whose major results are supported inductively.81 

 For the second hesitation, Mill, in his monumental System of Logic, recounts several 

inductive inferences, some of which proceed securely from a few particulars while others are 

never judged secure. They lead to a synoptic lament of the capriciousness of induction (Mill, 

1882, p. 228): 

Why is a single instance, in some cases, sufficient for a complete induction, while 

in others, myriads of concurring instances, without a single exception known or 

presumed, go such a very little way toward establishing a universal proposition? 

Whoever can answer this question knows more of the philosophy of logic than the 

wisest of the ancients, and has solved the problem of induction. 

In arguing for the cautious inductive ascent of his preferred method, Francis Bacon provided a 

celebrated riposte, which seems to be a combination of both the hesitations listed above (Bacon, 

1620, p.83): 

The induction which proceeds by simple enumeration is puerile, leads to uncertain 

conclusions, and is exposed to danger from one contradictory instance, deciding 

generally from too small a number of facts, and those only the most obvious. 

This second hesitation also need not detain us. Many accounts of inductive inference have taken 

up the task of accounting for why enumerative induction works when it does and why it fails 

when it does. This was explicitly the task of Harman’s (1965) paper in which the term “inference 

to the best explanation” was introduced. My material account of inductive inference in Chapter 1 

of The Material Theory of Induction identifies the warrant for this form of inductive inference in 

 
81 Popper’s (1959) attempt to account for scientific practice solely with deductive inference fails. 

Salmon (1981) has shown that close adherence to Popper’s strictures precludes science from 

making predictions. 
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background facts. Generalizations are warranted or not according to whether these background 

facts are favorable or not. No doubt a Bayesian will find some combination of prior probabilities 

and likelihoods to fit the expected behavior of even the most capricious of inductive 

generalizations. 

 For further details of the troubled history of enumerative induction and a compilation of 

striking counterexamples mentioned in the traditional literature, see my unpublished Norton 

(2010). 

4. Hume’s Critique 

 Hume’s celebrated critique of inductive inference elevated these traditional anxieties 

about induction from answerable concerns to what became the model of a recalcitrant 

philosophical problem in the 20th century. Hume’s critique needs some refinement before we 

recover the modern version of the problem of induction. Two refinements are notable. 

 First, Hume restricted all ampliative, non-demonstrative inference to those mediated by 

relations of cause and effect. He wrote (1777, p. 26):  

All reasonings concerning matter of fact seem to be founded on the relation of 

Cause and Effect. By means of that relation alone we can go beyond the evidence of 

our memory and senses. 

This restriction needs to be loosened. 

 Second, Hume did not separate cleanly two things that should be kept separate. First are 

thoughts, beliefs and mental processes, such as is properly the subject of a theory of mental 

action. They are distinct from logical relations among propositions, such as is the subject of an 

abstract logic, formulated independently of thoughts and beliefs. For example, Hume’s fork, the 

celebrated distinction of “Relations of Ideas” and “Matters of Fact,” is introduced in terms of 

mental processes. The first “Relations of Ideas” are discoverable, he insists (p. 25), “by the mere 

operation of thought, without dependence on what is anywhere existent in the universe.” This 

possibility is contrasted with a “Matter of Fact” whose contrary (negation) is possible. That is (p. 

25) “it can never imply a contradiction, and is conceived by the mind with the same facility and 

distinctness, as if ever so conformable to reality.” Elsewhere, however, Hume’s language could 

easily be mistaken by the unwary as conforming with an analysis of purely logical relations 

among propositions. On the supposition that present regularities may fail in the future, he 
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demands (p. 38) “What logic, what process of argument secures you against this supposition?” I 

will urge below that the distinctive Humean problem of induction resides in the inductive logic 

and can be formulated only indirectly in terms of mental processes.  

 With these complications noted, we can follow Hume’s development of the problem.82 

First, he affirms that demonstrative reasoning cannot give us knowledge of these relations of 

cause and effect (p. 27): 

I shall venture to affirm, as a general proposition, which admits of no exception, 

that the knowledge of this relation is not, in any instance, attained by reasonings a 

priori, but arises entirely from experience, when we find that any particular objects 

are constantly conjoined with each other. 

His argument is based on the immediately following claim: 

Let an object be presented to a man of ever so strong natural reason and abilities; if 

that object be entirely new to him, he will not be able, by the most accurate 

examination of its sensible qualities, to discover any of its causes or effects. 

The claim is illustrated by examples (pp. 27-28) that, Hume asserts, outstrip demonstrative 

reasoning, Hume imagines Adam, presumably new to the world and innocent of experiences of 

it. He cannot infer that water suffocates from its fluidity and transparency; and that fire consumes 

from its heat and warmth. Someone innocent of natural philosophy could not infer that polished 

marble blocks will adhere tightly; that gunpowder is explosive; that lodestones attract; and more. 

An example, earlier in the text, we shall see, reappears in later writings (pp. 25-26, emphasis in 

original): 

That the sun will not rise to-morrow is no less intelligible a proposition, and implies 

no more contradiction that the affirmation, that it will rise. 

 Hume then looks for other possibilities for arriving at knowledge of cause and effect. 

There is only one candidate, “moral reasoning,” for he recalls his fork (p. 35): 

All reasonings may be divided into two kinds, namely, demonstrative reasoning, or 

that concerning relations of ideas, and moral reasoning, or that concerning matter of 

fact and existence. 

 
82 Comparable arguments can also be found more tersely in Hume’s earlier Treatise (1739, pp. 

89-90) 
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Yet, he continues, moral reasoning cannot provide a firm basis for such knowledge. He justifies 

this failure by identifying a circularity within efforts to use moral reasoning for this purpose (pp. 

35-36):  

We have said that all arguments concerning existence are founded on the relation of 

cause and effect; that our knowledge of that relation is derived entirely from 

experience; and that all our experimental conclusions proceed upon the supposition 

that the future will be conformable to the past. To endeavour, therefore, the proof of 

this last supposition by probable arguments, or arguments regarding existence, must 

be evidently going in a circle, and taking that for granted, which is the very point in 

question. 

Since this is the celebrated circularity upon which the modern problem is based, we can pause 

for another trenchant statement of it (p. 38): 

It is impossible, therefore, that any arguments from experience can prove this 

resemblance of the past to the future; since all these arguments are founded on the 

supposition of that resemblance. 

5. The Reception 

 While Hume fretted that his earlier Treatise (1739) fell “dead-born from the press” 

(Hume, 1777, p.8), there was still some fairly immediate and noteworthy reaction. It had a 

profound impact on Immanuel Kant (1783, p. 7), who famously credited Hume for 

“interrupt[ing] my dogmatic slumber.” Hume’s contemporary, Thomas Reid, mounted efforts to 

refute Hume’s skepticism.83 It is even plausible that Hume’s skepticism was one of the 

motivations for Thomas Bayes’ analysis of inverse probabilities. Zabell (1989, p. 292) notes that 

the timing of the initiation of Bayes’ research on inverse probabilities coincides with Hume’s 

publication in 1748 of his Enquiry. Bayes’ result was published and annotated after Bayes’ death 

by Richard Price as Bayes (1763). Zabell (1989, p. 294) and Earman (2002, §1) note that much 

in Price’s annotations indicates a response to Hume, even though Hume is not mentioned by 

name. For example, Price writes (in Bayes,1763, pp. 371-72): 

 
83 See Landesman and Meeks (2003,  Ch. 29). 
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Common sense is indeed sufficient to shew us that, from the observation of what 

has in former instances been the consequence of a certain cause or action, one may 

make a judgment what is likely to be the consequence of it another time… 

Price (p. 409) also considers “the case of a person just brought forth into this, world” 

(reminiscent of Hume’s mention of Adam) who makes successive observations of the sunrise 

and forms odds of its return. The example is one we saw above that Hume had used, but to 

skeptical ends. 

6. The Nineteenth Century Hiatus 

 In the nineteenth century, any recognition Hume may have received for identifying the 

problem of induction faded. He was instead generally tolerated as a troublesome skeptic 

concerning topics like causation and miracles. His analysis was not lauded then, unlike today, as 

the revered locus classicus for the modern problem of induction. In that century, the phrase “the 

problem of induction” appears frequently. However, its focus is diffuse and it appears mostly to 

designate some version of the “inductive anxieties” sketched in Section 3 above. 

 Whatever role Hume’s critique may have had in the initiation of Bayes’ work on inverse 

probabilities, there is little trace of it in subsequent work. Laplace’s development of the rule of 

succession in his 1814 Essay, sketched here in Chapter 1, used Hume’s example of successive 

sunrises, but made no mention of Hume. Laplace’s Essay includes an entire chapter (1902, Ch. 

XVII) on induction and similar ampliative inferences. It recounts some history of such 

inferences, including mentions of the English writers Newton and Bacon, but not the Scot, 

Hume. 

 Perhaps it is unsurprising that logic texts of the nineteenth century make scant mention of 

Hume’s critique. Their charter is to delineate the structure of the logics, not to rehearse skeptical 

assaults against them. Kirwan’s (1807, p. 231) early logic treatise does cite Hume, but to dispute 

Hume’s assertion that chance is the absence of a cause. Munro’s (1850, pp. 233-340) Manual of 

Logic decrees that induction is material and thus “extralogical” in so far as the induction is not 

complete. That means that its premises fail to include all instances of the generalization, so the 

inference is not deductive. Whately’s (1856) Elements of Logic includes a lengthy chapter on 

induction (Book IV, Ch.1) and struggles with many hesitations, but never clearly articulates 

Hume’s argument or mentions him in the context of induction. Creighton’s (1898) An 
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Introductory Logic has a section entitled “The Problem of Induction.” (Ch.XIII, §47). However, 

the term “problem” is less the identification of a difficulty as the setting of a task: how are we to 

pass from chaotic experience to scientific knowledge? 

 As late as Schiller’s (1912) discussion of formal logic, the term “problem of induction” 

did not have its modern meaning. The work has a chapter entitled “The Problem of Induction” 

(Ch. XVII). The problem identified is the difficulty of determining the truth of premises used in 

deductive syllogisms. Hume’s concern only appears briefly some eight pages into the 

meandering chapter as the unanswered question “How do we know that the future will resemble 

the past?” (p. 239). 

 One might have expected more from W. Stanley Jevons, who is notable for his 19th 

century writing on scientific methodology. Jevons’ (1888, 1902) two logic texts make no 

mention of Hume or any problem of induction, although both discuss induction extensively. His 

major work of methodology, Principles of Science (1874), similarly covers induction extensively 

and advocates for a Bayesian inverse approach. It too has no mention of Hume or any trace of 

the possibility that Bayes himself may have been motivated by Hume’s challenge. 

 John Stuart Mill may have been the preeminent writer of his age on scientific 

methodology. We saw above in Section 3 that he labeled the capriciousness of inductive 

inference as the “problem of induction” and declared hyperbolically that to solve it is to “know 

more of the philosophy of logic than the wisest of the ancients.” 

 Book III of the six forming his System of Logic is devoted to induction. In it he presents 

his methods, whose content remained a core of presentations of scientific methodology into the 

mid 20th century. Buried in this third book among its twenty-five chapters is Chapter XXI. It 

addresses what is, in effect, Hume’s circularity argument. Its subsidiary treatment indicates that 

Mill regarded the problem as a minor nuisance, a philosopher’s sophistry, that can be dispatched 

forthwith by his sharp wit. Mill notes (p. 398) that his inductive methods depend upon the law of 

causality: that every event has an invariable, antecedent cause. We are assured of this law by 

processes of induction that join those cases in which causation is not yet apparent with those in 

which it is. The inevitable circularity appears (p. 398): 

If, then, the processes which bring these cases within the same category with the 

rest, require that we should assume the universality of the very law which they do 

not at first sight appear to exemplify, is not this a petitio principii? Can we prove a 
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proposition, by an argument which takes it for granted? And if not so proved, on 

what evidence does it rest? 

In stating this Humean circularity, Mill makes no mention of Hume. It is not for lack of 

knowledge of Hume’s work, for Hume’s controversial analysis of miracles is discussed at length 

elsewhere in Mill’s System. That Hume’s analysis had indirect or even direct influence on Mill, 

however, is suggested by his distinctively Humean choice of examples (p. 401):84 

It would be absurd to say, that the generalizations arrived at by mankind in the 

outset of their experience, such as these—food nourishes, fire burns, water 

drowns—were unworthy of reliance. 

Mill’s dismissal of the circularity fares as poorly as any that underestimates its gravity. His 

dismissal allows that we first arrive at the law of causality by a fragile, simple enumerative 

induction, but that our inductive methods are subsequently reinforced by applying the law to 

itself so that a certainty results (p. 403): 

The law of cause and effect, being thus certain, is capable of imparting its certainty 

to all other inductive propositions which can be deduced from it; … And hence we 

are justified in the seeming inconsistency, of holding induction by simple 

enumeration to be good for proving this general truth, the foundation of scientific 

induction, and yet refusing to rely on it for any of the narrower inductions. 

Mill has here staked the entirety of his inductive enterprise on the certainty of the law of cause 

and effect, which in Mill’s writing amounted to a principle of determinism. The irony, of course, 

is that this certainty was about to be falsified by the discovery of quantum theory in the 1920s. 

 In any case, authors contemporary to Mill were not so easily bluffed. Lachelier devoted 

Section II of his 1871 doctoral dissertation, Du Fondement L’Induction, to Mill’s argument. No 

matter how artful Mill’s analysis, he concluded that a purely empiricist view like Mill’s cannot 

derive conclusions for the future from the knowledge of the past (1907, p.25; trans. from Ballard, 

1960, p. 13): 

If we see nature as nothing more than a series of impressions without reason and 

without connection, we can indeed record, or rather undergo, these impressions at 

 
84 That bread nourishes is an example Hume uses repeatedly in his Enquiry (1777) starting on p. 

28. 
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the moment they are produced, but we cannot predict them nor even conceive of 

their production in the future. 

Lachelier’s own ideas inclined towards a Kantian, rationalistic idealism, so he regarded this 

empiricist failure merely as motivation for his preferred approach. While Hume’s circularity 

would have provided powerful further direction, Lachelier mentions it and immediately 

abandons analysis of it (Lachelier, 1907, p. 17; Ballard, 1960, p. 9): 

The principle of induction itself, then, must be the product of an induction, (we 

leave aside the circle suspected to be in this reasoning). 

 Similarly, the British idealist F. H. Bradley had little interest in induction and any 

problems Hume may have found in it. In his Principles of Logic (1883), the treatment of 

inductive inference is deeply buried in the text and passed over dismissively (p. 342) “[Mill’s 

methods of inductive logic] will not work unless they are supplied with universals. They 

presuppose in short as their own condition the result they profess alone to produce.” He 

concludes that “we may set down Inductive Logic as a fiasco.” While this conclusion is 

reminiscent of Hume’s circularity, Hume is not credited with any insights and is not mentioned 

by name anywhere in the 534 pages of the text. 

 Perhaps prominent recognition of Hume’s argument has slipped past this sampling of 

nineteenth century writing. If his critique had prominence in the nineteenth century, we would 

expect it to register in survey writing. In light of this expectation, it is revealing that Thomson’s 

(1887) philosophical dictionary has an entry for “The Problem of Inductive Logic,” but it simply 

defines the problem as the capriciousness of inductive inference by giving the quote from Mill 

above in Section 3. This, while elsewhere in the dictionary, Hume appears copiously as 

something of a disreputable gadfly. Hume’s skeptical nihilism, Thomson reports, “gave … 

offence so serious to the British public.” (p. xxx) 

 Still more remarkable is that the introduction of twenty five pages to the 1894 edition of 

Enquiry, written by Lewis Amherst Selby-Bigge in 1893, makes no mention of Hume’s charge 

of circularity concerning inductive inference. Rather what attracts the editor’s attention concerns 

causation (p. xv). It is Hume’s affirmation “that there is nothing at the bottom of causation 

except a mental habit of transition or expectation, or, in other words, a ‘natural relation.’ ” They 

are followed by similar remarks on the relation of resemblance (p. xvi). 
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7. Twentieth Century Revival: The Circularity Formulation 

 With the start of the twentieth century, the “problem of induction” was a term used 

variously to represent a variety of inductive anxieties or even just as a caption to introduce a 

wide-ranging discussion of induction.85 The term did not indicate the short, sharp problem posed 

by Hume: that any justification of a rule of induction must be inductive and thus circular. 

 Matters soon changed. Russell’s Problems of Philosophy (1912) gave terse and readily 

accessible accounts of a series of philosophical problems. The chapter “On Induction” developed 

a clear and compelling version of Hume’s original problem. While Hume is not mentioned by 

name, the chapter’s Humean inspirations were clear by its use of familiar Humean examples. The 

running example asks what justifies our belief that the sun will rise tomorrow. He asks, for 

example (p. 96): 

Do any number of cases of a law being fulfilled in the past afford evidence that it 

will be fulfilled in the: future? If not, it becomes plain that we have no ground 

whatever for expecting the sun to rise to-morrow, or for expecting the bread we 

shall eat at our next meal not to poison us, or for any of the other scarcely conscious 

expectations that control our daily lives. 

The inevitable circularity emerges. Russell develops and refines the circularity until it becomes 

one of justification of what he calls the “principle of induction” (p. 103). It is expressed in 

several cautious clauses. Its overall import, however, is that past association of things of sorts A 

and B make probable that this association will continue. Justification of this principle itself 

inevitably falls victim to Hume’s circularity. The chapter concludes, darkly (p. 106, Russell’s 

emphasis): 

The inductive principle, however, is equally incapable of being proved by an appeal 

to experience. Experience might conceivably confirm the inductive principle as 

regards the cases that have been already examined; but as regards unexamined 

 
85 Ernst Cassirer’s (1910) has a long chapter entitled “On the Problem of Induction.” (“Zum 

Problem der Induktion”). The term “problem of induction” seems to designate no sharply defined 

difficulty for induction, such as posed by Hume. Rather it serves as a general heading under 

which Cassirer can develop complaints about empiricism and defend Kantian perspectives on 

induction. 
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cases, it is the inductive principle alone that can justify any inference from what has 

been examined to what has not been examined. All arguments which, on the basis 

of experience, argue as to the future or the unexperienced parts of the past or 

present, assume the inductive principle; hence we can never use experience to prove 

the inductive principle without begging the question. Thus we must either accept 

the inductive principle on the ground of its intrinsic evidence, or forgo all 

justification of our expectations about the future. 

Hans Reichenbach proved to be a more tenacious and exacting proponent of the cogency of 

Hume’s critique. In his contribution to the first issue of the new journal Erkenntnis 

(Reichenbach, 1930), Reichenbach argued on Humean grounds that there can be no justification 

for probabilistic forms of inductive inference. It is just that we have no choice but to use them: 

(1930, p. 187): 

There is no other justification for our belief in logic than to point to the fact that we 

cannot think at all otherwise.  We can however give the analogous [justification] for 

the laws of probability: we cannot do anything else at all other than to believe in the 

laws of probability. 

The point is soon given an even stronger form (p. 188): 

It is exactly the same with probabilistic logic [as with deductive logic]; we cannot 

justify it, but we can affirm that we just cannot think of any alternative. 

Reichenbach concluded (1930, p. 188): 

Our reply, then, to the problem of validity does not consist in an answer to Hume’s 

question. Rather, the attempt to find a logical foundation for probabilistic assertions 

seeks an impossible goal, comparable to the squaring of the circle. 

The idea that we have no choice but to think probabilistically in inductive terms seems now 

unreflective and unimaginative.86 Perhaps Reichenbach recognized the weakness of this idea, for 

he shortly replaced the “no choice but” defense of the use of probabilistic induction with a 

stronger and now celebrated pragmatic argument. In §38 “The Problem of Induction” of his 

 
86 That seems so especially to me after having written several chapters in the Material Theory of 

Induction that explores calculi of inductive inference that are alternatives to the probability 

calculus 
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Experience and Prediction (1938), Reichenbach formulated a “principle of induction” (p. 340) 

Loosely speaking, it tells us to expect that the observed frequency of some property in a 

sequence of events will persist at this value, approximately, within error bounds, as the sequence 

proceeds. David Hume, Reichenbach continued, had mounted a most significant challenge to the 

principle. He summarized it as (p. 342): 

1. We have no logical demonstration for the validity of inductive inference. 

2. There is no demonstration a posteriori for the inductive inference; any such 

demonstration would presuppose the very principle which it is to demonstrate. 

These two pillars of Hume's criticism of the principle of induction have stood 

unshaken for two centuries, and I think they will stand as long as there is a scientific 

philosophy. 

Reichenbach then roundly chastised the philosophers and logicians of the nineteenth century for 

their failure to recognize the gravity of Hume’s challenge (p. 342): 

It is astonishing to see how clear-minded logicians, like John Stuart Mill, or 

Whewell, or Boole, or Venn, in writing about the problem of induction, disregarded 

the bearing of Hume’s objections; they did not realize that any logic of science 

remains a failure so long as we have no theory of induction which is not exposed to 

Hume's criticism. 

Reichenbach’s Theory of Probability gave a similar formulation that was derived from Hume’s 

original. In his §91, “The Justification of Induction,” citing Hume’s Enquiry, he asks Hume’s 

question: what grounds the inference that the same causes will still be followed by the same 

effects in the future. Following Hume, Reichenbach divides the negative answer into two parts: 

there can be no deductive justification and no inductive justification (p. 470): 

1. The conclusion of the inductive inference cannot be inferred a priori, that is, 

it does not follow with logical necessity from the premises; or, in modern 

terminology, it is not tautologically implied by the premises. Hume based this result 

on the fact that we can at least imagine that the same causes will have another effect 

tomorrow than they had yesterday, though we do not believe it. What is logically 

impossible cannot be imagined—this psychological criterion was employed by 

Hume for the establishment of his first thesis. 
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2. The conclusion of the inductive inference cannot be inferred a posteriori, that 

is, by an argument from experience. Though it is true that the inductive inference 

has been successful in past experience, we cannot infer that it will be successful in 

future experience. The very inference would be an inductive inference, and the 

argument thus would be circular. Its validity presupposes the principle that it claims 

to prove. 

Reichenbach proceeded in both works to his well-known answer to Hume’s problem: we are 

justified in using induction pragmatically. While we have no guarantee that it will work, if 

anything can work, it will work. 

 Wesley Salmon, one of Reichenbach’s most successful students, continued the 

Reichenbachian analysis. His Foundations of Scientific Inference (1967), gave, in my view, the 

most incisive development of Hume’s objection.87 The version of Hume’s objection is slightly 

more general than Reichenbach’s; it proceeds to a systematic and gently ruthless refutation of 

each escape proposed in the then present literature; and then concludes with Reichenbach’s 

pragmatic answer. 

 The inductive inferences of earlier formulations of Hume’s problem is replaced by 

Salmon by the considerably more general notion of “ampliative” inference. Such an inference is 

defined negatively by Salmon (1966, p. 8) merely as an inference that is not demonstrative: 

… an ampliative inference, then, has a conclusion with content not present either 

explicitly or implicitly in the premises. 

Loose as this definition is, Salmon has no difficulty recreating Hume’s charge of circularity 

against it (p. 11): 

Consider, then, any ampliative inference whatever. … We cannot show 

deductively that this inference will have a true conclusion given true premises. If 

we could, we would have proved that the conclusion must be true if the premises 

are. That would make it necessarily truth-preserving, hence, demonstrative. This, in 

 
87 Wes Salmon was a highly respected and kindest senior colleague in my junior years on the 

faculty of the University of Pittsburgh. I regret that time robbed me of the opportunity to show 

him my analysis, for his approval would have meant the world to me. Then again, his 

disapproval would have been devastating. 
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turn, would mean that it was nonampliative, contrary to our hypothesis. Thus, if an 

ampliative inference could be justified deductively it would not be ampliative. It 

follows that ampliative inference cannot be justified deductively. 

At the same time, we cannot justify any sort of ampliative inference inductively. 

To do so would require the use of some sort of nondemonstrative inference. But the 

question at issue is the justification of nondemonstrative inference, so the procedure 

would be question begging. Before we can properly employ a nondemonstrative 

inference in a justifying argument, we must already have justified that 

nondemonstrative inference. 

Hume's position can be summarized succinctly: We cannot justify any kind of 

ampliative inference. If it could be justified deductively it would not be ampliative. 

It cannot be justified nondemonstratively because that would be viciously circular. 

8. Twentieth Century Expansion: The Regress Formulation 

 Explicit notions of induction, when Hume wrote, were limited to some version of 

generalization. The simplest was the long-standing form, enumerative induction: from some A’s 

are B, we infer that all are. Bacon’s method of tables provided a more sophisticated, if still 

limited, version of inductive practice. Nonetheless, writing after him, Hume was comfortable 

reducing all inductive inferences to one simple form: causes will continue to have the same 

effects. With similarly limited conceptions of inductive inference, Russell and Reichenbach88 

worked with comparably simple conceptions of inductive inference, as codified in their 

respective “principles of induction” sketched above. The simplicity of these conceptions makes it 

possible for Hume’s critique to be expressed in terms of a circularity. There is one simple notion 

of inductive inference; and the only way to justify it inductively is to apply that notion to itself. 

 As the twentieth century unfolded, this simple conception of inductive inference ceased 

to be viable, if ever it was. It became all too clear that there are many forms of ampliative 

 
88 I have excluded Salmon’s analysis from the list since his analysis is not limited to the narrow 

conceptions of inductive inference of Russell and Reichenbach. His ampliative inferences 

include all non-demonstrative inference. However, his formulation of the problem as one of 

circularity omits the possibility of an infinite regress. 
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inference in addition to the few considered by Hume, Russell and Reichenbach. By the start of 

the twenty first century, the variety was so great that I found it a challenge to write a survey of 

accounts of inductive inference that would capture and usefully systematize them. My best effort 

is Norton (2005). 

 With many such accounts available, the circularity of Russell and Reichenbach’s analysis 

ceased to be sufficiently expansive. What if their principles of induction are just not justified by 

applying the principles to themselves? What if they are justified by some other form of 

ampliative inference. Harman’s (1965) revival of abductive inference as “inference to the best 

explanation” was offered explicitly as providing a warrant for enumerative induction. Justifying 

one form of inductive inference inductively by another does not settle the matter. For now we 

must ask what inductively justifies this second form, Harman’s schema of inference to the best 

explanation; and when another form of inductive inference is invoked, we must ask what justifies 

that further form. 

 The resulting succession of justifications of inductive inference schemas either leads back 

to a schema already used, in which case we have a circularity; or it triggers an infinite regress. 

This last possibility is the “regress” form of the problem of induction. 

 The earliest clear articulation I have found of this regress form of the problem of 

induction comes in Karl Popper’s 1935 Logik der Forschung, translated as Logic of Scientific 

Discovery (1959). Popper formulates the problem of induction as the problem of justifying a 

principle of induction, which is the fact that authorizes inductive inferences. He dismisses the 

possibility that such a principle could be analytic or a tautology, that is, a purely logical truth. 

Rather it is a proposition whose truth is known from experience by induction. This immediately 

leads to the infinite regress (p. 5):89 

 
89 Popper’s 1935 Logik der Forschung is noted for its decisive rejection of inductive inference. 

His deeply skeptical view of induction was not so novel in 1935. We have seen that 

Reichenbach’s (1930) Erkenntnis paper abandoned the project of justifying induction on 

Humean grounds. Popper (pp. 5-6) cites Reichenbach’s paper, mentions Reichenbach’s 

endorsement of probabilistic inferences but not Reichenbach’s deep skepticism about justifying 

it. 
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To justify it [first principle of induction], we should have to employ inductive 

inferences; and to justify these we should have to assume an inductive principle of a 

higher order; and so on. Thus the attempt to base the principle of induction on 

experience breaks down, since it must lead to an infinite regress. 

This is a terse, but serviceable formulation of the regress version of the problem. A more 

developed version can be found in what Popper (2009, preface) describes as drafts and 

preparatory writings of 1930-33 for Logik der Forschung. They were first published in German 

in 1979 and then in English translation as Popper (2009). There (Book 1, Ch. III) we find that 

Popper preferred the regress form of the problem of induction because the circularity form would 

be open to the objection that the mere assertion of the circularity involves self-reference, which 

Russell had shown to raise the possibility of vicious circularity. Popper continued: 

The concept of “infinite regression” is not open to these objections, but otherwise it 

accomplishes the same task, namely that of demonstrating the existence of an 

impermissible operation. 

Popper continues the chapter, slowly developing the infinite regress and eventually provides this 

summary: 

In this way, a hierarchy of types emerges: 

Natural laws (these may be understood as statements about singular empirical 

statements, and as of a higher type than the latter). The induction of a natural law 

requires a 

First-order principle of induction, which as a statement about natural laws is of a 

higher type than the latter; the induction of a first-order principle of induction, in 

turn, requires a 

Second-order principle of induction, which as a statement about first-order 

principles of induction is, in turn, of a higher type than the latter; and so on. 

Every universal empirical statement requires a principle of induction of a higher 

type than the inductum, if it is to possess any a posteriori validity value at all (either 

true or false) as an inductum. 

Therein consists the infinite regression. 
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9. Logic of Induction, not Epistemology of Belief 

 We saw above that Hume’s formulation of his critique of induction mixed logical and 

psychological notions. He identified deductive necessities as those discoverable by “the mere 

operation of thought”; and contingencies are characterized as freely conceivable by the mind. As 

a result, Hume’s account leaves open whether the problem he identified arises in inductive logic 

or in the psychological processes of belief formation. The first context, inductive and deductive 

logic, is independent of human thoughts and beliefs. It consists of propositions and inferences  

that arise as relations among propositions. The second context resides within the operation of the 

mind. Its relata are not propositions, but beliefs, and reasoning90 is a mental process that carries 

us from some beliefs to the formation of other beliefs. 

 The modern version of the problem of induction, the version that I wish to address, 

resides within the first context, the logic of induction, and not within the second, the 

epistemology of belief. For the problem is formulated in terms of rules governing inductive 

inferences and what happens when these rules are applied to themselves or to other rules. They 

are defined within the context of logic. These rules and the resulting problem of induction appear 

only indirectly in the epistemology of beliefs, after the problem has been formulated in the 

logical context. It arises in this second context in the specific case in which a reasoner uses these 

rules to direct reasoning from a belief in some propositions to a belief in others. 

 It is not possible, as far as I can see, to define the problem of induction within the 

epistemology of belief, without first formulating it in the logical context. For there is no problem 

of induction if a reasoner merely passes from one belief to another. The problem only arises 

when that passage is authorized by some rule of inductive inference; and we then ask what 

justifies that rule. 

 That the problem of induction is best formulated within the logical context is explicitly 

part of the twentieth century revival of the problem. Russell (1912, pp. 96-98; his emphasis) 

makes the point: 

 
90 It is common to describe this mental process as “inference” in the epistemological literature. 

Here I restrict the term “inference” to the first context where it denotes mind and thought 

independent relations over propositions. (This strictly logical operation is often called 

“implication” in the epistemological literature.) 
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 Now in dealing with this question we must, to begin with, make an important 

distinction, without which we should soon become involved in hopeless confusions. 

Experience has shown us that, hitherto, the frequent repetition of some uniform 

succession or coexistence has been a cause of our expecting the same succession or 

coexistence on the next occasion. 

He continues with some illustrative examples. They include the well-known but dark chicken 

remark.91 He concludes: 

We have therefore to distinguish the fact that past uniformities cause expectations 

as to the future, from the question whether there is any reasonable ground for giving 

weight to such expectations after the question of their validity has been raised. 

Salmon (1967, p. 6) is similarly explicit. The problem, he stresses, is “a logical problem” (his 

emphasis) “It is the problem of understanding the logical relationship between evidence and 

conclusion in logically correct inferences.” He then concludes (his emphasis): 

The fact that people do or do not use a certain type of inference is irrelevant to its 

justifiability. Whether people have confidence in the correctness of a certain type of 

inference has nothing to do with whether such confidence is justified. If we should 

adopt a logically incorrect method for inferring one fact from others, these facts 

would not actually constitute evidence for the conclusion we have drawn. The 

problem of induction is the problem of explicating the very concept of inductive 

evidence. 

10. Epistemology Does not Solve the Problem of Induction 

 In principle, misidentifying the problem of induction as deriving from the epistemology 

of belief could be troublesome. On a review of the epistemology literature that was not especially 

diligent, my impression is that the danger has not been realized. While the epistemology 

literature has made no special efforts to separate the two contexts, the failure seems not to have 

been troublesome. In internalist epistemologies, what justifies a belief is cognitively accessible to 

 
91 “The man who has fed the chicken every day throughout its life at last wrings its neck instead, 

showing that more refined views as to the uniformity of nature would have been useful to the 

chicken.” (p. 98) 
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the reasoner. When a belief is justified by inductive inference, the reasoner knows it and knows 

that a rule of inductive inference was used. Thus, the problem Hume identified can be spelt out 

in appropriate logical terms. In externalist epistemology, cognizers have no access to what 

justifies some beliefs. If these include the justifications of reasoning that corresponds to 

inductive inferences, then Hume’s problem cannot be set up. We are by stipulation unaware of 

what justifies our reasoning and how it effects the justification. It follows that we cannot know 

whether these external justifications can be applied to themselves or even what it is for these 

external justifications to be applied to themselves. 

 There is only one case I found of a clear confusion of logical and epistemological issues. 

In a widely-known paper,92 van Cleve (1984) sought to give an externalist solution to the 

problem of induction. It is evident from the start that the project cannot succeed. For the 

challenge is to provide an explicit justification of inductive inference. Such a thing cannot be 

supplied by an epistemology in which the means of justification is, by definition, inaccessible to 

us.93 

 Van Cleve is undeterred. In the briefest sketch, he identifies two related inductive 

inference schemas (pp. 555-56, his emphasis): 

x% of the A’s I have examined were B’s. 

Hence, x% of all A’s are B’s. 

and 

Most of the A’s I have examined were B’s. 

Hence, The majority of all A’s are B’s. 

Somehow, through an external process inaccessible to us, we know these are good inference 

schemas and we know how to restrict application of these rules so that grue-like problems are 

 
92 I learned of this paper through correspondence with Job de Grefte. 
93 For a critique of the capacity of externalist epistemologies to answer a broad range of skeptical 

challenges, see Fumerton (1995, Ch. 6). He notes (pp. 163, 171) that philosophers do not have 

the neurophysiological expertise to assess the efficacy of externalist justifications. “If I had 

wanted to go mucking around in the brain trying to figure out the causal mechanisms that hook 

up various stimuli with belief, I would have gone into neurophysiology.” 
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avoided. This schema is then applied to our history of inductive reasoning to form what he calls 

“Argument A” (p. 557, his emphasis): 

Most of the inductive inferences I have drawn in the past from true premises have 

had true conclusions. 

Hence, The majority of all inductive inferences with true premises have true 

conclusions. 

With the conclusion of Argument A, we have arrived at some form of justification of 

inductive inference. 

 This analysis cannot withstand scrutiny. There are two problems. First, the 

analysis is entirely too optimistic about the accuracy of our spontaneous human attempts 

at inductive reasoning. We human reasoners are naturally rather poor at it. Our natural 

inclinations are towards inductive fallacies.94 If we could find some way to quantify the 

“majority of all inductive inferences…” in the premise of Argument A, we would likely 

find that the premise is false. That we are disposed to infer in some specific way, without 

any explicit justification for that disposition, is a poor justification of the correctness of 

the argument form implemented. 

 Indeed, a strong motivation for modern scientific methodology lies in the need to 

correct our natural inclination to inductive fallacies. We see patterns where there are 

none. We too easily scan some collection of numerical data and come to the wrong 

conclusion. Too many judge a chance remission of some ailment as caused by whatever 

dubious therapy happened to be tried at that moment. Too many find an occasional cold 

day a basis for denying our warming climate. These misapprehensions are corrected by 

explicit statistical analysis. Similarly, we are too easily misled by anecdotal reports to 

believe in the efficacy of some faulty treatment. The impulse to believe must be reined in 

by requiring controlled studies. 

 One can well imagine that an externalist justification is viable for narrowly 

specific beliefs, such as “Jones believes he has just seen a mountain-goat.” to use 

 
94 How is it that we survive? Our natural inductive inclinations are toward safety and the 

exaggeration of threats, not towards accuracy. There is ample redundancy in our interactions 

with the world, so that our many errors are individually correctible and mostly not fatal. 
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Goldman’s (1979, p.10) example. However, it is much harder to see how such external 

mechanisms could reliably implant within us the sorts of universal logical schema sought 

by inductive logicians. Rather we should expect most of the schemas spontaneously 

occurring to us to be incorrect. We will need explicit methods, such as those of science, 

to separate out the few good ones from the many bad ones. Since these internal methods 

decide which schemas we should accept, any real advantage externalist epistemologies 

could provide is lost. 

 The second problem is more serious. If externalism can solve the problem of 

induction, we should expect the analysis to display a justified inductive inference schema. 

A principal consequence of the material theory of induction is that this end is 

unachievable, if the goal is a universal schema of the type offered by van Cleve. 

Inevitably, the particular schemas displayed by van Cleve are, to put it charitably, 

incomplete. That most of the A’s I have examined were B’s is quite insufficient to 

authorize the conclusion that the vastly greater majority of all A’s are B’s. 

 Van Cleve simply avers “I shall assume that we know how to restrict the 

predicates involved in these inferences so as to avoid Goodman’s paradox about the grue 

emeralds.” (p. 556) That brash display of wishful thinking only begins to address the 

troubles that van Cleve has to suppose away. Even without the trickery of grue-ified 

predicates, inductive inference schemas, such as van Cleve displays, most commonly fail 

unless the A’s and the B’s are chosen very selectively under the guidance of background 

facts specific to the domain. This was the extended lesson drawn in Chapter 1 of the 

Material Theory of Induction. Even then additional facts may be needed. For example, 

depending on the case, we may need some assurance that the A’s at issue have been 

sampled appropriately. That requires further background assumptions, such as the 

specification of a random sampling protocol.  

 These two concerns leave little of van Cleve’s analysis intact. With the inductive 

inference schemas so incompletely specified, we have no assurance that they can be 

applied to our history of inductive reasoning to recover the core “Argument A.” And 

further, there is little motivation to do so since the premise of Argument A is likely false. 

 Papineau (1992, §II) gives a briefer analysis, similar to that of van Cleve. We 

carry out an induction, premised on the successes of our past history inductions, to 
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conclude that inductions lead to true conclusions. The correctness of this larger induction 

is based on the supposed reliability of induction as an inference scheme. It is sufficient 

here to note that the criticism above of van Cleve’s analysis applies equally to it. 

 De Grefte (2020) has more modest ambitions. He disavows van Cleve’s attempt 

to justify inductive inference. Rather, he argues that there is no problem of induction for a 

reliabilist externalist epistemologist (p. 103): 

My present aim is only to establish that a reliabilist would not be troubled 

by the problem of induction. And that follows from the fact that reliabilists 

maintain that reliability is sufficient for justification, and that inductive 

inference may be reliable even if it is impossible to provide an argument for 

its inductive validity. We thus do not need to make the controversial 

assumption that inductive inference is, in fact, reliable. 

Here I agree with de Grefte: the modern problem of induction does not arise in a context 

in which there are no rules of inductive inference. However, he is wrong to conclude 

from this (p. 100) “… that externalist epistemologies are generally able to dissolve the 

problem of induction.” The problem of induction is a problem of inductive logic. It is not 

solved or dissolved by pointing out that the problem does not arise in another context. 

 There is a related problem that leaves reliabilist externalist epistemologists in a 

worse position than inductive logicians. That some epistemic process has been reliable in 

the past is no guarantee that it will continue to be reliable. Since these processes are 

invisible to externalists, they cannot even identify the processes justifying beliefs and 

thus have no means of controlling and assessing them. 

11. The Material Dissolution of the Problem of Induction 

 The material theory of induction dissolves the problem of induction. The reason is simple 

and has already been given in the Synopsis at the start of this chapter: the problem of induction is 

formulated in terms of universally applicable rules or schemas for inductive inference. There are 

no such rules or schemas in the material theory. It follows that the problem of induction cannot 

be set up. That is, there is no problem of induction within the material theory. 

 The analysis could stop with that. However, a common but mistaken reaction to this 

dissolution is that it is too easy. Surely a recalcitrant problem like the problem of induction 
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cannot be dispatched so simply. In other failed solutions of the problem, the core difficulty 

remains but is somehow sufficiently disguised that it is no longer immediately apparent. Any 

claim of a solution to the problem of induction is then taken as an invitation to dig deeper to 

expose the trick and defeat the solution. It is the default reaction of philosophers to any claim of 

a solution to the problem of induction. This understandable intuition, mistaken in this case, 

directs us to seek a comparably troublesome regress or circularity in the justifications of 

inductive inferences within the material theory. There are both—regresses and circularities—

within the material theory of induction. However, they are benign, unlike their counterparts in 

theories of induction with universally applicable schemas. Demonstrating this is the goal of the 

next two sections. 

12. Regresses 

 Consider first the regresses within the material theory of induction. Each inductive 

inference is warranted by background facts in the applicable domain. If they are to provide a 

warrant, they must be facts, that is, truths, so we expect they are in turn supported by further 

inductive inferences. And these inductive inferences in turn require further facts to warrant them. 

And so on. What results is a regress of facts of some sort. However it is a benign regress that 

merely recapitulates the mundane relations of inductive support that arise routinely within 

sciences. It is unlike those troubling universally applicable inductive inference schemas of the 

problem of induction. 

12.1 In the Traditional Problem 

 To see this, we begin with the troublesome case. For universally applicable inductive 

inference schemas, the traditional starting point of the regress is some version of enumerative 

induction. The regress is already troublesome at the outset. For, as we just saw, schemas of 

enumerative induction are incomplete. If applied mechanically, they mostly lead to false 

conclusions. All too often, when we have some A’s that are B, it is not the case that all A’s are 

B. Hence the first step of the regress, using another rule of inductive inference to justify the 

schema, has been set an impossible task. Still, we might follow Harman’s (1965) lead and seek 

to use inference to the best explanation to vindicate enumerative induction. The effect is merely 

to add another layer of trouble. As argued at some length in Chapters 8 and 9 of the Material 

Theory of Induction, the schema of inference to the best explanation is itself incomplete. We 
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have no agreement in the literature as to what counts as an explanation, let alone just how to 

judge which is the best explanation. Indeed, I have argued, a distinctive notion of explanation 

seems to play no role in the standard examples of inference to the best explanation in science. 

 The regress cannot stop, however. We press on. How, as a general matter, are we to 

justify inference to the best explanation? Often explanations require simplifications that 

intentionally introduce idealizing falsehoods. Explanation and truth need not coincide.  

Nonetheless, perhaps we can find a third rule to justify this second rule. Might we suppose that 

that general use of this argument form has passed some sort of severe test, so that it is justified 

by the rule of severe testing? Has the rule of inference to the best explanation been tested 

severely enough to justify its universal use? 

 Finally, might we tap instead into the unbridled optimism of Bayesians that their system 

can account for everything? Might there be a Bayesian vindication of inference to the best 

explanation, even if we remain unsure of just what an explanation is? Or might a Bayesian 

vindication succeed for any of the other rules we may seek to justify in the regress? Whatever the 

prospects of success here for Bayesian vindications, we have still only postponed the difficulty. 

We must now ask, what justifies the Bayesian system? In Chapters 10 and 11 of The Material 

Theory of Induction, I argued that all the many attempts to justify probabilism are circular. This 

does halt the regress, but at the cost of circularity. 

 We have explored only a few steps of the regress; and our store of distinct, universally 

applicable schemas of inductive inference is depleted. The prospect of sustaining an infinite 

sequence of such steps is not just distant but obviously impossible. Our inferences have become 

as brittle as glass. We must feign some grasp of the application of inductive inference schemas in 

all generality; and then pretend to grasp clearly just what it is to apply still further inductive 

inference schema to them; and then more to them.  We quite rightly judge this infinite regress of 

rules applied to rules and to rules as fanciful and unsustainable. 

12.2 In the Material Theory 

 The regress of factual warrants in the material theory of induction is different. Where the 

regress of rules applied to rules is incomplete, speculative and dubious, the regress of factual 

warrants is distinctive precisely for its lack of distinction. It is simply the recapitulation of the 

grounds given in a mature science for its results. Chapter 2 has already described the non-

hierarchical, massively entangled relations of inductive support within a mature science; and has 
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argued that the totality of these relations is self-supporting. Another example can remind us of 

just how routine is the regress of factual warrants in a mature science. Chapter 2 already used the 

illustration of the impossibility of a perpetual motion machine in the case of the EmDrive.  

 Consider now the general proposition that a perpetual motion machine of any kind is 

impossible. Our certainty of its impossibility is warranted by the fact of the conservation of 

energy. We can now begin the regress of warrants. What supports our confidence in the 

conservation of energy? I already indicated in Chapter 2 that the totality of support for this fact is 

so immense that it extends well beyond what can be specified here. However, it is sufficient to 

say a little more to make the key point. 

 The conservation of energy—then commonly known as the “conservation of forces”—

was one of the proud triumphs of mid nineteenth century physics. The result derived from the 

joint achievements of many, including Joule, Mayer and Helmholtz. It was established through 

the accumulation of many smaller results. For the conservation of energy applies to all physical 

transformations. What needed to be shown was that, in each physical transformation, where a 

capacity was lost in some component, it was restored in another; and the restoration was such 

that a quantitative measure of the capacity was preserved.  

 When the result was still a scientific novelty, Hermann Helmholtz gave a popular lecture 

in Karlsruhe, sometime in the winter of 1862-63, summarizing its basis. Helmholtz (1885) 

proceeded methodically through the various transformation processes that contribute to the 

general result. They were: 

Simple mechanical processes, such as bodies moving under gravity. They included the 

motion of pendula powering clocks; the falling weights that powered such clocks; mills 

powered by falling water; and the operation of diverse lever and pulley systems. 

Processes involving and powered by elastic bodies. These include springs and crossbows; 

bodies moved by the expansive powers of heated gases, such as those produced in a gun 

barrel by exploding gunpowder or the steam within a steam engine. 

The many transformations of heat. They include its transmission among solids, liquids and 

gases, and by radiative processes; its latency in phase transitions such as the melting of ice; 

and its production and absorption in chemical processes. Of great historical importance was 

the novel recognition that heat and motive power were intertransformable. Motive power 
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could be converted to heat by friction; and heat could be converted to motive power in a 

heat engine. 

Chemical transformations. They include all manner of heat generating, combustion 

reactions; and fermentation reactions that produce pressurized gases. 

Electrical processes. They include the creation of combustible gases by electrolysis; the 

use of chemicals to generate electrical current in the cells of a battery; and the 

interconvertibility of motive power into electrical currents in electric motors and dynamos. 

These electric currents can then produce chemical changes or, in resistances, create heat. 

As Helmholtz worked his way, step by step, through all these processes, the same result was 

recovered over and over (p. 359): “Thus, whenever the capacity for work of one natural force is 

destroyed, it is transformed into another kind of activity.” 

 We see here the first steps of the regress of inductive support. Each result claimed by 

Helmholtz required further support. To recover them, he could indicate a long history of 

experimental work preceding him in each of the sciences touched upon by his inventory of 

processes. Best known of these in this context was the experimental work of James Joule. He had 

painstakingly measured the exact conversion between heat and motive power, the mechanical 

equivalent of heat. His was just one of many experiments touching all the sciences. They include 

Regnault’s painstaking measurements of the physical properties of steam and Faraday’s many 

researches into electrochemistry. Following this path, the regress takes us on a tour of earlier 

nineteenth century experimental work in the physical sciences. These next steps of Helmholtz’s 

regress are not limited to experimental work. They also engage with established physical 

sciences. The conservation results pertaining to the motions of bodies under gravity could be 

drawn directly from well-established Newtonian mechanics; and the conservation of heat itself 

from results in calorimetry and from what could be preserved of the caloric theory of heat. 

 Helmholtz’s lecture gives an early portrait of the regress of inductive support shortly after 

the initial recognition of the conservation of energy. The regress continued for decades with ever 

growing strength. Each item listed in Helmholtz’s inventory identified a distinct science: 

conservative mechanics, the mechanics of fluids, thermodynamics, chemistry and electrical 

theory. As each developed, each individually affirmed the conservation of energy within the 

processes peculiar to its domain. Might we fear that the mysteries of electricity, magnetism and 

radiation harbors a violation of the law of energy conservation? With the perfection of 
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Maxwell’s electrodynamics as the century progressed, the conservation of energy is issued as a 

simple theorem, a deductive consequence of Maxwell’s equations. There were also interactions 

among the sciences. The joint sciences of electrochemistry and thermochemistry emerged, for 

example. In each, the conservation of energy was maintained. Overall, the conservation of 

energy proves to be affirmed multiply in each of the sciences and in many experiments. Its 

affirmation in one area, then provides support for its affirmation in another; and conversely. 

 The law found new strength with the coming of novel physics of the twentieth century. 

With Einstein’s “E=mc2,” energy and mass are identified. The law of conservation of mass had 

figured prominently in Lavoisier’s establishment of the oxygen theory of combustion and his 

tabulation of elements. The law of conservation of mass is now merged with the conservation of 

energy. Evidential support for one is also evidential support for the other. As relativistic 

mechanics developed, a similar merger of conservation laws appeared. In the four-dimensional 

account of special relativity developed by Hermann Minkowski, the laws of conservation of 

energy and of momentum proved to be a manifestation of a single law of conservation of energy-

momentum. The conservation of momentum supports the conservation of energy; and 

conversely. The standard Hilbert space formulation of quantum theory emerged in the late 1920s 

and early 1930s. It gave energy conservation a special role. Physical systems were routinely 

represented by conservative Hamiltonian operators whose action on quantum states generate 

their time evolution. The resulting temporal dynamics then automatically conserves the energy of 

a system with determinate energy. The success of quantum dynamics depended on the 

conservation of energy; and conversely. 

 This recounting of the evidential support for energy conservation and the necessary 

failure of all perpetual motion machines is likely not a moment of great excitement for the 

reader. It reads like a dull recitation of an introductory chapter in a dreary science text. That, of 

course, is precisely the point. When we ask what justifies a fact warranting some inference in a 

mature science, we begin a regress that recounts relations of inductive support upon relations of 

inductive support. We find rapidly that tracing these relations takes us on a tour of much science; 

and we find the relations entangled in many mutually reinforcing interactions that give rigidity 

and strength to the structure. At each moment in our tour, we encounter a piece of ordinary, 

unremarkable science. What we do not find is what we found in the regress of universal schemas 
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of induction: an accumulation of incompletenesses that terminates in dubious speculation after 

only a few steps of regress. 

 The justificatory regress of universal schemas of inductive inference is almost 

immediately ruinous and presents a severe challenge to any account of such schemas. The 

regress of inductive support in the material theory of induction is merely the recapitulation of 

mundane science. It just recalls how science is done. 

13. Circularities 

 To recall a theme stressed repeatedly in this volume, the massive tangle of relations of 

inductive support in a mature science includes circularities, large and small in compass. We have 

just seen several of them. Einstein’s “E=mc2” merged the conservation of energy and the 

conservation of mass. Through the mediation of this fact of merger, it now follows that the 

earlier establishment of the conservation of mass in chemistry provides support for the 

conservation of energy in physics; and the earlier establishment of the conservation of energy in 

physics provides support for the conservation of mass in chemistry. Similar relations of mutual 

support arise for the laws of conservation of energy and conservation of momentum, through the 

fact that these laws are expressed as a single law of conservation of energy-momentum in the 

four-dimensional formulation of special relativity. 

 It was argued at some length in Chapter 3 that the mere presence of a circularity in some 

system is not an automatic condemnation of the system. Many circularities, like the ones just 

noted, are common in unobjectionable science. Rather, if we are to assert that a circularity is 

troublesome, we have a positive obligation to demonstrate that the specific circularity is so. The 

chapter provided two means for this. The most serious is a vicious circularity. In it, the circular 

relations lead to a contradiction. The less serious case was of a circularity that left the structure 

indeterminate. If that indeterminacy was not transient but ineliminable, the common resolution 

was to judge the structures involved as not factual. That is, they can be set conventionally, much 

as we are free to set our units of measurement. 

 In the circularity forms of the problem of induction, we seek to use a universal schema of 

inductive inference to justify itself. This circularity is immediately troublesome, for it forms a 

tight circle that leaves the schema indeterminate. There are, it is easy to show, too many, dubious 

universal schemas of inductive inference that are self-justifying. The trouble is that self-



 204 

justification is too permissive. Salmon’s (1967, p. 12) preliminary example is of a psychic who 

makes predictions by gazing into a crystal. Salmon continues: 

When we question his claim he says, “Wait a moment; I will find out whether the 

method of crystal gazing is the best method for making predictions.” He looks into 

his crystal ball and announces that future cases of crystal gazing will yield 

predictive success. … “By the way, I note by gazing into my crystal ball that the 

scientific method is now in for a very bad run of luck.” 

Another of Salmon’s examples is a counter-inductive rule that is self-justifying. It mimics the 

familiar attempt to allow inductive inference to be self-justifying. Salmon (1967, p. 15) defines 

an inductive rule “R3” (his emphasis): 

To argue from 

Most instances of A's examined in a wide variety of conditions have been non-B 

to (probably) 

The next A to be encountered will be B. 

Salmon now takes as a premise that most applications of rule R3 (“A”) have been unsuccessful 

(“not-B”). Rule R3 now assures us that rule R3 will be successful on its next application. More 

formally, he writes (his emphasis): 

R3 has usually been unsuccessful in the past. 

  Hence (probably): 

R3 will be successful in the next instance. 

Douven (2017, §3.2) provides an amusing variant of Salmon’s counter-inductive rule: 

For suppose that some scientific community relied not on abduction but on a rule 

that we may dub “Inference to the Worst Explanation” (IWE), a rule that sanctions 

inferring to the worst explanation of the available data. We may safely assume that 

the use of this rule mostly would lead to the adoption of very unsuccessful theories. 

Nevertheless, the said community might justify its use of IWE by dint of the 

following reasoning: “Scientific theories tend to be hugely unsuccessful. These 

theories were arrived at by application of IWE. That IWE is a reliable rule of 

inference—that is, a rule of inference mostly leading from true premises to true 

conclusions—is surely the worst explanation of the fact that our theories are so 
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unsuccessful. Hence, by application of IWE, we may conclude that IWE is a 

reliable rule of inference.” 

I stressed above that we have a positive obligation to demonstrate that circularity is troublesome. 

Salmon and Douven’s analysis shows just this trouble for the self-justifying schema. 

 That there is no such demonstration of troublesome circularity in the material theory of 

induction was argued in Chapters 3 and 4 above. Contradictions can arise provisionally in the 

tangle of mutual relations of inductive support of a developing theory. They are merely an 

indication that we have an error somewhere in our structure. They are routine and provide a 

helpful guide to finding the error and its subsequent elimination. Indeterminacies can also arise. 

If they are ineliminable, we have good reason to conclude that what is left indeterminate is not 

factual but something that can be set by convention. For we have found something that is beyond 

the reach of evidence. Finally, if the indeterminacies admit multiple theories but they remain 

within the reach of evidence, we find that the resulting competition among those theories is 

unstable. An advantage accrued to one strengthens it at the expense of the others. Under this 

instability and the accumulation of further evidence, inductive support is driven to favor just one 

of the competing theories. 

 The circularities arising when universal schemas of inductive inference seek to justify 

themselves are self-defeating. The circularities of inductive support arising in the material theory 

of induction are merely symptoms of a massively interconnected network of relations of 

inductive support. They are part of what gives strength and rigidity to the evidential support of 

mature sciences. 

14. Sober and Okasha 

 It would be a surprise if a response to Hume’s problem this simple had been entirely 

overlooked in the literature. As far as I know, there are two older versions of this escape. Neither 

is complete, since each omits at least one key piece, but they have enough for me to characterize 

them as close to the material dissolution. 

 Sober (1988) notes that Humean skepticism about our knowledge of the future is equally 

a problem for historical sciences, such as evolutionary biology, for they try to discern the past 

from evidence in the present. In these inferences, invocations of simplicity can play a prominent 

role. Sober, however, understands them materially (p. 64, his emphasis): 
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Whenever observations are said to support a hypothesis, or are said to support one 

hypothesis better than another, there must be an empirical background theory that 

mediates this connection. It is important to see that this principle does not evaporate 

when a scientist cites simplicity as the ground for preferring one hypothesis over 

another in the light of the data. Appeal to simplicity is a surrogate for stating an 

empirical background theory. 

Sober then applies this material understanding of induction to Hume’s problem. According to the 

problem as he recalls it, inductive inference depends on an inductive principle that cannot be 

justified by reason alone. In place of this failure, he finds a regress (pp. 65-66): 

What we do find in any articulated inductive argument is a set of empirical 

assumptions that allow observations to have an evidential bearing on competing 

hypotheses. These background assumptions may themselves be scrutinized, and 

further observations and background theory may be offered in their support. When 

asked to say why we take past observations to support the belief that the sun will 

rise tomorrow, we answer by citing our well-confirmed theory of planetary motion, 

not Hume' s Principle of the Uniformity of Nature. If challenged to say why we take 

this scientific theory seriously, we would reply by citing other observations and 

other background theories as well. 

All that is needed for this analysis to coincide with the material dissolution is for Sober to affirm 

a benign termination of the regress. Here he falters. Through an obliquely answered rhetorical 

question, he concludes that there is no “stage where an empirical belief that is not strictly about 

the here and now is sufficiently supported by current observations, taken all by themselves.” For 

such a stage is incompatible with his earlier conclusion that observations can support an 

hypothesis only relative to a background theory. He concludes (p. 66): 

The thesis that confirmation is a three place relation sustains Hume's skeptical 

thesis, but not the argument he constructed on its behalf. 

Sober’s objection to a benign termination to the regress, we can now see, depends on a tacit 

adherence to the hierarchical structure of relations of inductive support denied in Chapter 2 here. 

Without it, we are freed from the requirement that a warranting fact must be drawn from 
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somewhere in a later stage of the regress. A benign termination is possible merely using 

warranting propositions supported elsewhere.95 

 Okasha (2001) recounts the key idea of the material dissolution of the problem of 

induction in a section headed “IV. No Rules of Induction, No Humean Argument.” The section 

ends (p. 324): 

To conclude, a Humean sceptical argument will only work if our inductive 

behaviour can be characterized as a process of rule-governed ampliation. There is 

no necessity that our inductive behaviour can be so characterized. I have offered 

reasons for thinking that it cannot be. If this is correct, then Hume’s argument 

cannot be converted from a valid one into a sound one, and the threat of inductive 

skepticism is successfully parried. 

Okasha also recognizes that an inductive rule is only applicable if the background factual 

conditions are hospitable. In the material theory, it is inferred from this circumstance that rules of 

inductive inference can only be applied locally in suitably hospitable domains. Here, 

unfortunately, Okasha takes a different course that precludes a full dissolution of the problem of 

induction. Okasha treats inductive rules as universally applicable and finds this to require us to 

abandon all rules of inductive inference. That is, he writes (p. 321): 

To use an inductive rule is to assume that the world is arranged in a particular way, 

as I have stressed. … So following any particular inductive rule does seem less than 

fully rational. It embodies a fixed commitment to the world's being in a certain 

state; but qua empiricists we should undertake such commitments only 

provisionally, not hold on to them at all costs. 

The result is that Okasha must seek some other account of the inductive practices of science. He 

explores Bayesianism, understood as dynamics of opinion change, and Popper’s deductivist 

elimination of induction. Hume’s problem is escaped but at the cost of denying that science 

infers inductively. 

 
95 See Okasha (2005) for an account of Sober’s analysis and the material dissolution as presented 

in Norton (2003). 
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15. What Justifies Induction in the Material Theory 

 Showing that there is no problem of induction in the material theory may seem to leave 

the fundamental question unanswered. What, one may still wonder, justifies the practice of 

inductive inference, according to the material theory? While the answer was implicit in the 

discussion of the last section, it may be helpful to make it more explicit. 

 The question can appear unanswered if it is accompanied by a false presumption. In 

asking “What justifies…” the presumption might be that we can identify a particular thing that 

does the justifying. That was the sort of answer that Mill tried to give with his principle of 

uniformity of nature. In the material theory of induction, there is no single identifiable thing that 

justifies inductive inference. Rather, the justification of inductive inference is distributed over the 

entirety of the complicated network of relations of inductive support that comprise a mature 

science. In the early stages of a new science, when these networks are not fully in place, 

justification may only be partial. For at least some of the justificatory work is done by 

propositions, introduced hypothetically, without themselves having proper support. The goal, as 

the science develops, is to provide support for each of these hypotheses, so that no proposition of 

the resulting mature science is without inductive support.96 

 Perhaps an analogy will help illustrate the sufficiency of this answer. The vitalists of the 

eighteenth and nineteenth century sought in vain for the animating spirit that distinguishes living 

from dead matter. As biology advanced into the twentieth century and our knowledge of the 

details of life processes became increasingly detailed, the futility of the search for this élan vital 

became clear. However, there was no simple answer to the question what makes something alive. 

A biologist could examine in great detail any portion of a living organism and find only 

inanimate chemical and electrochemical processes, even if of great complexity. We can point to 

no single thing that animates matter. The best and the only answer to the question of what makes 

some organism alive is just this. It is no one piece of the organism. Its life derives from the 

synthesis of all the many processes of its many parts. 

 
96 This notion of distributed support has already appeared in variant forms in Chapter 2 and in 

Chapter 5. 
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16. Critical Responses to the Material Dissolution 

 Section 6 of my first paper on the material theory of induction (Norton, 2003) described 

how the material theory of induction eluded the problem of induction. I have described in the 

Preface how this dissolution of the problem of induction generated a critical response out of 

proportion to the place it occupied in the original paper. However, the criticism revealed that I 

had not developed the details of the dissolution well enough. It needed to be sharpened. Here I 

will recall that criticism and show how subsequent refinements have responded to it. There were 

two broad areas of concern, indicated below. 

16.1 From Particulars to Generalities 

 First, I had correctly identified the regress of justifications in the material theory as 

benign and as merely recapitulating ordinary relations of support in standard science. However, I 

had not identified the non-hierarchical structure of these relations and the role of hypotheses in 

its erection. Rather, in Norton (2003, §6), I had merely asserted that the regress is benign and 

gave some inconsequential speculation on the possibilities for its termination. These included a 

termination in “brute facts of experience.” 

 Both John Worrall (2010) and Tom Kelly (2010) found this inadequate. Worrall (2010, p. 

746) correctly noted:  

However, if we follow this backward direction, we clearly meet what seems to be 

an insuperable problem: the accreditational buck has to stop somewhere: it cannot 

be an infinite chain (or rather tree…) … we know that nodes in the tree must 

contain, at some stage, universal claims—and so we would still have to account for 

some initial act (or acts) of generalization. And given that we want each node to be 

justified, we would seem to be back at the same old problem. 

And then (p. 747): 

I am unsure what a ‘brute fact’ of experience is. But presumably brute facts for 

Norton here had better be singular: if so, then the problem has not been solved since 

the tree needs to go universal at some point; … 

Kelly (2010, p. 760) set up his objection by defining “E”:  

… consider that time immediately before we acquired our first piece of inductive 

knowledge. Let E represent the totality of our knowledge at that moment. 
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Trouble, Kelly continued, ensues (p. 761) 

Suppose that we try to take a first, minimal step beyond E. Again, intuitively, this 

proposition will be our first piece of inductive knowledge. In that case, we must 

have recourse to at least one known material postulate. Of course, that material 

postulate has to be a part of E, since it has to be known, and E represents the totality 

of our knowledge at the time. … My worry is that, given that the only empirical 

knowledge that one has at that point is observational knowledge and its deductive 

consequences, there would not be anything suitable around to play the role of 

material postulate. 

In brief, the concern is that we start knowing only particular facts. To extend our knowledge 

inductively to generalities of vastly greater scope, we need a material postulate of vastly greater 

scope. By supposition we have no such fact in our starting point. 

 This is an objection that needs a response and I am grateful to Worrall and Kelly for 

pressing me on it. The response to these worries came in Norton (2014) (and is elaborated in 

Chapter 2 here). Their objection fails. It neglects the use of hypotheses as a way of extending the 

inductive reach of evidence well beyond its initially limited scope. We can and routinely do take 

a first faltering step in inductive inference by hypothesizing the warranting fact needed. This 

warranting fact can be of generality greater than the facts from which we initially proceed. The 

key is that its use is provisional. We have a positive obligation to return to the hypothesis and 

show in subsequent investigations how it is supported inductively. When we succeed, we 

commonly end up with cogent but massively entangled relations of inductive support. If we do 

not succeed, we must concede that the inference has no warrant and should be abandoned. 

 It is a lesson hard won by authors of philosophy papers that their solutions to problems 

can be overlooked. Such has happened with works by Schurz (2019) and Schurz and Thorn 

(2020). They mischaracterize the material approach to induction as a “uniformity account” 

(2019, p. 17; 2020, p. 89), that is, an account based on uniformity assumptions. Then they 

assume that the regress of inductive support depends upon a sequence of uniformity assumptions 

of increasing generality that cannot terminate satisfactorily.97 Both texts provide instances of 

 
97 “A closer look at Norton’s example shows that the uniformity assumptions that justify 

inductive inferences become more and more general.” (Schurz, 2019, p. 17) “… the uniformity 
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such sequences. Readers should be forewarned that these sequences are proposals by Schurz and 

Thorn and not part of my account. Their supposition is based on a mistaken assumption about 

how the warranting facts of an inductive inference are to be themselves warranted. The 

supposition is that the successive warranting facts in this process must inexorably become ever 

more general. In this way, relations of inductive support are supposed to be adapted to a 

hierarchy of increasing generality. 

 That inductive support, materially understood, avoids just such sequences was an 

important consequence of my (2014, §10) identification of the non-hierarchical structure of 

relations of inductive support, further elaborated here in Chapter 2. Rather relations of inductive 

support cross over one another in a massively entangled structure that respects no such hierarchy 

of generality. Schurz and Thorn draw their treatment of the material escape from Norton (2003), 

supplemented by references to Worrall (2010) and Kelly (2010). They do not cite Norton (2014) 

and make no accommodation for its assertions. My fuller response to Schurz and Thorn (2020) is 

in Norton (2021). 

16.2 Logic versus Epistemology 

 The second concern was that I had not separated questions of inductive logic from those 

of the epistemology of beliefs, as I have now done in Section 9 above. That this should happen in 

my (2014) response to Kelly was almost inevitable, since his critique had mingled the two 

throughout. Kelly (2010, p. 759) presents a core claim of the material theory in epistemological 

terms: 

In what sense are inductive inferences “grounded in” material facts? … what is 

required is that the person drawing the inference knows (or at least, reasonably 

believes) that they obtain. 

 
assumptions that justify material inductive inferences become unavoidably more and more 

general.” (Schurz and Thorn, 2020, p. 90) Independently of any considerations of the material 

theory, Bird (1998, p.111) characterizes the regress form of the problem of induction in terms of 

an unsustainable regress of ever more general, justifying facts. 
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This Kelly soon reinforces as the key supposition that will lead to his objection to the material 

dissolution:98 

… Norton’s view is that knowledge of the underlying material postulate is what is 

required: “In order to learn a fact by induction, the material theory says that we 

must already know a fact, the material postulate that licenses the induction” (2003, 

666). 

 Let us call this commitment of the material theory: 

Prior Knowledge: in order to learn a fact by induction, one must have prior 

knowledge of the material fact that licenses the induction. 

Kelly’s narrative here has taken a central claim of the material theory of induction from the 

context of the logic of induction and reconstituted it as a claim in the epistemology of belief. 

With this revision, as quoted above, Kelly sets up E: the totality of our knowledge at the moment 

immediately before we acquired our first piece of inductive knowledge. He can now pose what 

appears to be an insurmountably difficult problem. How can we proceed from E to make the first 

induction to a generalization of vastly greater scope? 

 Understood as a problem of inductive logic, it is not so formidable. We have some body 

of particular fact. What inductive inferences can it support? As Chapter 2 recounts, once we 

abandon the unnecessary hierarchical restrictions on applicable material postulates, we find that 

there is no barrier to them grounding an extensive science with propositions of general scope, as 

long the propositions of E are themselves varied enough. We can even recover the inductive 

structure from a sequence of inductive inferences that employ hypotheses provisionally.99 

 
98 The remark quoted from me (“In order to learn a fact … know a fact…”) reports a 

consequence of the material logic of induction for the epistemology of belief. The “knowing” is 

not constitutive of inductive inference relations in the material theory. Kelly mistakenly makes it 

so. 
99 One might worry that this use of hypotheses strays into the epistemology of beliefs. The use of 

hypotheses, as described in Chapter 2, is akin to the positing of an hypothesis in ordinary 

deductive logic as part of a reductio ad absurdum. In both cases, the hypotheses figure in explicit 

logical relations over propositions. Beliefs need not enter the analysis. 
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 If, however, we conceive E epistemologically, as some sort of exhaustive specification of 

the beliefs of a fictional primitive human, we now have posed a new and more difficult problem. 

We have somehow to imagine the unimaginable. What is it to be such a human, fully grasping 

many particulars but no generalities? What would such a human do next? Would such a human 

have any confidence that generalities were somehow in inferential reach? What might motivate 

such a human even to want to try?  

 This epistemological formulation of the problem led me in Norton (2014) to give some 

epistemological analysis in §§6-7 of what I called “The historical-anthropological objection.” I 

agreed with John Worrall about the spuriousness of the epistemological problem posed. We have 

no reason to believe that our forebears were ever in the cognitive state represented by E. Even 

while objecting that the problem as posed engaged in wild speculation, I sought to make the 

point by responding with more speculation of my own on the prospects of primitive cognition in 

what I called a “counter-fable.” 

 Looking back, I stand by the content of the analysis I gave. However, I now regret not 

choosing a more cautious response. The material theory of induction has no trouble dealing with 

the inductive logic of the problem. Once the problem is enmeshed with fabrications of fictitious 

primitive humans in the epistemology of belief, then it can no longer be addressed responsibly by 

armchair philosophers. Even though this was the basic point I sought to make, it was a mistake to 

engage in any more detail.100 For it invites the misapprehension that the material theory of 

induction has some responsibility to make sense of primitive humanoid cognition. It does not. Its 

compass is restricted to inductive logic defined over propositions and especially those that enter 

into routine science. It has no responsibility to the inchoate speculations of a primitive Adam 

when he first stumbles out of his cave. 

 De Grefte (2020) entangles logic and epistemology in a sequence of dubious arguments. 

First, he argues that “proponents of the material theory of induction are in fact committed to an 

externalist epistemology.” Here I am resisting all attempts to enmesh the material theory in 

issues of epistemology and have no interest in connecting the material theory of induction with 

any particular epistemology. Lest the point pass, however, I should report that de Grefte’s efforts 

 
100 This regret applies also to remarks in Norton (2003) such as fn 9, p. 668, in which I assert 

(correctly) that brute facts like “the ball is red” already presupposed universal knowledge. 
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to establish a commitment to an externalist epistemology are weak. As far as I can see, 

internalists can employ the material theory of induction simply by being aware of the material 

facts authorizing the inductive inferences behind their reasoning. 

 Second, de Grefte has argued (p. 100) “that externalist epistemologies are generally able 

to dissolve the problem of induction.” In Section 10 above, I argued that this is a mistake. That 

there is no problem of induction in an externalist epistemology does not solve a problem in 

inductive logic. Moreover, reliabilist externalist epistemologies are felled by a problem 

analogous to the problem of induction. 

 Hence, finally, with these two failures, there is no foundation for de Grefte’s claim (p. 

104, his emphasis):101 

Like extant forms of externalism, Norton’s material theory of induction dissolves 

the problem of induction. But since the material theory entails an externalist 

epistemology, one may suspect it is this externalism that does the epistemological 

work here. 

 Weintraub’s (2016, §4) appraisal of the material dissolution illustrates again the dangers 

of mixing logic and epistemology incautiously. After recounting the much cited “bismuth” 

example of Norton (2003, p. 649),102 she writes (p. 72, her emphasis):  

But it is extremely implausible to suppose that if bismuth is in fact an element, but 

we justifiably believe that it isn't or have no opinion about the matter, our belief that 

it melts at 271 C is justified, our sample of positive instances notwithstanding. 

That is, she supposes that we have mistakenly come to believe falsities of the background 

domain or perhaps have no suitable background beliefs. Then she correctly notes that we would 

be unable to justify the appropriate conclusion concerning the melting point of bismuth. There is 

no fault here in the inductive logic. The fault lies in the translation of logic into belief states. The 

cognizer proceeds by supposition from false or inadequate beliefs. It is a failure outside the 

compass of the material theory of induction. 

 
101 See also my response in Norton (2021, §6). 
102 From “some samples of the element bismuth melt at 271C,” we infer “all samples of the 

element bismuth melt at 271C” using the warranting fact “All samples of bismuth are uniform 

just in the property that determines their melting point, their elemental nature,…” 
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  Her dismissal of the material dissolution of the problem of induction seems to rest on a 

misreading of the material theory. She characterizes the material theory as “an attempt to 

eliminate induction,” grouped with Popper’s inductive eliminativism. I understand her to hold 

that the material theory treats inductive inferences as enthymemes. That is, they will be rendered 

deductive with the addition of the material postulate as another premise.103 She reports correctly 

some truisms of deductive logic, such as (p. 72, her emphasis) : “That all observed instances of 

bismuth were elements doesn't entail that all instances of bismuth are elements.” However, these 

truisms are insufficient to support her conclusion (p. 72): “Norton's attempt to dissolve the 

problem of induction, I conclude, fails (again) because its characterization of our practice is 

erroneous.” Weintraub’s critique is based on an erroneous characterization of the material theory. 

 Finally, Skeels (2020) somehow manages to convince himself that there are two 

“Nortons” who advocate two different material theories. They correspond to the real logical and 

Skeel’s invented epistemological version of the material theory. In the first, justifications derive 

from facts and, in the second, from knowledge. Skeels then seeks to use his misidentification to 

impugn the material dissolution of the problem of induction. See Norton (2021, §14) for my 

response. 

16.3 More 

 For completeness I recall some other treatments of the material dissolution of induction 

in the recent literature. 

 Livengood and Korman (2020) accept the material dissolution of the problem of 

induction as a matter of inductive logic. However, they urge that rational entitlement to future 

beliefs goes beyond consideration of evidence and inductive logic. The entitlement fails in the 

absence of a suitable explanatory relationship between the belief and the fact to be believed. As I 

indicate in my response in Norton (2021, §9), this problem goes beyond the concerns of the 

material theory of induction. It is an issue of the epistemology of belief formation and, I hope, 

epistemologists can resolve it. 

 
103 Here she overlooked the disclaimer in Norton (2003, p. 651): “Chemical elements are 

generally uniform in their physical properties, so the conclusion of the above induction is most 

likely true.” A footnote explains the inductive risk taken: “Why ‘generally’? Some elements, 

such as sulfur, have different allotropic forms with different melting points.” 
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 Jackson (2019, p. 164) disputes the material dissolution of Hume’s problem by disputing 

a key condition of the material theory itself: that warranting facts must be facts, that is, truths. He 

argues, erroneously, that this precludes proper warrant for eighteenth century predictions that 

employ Newton’s laws of motion. There is no problem here. Our best theory of gravity, general 

relativity, returns Newton’s entire theory in the weak gravitational fields pertinent to eighteenth 

century physics. He also worries that “scientifically ignorant people” might no longer have a 

warrant for inferring that night will follow day. Having learned my lesson, I will not again be 

lured into speculating about the inductive practices of fictitious or vaguely specified 

“scientifically ignorant” peoples. If inventions and fictions are to be avoided, Jackson is well 

advised to do the same. 

 Peden (2019) offers a friendly amendment to the material dissolution of the problem of 

induction. He argues that it would benefit from supplementation by the combinatorial 

justification of induction of Williams and Stove, in conjunction with what is sometimes called 

“direct inference,” “statistical syllogisms” or “proportional syllogisms.” Whether this 

supplement is helpful is a topic that needs to be dealt with elsewhere. However I am wary of 

gifts such as these since my fear is that they bring more problems than they solve. 

17. Conclusion 

 Hume’s problem of induction has the reputation of being one of the most fearsome and 

intractable problems of philosophy. In her synoptic article, Henderson (2020) reports Russell’s 

dark warning: “if Hume’s problem cannot be solved, [Russell laments] ‘there is no intellectual 

difference between sanity and insanity’.” Henderson finds a huge range of different solutions in 

the present literature and an enduring belief by many that none succeed. When such diversity 

persists, we can only conclude that, so far, we are doing poorly at protecting ourselves from the 

lamentable conclusion Russell feared. 

 Of the many solutions presently on offer, in my view, the best is Reichenbach’s 

pragmatic solution. It is a dominance argument. We should infer inductively, even if we cannot 

justify induction as leading to the truth, since, pragmatically, if any method can work, induction 

will. The pragmatic solution has its best exposition and elaboration in Salmon (1967). Over half 

a century after its publication, I still find it to be one of the best treatments of Hume’s problem. 

Ingenious as it is, Reichenbach’s pragmatic solution is unsatisfying. It puts us in the same 
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position as a drowning man, clutching at straws. We inductive inferers and the drowning man 

would both like some further assurance of the efficacy of our desperate measures. We should like 

something a little stronger than “What have you got to lose?!” That this pragmatic answer and 

clever formal elaborations of it should retain a firm position in the literature is a sure index of the 

literature’s failure to treat the problem well. 

 This despondent view was my view until I began work on the material theory of 

induction. It became clear then that even the most intractable problems are defined within a 

framework. What can make them intractable is precisely that we seek solutions within the 

framework. If we can break out of that framework, then perhaps the problem can be beaten. In 

the best case, the problem can no longer even be set up. That proves to be the case when we 

adopt a material theory of induction. The problem of induction, in its most intractable modern 

form, is a problem for universal rules of induction. Once we adopt a material theory of induction, 

we abandon universal rules of induction. We break out of the confining framework. The problem 

of induction can no longer be set up. It is dissolved. 
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The Recession of the Nebulae 

1. Introduction 

  In 1929, the astronomer Edwin Hubble announced what would become the single most 

important observation of modern cosmology.104. Hubble reported that the extra-galactic 

nebulae105  are receding from us with a velocity proportional to their distance, a result that soon 

came to be known as “Hubble’s law.”106 The establishment of this linear relation would seem to 

be one of the simplest of generalizations. Hubble needed only to compare the velocities of 

recession and distances to a selection of nebulae, note their linear relation and declare the result. 

This is how Hubble’s affirmation of the linear relationship is often reported in summary. 

McKenzie’s Major Achievements of Science of 1960 (1960, p. 333) describes it as: 

In 1929 Hubble compared Slipher’s determinations of the recession of the nebulae 

with his own determinations of distances and he discovered a simple relation now 

called Hubble’s law, that the velocity is proportional to the distance. 

 
104 I thank Siska De Baerdemaeker for helpful comments on an earlier draft. 
105 Hubble’s “extragalactic nebula” or just “nebula” are the older terms for galaxy. In 1929, the 

term “galaxy” then referred unambiguously only to our star system, the Milky Way. The Latin 

nebula (plural nebulae) means cloud and was used by astronomers of Hubble’s time to denote 

the luminous clouds visible in astronomical telescopes. As he explained in Hubble (1936, pp. 16-

17), some of these clouds proved to be gas and dust within our Milky Way. These he called 

“galactic nebulae.” Others were more distant star systems in their own right—“extragalactic 

nebulae”— which he would just call “nebulae.” Hubble defended his reluctance to label these 

other nebulae as “galaxies” in Hubble (1936 p. 18): “The term nebula offers the values of 

tradition; the term galaxies, the glamour… of romance.” 
106 In 2018, the members of International Astronomical Union voted to rename the law the 

“Hubble–Lemaître law.” 
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This simple determination would seem to be a good illustration of a natural hierarchical structure 

for inductive support. In it, inductive inferences may only proceed from a lower, more particular 

level to a higher, more general level: 

 Inductive Hierarchy 

Lower level: velocity and distance assignments to particular nebulae. 

 Higher level: general relation connecting the velocities and distances of all nebulae. 

Hubble’s inference, it seems, merely proceeds up the hierarchy. The particulars of a few 

individual nebulae at the lower level provides inductive support for the general law at the higher 

level. 

 Simple as this inference may seem, Hubble’s celebrated paper of 1929 showed no respect 

for this inductive hierarchy. Rather, a multiplicity of inductive inferences moved up and down 

the hierarchy in an intricate arrangement of interlocking parts, much like those of a complicated 

geometric puzzle. 

 To begin, in 1929, Hubble had access to measurements of the velocities of recession of 

46 extra-galactic nebulae, but he had independent distance estimates for only 24 of these 

nebulae. For these 24, in what initially appears as a simple generalization, he found a linear 

velocity-distance relation within statistical uncertainties. However, the inference was not a 

simple generalization since the determination of most of the distances among these 24 nebulae 

depended on assuming hypotheses still needing further support. They are the hypotheses of 

Brightest Star Magnitudes and Clustering of Nebular Luminosity detailed in Section 3 below. 

These hypotheses cannot be located uniquely in the inductive hierarchy above. In the inferences 

they are presumed by the distance determinations, so are prior to the lower level, that is, still 

lower. However the hypotheses accrue support once the inferences of the 1929 paper are 

complete. That means that they come at the end of the inferential chain, so they should be placed 

higher in the inductive hierarchy. 

 The remaining 22 nebulae were more problematic. For them, Hubble only had 

measurements of velocities and apparent luminosities, but not distances. He was determined 

somehow to make use of these data. In doing so, he introduced relations of support that further 

cut across the inductive hierarchy. This happened in two related ways: 

 First, he averaged the apparent luminosities of the 22 nebulae and computed the average 

distance associated with them, assuming the Clustering of Nebular Luminosity hypothesis and a 
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mean absolute luminosity found in his second, inverted inference (to be described below). The 

mean velocity and the mean distance fell within the expectations of the linear relation he had 

found for the first 24 nebulae, providing further support for that relationship. 

 Second, he inverted the direction of evidential support. He used the velocity-distance 

relation itself, in conjunction with the velocities of recession of these 22 nebulae, to infer their 

distances. This inference proceeds down the inductive hierarchy from the higher to the lower 

level. He then used the distances computed to determine the absolute luminosities of the 22 

nebulae. The results provided direct support for the Clustering of Nebular Luminosity hypothesis, 

already used in the earlier analyses. 

 The overall outcome was a tangle of inductive inferences that failed to respect any simple 

linear, inductive hierarchy, such as the one indicated above. We shall see that Hubble remarked 

repeatedly on the agreement among and, later, the consistency of the results of the inferences as 

providing the strongest support for his general conclusions. His notion of consistency was much 

stronger than mere logical compatibility. Rather it reflects the mutual agreement among the 

many, entangled relations of support. What might be evidence that supports a result in one 

relation becomes the result supported by evidence in another relation. This agreement among 

relations of mutual support gives the structure its inductive solidity. 

 Hubble’s analysis also illustrates the use of hypotheses in initiating inductive 

investigations. The two hypotheses above were used provisionally as warrants since they 

themselves were not yet fully supported evidentially. Part of Hubble’s overall project became the 

successful discharging of this inductive debt by providing support for these hypotheses. 

 In the following, Section 2 will describe how Hubble came to be concerned with the 

velocities of the nebulae. Section 3 will outline the hypotheses Hubble used in his determinations 

of the distances to the nebulae. Sections 4 and 5 will review the inference to the linear velocity-

distance relation for the first 24 nebulae. Section 6 will review the inverted inferences for the 

remaining 22 nebulae. Section 7 will reflect briefly on the strength of support Hubble could 

display in 1929 for the linear relationship. The concluding Section 8 will summarize the 

interwoven relations of support in Hubble’s 1929 paper. An Appendix reviews technical details 

of the computations relating absolute and apparent nebular luminosities, which are known tersely 

as “magnitudes.” 
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2. Background to Hubble’s Investigations 

 It is now a commonplace of astronomy that space is filled with many immense star 

systems akin to our own Milky Way. They are the galaxies, as they are now called, or the extra-

galactic nebulae, as Hubble called them. Yet whether the stars were so distributed in space 

remained unsettled in the early 1920s. A landmark in the decision was a debate held between the 

astronomers Harlow Shapley and Heber Curtis on April 26, 1920, at the Smithsonian Museum of 

Natural History. Shapley defended the view that our Milky Way is the unique great star system 

of the universe. Curtis, however, argued that our Milky Way is just one of many such “island 

universes,”107 as they were then called. The matter was settled fairly quickly. According to 

Trimble (1995, p. 1142), it was Hubble himself who provided a cleaner resolution. Starting with 

observations in 1923,108 he was able to discern Cepheid variable stars in two nearby nebulae, 

most notably Andromeda. As we shall see below, this enabled a determination of the distances to 

these nebulae. They were located outside our Milky Way, he found. 

 Our solar system has a motion within the Milky Way. With the recognition that our 

Milky Way is just one of many nebulae, a prosaic question arises: what is the motion of our solar 

system with respect to these other nebulae? In his later work, Realm of the Nebulae (1936, pp. 

106-18), Hubble recalled how the answer to this question developed. The velocities of nebulae 

relative to the earth were known from red shift measurements in the 1910s. The motion of the 

solar system was then estimated as around 420 miles per second. The expectation was that, once 

this motion was subtracted from the motions of the nebulae, those motions would be small and 

random. In particular, there would be as many velocities of approach as of recession. Using a 

statistical analysis to average away these random motions, we should recover the motion of our 

solar system with respect to the mean rest state of the nebulae in our vicinity. 

 
107 The cases each made are published in Shapley and Curtis (1921). See Trimble (1995) for 

further details. 
108 As reported in Hubble (1929a). The results also appeared in a New York Times article on 

December 23, 1924, p. 6, with the headline “Finds Spiral Nebulae are Stellar Systems: Dr 

Hubbell Confirms View That They Are ‘Island Universes’ Similar to Our Own”; and were 

communicated orally by H. N Russell at the December-January, 1924-25 meeting of AAAS. 

(Anon, 1925). 
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 As early as 1918 it was already clear that the statistical project was not proceeding 

smoothly. Wirtz (1918) found the need to add a “k term” that corresponded to an overall 

recession of the nebulae. It meant that the motions of the nebulae visible to us were not 

distributed randomly about some nebular state of rest. In place of the state of rest was some sort 

of expansion. The k term represented a constant motion of recession from our solar system of 

656 km/sec. The motions of the individual nebulae were distributed randomly around that 

constant motion of recession. Wirtz wrote (p. 115) 

If we give this value a verbal interpretation, it is that the system of spiral nebulae 

disperses [auseinandertreibt] with a speed of 656 km [per sec] in relation to the 

momentary position of the solar system as a center. 

Over the next decade, Wirtz and others refined the correction term, allowing it to be a function of 

distance from our solar system. Hubble’s celebrated paper of 1929 was a direct contribution to 

this literature. Its first paragraph identifies the issue to be addressed: 

Determinations of the motion of the sun with respect to the extra-galactic nebulae 

have involved a K term of several hundred kilometers [per second] which appears 

to be variable. Explanations of this paradox have been sought in a correlation 

between apparent radial velocities and distances, but so far the results have not been 

convincing. The present paper is a re-examination of the question, based on only 

those nebular distances which are believed to be fairly reliable. 

The result announced (1929, p. 170-71) was that a statistical fit gave the overall motion of the 

nebulae as distributed, with some considerable deviations, around a velocity of recession that 

increases linearly with distance from us. In more detail, the best estimate of the motion of our 

solar system is 280 km/sec; and, when this is subtracted from the motions of the nebulae, their 

motions are scattered around an average recessional velocity of 500 km/sec for each million 

parsec of distance.109 

 
109 This value of 500 km/sec.Mpc of what we now call the Hubble constant proved to be about an 

order of magnitude too large as a result of systematic errors in Hubble’s determinations of 

distances. By 1958, the value had been reduced by Sandage (1958) to a more modern value of 75 

km/sec.Mpc, which corresponded to a Hubble age of the universe of 1.3x109 years. 
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 A prosaic question about the motion of our solar system had led Hubble to the single 

most important observational result of modern cosmology. 

3. The Determination of Distances 

 To carry out the analysis of his 1929 paper, Hubble needed determinations of both 

velocities of and distances to the nebulae. For the 46 nebulae of Hubble’s analysis, the velocity 

determinations proved relatively unproblematic. They were determinable from frequency shifts 

in the spectra of light from the nebulae. The shifts were immediately interpreted as due to radial 

velocities, that is motions along the lines of sight to each nebula.110 As Hubble (1936, pp. 102-

105) recounts, Vesto Slipher, working at the Lowell Observatory, had begun the arduous work of 

measuring these shifts in 1912. By 1925, he had provided the velocities of 25 nebulae. 

 The locus of difficulty in the analysis was the determination of distances. Two means 

were available for determining these distances. One was the angular size of the nebula. Nearby 

nebulae are large: Andromeda extends over 3 degrees in the sky, which is six times the extent of 

the full moon. If we know the absolute size of the nebula in, say, light years, then the distance to 

the nebula is immediately determined by elementary geometry. 

 This means of determining distance to the nebulae was not mentioned in Hubble’s (1929) 

paper.111 Rather, Hubble explicitly reports only luminosity-based determinations. They depend 

on the fact that the intensity of light emitted by a celestial object diminishes with the inverse 

square of distance. Thus, if we know the absolute magnitude of the object’s luminosity, we can 

 
110 Slipher (1912, p. 56) wrote: “…whether the velocity-like displacement might not be due to 

some other cause, but I believe we have at the present no other interpretation for it. Hence we 

may conclude that the Andromeda Nebula is approaching the solar system with a velocity of 

about 300 kilometers per second.” Hubble (1936, p. 34) held the same view, but more cautiously: 

“Although no other plausible explanation of redshifts has been found, the interpretation as 

velocity-shifts may be considered as a theory still to be tested by actual observations.” 
111 Hubble and Humason (1931, p. 52) recount that the difficulty with the method is that the 

brightnesses of the nebulae fade as we move away from their centers, so that different 

photographic exposures of the same nebula give different sizes. 



 229 

determine its distance: we compare this absolute magnitude with the apparent magnitude we 

perceive, either visually or photographically.  

 The weakness of this approach is that the absolute magnitudes are hard to determine; 

direct measurements give us only apparent magnitudes. Without some independent means of 

determining the absolute magnitude, the approach cannot be applied. In his 1929 paper, Hubble 

relied on three methods of determining absolute magnitudes. They were: 

 

1. Cepheid Variable Stars. Henrietta Leavitt (1912) had reported that certain stars in the 

Magellenic Clouds varied periodically in magnitude and that there was a definite relationship 

between the period and the magnitude. Subsequent parallax measurements to other Cepheid 

variable stars enabled determinations of their distances and thus also their absolute magnitudes. 

Combining, these results meant that an observation of the period of one these variable stars 

enabled a determination of its absolute magnitude and thus its distance. Hubble himself used this 

method in 1923 in his determination of the distance to the nebula Andromeda. The distinctive 

shape of the curve112 plotting the change of visual magnitude with time enabled Hubble to 

identify the variable stars he found in Andromeda as Cepheid variable stars. This was, Hubble 

(1936, p.16) reported, the first reliable method of determining distances to nebulae. It was also 

the most reliable of the three methods of the 1929 paper, but could only be applied if a Cepheid 

variable star could be resolved in the nebula. 

 

2. Brightest Star Magnitude. It seemed reasonable to assume that different nebulae are 

constituted of the same sorts of stars, with the same range of possible magnitudes. That leads to 

the expectation that the brightest stars in each nebula have the same absolute magnitude.113 

Hubble (1929, p. 168) offered an absolute magnitude determined photographically of M = -6.3. 

(See the Appendix for a review of the system of units used for apparent and absolute 

 
112 Shown in Hubble (1936, p. 95). 
113 Hubble footnoted an earlier paper, Hubble (1926), in which he had already advanced the 

hypothesis (p. 357-61), although only hesitantly, as a “reasonable assumption, supported by such 

evidence as is available.” (p. 357) 
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magnitudes.) This assumption is important in untangling the evidential relations displayed in 

Hubble’s paper. So I will display it as an hypothesis to which we will return: 

Brightest Star Magnitude. The brightest stars in each nebula have the same absolute 

magnitude. 

Hubble approached the hypothesis with optimism and caution. He wrote (1929, pp. 168-69): 

The apparent luminosities of the brightest stars in such nebulae are thus criteria 

which, although rough and to be applied with caution, furnish reasonable estimates 

of the distances of all extra-galactic systems in which even a few stars can be 

detected. 

The limitation Hubble conceded is that the method could only be applied to nebulae close 

enough for individual stars to be resolved telescopically. The third method was untroubled by 

this limitation. 

 

3. Clustering of Nebular Luminosity. Drawing on his earlier survey of nebulae (Hubble, 1926), 

he suggested that the absolute magnitudes of nebulae were similar in so far as they were 

distributed randomly but not too distant from their average. The average value offered (p. 169) is 

a visually determined magnitude of M = -15.2. (Recall from the Appendix that smaller 

magnitudes correspond to greater brightness. A magnitude of minus-15 is very bright.) Actual 

values, he reported, are “exhibiting a range of four or five magnitudes about [this] average.” 

Once again, this assumption will play an important role in the evidential relations and is 

displayed: 

Clustering of Nebular Luminosity. The absolute magnitudes of nebulae cluster in a 

small interval of four or five units of magnitude about a single mean common to all 

nebulae. 

Four to five units of magnitude amounts to a considerable error if we are trying to estimate the 

distance to just one nebula. It is shown in the Appendix that this uncertainty in the absolute 

magnitude of any particular nebula introduces an uncertainty in the determination of distance of 

roughly one order of magnitude, that is, the extremes of the full range differ by a factor of 10.  

 These deviations can be averaged away if we aggregate data from many nebulae, so that 

we can recover more reliable distance determinations for averages. This is especially helpful in 

getting a more accurate distance estimate to a cluster of nebulae whose members are assumed to 
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be grouped around the same location in space. Hubble (p. 169) explained that he would use this 

averaging technique: 

The application of this statistical average [M = -15.2] to individual cases can rarely 

be used to advantage, but where considerable numbers are involved, and especially 

in the various clusters of nebulae, mean apparent luminosities of the nebulae 

themselves offer reliable estimates of the mean distances. 

Hubble’s (1929) says little more on the use of this technique. Hubble and Humason (1931) is a 

lengthier and more detailed exposition, using considerably more data. There we find how 

effective the averaging can be. For there they report clusters consisting almost always of several 

hundred nebulae, up to a maximum of 800.114  

 To determine the distance to some particular nebula in a cluster, they would survey the 

full range of apparent magnitudes of the nebulae in the cluster. The aggregation of survey data 

greatly reduces errors. For example, consider a cluster of 400 nebulae whose magnitudes are 

spread over an interval of 4 or 5 magnitudes around the true mean of -15.2. The spread of the 

average of the magnitudes of the cluster around that true mean is reduced by a factor of Ö400 = 

20. We find in the Appendix, that this reduces the interval to 0.25 magnitudes and corresponds to 

an error in distance estimates where the farthest distance is merely 12% greater than the nearest. 

This provides a good determination of the absolute magnitude of and distance to a nebula whose 

brightness matches the average.115 That distance is then also the estimate of the distance to the 

particular nebula of interest. 

 
114 A table in Hubble and Humason (1931, p. 74) lists the numbers of nebulae in named clusters 

as Virgo-(500), Pegasus-100, Pisces-20, Cancer-150, Perseus-500, Coma-800, Ursa Major-300 

and Leo-400. Whatever hesitation is flagged by the parentheses for the Virgo cluster, Hubble 

(1936, p. 54) reports “several hundred” nebulae in the Virgo cluster. 
115 Hubble and Humason (1931, p. 56) summarize the strategy as “The mean or most frequent 

apparent magnitude of the many members [of a cluster] is a good indication of the distance of a 

cluster, and hence clusters offer the greatest distances that can definitely be assigned to 

individual objects.” 
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4. From Particulars to Generalities 

 While 46 nebulae were included in Hubble’s (1929) analysis, he was able to estimate 

individual distances to 24 only. For these 24, Hubble inferred the linear relation between their 

distances and velocities by directly comparing distances and velocities. He reported the results of 

two ways of arriving at the linear relation. 

 The first, most direct way took the velocities and distances of the individual nebulae and 

used standard statistical methods to find the best fit of a relation written in more modern vector 

notation as 

vi = riK + V0 

Here vi is the vector velocity of the ith nebula located a vector displacement ri from us and V0 is 

the vector velocity of our solar system. The constant K is now known as the “Hubble constant” 

and is the parameter of greatest interest to us now. It converts a scalar distance r to a nebula to its 

scalar velocity of recession v=Kr. The velocity vi is not the velocity observed from earth through 

the redshift, for those observations are taken from a vantage point itself moving at V0. The 

velocity we observe for the ith nebula is the difference vi-V0. Hubble reported that the best fit 

gave 

K = 465 ± 50km/sec.Mpc    V0 = 306 km/sec   A = 286o   D = 40o 

 The second way proceeded by first reducing the data for the 24 nebulae to 9 groupings 

and first averaging within each grouping. Hubble indicated only that the groupings were selected 

“according to proximity in direction and in distance. (p. 170)” Presumably the effect of the 

averaging was, once again, to reduce the effect of random deviations from linearity, this time 

prior to finding the statistical best fit of the above relation. The index i would now refer to the ith 

group. Hubble reported that best fit as 

K = 513 ± 60km/sec.Mpc    V0 = 247 km/sec   A = 269o   D = 33o 

For his final result, Hubble selected values intermediate between these two sets and rounded 

them:116 

 
116 Hubble converted the celestial coordinates into galactic coordinates: longitude 32 o, latitude 

+18o. 
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K = 500 km/sec.Mpc    V0 = 280 km/sec   A = 277o   D = 36o 

 Since the solar velocity V0 is comparable in size to the nebular velocities vi, Hubble’s 

analysis had to pass through the more indirect route of finding the best fit of the above relation. 

Merely computing the ratio of observed velocity and distance for each nebula would have 

omitted the essential correction for the earth’s motion. Hubble’s Figure 1, redrawn here as Figure 

1, gives a sense of the large size of the residuals that deviate from Hubble’s best-fit relations. It 

displays the velocities of nebulae, after the velocity of our solar system has been subtracted, in 

relation to their distances. 

 

 
 

Figure 1. Hubble’s “Velocity-Distance Relation among Extra-Galactic Nebulae” 

 

An extended caption explains the data presented. Hubble writes (p. 172): 

The black discs and full line represent the solution for solar motion using the 

nebulae individually; the circles and broken line represent the solution combining 

the nebulae into groups;… 
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There are 24 black discs and they correspond loosely117 with the data in Table 1 for 24 nebulae 

whose distance can be determined. Hubble concluded: 

… the cross represents the mean velocity corresponding to the mean distance of 22 

nebulae whose distances could not be estimated individually. 

We will turn to the treatment of these 22 nebulae in Section 6 below. 

5. Hubble’s Hypotheses 

 The appearance of this last inference is of a traditional generalization that proceeds from 

the particulars of the lower level to the covering generality at the higher level of the hierarchy 

indicated in Section 1 above. The appearance is deceptive, for most of the distance 

determinations in the particulars depend upon the hypotheses indicated in Section 3 above. Since 

the subsequent generalizations depended upon them, the generalization is not secure until Hubble 

provides further evidence in support of the hypotheses. This stage of Hubble’s investigation took 

on an inductive debt.  We shall see that Hubble continues the analysis in a way intended to 

discharge some of that debt. 

  The data for these 24 nebulae were presented in tabular form in Table 1 of Hubble’s 

paper, reproduced here at Table 1: 

  

 
117 We should not expect the velocities in the figure to match those of Table 1 up to a constant 

subtractive factor. The correction for solar motion is a vector subtraction whose scalar effect will 

vary according to the differences in the directions of the vectors in the subtraction. 
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 Object ms 
photographic 
magnitude of 

brightest 
stars 

r  
distance118 in 
megaparsecs  

v  
velocity 
km/sec 

mt  
visual 

magnitude  

Mt 
absolute 
visual 

magnitude 
computed
119 from r, 

mt 
1 Small 

Magellenic 
.. 0.032 +170 1.5 -16.0 

2 Large 
Magellenic 

.. 0.034 +290 0.5 -17.2 

3 NGC 6822 .. 0.214 -130 9.0 -12.7 

4 NGC 598 .. 0.263 -70 7.0 -15.1 

5 NGC 221 .. 0.275 -185 8.8 -13.4 

6 NGC 224 .. 0.275 -220 5.0 -17.2 

7 NGC 5457 17.0 0.45 +200 9.9 -13.3 

8 NGC 4736 17.3 0.5 +290 8.4 -15.1 

9 NGC 5194 17.3 0.5 +270 7.4 -16.1 

10 NGC 4449 17.8 0.63 +200 9.5 -14.5 

11 NGC4214 18.3 0.8 +300 11.3 -13.2 

12 NGC 3031 18.5 0.9 -30 8.3 -16.4 

13 NGC 3627 18.5 0.9 +650 9.1 -15.7 

14 NGC 4826 18.5 0.9 +150 9.0 -15.7 

15 NGC 5236 18.5 0.9 +500 10.4 -14.4 

16 NGC 1068 18.7 1.0 +920 9.1 -15.9 

17 NGC 5055 19.0 1.1 +450 9.6 -15.6 

18 NGC 7331 19.0 1.1 +500 10.4 -14.8 

19 NGC 4258 19.5 1.4 +500 8.7 -17.0 

20 NGC 4151 20.0 1.7 +960 12.0 -14.2 

 
118 These distances are systematically low. Hubble reports 0.275 Mpc for the distance to nearby 

Andromeda, whereas the more recent estimate is 0.780 Mpc. 
119 Using formula (A3) of the Appendix. The table has distances in units of megaparsecs, 

whereas distance in (A3) are entered in parsecs. 
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21 NGC 4382 .. 2.0 +500 10.0 -16.5 

22 NGC 4472 .. 2.0 +850 8.8 -17.7 

23 NGC 4486 .. 2.0 +800 9.7 -16.8 

24 NGC 4649 .. 2.0 +1090 9.5 -17.0 

 “NGC” = 
nebula 
number in 
the New 
General 
Calatog 

    mean 

-15.5 

 

Table 1. Hubble’s “Nebulae Whose Distances Have Been Estimated from Stars Involved or 

From Mean Luminosities in a Cluster.” 
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 To arrive at the distances in this table, Hubble used all three of the methods discussed 

above. He did not lay out the specifics of the determinations in each case. All the details would 

be lengthy and not fit into the short announcement Hubble offered. Hubble and Humason’s 

(1931) provides a similar analysis, with more data and details, and has to be considerably 

lengthier and more complicated in its reporting. In his 1929 report, Hubble limited himself to 

general statements (p. 170): 

The first seven distances are the most reliable, depending, except for M 32 [=NGC 

221] the companion of M31 [=Andromeda, NGC 224], upon extensive 

investigations of many stars involved. 

For Andromeda (M31 = NGC 224), we know from Hubble (1929a) that Hubble used Cepheid 

variable stars for the distance determination. Presumably the Brightest Star Magnitude 

hypothesis was not used in the distance estimates for these first seven objects, since there are no 

brightest star magnitude entries for them. Subsequent distance estimates did consider the 

magnitudes of the brightest stars, since they are given for rows 7 to 20. Hubble continued: 

The next thirteen distances,120 depending upon the criterion of a uniform upper limit 

of stellar luminosity, are subject to considerable probable errors but are believed to 

be the most reasonable values at present available. 

The use of mean nebular magnitudes for distance determination is finally mentioned for row 21-

24: 

The last four objects appear to be in the Virgo Cluster. The distance assigned to the 

cluster, 2 x 106 parsecs, is derived from the distribution of nebular luminosities, 

together with luminosities of stars in some of the later-type spirals, and differs 

somewhat from the Harvard estimate of ten million light years. 

Here the Clustering of Nebular Luminosity hypothesis was employed. That it had a larger role is 

suggested by the label given to the table as a whole: it mentions “Distances…From Mean 

Luminosities in a Cluster.”  

 
120 Presumably he means “next fourteen”: rows 7 to 20. 
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6. From Generalities to Particulars 

 Hubble now turned to the remaining 22 nebulae for which velocities were known, but the 

distances were unknown. He was intent on recovering some evidential import from the data. The 

data with which Hubble worked is presented in Table 2 and reproduces Hubble’s (1929) Table 2. 

The column v is the velocity determined by red shifts for the nebula with the indicated NGC 

number. The next column vs indicates the correction that must be subtracted from the observed 

velocity to correct for solar motion. 

 With these data in hand, Hubble proceeded with two approaches. The first was the 

crudest. It simply worked out the velocity-distance relation for the average behavior of all the 22 

nebulae. Since the velocity distance relationship is presumed linear, it should hold for the 

average of the velocities and distances. Hubble found an average velocity of 745 km/sec and an 

average distance of 1.4 Mpc. These averaged data then give an estimate for the constant K = 

745/1.4 » 530 km/sec.Mpc. Given the magnitude of errors likely (see below), the agreement was 

likely well within error limits for the value of 500 km/sec.Mpc estimated in the earlier part of the 

paper. 

 For our purposes, it is interesting to see that even here Hubble’s analysis relied on the 

Clustering of Nebular Luminosity hypothesis. It was not needed to recover the average velocity. 

That was simply arithmetic.121 The hypothesis was needed to determine the average distance. 

According to the hypothesis, the absolute magnitudes of the individual nebulae varied in an 

interval of 4 to 5 magnitudes about a common mean value. This range would then be reflected in 

the apparent magnitudes reported in the column mt of Table 2. However, taking the average of 

the apparent magnitudes reduces the interval by a factor of 1/Ö22=1/4.69 to an interval of 

roughly the size of a single magnitude. We find in the Appendix that the farthest distance in the 

associated distance interval is 58% greater than the nearest. The average apparent magnitude of 

10.5 is far from the absolute magnitude of -15.3 assumed.122 The diminution is due entirely to the 

 
121 (Average v = 748.4) – (average correction vs = 2.95) = 745.4 km/sec 
122 This absolute magnitude of -15.3 is recovered from the next stage of calculations on these 22 

nebulae. 
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great distance associated with the average. That distance is computed123 from (A3) and is 1.445 

Mpc. 

 The more elaborate of the two approaches involved using the velocity-distance relation in 

reverse. Starting with the corrected velocity, v-vs, for each of the 22 nebulae, Hubble computed 

the distance r that the linear velocity distance relation required, where he assumed a value for the 

K constant of 500 km/sec.Mpc. The results are reported in the r column of Table 2 and conform 

with the formula r = (v-vs)/500. Since these distances were computed using the very relation 

under scrutiny, they could by themselves provide no evidence for the relation. To extract some 

useful evidential import, Hubble used these distances r to calculate124 the absolute magnitude Mt 

of each nebula from the measured, apparent magnitude, mt. The results are reported in the last 

column of Table 2. Hubble computed the mean to be -15.3. 

 What Hubble found notable was that the mean absolute magnitude computed for these 22 

nebulae matched almost exactly with the mean -15.5 computed for the first 24 nebulae using 

their independently known distances. Similarly, their ranges agreed: 4.9 for the 22 nebulae of 

Table 2125 and 5 for the 24 nebulae of Table 1. The most direct reading is that the new results 

from the 22 nebulae provide another instance of the Clustering of Nebular Luminosity 

hypothesis, using the same mean and range as the earlier analysis. This provides direct support 

for the hypothesis. Hubble was more celebratory and expansive in his assessment (pp. 172-73): 

The two mean magnitudes, - 15.3 and - 15.5, the ranges, 4.9 and 5.0 mag., and the 

frequency distributions are closely similar for these two entirely independent sets of 

data; and even the slight difference in mean magnitudes can be attributed to the 

selected, very bright, nebulae in the Virgo Cluster. This entirely unforced 

agreement supports the validity of the velocity-distance relation in a very evident 

matter. Finally, it is worth recording that the frequency distribution of absolute 

 
123 That is log10 d = 0.2(10.5 + 15.3) + 1 = 6.16, so that d = 106.16 = 1.445 x 106 pc. 
124 The calculation employed formula (A3) of the Appendix. Note that d in that formula is in 

parsecs, whereas r in Table 2 is in megaparsecs. 
125 I find the range to be 4.8, extending from -12.8 for NGC1700 to -17.6 for NGC 4594. 
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magnitudes in the two tables combined is comparable with those found in the 

various clusters of nebulae. 
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 NGC 
nebula 
number 

v  
Velocity 
km/sec  

vs  
Velocity 

correction 
subtracted for 
solar motion 

r 
 Distance 

Mpc 

mt  
Apparent 

magnitude 

Mt 
Absolute 

magnitude 
computed 
from r, mt 

 278 650 -110 1.52 12 -13.9 

 404 -25 -65  .. 11.1  .. 

 584 1800 75 3.45 10.9 -16.8 

 936 1300 115 2.37 11.1 -15.7 

 1023 300 -10 0.62 10.2 -13.8 

 1700 800 220 1.16 12.5 -12.8 

 2681 700 -10 1.42 10.7 -15 

 2683 400 65 0.67 9.9 -14.3 

 2841 600 -20 1.24 9.4 -16.1 

 3034 290 -105 0.79 9 -15.5 

 3115 600 105 1 9.5 -15.5 

 3368 940 70 1.74 10 -16.2 

 3379 810 65 1.49 9.4 -16.4 

 3489 600 50 1.1 11.2 -14 

 3521 730 95 1.27 10.1 -15.4 

 3623 800 35 1.53 9.9 -16 

 4111 800 -95 1.79 10.1 -16.1 

 4526 580 -20 1.2 11.1 -14.3 

 4565 1100 -75 2.35 11 -15.9 

 4594 1140 25 2.23 9.1 -17.6 

 5005 900 -130 2.06 11.1 -15.5 

 5866 650 -215 1.73 11.7 -14.5 

Mean  748.4 2.95  10.5 -15.3 

 

Table 2. Hubble’s “Nebulae Whose Distances are Estimated from Radial Velocities” 
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7. How Strong Was the Evidence for Linearity? 

 Our present concern is the tangled structure of the relations of inductive support. While it 

is independent of this concern, it is worth noting that Hubble’s evidence in 1929 for the linear 

relation was weak. This is so, even though Hubble’s (1929) paper is routinely celebrated as the 

origin of the linear relation between the velocities of recession of the nebulae and their distances. 

A glance at Figure 1 shows just how weak was the establishment of the linearity. The data points 

are so broadly scattered about the straight lines fitted that all that can be securely inferred is that 

the velocities are increasing with the distances. The difficulty is that nebulae close to our Milky 

Way have particular motions in random directions that are of the order of the overall velocity of 

recession. These motions confound the linear motion of recession. To reveal the linear relation 

more clearly requires examination of more distant nebulae for which the particular motions 

become successively smaller in relation to the velocity of recession. 

 As long as Hubble’s interest lay in the original project of determining the motion of our 

solar system, the weakness of the evidence for linearity is a smaller concern. We might 

reasonably expect that other velocity distance relations compatible with the data would only have 

a minor effect on the estimates of solar motion. The threat, however, is more serious if his paper 

is to underwrite the founding empirical observation of modern cosmology: the linearity of the 

velocity-distance relation. 

 Hubble already had a response to this threat in his 1929 paper. He allowed that his data 

merely “establish a roughly linear relation.” (p. 173). The solution lay in an extension to more 

distant nebulae and was already underway. He reported a result for NGC 7619, whose distance 

he estimated at roughly 7 Mpc. That greatly exceeded the distances of 1 or 2 Mpc of nebulae 

investigated so far. Its speed of recession still fitted well enough with his K factor of 500. Shortly 

after, in joint work, Hubble and Humason (1931) reported on velocities of recession of still more 

distant nebulae. Their Figure 5. (p. 77) plots data for nebular clusters, one of which is more than 

30 Mpc distant. In this plot, the linearity of the 1929 paper survives. Hubble and Humason had 

become so confident of the linear relationship that they proposed its use to determine distances. 

It is, they boasted (p. 76) 

… a new method of determining distances of individual objects in which the 

percentage errors actually diminish with distance. 
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This remark foreshadows the recent practice of identifying the location of distant galaxies merely 

by citing their red shift factor directly. Red shift has become the surrogate for distance. 

 By the time of his more popular work, Hubble (1936), he reasserted his confidence that 

the linearity of the relation had been vindicated. He wrote of the success of the extension of the 

investigation to more distant nebulae (pp. 3-4): 

 The relation is plausible but not unique. The true relation might be a curve which 

was nearly linear within the range covered by the observations, but which departed 

widely from a straight line in the regions beyond the faintest nebulae in the group. 

This possibility was investigated by extrapolating the adopted relation extending it 

far out into the hitherto unobserved regions and testing it by new observations. Such 

a procedure often leads to minor, or even to major, revisions in the relation first 

selected: it has been said that research proceeds by successive approximations. 

However, in the investigation of red-shifts, no revision was definitely indicated. 

The linear relation has survived repeated tests of this nature and is known to hold, at 

least approximately, as far out into space as the observations can be carried with 

existing instruments. 

8. Conclusion and Summary 

 The introduction sketched the inductive hierarchy to which one might assume that 

Hubble’s inferences of 1929 conformed. We have now seen that Hubble’s inductive inferences 

did not respect this hierarchy. Rather his inferences are interwoven non-hierarchically through 

the following sets of propositions: 

(a) Sets of velocities of recession assigned to nebulae 

(b) Sets of distances assigned to nebulae 

(c) Linear relations asserted between their velocities and distances 

(d) Hypothesis of Brightest Star Magnitude  

(e) Hypothesis of Clustering of Nebular Luminosity 

The inferences were: 

(i) In Sections 4 and 5, we saw inferences from the sets of velocity (a) and distance (b) 

assignments to a linear relationship (c), where many of the distance assignments already 

presumed the two hypotheses (d) and (e). 
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(ii) In Section 6 we saw an inference from the means of the velocities (a) and distances (b) to an 

instance of the linear relationship (c). The determination the mean distance once again 

presumed hypothesis (e) as well as a mean absolute magnitude for nebulae determined by the 

inferences of (iv). 

(iii) In Section 6, we saw an inference from sets of velocity assignments (a) and the linear 

relationship (c) to sets of distance assignments (b).  

(iv) In Section 6, Hubble proceeded from the distances computed in (iii) and inferred to a set of 

absolute magnitudes that affirmed hypothesis (e). 

The use of the velocity-distance relation in (iii) to infer back to distances became a fixture in 

astronomy. In his more popular work, Hubble (1936) was confident enough of this inference that 

he would write (p. 115): 

The velocity-distance relation, once established, could evidently be used as a 

criterion of distance for all nebulae whose velocities were known. 

This inference appears initially as the mere recovery of a deductive consequence of the velocity-

distance relation. It also has an inductive component. I have emphasized the “all” since “all” 

includes the nebulae originally used to establish the velocity-distance relation. We gain inductive 

support for an independently determined distance to some nebula if we find it conforms with the 

velocity-distance relation. Alternatively, if conformity fails, we have a check and a correction for 

the original distance determination. 

 The cogency of Hubble’s inferences required that strong evidential support be provided 

for hypotheses (d) and (e), else the distance determinations of Hubble’s analysis would be 

compromised. Discharging this inductive debt was an obligation taken very seriously in the later 

analysis of Hubble and Humason’s (1931). Of its 38 pages, 6 were devoted to a section “Upper 

Limit of Stellar Luminosity as a Criterion of Distance” (pp. 46-51); and another 5 pages were 

devoted to a section “Total Luminosity of Nebulae as a Criterion of Distance” (pp. 52-56). That 

is, almost 30% of the paper was spent elaborating and establishing these two hypotheses. 

 More generally, Hubble repeatedly offered the agreement amongst the results of all these 

inferences as giving general support to his analysis. We saw already his remark (1929, p. 172-

73): “This entirely unforced agreement supports the validity of the velocity-distance relation in a 
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very evident matter.” 126 Hubble and Humason (1931, p. 43) commence their paper by defending 

their methods of determining nebular distance, whose initiating assumption is “supported in a 

general way by the consistency of the results to which it leads.” Later they announce (1931, p. 

76): “Since the two investigations were based upon different criteria of distance, the close 

agreement emphasizes the internal consistency of our present ideas concerning luminosities of 

nebulae.” 

 In his more popular narrative (1936, p. 101), Hubble reflected back on the various criteria 

used to determine nebular distances, including the velocity-distance relation itself and concluded: 

The exploration of the realm of the nebulae was carried out with the aid of these 

criteria. The early work was justified largely by the internal consistency of the 

results. The foundations were firmly established, but the super-structure represented 

considerable extrapolations. These were tested in every way that could be devised, 

but the tests for the most part concerned internal consistency. The ultimate 

acceptance of the superstructure was due to the steady accumulation of consistent 

results rather than to critical and definitive experiments. 

A few pages later, Hubble (1936, p. 115) reflected on the use of distances derived from the mean 

and range of the absolute luminosities in establishing the velocity-distance relation: 

The consistency of these results was additional evidence of the validity of the 

velocity-distance relation. 

The consistency so important to Hubble is not the consistency of deductive logic, where it 

merely designates a lack of contradiction. This deductive sense of consistency by itself provides 

no inductive support. The Hubble law expansion of the nebulae in our universe is logically 

consistent with the existence of another, parallel universe, isolated from ours, in which nebulae 

approach each other. The fact of logical consistency supplies no inductive support for the 

existence of such a parallel universe. 

 
126 Hubble’s (1929) does not provide further evidence explicitly and specifically supporting the 

Brightest Star Magnitude hypothesis. Perhaps this unforced agreement provides independent 

support for the nebular distances determined using this hypothesis and thus, indirectly, support 

for the hypothesis itself. 
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 The consistency alluded to by Hubble was the agreement among the many entangled 

relations of inductive support of his analysis. The Hubble law itself is in one part inductively 

supported by other results and is in another used to provide inductive support. The hypotheses of 

Brightest Star Magnitude and of Clustering of Nebular Luminosity are, in one part, used to 

warrant inductive inferences to other results and are, in another, results supported by inductive 

inferences. The overall import is that no proposition within Hubble’s analysis is left without 

inductive support; and it is that fact that gives his analysis its inductive solidity. 

Appendix. Luminosity and Magnitude 

 Hubble’s accounts above discuss the brightness of stars and nebulae using the standard 

system of magnitudes. Hubble’s (1929) paper was written for experts, so he had no need there to 

explain the system. His more popular Realm of the Nebulae (1936, pp. 9-13), however, describes 

the system. The luminosity L of an object is the rate at which it emits luminous energy. Our 

perception of brightness associates equal increments in brightness to equal multiples of 

luminosity. Thus, the brightness of an object is given by a logarithmic function of the luminosity. 

That is, the apparent magnitudes m1 and m2 of two objects at the same distance from us are 

related to their luminosities L1 and L2 by 

m1 - m2 = - 2.5 log10 (L1/L2)                                                 (A1) 

The minus sign in the relation means that a brighter object has a smaller magnitude. 

 This particular logarithmic relation was chosen to preserve continuity with the ancient 

visual system of reporting star brightnesses, already found in Ptolemy’s Almagest. There, stars 

were grouped by their brightnesses into six magnitudes. The first magnitude was the brightest 

and the sixth the dimmest visible. If the associated luminosities are L1, L2, …, L6, then stepping 

through them represents equal increases in apparent brightness as long as 

L1/L2 = L2/L3 = L3/L4 = L4/L5 = L5/L6 = 2.5 

The ratio of 2.5 arises from the stipulation that that the full range of luminosities spans 100 to 1, 

that is, L1/L6 = 100. Thus each of the five steps corresponds to a multiplicative factor of 1001/5 = 

2.512, which is rounded down to 2.5. The magnitudes are labeled “visual” or “photographic” 

according to the media with which they are measured. The distinction is important since the two 

media have different sensitivities to different frequencies of light. 
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 The apparent brightness of an object diminishes with the inverse square of distance from 

us. If the two objects in formula (A1) were removed to distanced d1 and d2 respectively, the ratio 

(L1/L2) must be replaced by the ratio (L1/d12) / (L2/ d22). The relation among apparent 

magnitudes becomes: 

m1 - m2 = - 2.5 log10 (L1/L2) (d22/ d12)                                        (A2) 

The absolute magnitude of an object M is stipulated to be the apparent magnitude the object 

would have were it placed 10 parsecs distant from us.127 Using only the distance dependency in 

(A2), it follows that the apparent magnitude m of an object of absolute magnitude M at a distance 

of d parsecs is128 

m = M + 5 log10 d – 5      or     log10 d  = 0.2(m – M) + 1                            (A3) 

Hubble (1929) supposes that the intrinsic brightnesses of all nebula are within four to five 

absolute magnitudes of each other. Assuming a mean absolute magnitude for some nebula will 

lead to errors in distance estimates. To take the most extreme case, an apparent magnitude m may 

derive from an object with absolute magnitude M1 at distance d1; or another object with absolute 

magnitude M2 at distance d2, where M1 – M2 = 5. Thus we have from (A3) that 

M1 + 5 log10 d1 = M2 + 5 log10 d2 

and then 

5 = M1 – M2 = 5 log10 (d2/d1) 

It follows that log10 (d2/d1) = 1, so that d2/d1 = 10. That is the uncertainty in the absolute 

magnitudes of nebulae corresponds to an uncertainty of one order of magnitude in their spatial 

distances. 

 
127 A parsec is the distance at which the mean earth-sun distance subtends one second of arc. It is 

a convenient astronomical unit since distances to nearby stars are revealed by their parallax 

during the earth’s annual motion around the sun. 1 parsec = 3.258 light years. A megaparsec 

“Mpc” is one million parsecs. 
128 Set d2 = 10 and d1 = d; and note that log10 (d2/102) = 2 log10 d - 2 log10 10 = 2 log10 d – 2. 
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 If, however, we follow Hubble’s technique of averaging, this uncertainty is greatly 

reduced in estimating the value of the true mean.129 For a cluster of 400 nebulae, the spread of 

the mean is reduced by a factor of 1/Ö400 = 1/20 = 0.05. So the spread is 5 x 0.05 = 0.25. Thus 

we have from (A3) as before 

0.25 = M1 – M2 = 5 log10 (d2/d1) 

We now have for the corresponding distances that log10 (d2/d1) = 0.05 so that d2/d1 = 1.122. 

That is, the farthest distance of the associated interval of distances is merely 12% greater than the 

nearest. 

 For a group of 22 nebulae, the spread of the mean reduces by a factor of 1/Ö22=1/4.69. If 

we approximate the spread of 4 to 5 magnitudes to be reduced to one order of magnitude, then 

we have from (A3) that 

1 = M1 – M2 = 5 log10 (d2/d1) 

We now have log10 (d2/d1) = 0.2 so that d2/d1 = 1.585. That is, the farthest distance of the 

associated interval of distances is 58% greater than the nearest. 
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Newton on Universal Gravitation 

1. Introduction 

 Isaac Newton’s reasoning in his seventeenth century Mathematical Principles of Natural 

Philosophy remains to this day a model of tight, carefully controlled argumentation. Its inductive 

centerpiece lays out the evidential case for his theory of universal gravitation with exemplary 

caution and discipline. Within his argumentation, there are two cases of pairs of propositions in 

which relations of inductive support cross over each other, in analogy to the relations of structure 

support in an arch. The first pair comprises the two core propositions of Newton’s celebrated 

“moon test”. The second pair comprises the propositions of an inverse square law of gravity and 

of the elliptical orbits of the planets.  

 In both cases, the individual relations of support have the following structure: the 

observed evidence supports a proposition by means of a warranting hypothesis. Schematically, 

this can be we written 

 

Observed evidence 

(warrant) Hypothesis 

_______________(deduce) 

Proposition 

 

The crossing over of relations of support arises in both cases in the following way. We have two 

propositions, proposition1 and proposition2, such that 

 

Observed evidence    Observed evidence 

(warrant) Proposition1    (warrant) Proposition2 

_______________(deduce)   ________________(deduce) 

Proposition2     Proposition2 
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Finally, each of the individual inferences above is deductive. They combine to give a totality in 

which the observed evidence inductively supports both propositions. That is, the relations of 

support are locally deductive but inductive in their combination. 

 

Observed evidence 

_____________(induction) 

Proposition1 & Proposition2 

 

The two examples are treated in turn in the sections that follow. 

2. The Moon Test 

 One of Newton’s more remarkable discoveries in his theory universal gravitation is the 

identity of two forces. The first is the celestial force that deflects planets into orbit around the sun 

and deflects moons into orbits around their planets. The second is the force of gravity that leads 

to the fall of free bodies at the earth’s surface, such as hurled stones. That these forces are the 

same is now a commonplace. It was a major discovery in the seventeenth century, for the ancient 

tradition had been that the physics of terrestrial bodies differs from the physics of celestial 

matter. Newton needed a strong argument to establish the identity. 

 The identity of the two forces was established early by Newton in Book III of his 

Principia (1726). That book presents a sequence of propositions that lays out his argument for 

universal gravitation. The first three propositions establish that the celestial force of attraction 

acting on an orbiting body varies with the inverse square of distance from the center of the 

attracting body in three cases: the orbit of Jupiter’s moons about the center of Jupiter, the orbit of 

the planets about the sun’s center and the orbit of the moon about the earth’s center. The fourth 

proposition asserts the identity of terrestrial gravity and the celestial force acting on the earth’s 

moon. 

 To arrive at this fourth proposition, Newton determined the acceleration of the moon 

towards the earth. It is this acceleration that deflects the moon from its linear, inertial motion and 

brings it into orbit around the earth. We would now represent this acceleration directly as so 

many feet/second2 or meters/second2. Newton proceeded indirectly. A body falling with constant 
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acceleration a from rest will cover a distance at2/2 in time t. Newton used this distance as the 

measure of acceleration. 

 As a result of its orbital motion, Newton noted that the moon falls 15 Paris feet 1 inch 1 

4/9 lines [twelfths inch] in one minute. That is, it falls 15.0934 Paris feet in one minute. The 

moon is roughly 60 times farther away from the center of the earth than a point on the earth’s 

surface. Hence, if the celestial force acting on the moon is governed by an inverse square law all 

the way down to the earth’s surface, it would be 602 times greater on the earth’s surface. That 

means that a body falling under its action at the earth’s surface would fall 15.0934 x 602 Paris 

feet in one minute. One minute is a time unfamiliar in our experience for bodies to fall above the 

surface of the earth. So Newton scaled the time of fall to one second. Conveniently, one second 

is 1/60th minute. Since the distance fallen varies with the square of time t, a body falling under 

the celestial force at the earth’s surface for one second would fall 1/602 of 15.0934 x 602 Paris 

feet, that is, 15.0934 Paris feet. This matches well how bodies fall on the surface of the earth 

under gravity, as measured by experiments on pendula. Newton (1726, p. 408) concluded: 

And therefore the force by which the Moon is retained in its orbit becomes, at the 

very surface of the Earth, equal to the force of gravity which we observe in heavy 

bodies there. And therefore (by Rule 1 & 2) the force by which the Moon is retained 

in its orbit is that very same force which we commonly call gravity; for were 

gravity another force different from that, then bodies descending to the Earth with 

the joint impulse of both forces would fall with a double velocity…  

The case Newton made here is a powerful one. In recollections recorded much later, Newton 

asserted that he found the arguments of these first four propositions in 1666. He noted (1888, p. 

xviii) of the moon test: 

At the same year [1666] I began to think of gravity extending to the orbit of the 

Moon, … and thereby compared the force requisite to keep the Moon in her orb 

with the force of gravity at the surface of the earth and found them answer pretty 

nearly. 

3. The Inferences Summarized 

 The inference above can be summarized as follows: 
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Observed acceleration of fall of terrestrial bodies and the moon. 

(warrant) Hinv. square: The celestial force acting on the moon is strengthened 

by an inverse square law with distance at the earth’s surface. 

________________________________________________(deduce) 

Intermediate conclusion: Equality of accelerations at the earth’s surface due 

to gravity and the celestial force. 

(warrant) Rules 1 and 2 of Newton’s Rules of Reasoning in Philosophy 

______________________________________________________ 

Hidentity: Terrestrial gravitation and the lunar celestial force are the same. 

 

The last step might seem superfluous. Newton has found that the acceleration due to 

gravity and the celestial force match at the earth’s surface. Is that not enough to show the 

identity of the two forces? It is very close, but there is a loophole. It might just be that the 

force of gravity does not act on celestial matter such as comprises the moon; and that the 

celestial force does not act on ordinary, terrestrial matter. Newton closed the gap with the 

rules of reasoning he had declared earlier in Principia. The relevant idea is that we are to 

assign the same cause to the same effect. I will not pursue this use of the rules further. In 

Chapter 6, Simplicity, of The Material Theory of Induction, I described my discomfort 

with the rules and indicated how they can be replaced in this case by a simple material 

fact: that the matter of the moon would behave like terrestrial matter were it brought to 

the earth’s surface. What results is the simpler inference: 

 

Observed acceleration of fall of terrestrial bodies and the moon. 

(warrant) Hinv. square: The celestial force acting on the moon is strengthened 

by an inverse square law with distance at the earth’s surface. 

________________________________________________(deduce) 

Intermediate conclusion: Equality of accelerations at the earth’s surface due 

to gravity and the celestial force. 

(warrant) Terrestrial and lunar matter respond to the same forces. 

________________________________________________(deduce) 

Hidentity: Terrestrial gravitation and the lunar celestial force are the same. 
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For present purposes, what matters is that the inverse square law, Hinv. square, is used as 

part of the inference to the identity result, Hidentity. This usage forms one half of the arch 

shown below in Figure 1. 

 There is a second inference here that Newton does not make explicit. He has 

inferred that the celestial force is governed by an inverse square law in other parts of the 

solar system. But how does he know that this inverse square dependence on distance will 

continue to hold when he moves out of the celestial realm down to the terrestrial realm? It 

is striking that the inference sketched above works so well. That the two forces “answer 

pretty nearly” as Newton remarked gives one confidence that the inverse square law, 

introduced as an hypothesis above, is also supported by the successful outcome. Perhaps 

this is why Newton reported the agreement as a memorable phase in his discovery of 

universal gravitation. Though not given explicitly by Newton, we can summarize this 

naturally suggested argument as follows: 

 

Observed acceleration of fall of terrestrial bodies and the moon. 

(warrant) Hidentity: Terrestrial gravitation and the lunar celestial force are 

the same. 

________________________________________________(deduce) 

Intermediate conclusion: Celestial/gravitational accelerations at the earth’s 

surface and the moon’s orbit are in the ratio of an inverse square of 

distances to the earth’s center. 

(warrant) Terrestrial and lunar matter respond to the same forces. 

________________________________________________(deduce) 

Hinv. square: The celestial force acting on the moon is strengthened by an 

inverse square law with distance at the earth’s surface. 

 

This second inference forms the second half of the relations of support displayed in 

Figure 1. 

 For our purposes, we have two inferences each of whose conclusions is used as a 

warrant in the argument for the other. We can draw the corresponding arch as Figure 3. 
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Figure 1. The Arch for the Moon Test. 

 

While the component relations of support are deductive, the combined result is that the 

observed accelerations provide inductive support for the two hypotheses: 

 

Observed acceleration of fall of terrestrial bodies and the moon. 

________________________________________________(induction) 

Hidentity: Terrestrial gravitation and the lunar celestial force are the same. 

Hinv. square: The celestial force acting on the moon is strengthened an 

inverse square law with distance at the earth’s surface. 

4. Elliptical Orbits and the Inverse Square Law 

 The next pair of mutually supporting propositions asserts that the planets move 

along elliptical orbits and that their motion is governed by an inverse square law of 

gravity. Planetary astronomy poses a curve-fitting problem. We have many observed 

positions of the planets. Which curve do we fit to them to recover their orbits? Prior to 

Newton, Kepler had found that elliptical orbits could be fitted to the observed positions 

Hidentity
Hinv. square

Observed acceleration of fall of 
terrestrial bodies and the moon.
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of the planets. This result came to be known later as “Kepler’s Second Law.” It is, for 

example, so-called in Maxwell’s, Matter and Motion (1894), p. 110. From it one can 

infer that each planet is attracted to the sun by a force that varies inversely with the 

square of distance from the sun, as the planet moves through its orbit. That an elliptical 

motion is associated with this inverse square law is an early result proved by Newton in 

Book I of Principia (Proposition XI. Problem VI.) Maxwell (1894, p. 112) uses this result 

to infer from the elliptical motions of the planets to the inverse square law of gravity. He 

concludes: 

Hence the acceleration of the planet is in the direction of the sun, and is 

inversely as the square of the distance from the sun. This, therefore, is the 

law according to which the attraction of the sun on a planet varies as the 

planet moves in its orbit and alters its distance from the sun. 

That is we have the following inference: 

 

Observed positions of the planets. 

(warrant) Hellipses:  The planets move in their specific elliptical orbits. 

______________________________________________(deduce) 

Hinv. square: The planets are attracted to the sun by a force that varies with 

the inverse square of distance. 

 

Newton himself, however, was more circumspect. This relation of support is 

straightforward only in so far as we assume that the fit of an ellipse to the observed 

motions is exact. Newton knew that it is not exact, so he did not offer Maxwell’s 

inference in his Principia. That an elliptical motion is governed by an inverse square 

force law is merely reported as a theorem of mathematics. 

 In its place, Newton offered an inverted relation of support. The pertinent 

discussion comes later in Book III in his Proposition XIII. Theorem XIII. At this stage in 

the development, Newton has already inferred the inverse square law of gravity from 

other phenomena. He will now infer from the inverse square law to the elliptical motions 

of the planets. Noting the inversion explicitly, he wrote: 
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Now that we know the principles on which they [the motions of the planets] 

depend, from these principles we deduce the motions of the heavens a 

priori. Because the weights of the planets towards the sun are inversely as 

the squares of their distances from the sun’s centre, if the sun were at rest, 

and the other planets did not act one upon another, their orbits would be 

ellipses, having the sun in their common focus;… 

Newton here offers a relation of support that inverts the one given above by Maxwell: 

Observed positions of the planets. 

(warrant) Hinv. square: The planets are attracted to the sun by a force that 

varies with the inverse square of distance. 

______________________________________________(deduce) 

Hellipses:  The planets move in their specific elliptical orbits. 

The observed positions of the planets are still needed as a premise in the inference since 

an inverse square law of attraction from the sun is also compatible with parabolic and 

hyperbolic trajectories. These are ruled out by the period motion of the planets. Then 

specific positions of the planets at specific times are needed to recover the specific ellipse 

that is the orbit of each planet. 

 Newton’s inference, however, is qualified by an idealization indicated in his 

remark above: “… if the sun were at rest, and the other planets did not act one upon 

another...” The orbits of the planets are not exactly elliptical because of perturbations 

from the gravitational attraction of the other planets. These deviations are generally 

negligible at the level of accuracy of Newton’s analysis. However, a noticeable 

perturbation was produced by the massive planet Jupiter acting on the motion of 

Saturn.130 It is greatest when the two planets are nearest each other, that is, when they are 

in conjunction. “And hence arises,” Newton concluded, “a perturbation of the orbit of 

Saturn in every conjunction of this planet so sensible, that astronomers are puzzled with 

it.” 

 
130 Less noticeable, Newton reported, were the perturbations in Jupiter’s motion due to the 

attraction of Saturn. He reported other perturbations as “yet far less.” The exception was the 

sensible disturbance to the orbit of the earth due to the moon. 
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5. The Exactness of the Inverse Square Law 

 Newton did not explicitly incorporate the inference from the elliptical orbits of the planet 

to the inverse square law in the carefully developed sequence of propositions in Book III of 

Principia. However, an important step in that sequence was something quite close to this 

inference. It concerned the inverse square law of gravity. How does Newton know that this is the 

correct law, exactly? Might another, similar law work as well or even better? Does gravity 

conform with the inverse square law only as an approximation? Perhaps the force varies with 

distance r according to 1/r2+d, where d is some small number close to zero? 

 In one of the most brilliant analyses of his Principia, Newton showed that we have strong 

evidence for the force of attraction conforming exactly with the inverse square law. Under such a 

law, Newton had shown, the unperturbed planets move along an elliptical path that is fixed in 

space. The aphelion of each planet—the point of greatest distance from the sun—will be fixed in 

space and the planet will return to it after a complete circuit of 360o around the sun. The ellipse’s 

major axis, the line of the apsides connecting aphelion and perihelion, would be correspondingly 

fixed. 

 This fixity would be lost, Newton now showed, if the law differed from an inverse square 

law. In Proposition 45, Corollary 1 of Book I, Newton considered the case of bodies orbiting in 

near circular orbits. He showed that if the law of attraction differed from an inverse square law, 

then a planet would not return to its aphelion after a circuit of 360o around the sun. It would need 

to complete more or less of the circuit according to how much the force deviated from an inverse 

square law. That is, for a 1/r2+d force law, the planet would return to its aphelion after passing 

360o/ 1-d . The result was remarkably robust, holding even when the deviation from the inverse 

square law d was not small. 

 Since our planets do move in near circular orbits, Newton could apply his result to the 

motions of the planets. Setting aside known perturbations, the planets do trace out fixed elliptical 

orbits, returning to their aphelia after a 360o circuit around the sun. Newton could conclude with 

satisfaction in Book III, Proposition II Theorem II: 

[The inverse square law] is, with great accuracy, demonstrable from the quiescence 

of the aphelion points; for a very small aberration from the proportion according to 

the inverse square law of the distances would (by Cor. 1, Prop. XLV, Book I) 
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produce a motion of the apsides sensible enough in every single revolution, and in 

many of them enormously great. 

In summary form, this argument is a version of Maxwell’s argument, since it infers from a 

property of the elliptical orbits of the planets to the exact inverse square law of gravity: 

 

Observed positions of the planets. 

(warrant) Hellipses:  The planets move in their specific elliptical orbits. 

Newton’s Proposition 45, Corollary 1, Book I. 

_____________________________________________(deduce) 

Hinv. square: The Planets are attracted to the sun by a force that varies with 

the inverse square of distance. 

 

The overall structure of the relations of support displayed here is of the two hypotheses accruing 

support from the observed positions of the planets over time. While the two component 

inferences are deductive, the combined relations of support are inductive and can be summarized 

as 

 

Observed positions of the planets. 

_____________________________________________(induction) 

Hellipses:  The planets move in their specific elliptical orbits. 

Hinv. square: The Planets are attracted to the sun by a force that varies with 

the inverse square of distance. 

 

 In broad strokes, the relations of support recounted here in Sections 4 and 5 are 

among the two hypotheses Hinv. square and Hellipses. They enter into the mutual relations 

of support pictured in the arch analogy of Figure 2. 
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Figure 2. Elliptical Orbits and the Inverse Square Law 

6. Conclusion 

 We have seen here, two pairs of propositions in Newton’s Principia that mutually support 

one another. A close reading of Newton’s text is quite likely to reveal more. A natural candidate 

is Kepler’s harmonic rule that relates the period and mean radii of planetary and lunar orbits: 

(period)2 is directly proportional to (radius)3. Newton infers from this harmonic rule to his 

inverse square law. We now routinely invert the inference and infer from the inverse square law 

to the harmonic law. 

 Such inversions are encouraged by a development common in maturing theories. We are 

initially inclined to infer from the elliptical orbits of the planets to the inverse square law of 

attraction, for the elliptical orbits are closer to observations. As the theory matures, we find 

multiple supports for the inverse square law. We also recognize that Newton’s fully elaborated 

system corrects the simple statement that the planets move in ellipses; for in some cases, the 

perturbing effects of other celestial bodies move them away from their ellipses. Then it becomes 

more natural to invert the relation of support and see the inverse square law as supporting a 

corrected version of the original observations of elliptical orbits. 

 Another example of this inversion is found in the role of atomic spectra in foundation of 

quantum theory, as related in the following Chapter 9, “Mutually Supporting Evidence in Atomic 
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Spectra.” Ritz’s combination principle supports the discrete energy levels of Bohr’s 1913 theory 

of the atom and thus the quantum theory that developed from it. The developed quantum theory, 

however, entails a version of the Ritz principle, corrected by selection rules. This complication 

indicates the inverted relation of support. 
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Mutually Supporting Evidence in Atomic Spectra 

1 Introduction 

 Gases and vaporized metals, when heated or energized by electric discharges, emit light 

or electromagnetic radiation in the invisible parts of the spectrum. In the nineteenth century, 

spectroscopists began detailed measurements of the frequencies emitted by various substances. 

The most striking result was that, commonly, the emitted spectra did not consist of a continuous 

range of frequencies, but only specific frequencies organized regularly in series. Identifying 

which frequencies were emitted by each substance under which circumstances proved a 

challenge that occupied the spectroscopists for decades. Their efforts required many ingenious 

approaches. What resulted was a complicated network of relations of evidential support that is 

the subject of this chapter. In it we will see mutual relations of support, crossing over each other, 

and at two levels.  

 We will look only at the simplest of the emission spectra, that of hydrogen, for that is 

already sufficient to display this multiplicity of relations of mutual support. We shall take as the 

simplest item of evidence the proposition that excited hydrogen produces electromagnetic 

radiation at such and such frequency or wavelength. One such item asserts the fact that a 

prominent line in the hydrogen spectrum, the first “Ha” line of the Balmer series, is at 

wavelength 656.2 Angstroms. Once a spectroscopist has identified some lines in the spectrum of 

a substance, it proved possible to identify others by means of device introduced in 1908 by 

Walther Ritz. It is his “combination principle.” It asserted that adding or subtracting the 

frequencies of certain131 known lines in a spectrum will yield more lines. 

 
131 This word “certain,” meaning “some carefully chosen,” indicates an important restriction. The 

principle does not work for all pair of lines. 
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 If there are two lines with the frequencies132 n12 and n23 of the right type, then there is a 

third line at the frequency n13 = n12 + n23. These additions are easily inverted. If we have lines at 

the frequencies n12 and n13, then there is a third line at the frequency n23 = n13 - n12. And, if we 

have lines at the frequencies n23 and n13, then there a third line at the frequency n12 = n13 - n23. 

Each of these applications of the Ritz combination principle expresses a relation of support. 

There are three and they cross over one another in relations of mutual support: 

Lines at n12 and n23 support a line at n13. 

Lines at n12 and n13 support a line at n23. 

Lines at n23 and n13 support a line at n12. 

There are more than just a few of these sets of mutually supporting items of evidence. Since the 

emission spectrum of hydrogen contains infinitely many lines, there are infinitely many of them. 

 Sections 2 and 3 recall the discovery of the various series of lines of the hydrogen 

spectrum and their systematization by Ritz through his combination principle. Section 4 explores 

how the principle allows a dense network of relations of mutual support among the lines. If the 

Ritz combination principle is taken as a premise, these relations of support are expressed by 

deductive inferences. They combine to produce a totality in which the observed lines of the 

hydrogen spectrum provide inductive support for the series of infinitely many lines. 

 Section 5 asks a further evidential question: What supports the Ritz combination 

principle? Is it merely to be supported as a generalization over observed lines in the spectrum? 

What fact warrants it? The decisive theoretical development came in 1913 when Niels Bohr 

proposed an atomic mechanism capable of producing precisely the spectra observed. It became 

one of the foundations upon which modern quantum theory was built. Bohr’s theory, to be 

outlined in Section 6, proposed that the lines arise when an excited electron drops or jumps down 

from a higher to a lower energy state. Each jump leads to emission of radiant energy with a 

frequency proportional to the energy emitted. This mechanism provided a direct explanation of 

the Ritz combination principle. The two frequencies n12 and n23 corresponded to two emissions 

 
132 The two indices arise from the simple two parameter formulae (1) – (6) below, found 

empirically to systematize the frequencies of the lines present. 
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in a two-step jump. If the jump is taken in a single step, the frequency n13 = n12 + n23 comes 

directly from the requirement that the two-step jump or the single step jump liberate the same 

quantity of energy. 

 The Ritz combination principle provides another instance of the crossing over of relations 

of support, but now at a more elevated level of the theory. On the one hand, as described in 

Section 7, the combination principle, taken as a datum from observational spectroscopy, provides 

evidential support for the Bohr theory; and it was reported as such. Using a few notions from his 

theory, the principle translates directly in the emission mechanism Bohr proposed. However, on 

the other hand, as reported in Section 8, the converse relation of support also holds. Once 

quantum theory is established it entails the Ritz combination principle. The converse relation of 

support is important, for what quantum theory eventually provides is a corrected version of the 

principle. Some of the lines the original Ritz principle predicts are “forbidden,” that is, they 

correspond to electron jumps precluded by quantum theory. What results is an embellished Ritz 

combination principle, supplemented by so-called “selection rules” that indicate which lines are 

forbidden. 

2. The Discovery of Regularities in Emission Spectra 

 The emission spectrum of hydrogen contains lines at many frequencies. They are called 

“lines” since the early methods of spectroscopy capture the different frequencies present in the 

light as lines on a photographic plate. The frequency or wavelength of the light is recovered from 

distance measurements on the plate. An example from Fowler (1922, p. 8) is shown in Figure 1. 

 

 
Figure 1. A spectrograph of the spectrum of hydrogen 
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The first formula to embrace some of these lines with enduring success was posited by Balmer 

(1885) for strong lines in the visible spectrum. In modernized form his formula for the 

frequencies of lines in the “Balmer series” was 

n (2, m) = R(1/22-1/m2)           (“Balmer”)                          (2) 

where R is a constant. The different values of m = 3, 4, 5, … gave specific lines in the spectrum 

shown in Figure 1. 

Ha: n (2, 3) = R(1/22-1/32) 

Hb: n (2, 4) = R(1/22-1/42) 

Hg: n  (2, 5)= R(1/22-1/52) 

Hd: n  (2, 6)= R(1/22-1/62) 

… 

In the following decades, similar formulae were found for other lines in the hydrogen spectrum 

n (1, m) = R(1/12-1/m2)        m = 2, 3, 4, …       (“Lyman”)            (1) 

n (3, m) = R(1/32-1/m2)         m = 4, 5, 6, …     (“Paschen”)            (3) 

n (4, m) = R(1/42-1/m2)         m = 5, 6, 7, …     (“Brackett”)            (4) 

n (5, m) = R(1/52-1/m2)         m = 6, 7, 8, …        (“Pfund”)             (5) 

Each series is named after the spectroscopist responsible for its identification. 

 This quick recitation of the various formulae masks the magnitude of the problems faced 

by the spectroscopists. Decades separated the recovery of these series. While Balmer’s formula 

was reported in 1885, the terms of the Paschen series began to be verified around 1908, as 

announced by Ritz (1908). Lyman (1914) reported his ultraviolet spectrum in a letter to Nature 

of 1914. Brackett (1922) reported more lines in the Paschen spectrum and the first two members 

of newly discovered Brackett series. 

 There were multiple problems to be overcome. The first four lines of the Balmer 

spectrum, Ha to Hd, are easiest to find since they are in the visible spectrum. The Lyman series 

lies in the ultraviolet and the remaining series are in the infrared. These different ranges require 

different instrumentation to separate the frequencies and register them. Controlled conditions, 

such as low pressures, are needed to manifest sharp lines. Then some of the lines reported have 

celestial origins in spectrographs taken of stars. Since we have no independent samples of the 
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matter of the stars, how do we know just which excited matter produced them? How are they to 

be matched up with spectra produced by excited matter on earth? The spectrograph in Figure 1 

shows such a case. The upper set of lines arises in light from the star Sirius. The lower set comes 

from light emitted by excited hydrogen in a terrestrial laboratory. Fowler (1922, p. 7) suggests 

that the celestial lines may be identified as an extension of those in a spectrum found terrestrially 

if they fall near enough on a definite curve.  Figure 2 shows such a curve from Fowler (1922, 

p.14). The vertical axis plots the m of (1), (2) and (3); and the horizontal axis plots frequency: 

 

 
Figure 2. Frequencies of series form definite curves 

 

A trace of these different sources appears in Bohr’s (1913) celebrated paper on his theory of 

atom. He notes (p. 9) than then only nine lines of the Balmer series had been observed 

terrestrially in vacuum tubes, whereas 33 had been observed in celestial spectra. 

 Finally, even when definite series are identified in some spectrum, it is not always clear 

that all the series derive from the same substance. Sommerfeld (1923, pp. 207-208) reports two 

series that were originally attributed to hydrogen because of the similarity to the Balmer formula 

(2) for hydrogen. They are 

n  = R(1/1.52-1/m2)         m = 2, 3, 4, …   (“Principal series”) 

n  = R(1/22-1/(m+0.5)2)  m = 2, 3, 4, …  (“Second subsidiary series of hydrogen”) 
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One outcome of Bohr’s 1913 atomic theory was that these series would result from an atom with 

a nuclear charge twice that of hydrogen, so that the constant “R” in these formulae is four times 

greater than that for hydrogen. That is, they derive from helium and not hydrogen. This 

conversion is easily accomplished by multiplying the above formulae by 4/4. We now have: 

n  = (4R) (1/32-1/m2)    m = 4, 5, 6, …    (“Principal series”) 

n  = (4R) (1/42-1/m2)    m = 5, 6, 7, …    (“Second subsidiary series of hydrogen [?]”) 

The attribution of the spectra to helium was already made immediately by Bohr (1913a) in a 

letter to Nature. 

3. The Ritz Combination Principle 

 Given the variety and difficulty of the problems facing the spectroscopists in locating and 

grouping spectral lines, any assistance in the heuristics would be useful. Such was offered by 

Ritz (1908). Rydberg had noted that formulae for spectral lines could be simplified if they were 

written in terms of wave number, which is the inverse of wavelength.133 Then the formulae could 

be expressed as a difference of two terms, as is done in (1) to (5) above. This fact enabled Ritz 

(1908) to propose what he called his “principle of combination” (Kombinationsprinzip) (p. 523). 

Its value, as Ritz noted in the first sentence of his paper,134 is that one could use known spectral 

series to discover new ones. He applied it to a range of spectra, including those of hydrogen, 

helium and the alkali and alkaline earth metals. 

 A good statement of the principle is provided by Ritz himself in a note found 

posthumously in his papers and published as an appendix to Ritz (1908) in his Gesammelte 

 
133 The spectroscopists preferred to report wavelengths since they were more directly 

measureable than frequency. To convert wavelengths to frequencies required multiplication by 

the speed of light: frequency = (speed of light) / wavelength. Using inverse wavelength as a 

surrogate for frequency avoids systematic errors introduced by errors in the value of the speed of 

light employed. 
134 “In the following, it will be shown that, from known spectral series of an element, one can 

derive new series without introducing any new constants. Through this especially, almost all the 

series and lines recently discovered in the alkalis by Lenard, Konen and Hagenbach, Saunders, 

Moll, Bergman etc. come to be represented exactly.” (p. 523) 
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Werke (Collected Works) (1911, p. 162). Sommerfeld (1923, p. 205) quotes Ritz as giving this 

formulation:135 

By additive or subtractive combination, whether of the series formulae themselves, 

or of the constants that occur in them, formulae are formed that allow us calculate 

certain newly discovered lines from those known earlier. 

The principle is incomplete since it does not specify which additions and subtractions are those 

that yield new lines. The necessary supplement is provided in each application by a formula that 

represents the line frequency as a difference of two terms. Its application to hydrogen assumed 

that the series of hydrogen conform to a general formula 

n (n, m) = R(1/n2 -1/m2)      n = 1, 2, 3, …   m = 2, 3, 4, …              (6) 

where we always have m > n. It follows that a new line in the spectrum can be identified by 

taking the difference in the frequencies of two known lines, as long the expression (6) for each 

shares a common term. For example, the lines Ha and Hb can be subtracted in this way since 

they share a 1/22 term that is eliminated by the subtraction: 

Hb: n (2, 4) =  R(1/22-1/42) 

Ha: n (2, 3) =  R(1/22-1/32) 

__subtract__________________ 

               n (3, 4) =  R(1/32-1/42) 

What results is the first line n (3, 4) of the Paschen series (3), which was not an established series 

in 1908. It led to an immediate affirmation of the correctness of Ritz’s proposal. In his paper, 

Ritz (1908, p. 522) reported with obvious satisfaction that Paschen had informed him by letter 

(“Nach einer brieflichen Mitteilung”) that he had observed just this line in the infrared. 

4. Mutually Supporting Evidence 

 For Ritz, the combination principle was valuable as a means of discovering new lines. At 

the same time, it was the warrant for an inference from the existence of some lines to others.  

 
135 Sommerfeld’s report is abridged. In place of “…certain newly discovered lines from those 

known earlier,” Ritz’s text specifies lines of alkalis discovered then recently by Lenard and 

others, as well as new elements, in particular helium. 
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The evidence of the lines Ha and Hb of the Balmer series supports the line n (3, 4) of the 

Paschen series. This subtraction can be reversed into an addition that supplies a different relation 

of support: 

Ha:- n (2, 3) = R(1/22-1/32) 

                 n (3, 4) =  R(1/32-1/42) 

__add____________________ 

Hb:   n (2, 4) =   R(1/22-1/42) 

That is, the frequencies of the Ha line and the n (3, 4) line can be added to recover the Hb line. In 

this addition the common 1/32 terms cancel. That is, the Ha line and the n (3, 4) line support the 

Hb line. 

 These two relations show the crossing over of relations of support. In the first, the Hb 

provides support for the n (3, 4) line. In the second, then (3, 4) line provides support for the Hb 

line. Since the full range of series covered by relations (6) has infinitely many lines, there will be 

infinitely many of these relations of support, crossing over in many ways. 

 These relations of support can be captured in infinite sets of relations of support. For 

example, the Ritz combination principle can be applied to the infinitely many lines of the Balmer 

series (2) to support the Paschen (3), Bracket (4) and Pfund (5) series. For the first, lines in the 

Balmer series can be subtracted to cover the entire Paschen series: 

       n (2, m) =  R(1/22-1/m2)    (m > 4)  Balmer 

Ha: n (2, 3) =  R(1/22-1/32) 

___subtract____________________________ 

              n (3, m) =  R(1/32-1/m2)     (m > 4)   Paschen 

Additional lines are needed as supplementary evidence if series in the sequence of (1), (2), (3), 

(4) and (5) are to support those earlier in the sequence. For example, we take as an extra datum 

n (1, 2), the first line of the Lyman series (1), then the entire Lyman series is recovered by 

addition from the Balmer series: 
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n (1, 2) =   R(1/12-1/22)  

n (2, m) =  R(1/22-1/m2)  (m>2)  Balmer 

__add___________________________ 

n (1, m) =  R(1/12-1/m2)   (m>1)   Lyman 

If we take as an extra datum the Ha line of the Balmer series, then the Paschen series supports 

the Balmer series. 

              n (3, m) =  R(1/32-1/m2)   (m > 3)    Paschen 

Ha: n (2, 3) =  R(1/22-1/32) 

___add____________________________ 

       n (2, m) =  R(1/22-1/m2)    (m > 3)  Balmer 

Two of these relations of support cross over one another and can be represented more compactly 

as 

 Ritz combination principle 

Balmer series 

____deduce____________ 

Paschen Series 

Ritz combination principle 

Ha line 

Paschen series 

____deduce____________ 

Balmer Series 

Similar computations realize many more like-structured relations of mutual support that cross 

over each other, including: 

the Paschen series supports the Bracket and Pfund series; 

the Bracket and Pfund series supports the Paschen series;  

the Bracket series supports the Pfund series; 

the Pfund series supports the Bracket series; 

etc. 

It is noteworthy that all of the individual relations of support just described are implemented by 

deductive inferences. We can infer deductively from some subset of lines, via the Ritz 

combination principle, to the larger portions and even the entire set in (6). Nonetheless, 

accepting the entirety of the series does involve inductive risks. The inductive risks enter in 

accepting the premises that figure in the individual deductions. We take a small inductive risk in 

accepting the correctness of the report of the existence of each line. Most notably, considerable 
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inductive risk is taken in accepting the combination principle, since it has infinite scope. That the 

risk is considerable is seen most easily from the fact that later investigations introduced a small 

“fine structure” splitting of the lines in the series described above. 136 More significantly, we 

shall see below that the Ritz combination principle itself needed to be modified by selection rules 

that prohibit certain lines when we move beyond the hydrogen spectrum. 

 While combining deductive relations to yield inductive support overall may at first 

appear paradoxical, it is not so. All that has happened is that the inductive risks taken in 

accepting the premises of the deductions are the only inductive risks we need to take. Once they 

are taken, we can proceed with maximally secure deductive arguments. This type of support is 

inductively more secure than combining inductive relations of support in a similar way. No 

further inductive risk is taken in accepting these component deductive inferences, whereas 

further inductive risk would be taken if they were replaced by inductive inferences. Chapter 2, 

“Large-Scale Structure of Inductive Support,” reflected on other examples of deductive relations 

of support combining to provide overall inductive support.  

 The massively entangled network of relations of mutual support go well beyond the 

heuristic guidance of Ritz’s original purpose. For that narrower purpose, the most useful are the 

inferences from readily available lines to those not yet discovered. Our concern here, however, is 

not so narrow. It is to discern the full structure of the relations of inductive support. 

5. Supporting the Ritz Combination Principle 

 The inferences reported in the last section all employ the Ritz combination principle as a 

premise. None of the inferences in the last section provide support directly for the Ritz 

combination principle. Rather they all merely use it. For, with the qualification to be noted 

below, the principle is a standard part of atomic spectroscopy. 

 What evidence supports the Ritz combination principle? One might be tempted to answer 

that we have many instances of the general formula (6) and no counterexamples. So we can 

 
136 The splitting, reported by Sommerfeld in 1916, resulted from relativistic corrections to Bohr’s 

atomic theory. Sommerfeld found that differences in the eccentricities of the elliptical electron 

orbits of the theory led to slight differences in their energies. See Sommerfeld (1915; 1923, p. 

474). 
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inductively infer to (6) and from it deduce the Ritz combination principle for the hydrogen 

spectrum. The trouble is that a generalization—any generalization—requires a warranting fact. 

So far, it is unclear what that fact is. 

 We might be tempted to say that, when a general formula this simple fits all the cases at 

hand, we have a license to infer to it. The familiar difficult was developed at length in Chapter 6 

of The Material Theory of Induction. We lack both a notion of simplicity precise enough to 

warrant these inferences; and we lack a factual basis for the inductive powers of such a notion. 

 As an intermediate attempt to warrant the generalization, we might suggest that a formula 

as simple as (6) can only be as successful as it is if it is part of a larger regularity whose precise 

character is not presently known to us. Something like this quite plausible. However, it rests on 

the supposition of further facts not so far produced. That, at least, was the situation in 1908 when 

Ritz proposed his principle. In 1913, circumstances would change. Then Bohr proposed his novel 

theory of the atom. That theory used Ritz’s principle and the formula (6) as evidential support. 

Soon, the relation of support would become mutual when the quantum theory that emerged from 

Bohr’s theory provided support for a modified version of Ritz’s principle. 

6. Bohr’s Theory of the Atom 

 Bohr’s celebrated theory of the atom was based on Rutherford’s nuclear account of the 

atom. According to it, a hydrogen atom consists of a very massive, positively charged nucleus 

with a light, negatively charged electron orbiting it. To this Bohr added two ideas. Classical 

electrodynamics requires that this orbiting electron must radiate its energy electromagnetically 

and thus be pulled rapidly into the nucleus. Bohr simply posited otherwise: 

I. There are stable orbits for the electron. 

The energies of these orbits were to be computed by standard electrostatics. Bohr further 

supposed that electrons could jump between these stable orbits. Another posit connects these 

jumps to emission spectra.  

II. When an electron drops down from a more energetic stable orbit to a less energetic one, 

closer to the nucleus, the energy E it loses reappears as electromagnetic radiation with a 

frequency n , according to E = hn , where h is Planck’s constant. 
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Denote the (negative) energies of two stable orbits as W1 and W2, with W1 > W2. When an 

electron drops from the first to the second orbit, it emits electromagnetic radiation of frequency 

n12 whose value is, according to II: 

n12 = (W1 - W2)/h                                                                 (7) 

Comparison with the general spectral formula (6) then allows us to identify the (negative) 

energies of the stable orbits 

W(n) = R/n2       n = 1, 2, 3, …                                       (8) 

The striking outcome here is that, from the spectral formula (6), we infer that the energies of the 

stable orbits do not form a continuous set. Rather they form a discrete set whose members are 

indexed by n. Bohr’s posits I. and II. do not presume discreteness. It is inferred from the 

evidence of the spectra. 

 The Bohr theory clarified Ritz’s combination principle. In its original form, the principle 

was the recognition of a bare numerical regularity. It was a kind of scientifically useful 

numerology. Bohr’s theory gave it a physical basis. Consider the case shown in Figure 3. An 

electron in an excited hydrogen atom drops to a lower energy orbit, emitting radiation of 

frequency n12 with energy E12 = hn12.  In a second jump, it drops to a still lower energy orbit, 

emitting radiation of frequency n23 with energy E23 = hn23. Had the electron jumped directly 

from the first orbit to the final, it would have emitted radiation of frequency n13 with energy E13 

= hn13. 

 We have two cases, one with two successive jumps and the other with a single jump. 

They are between the same initial and final orbits. Thus the energy radiated in each must be the 

same: 

E13 = E12 + E23 

Applying E = hn to each of these three energies, we recover 

n13 = n12 + n23 

This last sum is the Ritz combination principle applied to the hydrogen spectrum. Its physical 

foundation is now displayed. 
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Figure 3. Physical Basis of the Ritz Combination Principle 

 

 There is much more in Bohr’s theory and these details have been elaborated frequently 

elsewhere.137 Using further conditions, Bohr concluded that the constant R in (6) and (8) is given 

by R = 2p2me4 / h3, for m the mass of an electron and e its charge. The value of R, computed 

from this formula using the best-known values of m, e and h, was, Bohr reported, 3.1 x 1015. It 

matches closely enough to the value Bohr reported from spectral observations, 3.290 x 1015. 

 Bohr also showed that the stable orbits of (8) coincided with the orbital angular 

momentum of the electron taking on integer values in units of h/2p. This formulation of the 

discreteness of the stable states of (8) became increasingly important as Bohr’s theory evolved. 

In more elaborated versions of his theory, the so-called “old quantum theory,” this result was the 

simplest case of the quantization of action. In the “new quantum theory” that emerged in the mid 

1920s, this result coincided with the fact that stable electron orbitals are eigenstates of the 

angular momentum operator. 

7. The Ritz Combination Principle Supports Quantum Theory 

 The first half of the mutual relations of support is that the newly emerging quantum 

theory was supported by the Ritz combination principle. This support has been evident from the 

start. In a much quoted138 remark, reported by Bohr’s assistant and confidant, Leon Rosenfeld, 

 
137 For an early authoritative textbook account, see Sommerfeld (1923, pp. 211-218). Norton 

(2000) develops these details with special focus on the evidential relations. 
138 As quoted in Duncan and Janssen (2019, p. 14). 
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Bohr remarked that “as soon as I saw Balmer’s formula, the whole thing was immediately clear 

to me.” 

 The evidential support the Ritz principle gave to Bohr’s emerging theory was widely 

recognized. Max Born (1935, p. 85) is forthright about it: “A direct confirmation of this [Bohr’s 

1913] theory can be seen in the following fact….” He proceeded to explain in detail and with a 

figure similar to Figure 3 above how Ritz’s combination principle (identified by this name) is a 

consequence of the cascade of emissions described in the preceding section. 

 Sommerfeld, in his early, authoritative volume on the old quantum theory, is similarly 

forthright. He introduced the Ritz combination principle by name, along with the quote given 

above; and then explained its application in detail (1923, pp. 205-206). He then characterized its 

significance (emphasis in original): 

The principle of combination has maintained itself in the whole region of 

spectroscopy from infra-red to X-ray spectra as an exact physical law with the 

degree of accuracy that characterises spectroscopic measurement. It constitutes the 

foundation on which Bohr's theory of spectra rests, and is, in essence, identical with 

Bohr’s law (cf. Chap. I, § 6, eqn. (6)) [eqn (7) above], which likewise taught us to 

regard the frequency of a spectral emission as the difference between two energy-

levels. 

If we approach the support relations materially, we can be more precise in just what Ritz’s 

combination principle provides Bohr’s theory. Bohr’s 1913 posit II above associates spectral 

lines with electron jumps between stable orbits of different energy. Using the posit as a 

warranting fact, we infer from each spectral line to the existence of an electron jump in the 

hydrogen atom between stable energy states. 

 The Ritz combination principle adds something very important to this last inference. All 

this last inference gives us is the energy differences between the energies of the stable orbits. 

Posit II does not specify how these stable energy states are related. It might just be that each line 

derives from its own unique set of energy states and that no other line derives from electron 

jumps to or from them. The principle assures us that it is possible to find a single set of energies 

of stable orbits such that all these stable orbits are accessible to the electron in a hydrogen atom. 
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More precisely it follows from the spectral formula (6) that such a set of energies is given by the 

relation (8) of the Bohr theory,139 W(n) = R/n2. 

 If we follow Sommerfeld and take the Ritz combination principle as holding universally 

for all spectral lines, including those not observed, then the relation of support is deductive. All 

the inductive risk is taken in accepting posit II provisionally as an hypothesis. 

8. Quantum Theory confirms the Ritz Combination Principle 

 In the early years of quantum theory, it was natural to focus on the support the Ritz 

combination principle provided for the developing quantum theory. For the principle itself was 

rightly judged to be more securely supported by spectroscopic evidence. The developing 

quantum theory was speculative and even required physicists to overlook a glaring contradiction 

with classical electrodynamics. As the quantum theory was developed, became more established 

and evolved into the later “new quantum theory,” this orientation reversed. A now more secure 

quantum theory provided support for the Ritz combination principle directly. The principle is a 

deductive consequence of the account given by quantum theory of the origin of the spectra. It 

also became more congenial to see support for the Ritz combination principle in the quantum 

theory, for that support derived from a definite physical ontology and replaced what I called 

“numerology” above. 

 What further strengthens the inverted relation of support is that the development of 

quantum theory showed that the full Ritz combination principle, when applied to spectra beyond 

those of hydrogen, needed corrections.140 For it turned out that not all of the lines predicted by 

the principle occurred.  Some transitions turned out to be “forbidden” and the determination of 

 
139 The formula is determined only up to an additive constant that plays no role in energies and 

frequencies of the radiation emitted. The inference is only to the possibility of the single set of 

energies described. It does not preclude a more complicated set that simulates the behavior of the 

simpler set, even though in practice this complication would be dismissed as contrived. 
140 Another example of this type of correction is seen in the chapter on Newton and the inverse 

square law of gravity. Kepler’s elliptical orbits of the planets supports the inverse square law. 

Yet that law, when developed systematically by Newton, leads to corrections to the elliptical 

orbits due to perturbations from other celestial bodies. 
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which are allowed was governed by “selection rules.” The jumps allowed in Bohr’s original 

theory were constrained only by energy conservation. Such jumps must also conform with the 

conservation of angular momentum. The emitting electron must lose just the angular momentum 

that is carried off by the emitted radiation.141 In the case of the simple hydrogen spectrum, the 

additional condition does not further limit the spectra beyond the limitations of energy 

conservation. However, that is only a special case. Spectra of other elements do have forbidden 

lines. 

 Through these considerations, the reverse direction of support, from quantum theory to 

Ritz’s combination principle, becomes more secure. The observation of spectra can only give us 

direct evidence of a finite subset of the infinity of lines possible. That finite evidence can support 

Ritz’s correspondence principle among the lines observed. When we move past hydrogen 

spectra, this finite evidence can give indications of when the principle fails. If, however, we 

derive the principle from a fully developed quantum theory, we recover the principle in its most 

general form as it applies to the infinity of lines in some spectrum. We also recover a way of 

determining when certain lines are forbidden and a principled physical account of why they are 

forbidden. 

 This inversion had already occurred under the old quantum theory. As the theory 

developed, new quantum numbers were added, beyond the single quantum number “n” of Bohr’s 

1913 theory. Sommerfeld introduced the “azimuthal quantum number,” among other numbers. 

His authoritative treatment of the old quantum theory included an extensive account of a 

selection rule for atomic spectra. He states it as (1923, p. 266, Sommerfeld’s emphasis): 

The principle of selection states: the azimuthal quantum number can at the most 

alter by one unit at a time in changes of configuration of the atom. 

This selection rule was carried over142 and vindicated by the wave mechanics of the new 

quantum theory. It was rapidly absorbed into textbook expositions, such as Pauling (1935, §40f.) 

 
141 In the full quantum electrodynamical analysis, an emitted photon carries off h/2p of angular 

momentum. It follows that the emitting electron can only jump to a state whose angular 

momentum differs from its starting state by h/2p. 
142 Sommerfeld’s “at most one unit” is replaced by exactly one unit for the quantum numbers l 

and m in the case of hydrogen. See Slater (1960, p. 183). 
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 In his article for Review of Modern Physics, Gibbs (1932, p. 307) reflects on the need to 

qualify the Ritz combination principle: 

The later development of the quantum theory has shown that for certain types of 

radiation some of the Ritz combination lines are “forbidden” or perhaps better are 

extremely improbable under ordinary circumstances. The degree of probability for 

these “forbidden” lines varies widely for different combinations and accordingly 

under certain conditions of pressure, electric field, and mode of excitation some of 

the more probable of these improbable or “forbidden” lines are observed. 

After reporting the discovery of the Brackett and Pfund series, Gibbs (pp. 307-308) recorded 

what amounts to the inversion of the relations of support: 

These series, both of which lie well out in the infrared, were discovered sometime 

after the theoretical basis for the combination principle had been completely 

changed and elaborated by the introduction of the quantum theory. Indeed the 

theoretical arguments advanced by Ritz in proposing this principle were quite 

unsound even in terms of the older classical theory. It is an excellent example of 

how a fundamentally correct idea is envisioned through false reasoning, to be later 

explained on an entirely new basis, the theoretical development of which was 

encouraged and assisted to some extent by the very idea itself. 

9. Conclusion 

 The investigation of atomic spectra and their relation to quantum theory illustrates the 

non-hierarchical structure of relations of evidential support. There is a massively entangled set of 

relations of support among the infinitely many propositions that assert the existence of specific 

spectral lines. The fact that warrants these relations of support is the Ritz combination principle. 

It too enters into non-hierarchical relations of support. For, initially, the principle provides 

important evidential support for the newly emerging quantum theory. As that quantum theory 

developed and became better established, this relation of support was inverted. The quantum 

theory was seen as providing evidential support for the Ritz combination principle. This 

inversion is appropriate since the quantum theory indicated that the Ritz combination principle 

had to be supplemented or corrected to accommodate “forbidden lines.” The quantum theory 
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could provide both a systematic means of identifying these forbidden lines and a physical basis 

for forbidding them. 
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Mutually Supporting Evidence in Radiocarbon Dating 

1. Introduction 

 Consider two ways that we may date artifacts and samples. First, traditional methods of 

historical analysis and archaeology enable us to date artifacts; and the counting of tree rings 

enables us to date wood from ancient trees. Second, radiocarbon dating provides another means 

of dating these samples.  What results are two sets of propositions concerning the age of specific 

artifacts. In Section 4, the first are called “H” (historical) and the second are called “R” 

(radiocarbon). 

 Each type of dating can provide evidence for the other type. That is, relations of support 

among these two sets of propositions proceed in both directions, analogously to the relations of 

support among the stones on either side of an arch.  

 The second type R can support the first type H: If we are interested in checking the 

historical dating of some artifact, we can send a sample to a radiocarbon laboratory for dating.  

 The first type H can support the second type R: Radiocarbon dating itself requires 

empirical calibration to correct for many confounding variables, such as changes in levels of 

atmospheric carbon 14. Historically dated artifacts and wood dated by tree ring counting can be 

used in this calibration process. In it, the evidence of these other methods of dating provides 

evidential support for the recalibrated radiocarbon dating of the samples. 

 When the two methods agree for some sample, we have support relations passing in both 

directions. However, the circumstances of the sample may incline us to emphasize only one 

direction. 

 Section 2 below will review briefly how radiocarbon dating works; and Section 3 will 

describe the need for and methods of independent calibration of radiocarbon dating. Finally 

Section 4 will review how relations of evidential support cross over among the H and R type 

propositions, using the example of the dating of the shroud of Turing and associated control 

samples. 
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 To speak just of two mutually supporting methods oversimplifies greatly in the interests 

of brevity. An appreciation of the richness of the interactions of many lines of evidence 

employed in radiocarbon dating has been provided by Alison Wylie in several works, including 

Wylie (2016). For a related analysis of radiometric dating in geology, see Alisa Bokulich (2020). 

2. How Radiocarbon Dating Works 

 Consider some ancient artifact such as a scrap of linen from an Egyptian mummy’s 

wrapping or a thread from a medieval cloak. How are we to know its age? In the 1940s, William 

Libby hit upon a method so ingenious and important that it earned him the 1960 Nobel Prize in 

chemistry.143 These artifacts are all derived from carbon-based plants. These plants derived their 

carbon from the CO2 in the atmosphere. Virtually all the atmospheric carbon is the stable isotope 

12C, “carbon 12.” However, a tiny portion is a radioactively unstable 14C. This tiny portion is 

decaying exponentially, with clocklike regularity, with a half-life of about 5730 years. That 

means that after 5730 years, only half the original amount of 14C remains; and after 2x5730 = 

11460 years, only a quarter remains; and so on. Wait long enough and near to none remains. 

Coal, formed from living plants several hundred million years ago, contains virtually no 14C. By 

these simple calculations, we can determine the age of an artifact from two numbers: the amount 

of 14C in the artifact at its formation and the amount of 14C in the artifact now. 

 The second of these numbers can be determined by laboratory analysis. The first, 

however, presents a greater challenge. The amount of 14C in the artifact at the time of its 

formation is fixed by the level of 14C in the atmosphere at that time. The isotope 14C occurs in 

atmospheric carbon in roughly the ratio of 1 atom of 14C to 1012 atoms of 12C.144 While 

atmospheric 14C is decaying with the half life of 5730 years, the atmospheric levels are 

maintained at roughly constant levels through a process that creates new 14C atoms. Cosmic rays 

strike nitrogen atoms in the atmosphere and convert them to 14C atoms. Since the rate of 

replenishment rises and falls with the intensity of the cosmic rays impinging on the atmosphere, 

 
143 An early mention of the method in the journal literature appears in brief closing remarks 

Anderson, Libby et al. (1947). 
144 As cited by Key (2001, p. 2338). 
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there is a corresponding movement in the levels of 14C. The ratio of 1 to 1012 is a rough estimate 

of a ratio that varies in time. Many other processes affect this ratio. Some have a large effect. 

The ratio dropped significantly after 1880 due to the large amounts of carbon-based fossil fuels 

burnt in the industrial revolution. The 14C in the atmosphere was diluted by essentially 14C free 

carbon from the fossil fuels. This and other factors have sufficiently disrupted the rate of 

replenishment that radiocarbon dating of artifacts is practicable only to artifacts older than 300 

years.145 

3. The Need for Calibration 

 For artifacts older than 300 years, the variability in the atmospheric 14C levels and other 

factors leads to incorrect dating, commonly an underestimate of the age of the artifact. In the 

early years of radiocarbon dating, when there were fewer means available to check radiocarbon 

dating, a thorough analysis of the errors was not possible. Anderson and Libby (1951) collected 

eighteen months of radiocarbon dating in a report presented as “an overall-check of the 

method…the main purpose of the research.” As a part of these efforts, they presented the 

historically known and radiocarbon ages of samples from ancient Egypt (wooden beams from 

tombs, wood from a funery ship, wood from a mummiform coffin, ancient wheat and barley 

grains). They reported the radiocarbon ages of samples from many other locations but generally 

without historically determined ages. 

 By the 1960s, discrepancies between the radiocarbon and true dates of historical artifacts 

were becoming apparent. Stuiver and Suess (1966) reported on the accumulation of evidence of 

the discrepancies. The relationship between the two ages, they stressed, depends upon so many 

potentially variable factors that it requires an approach other than the theoretical analysis that 

then gave radiocarbon ages (p. 534): 

This relationship cannot be determined theoretically, but can be derived empirically 

by determination of the radiocarbon contents of samples of known age. 

 
145 These other effects include 17th century rapid changes in solar magnetic intensity and the 

artificial production of 14C as a result of atmospheric testing in the 20th century. For more 

details and more general background, see Taylor (1997, p.69). 
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They reported the existence of samples of known age from old wood, whose age could be 

determined by the counting of tree rings. They expressed high hopes for samples that would soon 

be available of bristlecone pine wood that would be more that 6,000 years old. These bristlecone 

pine wood samples did meet their expectations and now play a central role in determining the 

relationship they sought. 

 The corrections needed came to be summarized in calibration curves that map the 

radiocarbon age of a sample against the sample’s true calendar age. The term “radiocarbon age” 

is a precisely defined term of art in the radiocarbon dating literature. It designates the age 

indicated by depletion of 14C in the artifact if we make a series of convenient but false 

stipulations. They include the assumption of the constancy of reservoir 14C levels; an incorrect 

but formerly used half life of 5568 years; the counting of time from 1950AD as the zero point; 

and more.146 Recent calibration data and curves have been provided by Reimer et al. (2013). 

Figure 1 is a calibration curve plotted from their data for samples created in the northern 

hemisphere. 

 
146 For more details, see Taylor (1997, pp. 67-68). 
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Figure 1. Northern Hemisphere Calibration Curve, IntCal13147 

 

The curve shows that radiocarbon age may underestimate the true calendar age by as much as 

20%. Once the curve has been used to correct the radiocarbon age, I will call the new age the 

“recalibrated radiocarbon age.” 

 
147 This figure is derived from data in Reimer at al. (2013) and is reproduced in conformity with 

a Creative Commons CC BY-SA 3.0 license granted by the copyright holder at 

https://en.wikipedia.org/wiki/File:Intcal_13_calibration_curve.png 
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4. Relations of Evidential Support 

 The relations of evidential support to be considered here are between two types of 

propositions: 

H: The historically determined age of a designated sample is the true age. 

R: The recalibrated radiocarbon age of a designated sample is the true age. 

Here “historically determined” indicates that dating was carried out by the traditional methods of 

history, archaeology and dendrochronology (tree ring dating), excluding radiocarbon methods.  

 So far, we have seen that propositions of type H are used to give evidential support to 

propositions of type R. Indeed, propositions of type H are used to construct the calibration curves 

that recalibrate the propositions of type R. Thus, they provide the evidential support for the 

correctness of the recalibrated ages. 

 However, the relations of evidential support can be reversed. Propositions of type R can 

support those of type H. We may become uncertain over the dating ascribed to some sample in a 

proposition of type H. Perhaps we become unsure of the archaeological dating of 4650 +/- 75 

years of the acacia wood beam from the tomb of Zoser at Sakkara, listed in Arnold and Libby 

(1951, p. 111). We can use the recalibrated radiocarbon dating of samples from it to reaffirm its 

archaeological dating. 

 An interesting, concrete example of the crossing over of relations of support between the 

two types of propositions is provided by the radiocarbon dating of the shroud of Turin. As most 

people know, the shroud bears front and rear impressions of someone with injuries compatible 

with crucifixion. It is purported to be the burial shroud of Jesus. However, it did not appear on 

public display until the 1350s. In a careful series of tests reported in Damon et al. (1989), 

samples of the shroud were sent to three laboratories. In a failed effort to blind the tests, three 

control samples were also sent to each laboratory. The results showed agreement among the 

three laboratories for dating of all the samples. They concluded with 95% confidence that the 

linen of the shroud was created from flax grown sometime in 1260-1390 AD. 

 The crossing over of relations of inductive support arose in the context of the three 

control samples. They were: 

Sample 2. Linen from a tomb excavated at Qasr Ibrîm. Dated by embroidery pattern and 

Christian ink inscription to the eleventh and twelfth centuries. 
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Sample 3. Linen from an early second century AD mummy of Cleopatra from Thebes. 

Radiocarbon dated to 110 BC – 75 AD at 68% confidence.148 

Sample 4. Threads from the cope of St Louis d'Anjou. Dated by stylistic and historical 

evidence to 1290 – 1310 AD. 

These three samples are dated by H-type propositions and then also by R-type propositions from 

the three independent laboratories. Since the dating of all samples agree in both types of 

propositions, we can read the relations of support in each case as passing in both directions. 

 The intended direction for the calibration of the laboratories is that the H-proposition 

dating of the samples provides evidential support for the laboratories’ R-proposition dating. 

However, we can equally choose to read the evidential support as proceeding in the opposite 

direction: if there was any doubt over the dating of the three control samples, the radiocarbon 

dating of them by the three independent laboratories affirms their correctness. That is, the R-

propositions are providing evidential support for the H-proposition. 
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The Determination of Atomic Weights 

1. Introduction 

 A table of the weight of the atoms of the elements of chemistry is commonly on display 

in high school science classrooms. Figure 1 shows an early example of the table, drawn from the 

work of Dmitri Mendeleev, the chemist most associated with the introduction of the table. We 

read familiar facts from it. A hydrogen atom has a weight of 1, near enough. An atom of carbon 

has a weight of 12. An atom of oxygen has a weight of 16. And so on. We then easily compute 

the weight of a molecule of water, whose composition is specified by the familiar formula H2O. 

A water molecule has two atoms of hydrogen and one of oxygen. Its weight is 2x1 + 16 =18. 

 Familiar as these facts are now, they did not spring into our textbooks the moment Dalton 

(1808) proposed that ordinary matter consists of atoms of the elements hydrogen, carbon, oxygen 

and so on. Rather, these were details that Dalton’s theory failed to specify adequately. The 

omission was no oversight. The evidence he marshaled for his theory was too weak to pin down 

the relative weights of his atoms and the molecular formulae of simple substances like water. 

These facts were hidden behind an evidential circle. Dalton could not know the correct molecular 

formulae until he had determined the correct atomic weights. But he could not determine the 

correct atomic weights until he had found the correct molecular formulae. Dalton had no means 

adequate to breaking the evidential circle. 

 The determination of the weights of his atoms proved a recalcitrant problem whose 

solution required half a century of concerted efforts by chemists. That half century provides us 

with an illuminating study of a tangle of mutual relations of inductive support. Because of the 

great complexity of the facts of chemistry with its many elements, we shall see that these 

relations of support are far more complicated than, in the architectural analogy, two sides of an 

arch supporting each other. They are closer to the multiplicity of mutual support relations of an 

intricate vaulted ceiling, such as displayed in Chapter 2. We shall also see that higher level 

hypotheses proved essential in the efforts to break the circularity that defeated Dalton. The most 

familiar of these is Avogadro’s hypothesis. Its content is now taught to high school students, who 
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memorize it as they did the lines of nursery rhymes. It already merited only a perfunctory 

statement in the 1911 Encyclopaedia Britannica,149 buried in the short entry for Amadeo 

Avogadro: “… under the same conditions of temperature and pressure equal volumes of all gases 

contain the same number of smallest particles or molecules…” In its time, however, it was an 

adventurous speculation, indulged only cautiously since it allowed chemists to determine atomic 

weights and molecular formulae. Adopting hypotheses such as Avogadro’s incurred an evidential 

debt. We shall see that this evidential debt was discharged through still more entangled relations 

of mutual inductive support at the corresponding higher levels of generalization. 

 

 
Figure 1. Mendeleev’s 1904 Periodic Table of the Element150 

 

 Sections 2 and 3 below will review Dalton’s “New System” of 1808 and how it is troubled 

by an evidential circularity in atomic weights and molecular formulae. Such circularities can be 

broken by an aptly chosen hypothesis. Section 4 reviews Dalton’s failed attempt, guided by 

 
149 Vol. 3, 1910, Cambridge, England: At the University Press. p.66. 
150 From Mendeleev (1904, p. 26). 
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notions of simplicity, to select such an hypothesis. Section 5 reviews three hypotheses that came 

to guide work on atomic weights and molecular formulae over the next half century: Avogadro’s 

hypothesis, Dulong and Petit’s law of specific heats and Mitscherlich’s law of isomorphism. The 

ensuing analysis culminated in a celebrated synthesis of the chemical evidence and the support 

relations among them by Stanislao Cannizzaro (1858). Sections 6-8 review the evidential case 

presented by Cannizzaro. It emphasizes the interconnectedness of the relations at multiple levels. 

Section 9 reviews another relation of mutual support, this time between two sciences. For the 

chemists, Avogadro’s hypothesis was supported by the equipartition theorem of the new physics 

of the kinetic theory of gases. For the physicists, the direction of the support was reversed. 

Finally, Section 10 records the transition of Avogadro’s hypothesis from a useful speculation to 

an established rule. Dulong and Petit’s law of specific heats was similarly established, but with a 

crucial amendment that quantum effects lead it to fail at low temperatures. 

2. Dalton’s Atomic Theory 

 The atomic theory of matter has a venerable history, extending back to antiquity. While it 

is easy to praise the early atomists as far-sighted visionaries, struggling to free themselves from 

the prejudices of their eras, a better assessment is less celebratory. Alan Chalmers (2009) has 

documented quite thoroughly how, for most of its life, the atomic theory was highly speculative. 

It had little empirical grounding and was thus rightly regarded with reserve or suspicion by those 

who practiced empirical science. 

 The turning point came in the early nineteenth century with Dalton’s (1808) new 

proposal of a specific atomic constitution for matter in his New System of Chemical Philosophy. 

Curiously, though, Dalton’s proposal was not the decisive factor in turning atomism from 

potentially fertile speculation to successful empirical science. The success of his proposal 

depended essentially on Antoine Lavoisier’s work in chemistry a few decades earlier. Before it, 

just which were the elements of chemistry was unsettled. Was it to be the ancient choice of earth, 

air, fire or water? Or was it the tria prima of the three principles of mercury, sulfur and salt of 

Paracelsus? Or should we follow Boyle and discard the notion of element entirely? Lavoisier had 

settled the matter when he collected his table of elements, as presented in his 1789 Elements of 

Chemistry. There he gave a subset of the familiar modern table of elements. (Lavoisier, 1789, p. 

175) It included hydrogen, oxygen, “azote” [nitrogen], sulfur, phosphorus, charcoal [carbon] and 
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much more. Air and water, we now found, are not elements after all. Air is a mixture of oxygen 

and azote. Water is a compound of oxygen and hydrogen. Combustion is not the release of 

phlogiston, but the consumption of oxygen.151 

 Prior to Lavoisier’s discoveries, an atomic theory had little hope of bridging the gap 

between specific properties attributed to atoms and the chemical properties of matter seen in the 

laboratory. One could speculate ad nauseam about the properties and behaviors of the most 

fundamental atoms or (breakable) corpuscles of matter. However, as long as these were atoms or 

corpuscles of air, water, fire or earth, recovering the rich repertoire of chemical change then 

known to the chemists was precluded. 

 After Lavoisier, the prospects were quite different. Speculate that the simple bodies of 

Lavoisier’s system are constituted of atoms peculiar to each and the pieces fall rapidly and easily 

into place. Dalton’s good fortune was that his was the first prominent attempt at this speculation. 

He associated a definite atom with each of Lavoisier’s elements. The theory of chemical 

composition then became beautifully simple. The elements form compounds when their atoms 

combine in simple ratios. One carbon atom combines with one oxygen atom to make “carbonic 

oxide” (modern carbon monoxide CO). One carbon atom combines with two atoms of oxygen to 

make “carbonic acid” (modern carbon dioxide CO2). (Dalton, 1808, p.215) We now take this 

simple idea for granted. However, its use with Lavoisier’s table of elements is profound; the 

constancy of proportions in chemical composition is now explained at the atomic level. 

 We can see just how dependent Dalton was on the chemists’ proclamation of which are 

elements by his retention with Lavoisier of heat as a material substance. For Dalton, gases, 

liquids and solids were all quiescent at the atomic level. He had no kinetic conception of heat as 

atomic or molecular motion. Rather the fundamental particles of matter were surrounded by 

atmospheres of heat. The expansion and contraction of matter with heating and cooling was 

explained by the addition or subtraction of the substance of heat to these atmospheres, which 

would then enlarge or diminish. 

 
151 There are also a few unexpected entries in Lavoisier’s table of “simple substances.”  It 

includes light and caloric, where caloric is a material substance comprising heat. A “gas” for 

Lavoisier is defined as a body fully saturated with caloric (p.50). The oxygen he prepared in his 

laboratory was for him really “oxygen gas” (p. 52), elemental oxygen saturated with caloric. 
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3. A Circularity: Atomic Weights and Molecular Formulae 

 We now turn to the awkwardness that will govern the discussion to follow. Dalton’s 

theory required atoms to combine in simple ratios when forming compounds: 1 to 1; 1 to 2; etc. 

However, he had real difficulty in determining just which those ratios should be for specific 

compounds. Famously, he decided that water is formed from one atom of hydrogen and one 

atom of oxygen, so that we would now write its molecular formula as HO, rather than the 

familiar H2O. This was just one of many molecular formulae that would require subsequent 

correction. Ammonia, for example, is NH in his account, not the modern NH3. 

 As a matter of historical fidelity, we should note that neither the term “molecular 

formula” nor the notation “HO” are Dalton’s. They are used here for descriptive continuity with 

later work. Dalton drew circles representing each element and their compounds. The graphical 

representation from his New System shown in Figure 2 is much reproduced and has near iconic 

status. In it, hydrogen is “simple” 1 and is drawn as a circle with a dot. Oxygen is simple 4 and is 

drawn as a plain circle. The first “binary” (compound) 21 is water and is represented by the two 

circles one each for hydrogen and oxygen, side by side. 
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Figure 2. Dalton’s Illustration of the Atomic Elements and their Compounds152 

 

 
152 Dalton (1808, plate 4, near p. 219). 
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 The misidentification of the molecular formula of water and other compounds lay in no 

oversight or inattentiveness by Dalton. It lay in a serious incompleteness in his theory. One may 

know that 1g of hydrogen combines with exactly 8g of oxygen to produce water.153 But how is 

one to know that this reaction involves two hydrogen atoms for each oxygen atom? That is, how 

can one know the correct molecular formula for water from the ratios of weights of the elements 

in it? 

 The problem would be solved by a knowledge of the ratio of the weights of individual 

atoms. If we set the atomic weight of a hydrogen atom as the unit, what would result if an 

oxygen atom has atomic weight 8? From the fact that 1g of hydrogen combines with 8g of 

oxygen to make water, we might propose that one atom of hydrogen has combined with one 

atom of oxygen to make water. That is, we find water is HO. 

 However, what if the atomic weight of oxygen is really 16? Then from the fact that1g of 

hydrogen combines with 8g of oxygen to make water, we might propose that water forms by 

combining two atoms of hydrogen with one atom of oxygen. That is, water is H2O. These 

possibilities can be multiplied indefinitely and the table shows some of them: 

 

Combining weights to make 

water 

Atomic weights Molecular formula for 

water154 

1g hydrogen : 8g oxygen hydrogen = 1; oxygen = 1 HO8 

1g hydrogen : 8g oxygen hydrogen = 1; oxygen = 2 HO4 

1g hydrogen : 8g oxygen hydrogen = 1; oxygen = 4 HO2 

1g hydrogen : 8g oxygen hydrogen = 1; oxygen = 8 HO 

1g hydrogen : 8g oxygen hydrogen = 1; oxygen = 

16 

H2O 

 
153 This is the modern figure. Dalton (1808, 215) reports the ratio as “1:7, nearly.” 
154 More generally, each of these formulae belongs to an infinite class with the same ratio of 

atoms. If hydrogen has atomic weight one and oxygen has atomic weight 8, then the compound 

molecule could be HO, H2O2, H3O3, H4O4, etc. 



 300 

1g hydrogen : 8g oxygen hydrogen = 1; oxygen = 

32 

H4O 

1g hydrogen : 8g oxygen hydrogen = 1; oxygen = 

64 

H8O 

Table 1. Underdetermination of Molecular Formulae by Combining Weights 

 

The molecular formula for water is left underdetermined by the observed combining weights. 

Rather these weights merely give us an infinite set of possible pairings of component atomic 

weights and molecular formulae. If we knew one member of the pair, we would know the other. 

If we knew the atomic weights, then we would know the molecular formulae; if we knew the 

molecular formula, we would know the atomic weights. There is a tight circularity in these 

pairings. To know one, we need to know the other. But we cannot know the other unless we 

already know the first. Because of this circularity, the molecular formula for water and the 

atomic weights of its constituent atoms remain underdetermined. 

4. A Failed Hypothesis of Simplicity 

 This circularity can be broken by an aptly chosen hypothesis. We shall soon investigate 

cases of hypotheses that were introduced speculatively and eventually found solid inductive 

support. They are the success stories. Hypotheses do not always fare well. A clear instance is the 

hypothesis Dalton himself introduced to solve the problem of determining “the number of simple 

elementary particles which constitute one compound particle” (as Dalton put it, 1808, p.213) or 

the correct molecular formulae (to use the more modern expression). He defined compounds as 

binary, ternary, etc. by equations (Dalton, 1808, p. 213): 

1 atom of A + 1 atom of B = 1 atom of C, binary. 

1 atom of A + 2 atoms of B = 1 atom of D, ternary. 

2 atoms of A + 1 atom of B = 1 atom of E, ternary. 

1 atom of A + 3 atoms of B = 1 atom of F, quaternary. 

3 atoms of A + 1 atom of B = 1 atom of G, quaternary. 

&c., &c. 
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With these terms in place, Dalton now made the elaborate, multipart hypothesis that would 

enable him to determine molecular formulae independently of the relative atomic weights. He 

wrote (p. 214, his emphasis) 

The following general rules may be adopted as guides in all our 

investigations respecting chemical synthesis. 

1st. When only one combination of two bodies can be obtained, it must 

be presumed to be a binary one, unless some cause appear to the contrary. 

2nd. When two combinations are observed, they must be presumed to 

be a binary and a ternary. 

3rd. When three combinations are obtained, we may expect one to be a 

binary, and the other two ternary. 

4th. When four combinations are observed, we should expect one 

binary, two ternary, and one quaternary, &c. 

5th. A binary compound should always be specifically heavier than the 

mere mixture of its two ingredients 

6th. A ternary compound should be specifically heavier than the 

mixture of a binary and a simple, which would, if combined, constitute it; 

&c. 

 7th. The above rules and observations equally apply, when two 

bodies, such as C and D, D and E, &c., are combined 

In briefest terms, this compound hypothesis amounted to the assertion that one should choose the 

simplest molecular formula or formulae available. These rules were not entirely arbitrary. They 

fitted comfortably with the mechanical picture Dalton had developed of how compounds form. 

(It would take us too far afield to explain how.)  

 For our purposes, it was an hypothesis nonetheless and introduced provisionally. To 

remain in chemistry, it must eventually accrue inductive support. This is a story of failure not 

success. It did not find this support. The hypothesis led Dalton to incorrect molecular formulae, 

such as that water is HO. Thus, it proved to be incompatible with the other hypotheses 

introduced to determine the molecular formulae. These other hypotheses mutually supported one 

another and survived into standard chemistry. Dalton’s hypothesis did not find support and was 

discarded. 
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5. Breaking the Circularity 

 Dalton was trapped in a circularity. To know the correct molecular formulae, he needed 

to know the correct, relative atomic weights. Yet to know the correct, relative atomic weights, he 

needed to know the correct molecular formula. This circularity presented a serious challenge to 

chemists in the first half of the nineteenth century. It was broken and decisively so by the efforts 

of some of the greatest chemists of the era. They found other means for ascertaining molecular 

formulae or atomic weights. No one of them was decisive, but their accumulated import was. 

 Here are three of the most important.155 

5.1 Avogadro’s Hypothesis 

 When compounds form from elements, their weights combine in fixed ratios. One gram 

of hydrogen combines with exactly eight grams of oxygen to produce water. This fact is 

explained elegantly in Dalton’s atomic theory by his supposition that compounds form when 

elemental atoms combine in simple, whole number ratios. 

 Gay-Lussac had remarked in a memoir read in 1808 on a second fixed ratio that proved to 

be just as important. When gaseous elements combine, they also do so in fixed volume ratios.156 

Two volumes of hydrogen (under the same conditions of temperature and pressure) always 

combine with just one volume of oxygen to make water. An appealing explanation of this fixity 

of volume ratios is that each of the volumes contains the same number of atoms. We could then 

read directly from the two to one ratio of volumes that water forms when two atoms of hydrogen 

combine with one atom of oxygen to make water. The circularity is broken. Water is H2O and 

not HO. 

 
155 These are selected since they play major roles in standard accounts of the determination of 

atomic weights written around the end of the nineteenth century: Meyer (1888, Part I; 1892), 

Pattison Muir (1890), Wurtz (1881). 
156 For a convenient compendium of Gay-Lussac’s, Dalton’s and Avogadro’s writings on the 

topic, see Dalton, et al. (1893). 
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 There is an initial plausibility to the idea. While atoms of different elements may have 

different weights, we would merely be supposing that each atom occupies the same space.157 It is 

natural to extend the hypothesis to molecules compounded of atoms: a fixed volume of gas or 

vapor holds the same number of free atoms (if atomic) or molecules (if a molecular compound). 

However, the hypothesis then runs immediately into serious difficulties. Using modern notation 

not then in use, we represent the formation of water as 

2H + O à H2O 

2 vol. hydrogen + 1 vol. oxygen à 1 vol. water vapor 

This contradicts laboratory observations. Two volumes of hydrogen combine with one of oxygen 

to make two volumes of water vapor. 

 The solution to the puzzle was given by Avogadro (1811).158 One had to give up the 

assumption that hydrogen gas and oxygen gas consist simply of free atoms of hydrogen and 

oxygen. Rather both gases consist of molecules that, in this case, contain two atoms of hydrogen 

and two atoms of oxygen.159 Using modern notation, the formation of water is represented by: 

2H2 + O2 à 2H2O 

2 vol. hydrogen + 1 vol. oxygen à 2 vol. water vapor 

What resulted was a powerful new principle for the determination of molecular formulae. It is 

given a complete and canonical formulation by Cannizzaro (1858, p.1): 

 
157 At this time, prior to the kinetic theory of gases, the discussion proceeded with Dalton’s 

model of gases as quiescent piles of atoms. Each atom was surrounded by a halo of caloric or 

heat. Heating the gas increased the size of the halo and that explained why heating a gas leads it 

to expand. 
158 Translated as “Essay on a Manner of Determining the Relative Masses of the Elementary 

Molecules of Bodies, and the Proportions in Which They Enter into These Compounds” in 

Dalton et al. (1893). An editor “J. W.” remarks in the preface “The English version of the French 

original will probably be found more faithful than elegant, especially so in the case of 

Avogadro’s paper, where the French is always clumsy and occasionally obscure.” 
159 Avogadro’s use of the term “molecule” in 1811 did not match modern usage. He used the 

term for what we would now label as either an atom or a molecule. What we now distinguish as 

an atom was labeled by him “elementary molecule” (molecule élémentaire). 
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I believe that the progress of science made in these last years has confirmed the 

hypothesis of Avogadro, of Ampere, and of Dumas on the similar constitution 

of substances in the gaseous state; that is, that equal volumes of these 

substances, whether simple or compound, contain an equal number of 

molecules: not however an equal number of atoms, since the molecules of the 

different substances, or those of the same substance in its different states, may 

contain a different number of atoms, whether of the same or of diverse nature.  

Powerful as this hypothesis would prove to be, its early history was troubled. It did not gain 

ready acceptance for decades. Dalton himself had come out quite early against the hypothesis. 

An appendix to his 1810 Part II of the New System… contained a survey of some experiments on 

the combining volumes of gases. He found the results to contradict Gay-Lussac’s claim that gas 

volumes combine chemically in simple, whole number ratios. He concluded (Dalton, 1810, p. 

559) 

The truth is, I believe, that gases do not unite in equal or exact measures in 

any one instance; when they appear to do so, it is owing to the inaccuracy 

of our experiments…. 

If Gay-Lussac’s claim fails, then so must the stronger hypothesis of Avogadro. 

5.2 Dulong and Petit’s Law of Specific Heats 

 Avogadro’s hypothesis provided independent access to atomic and molecular weights of 

gaseous substances. It also indirectly opened access to the atomic weights of non-gaseous 

element, as long as they enter into compounds with elements that elsewhere take the gaseous 

state. However the scope of this indirect access is limited. 

 Dulong and Petit (1819) reported a quite different method of determining the atomic 

weights of solid elements. In his atomic theory, Dalton has represented solid elements as 

consisting of quiescent atoms surrounded by halos of caloric (heat). Dulong and Petit report that 

Dalton supposed that the quantity of heat associated with each atom was the same, no matter the 

element. It would then follow that the atomic heat capacity—the amount of heat needed to raise 

each atom by one degree of temperature—would be the same for all elements. However, Dulong 

and Petit continue to note that the results Dalton derived from this hypothesis were “so 

inconsistent with experiment that it is impossible for us not to reject the principle upon which 

such determinations are founded.” They attributed the difficulty to the inaccuracy in data then 
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available to Dalton. They proceed to show that more careful measurements lead to vindication of 

the law. It is asserted as 

“The atoms of all simple bodies have exactly the same capacity for heat.” 

In other words, the atomic heat capacity is the same for all elements. 

 The expression of the law in measureable quantities was not so simple. We cannot 

measure the atomic heat capacity directly. What we can measure is the specific heat. It is the heat 

needed to raise a unit weight (one gram) of a body by one degree of temperature. It must be 

multiplied by the true atomic weight, expressed as grams per atom, to recover the atomic heat 

capacity.  

(specific heat) x (true atomic weight) = (atomic heat capacity) 

However, we do not know the atomic weights in grams per atom. All we know is the relative 

atomic weights, taking some atom as an arbitrary unit. That is, we have: 

(relative atomic weight) = (unknown conversion factor) x (true atomic weight) 

So the best quantitative expression for the law is that 

(specific heat) x (relative atomic weight) = constant 

where the constant must come out the same for all elements. Using the best values they could 

find for both specific heats and relative atomic weights, Dulong and Petit proceeded to show that 

this relation returns the same constant for a list of elements. Table 2 shows the data they report. 
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 Specific heats Relative weights of 
the atoms160 

Products of the weight of each atom 
by the corresponding capacity 

Bismuth 0.0288 13.30 0.3830 
Lead 0.0293 12.95 0.3794 
Gold 0.0298 12.43 0.3704 
Platinum 0.0314 11.16 0.3740 
Tin 0.0514 7.35 0.3779 
Silver 0.0557 6.75 0.3759 
Zinc 0.0927 4.03 0.3736 
Tellurium 0.0912 4.03 0.3675 
Copper 0.0949 3.957 0.3755 
Nickel 0.1035 3.69 0.3819 
Iron 0.1100 3.392 0.3731 
Cobalt 0.1498 2.46 0.3685 
Sulfur 0.1880 2.011 0.3780 

Table 2. Dulong and Petit’s Data 

 

The near constancy of the product in the final column indicates that the relative atomic weights 

are correct, at least relative to the elements in the table. 

 This constant is the atomic heat capacity for all atoms, but expressed in some arbitrary 

system of units dependent upon the unknown conversion factor mentioned above. 

5.3 Mitscherlich’s Law of Isomorphism 

 These two methods seem to have been the most important in breaking the circularity of 

atomic weights and molecular formulae. Other methods were also brought to bear. Mitscherlich’s 

1821 “law of isomorphism” is routinely mentioned in contemporary accounts (Meyer, 1888, Part 

I, Section IV; Wurtz, 1881, pp. 55-60; Pattison Muir, 1890, p. 345-47) In Mittscherlich’s 

formulation, it asserts:161 

Equal numbers of atoms similarly combined exhibit the same crystalline form; 

identity of crystalline form is independent of the chemical nature of the atoms, 

and is conditioned only by the number and configuration of the atoms. 

The law connects crystalline form with molecular formula, so that a similarity of crystalline form 

suggests a similarity of molecular formula. A celebrated case—mentioned in both Pattison Muir 

 
160 The weight are relative to the atomic weight of oxygen. Multiplying them by 16 gives roughly 

the modern values, excepting for tellurium and cobalt. 
161 As quoted in Pattison Muir, 1890, p. 345. 
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(1890, p. 346) and Ramsay (1900, pp. 17-18)—is gallium alum. So-called “alums” are sulfates of 

two metals. Potassium alum or potash alum, otherwise common alum, is a sulfate of potassium 

and aluminum. Gallium also forms an alum-like compound of sulfates of gallium and potassium 

and has a similar crystalline form as common alum. By invoking Mitscherlich’s law of 

isomorphism, one could assume that the gallium had merely replaced the potassium in the 

crystalline structure and one can then determine gallium’s atomic weight. 

 For its virtues, accounts of Mitscherlich’s law are notable for their qualifications and 

warnings about the law’s limited scope and fragility. Cannizzaro (1858) does not use it, as far as 

I can see. 

6. The Vaulted Inductive Structure of Atomic Weights and Molecular 

Formulae 

 The methods just described are powerful and enable a complete determination of the 

atomic weights of the elements and thus the correct molecular formulae. Nevertheless, a half 

century after Dalton proposed his atomic theory, there was still a chaos of competing proposals. 

The Karlsruhe Congress of 1860 gathered about 140 of the leading chemists of Europe with the 

purpose of resolving the problem. The events of the congress have become a matter of legend in 

the history of chemistry.162 Two years earlier, Stanislao Cannizzaro had already published a 

solution to the problem. Relying heavily on Avogadro’s hypothesis, he had successfully pieced 

together all the parts of the puzzle and found a consistent set of atomic weights and molecular 

formulae. He had reported his success to Il Nuovo Cimento as Cannizzaro (1858) in which he 

sketched how he led his students through his solution. 

 That set Cannizzaro outside the mainstream of work in chemistry, which remained 

skeptical of Avogadro’s hypothesis.163 He needed to mount a sustained defense of Avogadro’s 

 
162 See Hartley (1966) and Ihde (1960) for accounts. 
163 Thorpe (1910, pp. 64-65) recalls the situation: 

By the middle of the nineteenth century the hypothesis of Avogadro was 

practically forgotten and the law of volumes ignored. The atomic weights of the 

elements and the system of notation universally employed in England and 

Germany were based wholly upon equivalents. 
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hypothesis even in 1860 at the Karlruhe congress. In spite of his efforts and the earlier 

publication of his solution, no agreement was reached at the Congress. Rather, the decisive 

moment came at its close when Angelo Pavesi distributed copies of Cannizzaro’s paper. When 

key participants, including Lothar Meyer and Dimitri Mendeleev, later studied Cannizzaro’s 

paper, they were convinced and Cannizzaro’s system was established as the standard.  

 This, at least, is the standard history. Chalmers (2009, Ch. 10) has argued that 

Cannizzaro’s achievement is overrated. What is not acknowledged is Cannizzaro’s debt to the 

successes in prior work by organic chemists, who were able to arrive at structural formulae for 

organic substances. Cannizzaro’s methods, however, could only yield atomic weights and 

molecular formulae, but not the structural formulae. 

 Our concern here, however, is narrower. It is the inductive structure of the case 

Cannizzaro lays out for his values of atomic weights and molecular formulae and its later 

development. In short, that case exemplifies the massively complex interconnections suggested 

by the analogy with a vaulted ceiling. In the sections that follow we shall see just a small portion 

of these interconnections. 

• Section 7 will review relations of mutual support at the level of finest detail. That is, 

interrelations among the atomic weights and molecular formulae of specific substances. 

• Section 8 will review relations of mutual support among the methods used.  Specifically, 

there are relations of mutual support between Avogadro’s hypothesis and the Law of 

Dulong and Petit. 

• Section 9 will review relations of support at the level of theory. That is, Avogadro’s 

hypothesis in chemistry lends support to an analog hypothesis in statistical physics, and 

conversely. 

7. Mutual Support of Atomic Weights and Molecular Formulae 

 Cannizzaro’s (1858) analysis depends heavily on Avogardro’s hypothesis and the 

associated notion that elemental gases have molecular compositions, such as H2, O2, etc. The 

hypothesis requires that equal volumes of gases contain the same number of molecules. As a 

result, the mass density of a gas is directly proportional to the molecular weight of its constituent 

molecules. This observation provided the starting point for Cannizzaro’s analysis. He prepared a 

large table of the densities of many gases of both elements and compounds. Table 3 below lists 
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just some of the densities from his large table (p.9). The units for mass density are selected so 

that molecular hydrogen gas has density 2. 

 The third column of the table includes further information of great importance. It divides 

the gas densities of compounds in proportion to the mass ratios of the constituent elements. For 

example, hydrochloric acid—hydrogen chloride HCl—forms from chlorine and hydrogen in the 

mass ratio of 35.5 to 1. Thus the gas density of 36.5 for hydrochloric acid is broken up as 

deriving from a density of 35.5 of chlorine and 1 of hydrogen. 
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Substance Density Component densities 
hydrogen (H2) 2 2 hydrogen 
oxygen (O2) 32 32 oxygen 
chlorine (Cl2) 71 71 chlorine 
bromine (Br2) 160 160 bromine 
iodine (I2) 254 254 iodine 
mercury (Hg) 200 200 mercury 
hydrochloric acid (HCl) 36.6 35.5 chlorine + 1 hydrogen 
hydrobromic acid (HBr) 81 80 bromine + 1 hydrogen 
hydroiodic acid (HI) 128 127 iodine + 1 hydrogen 
water (H2O) 18 16 oxygen + 2 hydrogen 
calomel (mercurous chloride 
HgCl)164 

235.5 35.5 chlorine + 200 mercury 

corrosive sublimate (mercuric 
chloride HgCl2) 

271 70 chlorine + 200 mercury 

Table 3. Some of Cannizzaro’s Gas Density Data 

 

The table (unlike Cannizzaro’s) includes the resulting molecular formulae for ease of reference. 

It is quite straightforward to arrive at them. For a brief inspection of the table shows that the 

atomic weights of the elements present are quite overdetermined as the values of Table 4. 

 

Element Atomic weight 

hydrogen 1 

oxygen 8 

chlorine 35.5 

bromine 80 

iodine 127 

mercury 200 

Table 4. Atomic Weights Inferred 

 

 
164 The modern formula is Hg2Cl2. However, above 400C, calomel yields a vapor with the 

density Cannizzaro indicates that is now understood to result from a mixture of Hg and HgCl2. 

See Selwood and Preckel (1940). 
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To recapitulate Cannizzaro’s analysis, recall that Avogadro’s hypothesis tells us that the gas 

density is a surrogate for the molecular weight. Cannizzaro had conveniently chosen the unit for 

the gas density so that gas density numerically equals the molecular weight. All that remains now 

is to find the combination of molecular formulae and atomic weights that returns the gas 

densities of Table 3. 

 Cannizzaro arrived at these combinations by noting how the component density for each 

element always appears as a multiple of some smallest unit. This smallest unit is the atomic 

weight. The simplest case is hydrogen, whose component densities are all multiples of one. So 

we infer that the atomic weight of hydrogen is one. We now read directly from the densities of 

Table 3 that the molecular formulae for hydrochloric, hydrobromic and hydriodic acids each 

have just one hydrogen atom. So their molecular formulae are HClx, HBry and HIz, where x, y 

and z are unknown whole numbers. We also see that gaseous hydrogen is composed of molecules 

of two atoms, H2. Water also has two atoms of hydrogen, so it is H2Ow for w some unknown 

whole number. 

 Proceeding in this way for the remaining elements completes the entries in Table 4 for 

the atomic weights and justifies the molecular formulae added to Table 3. Chlorine’s component 

densities are multiples of 35.5, so that is its atomic weight. Chlorine gas is diatomic, Cl2 and 

hydrochloric acid is HCl. Oxygen’s component densities are multiples of 16, so that is its atomic 

weight; etc. 

 For our purposes, the important point is that the results are overdetermined. That means 

that only a portion of the data is needed to arrive at the full results. For example, the results for 

the remaining elements would remain the same if we dropped iodine and its compounds from the 

analysis. It would then follow that, if we re-introduce the data for iodine, the resulting 

assessment must agree with the earlier results. The atomic weight of hydrogen in iodine 

compounds must be the same as in water, hydrochloric and hydrobromic acids. 

 This overdetermination leads to multiple relations of mutual support. It means that we 

can take some subset of the results and find that it supports other parts of the results; and there is 

support in the converse direction.165 For example, take the propositions that hydrogen gas and the 

 
165 An analogy to the overdetermination of two, agreeing eyewitness accounts of some event may 

make this clearer. Each account provides support for the veracity of the other. 
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halogen gases are diatomic: H2, Cl2, Br2 and I2. Using Avogadro’s hypothesis and the gas 

density data, we now infer the atomic weights of these elements; and from them that the hydro-

halogenic acids have monovalent formulae, HCl, HBr and HI. Or we can reverse the inference. 

From the monovalent formulae for the acids, we arrive at the diatomic molecular formulae of 

hydrogen and the halogens. These inferences can be represented as: 

 

Hydrogen and the halogens 
are diatomic. 

 

  Hydro-halogenic acids are 
monovalent. 

 

gas density data   gas density data  

______________________ (Avogadro’s 
hypothesis) 

 _______________________ (Avogadro’s 
hypothesis) 

Hydro-halogenic acids are 
monovalent. 

  Hydrogen and the halogens 
are diatomic. 

 

 

As before, we can depict these relations of support as an arch shown in Figure 3: 

 

 
Figure 3. Mutual Support of Molecular Formulae 

 

The examples of mutual support are readily multiplied. For example, the diatomic composition 

of hydrogen and oxygen gas supports the molecular formula H2O for water; and that formula 

supports the diatomic composition of hydrogen and oxygen. That is, we have the inferences: 

Hydro-halogenic
acids are

monovalent.

Hydrogen and
 the halogens
are diatomic.

gas density data
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ts
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Hydrogen and oxygen are 
diatomic. 

 

  Water is H2O.  

gas density data   gas density data  

______________________ (Avogadro’s 
hypothesis) 

 _______________________ (Avogadro’s 
hypothesis) 

Water is H2O.   Hydrogen and oxygen are 
diatomic. 

 

 

These further relations of mutual support, and many more of greater complexity, combine to 

form a vaulted structure of many entangled relations of support. 

  These two sets of inferences illustrate how hypotheses function at this fine-grained level. 

Avogadro assumed that hydrogen gas is diatomic as a provisional hypothesis while he pursued 

his main hypothesis concerning gas density. It followed that water is H2O. However, the 

diatomic hypotheses need further support from elsewhere before their provisional status can be 

discharged. That is now provided by the other inferences concerning the hydro-halogenic acids. 

 This support for the diatomic hypothesis is one already included in Avoadgro’s original 

essay. There Avogadro166 noted the essential fact that hydrochloric acid gas (then still called 

“muriatic acid gas”) is formed by combining unit volumes of hydrogen and chlorine to form two 

volumes of hydrochloric acid gas. This is incompatible with a monatomic constitution for 

hydrogen and chlorine, for then we have 

H + Cl à HCl 

1 vol. hydrogen + 1 vol. chlorine à 1 vol. hydrochloric acid gas 

If both hydrogen and chlorine are diatomic, however, compatibility with the observed volumes is 

restored: 

H2 + Cl2 à 2HCl 

1 vol. hydrogen + 1 vol. chlorine à 2 vol. hydrochloric acid gas 

 Hydrogen enters into many more compounds. As the molecular formulae of these further 

compounds are found, the original hypothesis of the diatomic character of hydrogen receives 

correspondingly more support. What was initially a provisional hypothesis becomes a fixed part 

 
166 Avogadro, 1911; as translated in Dalton et al., 1893, p. 45. 
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of a much larger network of relations of mutual support. Eventually, the diatomic hypothesis 

cannot be discarded without also having to discard the full set of atomic weights and molecular 

formulae developed in modern chemistry. 

 The density of the relations of mutual support is greater than can be seen through the 

above analysis. Table 3 reports only some of Cannizzaro’s density data. His full set is larger and, 

as a result, the number of compounds is still larger,167 which in turn provides many more 

relations of mutual support. 

8. Mutual support of Avogadro’s Hypothesis and the Law of Dulong and 

Petit. 

 The inferences of the last section depend on Avogadro’s hypothesis. It is the material fact 

that warrants them. What grounds do we have for Avogadro’s hypothesis? When it was 

introduced, its support in background theory was meager. Avogadro’s original suggestion was 

dependent on rather fragile suppositions about the nature of Daltonian atoms: the hypothesis 

follows from the assumption that the volume of caloric associated with each atom is independent 

of the type of element.  

 Cannizzaro had urged much more convincingly that the very success of the inferences of 

the last section is already strong support for the hypotheses. He wrote (p.13) 

Now, since all chemical reactions take place between equal volumes, or integral 

multiples of them, it is possible to express all chemical reactions by means of 

the same numerical values and integral coefficients. The law enunciated in the 

form just indicated is a direct deduction from the facts: but who is not led to 

assume from this same law that the weights of equal volumes represent the 

molecular weights, although other proofs are wanting? I thus prefer to substitute 

in the expression of the law the word molecule instead of volume. 

 
167 Crudely, if one has n elements, the number of binary pairings of elements increases as n2. 

While not all pairing will produce a new compound, the possibilities are still growing faster than 

n. 
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However other proofs were not wanting. They could be found both within other parts of 

Cannizzaro’s sketch (as we shall see in this section) and also in relations to physical theories of 

gases (as we shall see in the next section). 

 Cannizzaro’s earlier analysis had suggested an atomic weight of 200 for mercury. 

However, he reported (p. 22), that an incorrect atomic weight of 100 had been supposed 

elsewhere. To show the error, he now turned to a second method of determining atomic weight, 

by means of their elemental specific heats. The method is that of Dulong and Petit, although they 

are not mentioned by name. To begin, he showed that the atomic weights found earlier for 

mercury, bromine and iodine yield the constant atomic heat capacity required by Dulong and 

Petit. His data and computation are shown in Table 5: 

 

Substance Atomic weight Specific heat Atomic heat capacity168 

solid bromine 80 0.08432 6.74560 

iodine 127 0.05412 6.87324 

solid mercury 200 0.03241 6.48200 

Table 5. Cannizzaro’s Specific Heat Calculations for Elements 

 

 Cannizzaro (1858, pp. 22-24) then extended the method to compounds. He supposed that 

the heat capacity of each atom remained the same, even when the atom is in a compound. That 

meant that the atomic heat capacity of each atom in some molecule was to be calculated by the 

new formula 

specific 
heat of 

compound 

 
x 

compound 
molecular 

weight 

 

/ 

number of 
atoms per 
molecule 

 
= 

 
constant 

 

where the constant was once again the atomic heat capacity in the same system of units as used 

in Table 5. 

 
168 This atomic heat capacity of roughly 6.8 differs from that of Dulong and Petit of roughly 0.38 

since Cannizzaro’s atomic weights are taken in units in which the atomic weight of hydrogen is 

one, whereas the atomic weights of Dulong and Petit’s Table 2 takes the atomic weight of 

oxygen to be one. They both measure specific heat with the same units, however. 
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 Using that assumption, he sought the atomic weight of mercury from the measured heat 

capacities of four halides of mercury: HgCl, HgCl2, HgI, HgI2. Assuming that these were the 

correct molecular formulae and using the atomic weights already determined, Cannizzaro arrived 

at the results of Table 6: 

 

Formula Molecular 
weight 

Specific heat Number of 
atoms per 
molecules 

Atomic heat 
capacity 

HgCl 235.5 0.05205 2 6.128872 

HgI 327 0.03949 2 6.45661 

HgCl2 271 0.06889 3 6.22306 

HgI2 454 0.04197 3 6.35146 

Table 6.  Cannizzaro’s Specific Heat Computation for some Mercury Halides 

 

 Once again, the computed atomic heat capacities of the elements in the compounds come 

out to be almost the same constant. They are also not too distant from the atomic heat capacity 

for the elements computed in Table 5. This affirms the correctness of the formula and atomic 

weights of Tables 5 and 6. 

 For our purposes, the important point is that the two principal methods employed—

Avogadro’s hypothesis and the constancy of atomic heat capacity—agree in the atomic weights 

and molecular formulae they deliver for the subset of the substances to which they both apply.  

 

 Atomic and molecular 

weights and molecular 

formulae for mercury, 

chlorine and mercury 

chlorides determined by 

Avogadro’s hypothesis. 

 

 

= 

Atomic and molecular 

weights and molecular 

formulae for mercury, 

chlorine and mercury 

chlorides determined by 

atomic specific heats. 

 

This agreement is another manifestation of the overdetermination of Cannizzaro’s results. 

However, as before, it can be re-expressed in terms of relations of mutual support. The 

correctness of the results delivered by atomic heat capacities for mercury chlorides is supported 
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by the results of applying Avogadro’s hypotheses to the same substances. And the converse 

relation of support holds as well. These mutual relations of support can be represented in the arch 

analogy shown in Figure 4. 

 

 
Figure 4. Mutual relations of support among Avogadro’s hypothesis and Dulong and Petit’s law 

9. Mutual Support Avogadro’s Hypothesis in Chemistry and the Kinetic 

Theory of Gases 

 At the same time as Cannizzaro was using Avogadro’s hypothesis to determine the 

correct atomic weights, a new science was emerging that would provide support for Avogadro’s 

hypothesis. This was the kinetic theory of gases. It was advancing rapidly in the mid 1850s 

through the work of Krönig (1856), Clausius (1857) and Maxwell (1860). The theory sought to 

recover the mechanical properties of gases from the assumption that a gas consists of many 

molecules in rapid motion. In that theory, the pressure exerted by a gas on the walls of a 

containing vessel results from many collisions of the gas molecules with the wall. The heat 

energy of the gas corresponds to the kinetic energy of its molecules and its temperature is 

proportional to the kinetic energy of each of its molecules. 

 An early and important achievement of kinetic theory was the recovery of the ideal gas 

law. According to it the pressure P exerted by a volume V of gas at temperature T is given by 

PV = nmRT = nkT 

Avogadro‛s
hypothesis

Dulong and Petit
law of

specific heats

gas density data
specific heats of solids

su
pp

or
ts

su
pp

or
ts
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The gas consist of nm moles, that is, n = nm N molecules, where N is Avogadro’s number,  R is 

the ideal gas constant, k is Boltzmann’s constant and R=Nk. 

 This law already contains Avogadro’s hypothesis. To see this, we merely rewrite the law 

as 

n = PV/kT 

It follows immediately that, if two samples of a gas have the same pressure P, volume V and 

temperature T, then they contain the same number of molecules n. 

 It is possible, following Maxwell’s later (1871, pp. 295-26)169 development to isolate the 

assumptions used to arrive at Avogadro’s hypothesis. First is a purely mechanical result about 

the pressure P exerted by n molecules of weight m: 

(2/3) P = (1/2) nmvrms2 

where vrms is the square root of the mean of the squared molecular velocities (“rms” = “root-

mean-square”). Second is a result Maxwell sought to prove in his (1860) “Illustrations…”: if two 

gases are at thermal equilibrium, that is, at the same temperature, then the mean kinetic energy of 

their molecules is the same. That is, they agree in the quantity (1/2) mvrms2. 

 These two results are now applied to two volumes of gases of the same pressure, volume 

and temperature. Respectively, they consist of n1 and n2 molecules, of molecular weight m1 and 

m2 and have rms velocities vrms1 and vrms2. The condition of sameness of pressure entails 

 (pressure)                          (1/2) n1m1vrms12  =  (1/2) n2m2vrms22                                (1) 

The condition of thermal equilibrium entails that their kinetic energies are equal: 

 (thermal equilibrium)             (1/2) m1vrms12  =  (1/2) m2vrms22                                   (2) 

It follows immediately from (1) and (2) that 

 (Avogadro’s hypothesis)                           n1 = n2                                                          (3) 

which asserts that the two volumes of gases hold the same number of molecules. I have labeled 

the three equations so that we can summarize this last inference as 

 
169 Curiously Maxwell misattributes the hypothesis as the “Law of Gay-Lussac.” 
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(pressure) 

(thermal equilibrium) 

__________________ 

(Avogadro’s hypothesis) 

Needless to say, chemists such as Cannizzaro were quite delighted with this affirmation of a core 

assumption of their analysis by the physicists, especially given the doubts still prevailing over 

Avogadro’s hypothesis. Cannizzaro (1858, p. 4) mentions Clausius’ confirmation. He was, 

however, far more buoyant over the significance of this independent support for Avogadro’s 

hypothesis when he gave the Faraday Lecture at the Chemical Society on May 30, 1872. 

(Cannizzaro, 1872, pp. 947-48) 

…at the same time physicists, by considering the constitution of gases 

under a new point of view, have been brought, independently of 

chemical considerations, to the supposition of equal numbers of 

molecules in equal volumes of perfect gases, to which Avogadro and 

Ampère had previously been led by different modes of interpreting 

physical phenomena. 

 Who can fail to see in this long and unconscious march of the 

science, around and towards a fixed point, the decisive proof of the 

theory of Avogadro and Ampère? A theory to which we have been led 

by setting out from different and even opposite points—a theory which 

has enabled us to forsee several facts which experience has confirmed, 

must be something more than a mere scientific fiction. It must indeed be 

either the actual truth, or the image of that truth, seen through media 

interposed between our intelligence and the reality. 

Lothar Meyer was one of the chemists who turned to Cannizzaro’s views after the 1860 

congress. He too reported with enthusiasm that the physicists had found independent support for 

Avogadro’s hypothesis. In his more popular Outlines of Theoretical Chemistry (1892, pp. 32-33) 

he noted “This idea of Avogadro has received decisive confirmation as a result of the new 

development of the mechanical theory of heat.” After a qualitative review of how the 
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confirmation arises, he concluded: “This is one of the most powerful arguments in support of 

Avogadro’s hypothesis. Its truth is now no longer disputed.”170 

 The chemists were eager to show that Avodagro’s hypothesis gains support from the 

kinetic theory of gases. The physicists, however, were quite happy to display the relation of 

support proceeding in the other direction: that is, from the chemists’ establishment of Avogadro’s 

hypothesis by chemical means to key results in the kinetic theory. Since Avogadro’s hypothesis 

in physics had neither the central role nor the controversial history that it had in chemistry, the 

display of this reverse inference was less prominent in physics. However, it is present. 

 In its simplest form, it is as follows. The chemists were eager to report that (1) 

(“pressure”) and (2) (“thermal equilibrium”) entailed (3) (Avogadro’s hypothesis). However a 

quick inspection of the algebra relating (1), (2) and (3) shows that (2) could be inferred from (1) 

and (3). That is  

(pressure) 

(Avogadro’s hypothesis) 

__________________ 

(thermal equilibrium) 

 

This inversion of the chemists’ inference is actually the one first reported by Clausius in his 1857 

paper on the kinetic theory of gases. Clausius (1857, Section 11) first reported Krönig’s 

derivation of the pressure formula (1). He continued: 

If we apply this [(1) (pressure)] to simple gases, and assume that, when 

pressure and temperature are the same, equal volumes of contain the 

same number of atoms—a hypothesis which for other reasons is very 

probable,--it follows that, in reference to their translatory motion, the 

atoms of different gases must have the same vis viva [kinetic energy]. 

One might wonder why Clausius would want to proceed in this reverse direction. The reason is 

that the result (2) (“thermal equilibrium”) is not easy to attain by purely dynamical arguments 

 
170 Meyer’s more technical text (1888) gives more details of the reasoning sketched in equations 

(1)-(3) and concludes (p.23) “…Avogadro’s hypothesis attains the same degree of probability 

which the kinetic theory of gases has obtained.” 
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concerning the collisions of molecules. Maxwell’s (1860) paper offered a demonstration of it in 

conjunction with his derivation of the Maxwell velocity distribution for the gas molecules.  

 However even Maxwell was happy to claim independent support for the results of the 

kinetic theory of gases from the researches of the chemists. In his Encyclopedia Britannica  

article “Atom,” Maxwell (1875, pp. 455-56) reviewed briefly the inference to Avogadro’s 

hypothesis (3) from the assumptions (1) (pressure) and (2) (thermal equilibrium). He then noted 

that this same hypothesis171 has been recovered by the chemists in their investigations of 

chemical combinations. He continued (p. 456): 

 This kind of reasoning, when presented in a proper form and 

sustained by proper evidence, has a high degree of cogency. But it is 

purely chemical reasoning; it is not dynamical reasoning. It is founded 

on chemical experience, not on the laws of motion.  

 Our definition of a molecule is purely dynamical. A molecule is 

that minute portion of a substance which moves about as a whole, so that 

its parts, if it has any, do not part company during the motion of 

agitation of the gas. The result of the kinetic theory, therefore, is to give 

us information about the relative masses of molecules considered as 

moving bodies. The consistency of this information with the deductions 

of chemists from the phenomena of combination, greatly strengthens the 

evidence in favour of the actual existence and motion of gaseous 

molecules. 

These relations of mutual support are made possible by the logical interdependence of the 

relations (1), (2) and (3). Hence Andrew Meldrum, adopting a skeptical stance, could review the 

logic of the demonstration of Avogadro’s hypothesis in the kinetic theory and conclude (1904, p. 

24): 

This puts the proof of Avogadro’s hypothesis from the kinetic theory of 

gases in its true light. The hypothesis is but one out of two hypotheses 

with are contingent on one another. Either granted, the other can be 

proved. 

 
171 Once again misattributed to Gay-Lussac. 
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10. Hypothesis No More 

 The appeal of Avogadro’s hypothesis was that is provided an independent way to 

determine molecular weights and thereby defeat the circularity that had trapped Dalton. It was 

introduced provisionally in 1811 and faced what amounted to Dalton’s claim of incompatibility 

with experiment. It languished for decades until Cannizzaro found it to be just the vehicle he 

needed to determine the true molecular formulae and atomic weights. 

 At this point, Avogadro’s hypothesis was being used as just the sort of provisional 

warrant for inference described in Chapter 2. It was indulged because of its great utility. Starting 

with the ratio of the densities of two gases, the hypothesis warranted an inference to the ratios of 

their molecular weights. It is the analog of the stone supported by scaffolding, while the 

remaining stones of the arch are put in place. 

 The provisional status of the hypothesis had to be discharged, however, just as the 

scaffolding supporting the stones of an arch or vault has eventually to be removed. This burden 

was taken seriously. We have seen above how support for the hypothesis gradually accrued 

through the success of the overall project. Its results are overdetermined. That means that a part 

can become support for another part; and conversely. Just this happened with the agreement of 

the results derived through Avogadro’s hypothesis and through Dulong and Petit’s law of 

specific heats. That allowed each to support the other. For Cannizzaro, the derivation of 

Avogadro’s hypothesis from the kinetic theory of gases supplied what he called above the 

“decisive proof.” 

 As the supports mounted, Avogadro’s hypothesis lost its hypothetical character. It 

became a rule, a certainty of textbook chemistry. In his Theoretical Chemistry from the 

Standpoint of Avogadro’s Rule and Thermodynamics,172 Nernst (1904, pp. 39-40) reported that 

“…Avogadro (1811) advanced a hypothesis which, after much opposition, has come to be 

recognized as an important foundation of molecular physics, as well as of all chemical 

investigations.” Nernst proceeded to list four types of support. The hypothesis explains Gay-

Lussac’s result about combining volumes. It supplies molecular weights that agree with those 

 
172 The German word is “regel”: Theoretische Chemie vom Standpunkte der Avogadro’schen 

Regel und der Thermodynamik 
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derived from purely chemical investigations. It is derived independently from the kinetic theory 

of gases. It had been able to deal successfully with a challenge from abnormal vapor densities. 

 In this chapter, I have traced the development and use of Avogadro’s hypothesis as an 

illustration of how hypotheses are used in inductive inference in science. A second illustration 

could be provided by Dulong and Petit’s law of specific heats. In brief, it warrants an inference 

from observed properties (specific heats of solids) to relative atomic weights. The law had a 

provisional status originally. One serious problem was that the constancy of the atomic heat 

capacity of the law was found to hold only in certain temperature ranges, notably failing for low 

temperatures. However, it gained support through its successful application. It also gained 

support from the new statistical physics that developed out of the kinetic theory of gases. In 

brief, a simple model for a crystalline solid is a lattice of atoms held in place with spring like 

forces. Statistical physics entails a constant molar heat capacity for such a system.173 Perhaps the 

greatest triumph of the analysis came when Einstein (1907) explained the deviations from 

constancy of the molar heat capacity at low temperatures as deriving from the quantization of 

energy. 
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The Use of Hypotheses in Determining Distances 

in Our Planetary System 

1. Introduction 

 How distant from us are our nearest neighbors in space: the moon, the sun and the 

planets? 174 This basic problem of astronomy proved to be a most challenging one that exercised 

astronomers from antiquity to as late as the nineteenth century. It provides a revealing case study 

of how hypotheses are used to extend the otherwise limited inductive reach of evidence. 

 One might expect that these distances could be determined by simple measurement, much 

as a terrestrial surveyor can determine the location and height of an inaccessible mountain peak. 

However, distances even to our closest body, the moon, are so great that they present formidable 

challenges. Accurate triangulation of great distances requires extremely accurate angular 

measurements that were mostly beyond ancient astronomers, except perhaps for the closest body, 

the moon. Even then, the ancient astronomers needed to await the opportunities provided by 

solar and lunar eclipses to break otherwise fatal evidential circles. The difficulty of making 

precise enough measurements meant that these methods were still able only to estimate distances 

to the moon and, so some extent, the sun. These early efforts are described in Sections 2, 3 and 4 

below. 

 The introduction of telescopes to astronomy in the seventeenth century made possible 

more accurate angular measurements. However, measurements of distance by means of 

triangulation, or parallax, as it is called in the astronomical literature, were limited at best to our 

closest planets, Mars and Venus. Section 5 recounts the seventeenth century measurement of the 

parallax of Mars and Section 6 recounts the eighteenth-century observations of the transits of 

Venus across the face of the sun. 

 We find from all these efforts that triangulation by itself is unable to provide much. This 

remains true even with careful telescopic measurements and a willingness to sail to distant parts 

 
174 I thank Bernard Goldstein for helpful comments on an earlier draft. 
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of the globe to make them. The eighteenth-century measurements of the transits of Venus, by 

themselves, gave only angular displacements. Something more was needed if they were to 

deliver the sought distances to Venus and the sun. 

 That essential extra was provided by hypotheses about the configuration of these celestial 

bodies. These hypotheses could extend the inductive reach of the few measurements available, so 

that a determination of the distances to all the celestial bodies mentioned became possible. This 

approach had been used from the first moments of ancient Greek astronomy and remained the 

primary approach used to the end of the nineteenth century. The following sections review three 

different types of hypotheses used: Pythagorean and Platonic harmonies (Section 8); Ptolemy’s 

Planetary Hypotheses (Section 9); and Copernicus’ hypothesis of a heliocentric planetary system 

(Sections 10 and 11). 

 Examination of these three different hypothetical supplements gives us an opportunity to 

see how the hypotheses were used and should be used. Use of a hypothetical supplement takes 

on an evidential debt that must be discharged by finding independent evidence for the 

hypotheses. Only then have the results of the investigation been given proper inductive support. 

The need for discharging this debt is underscored by the fact that each hypothetical supplement 

reviewed leads to a different system of distances. Further evidence for the harmonic and 

Ptolemaic hypotheses was not secured and they were discarded. The Copernican hypothesis, 

however, accrued considerable support. The most important was Newton’s discovery of a 

mechanics that gave a dynamical foundation for the motions hypothesized in heliocentric 

astronomy. 

 What resulted was the edifice of classical mechanics. It combined astronomy, celestial 

and terrestrial mechanics in a single system, in which each part provided evidential support for 

the others. This crossing over of relations of inductive support is illustrated in the particular case 

of Kepler’s third law and the inverse square law of gravity. Each, it is shown in Section 12, 

provides inductive support for the other. 

 This reliance on hypotheses to enable the determination of distances within the planetary 

system persisted up to the nineteenth century, which is the latest extent of the history reviewed 

here. With the twentieth century, direct measurements of distances to celestial bodies became 

possible through laser and radar ranging. 
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2. An Evidential Circle: The Distances and Sizes of the Moon and Sun 

 How distant from us is the moon? To appreciate just how formidable a task it was for 

ancient astronomers to answer, consider the majestic splendor of a full moon rising over the 

eastern horizon at sunset. It is easy to imagine that the moon is quite small and rises from a 

nearby place just over the horizon. That misapprehension is soon dispelled.175 A house on a 

distant hill grows larger as we approach it. But the moon does not. No matter how far east we 

may venture, we would see a moon of the same size rising. Our eastward travels, from horizon to 

horizon, do not perceptibly diminish the distance to the moon. The moon, we then realize, is 

much more distant than we first thought. That means it must be very much larger than we first 

thought. How much larger is it? 

 That question leads to the first evidential circle. The disk of the full moon fills about 1/2 

degree in our visual field. If we knew the moon’s size, we could then calculate its distance by 

simple geometry. But if the moon were two, three or four times larger, then it must be two, three 

or four times more distant.  As Figure 1 shows, many pairs of distances and sizes yield that same 

angular size in our visual field of 1/2 degree. We cannot know the distance to the moon until we 

know its size. But we do not know its size until we know that distance. 

 

 
Figure 1. Many size-distance pairs for the moon yield 1/2 degree angular size 

 

 
175 This misapprehension is compounded by the “moon illusion,” which leads the moon to appear 

larger when near the horizon, although its measurable angular size is unchanged. 
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All these simple observations tell us is that the distance to the moon must be large, but otherwise 

leave it undetermined. 

 What of the relative distance of the sun and moon? What we observe is that the sun has 

about the same angular size as the moon of about 1/2 degree. This equality is most easily learned 

from eclipses of the sun. Then the moon aligns with the sun and almost perfectly obstructs it. 

Sometimes the moon blocks out the sun completely. Sometimes there is an “annular” eclipse in 

which the moon blocks out the sun, excepting a thin annular ring of the sun’s surface encircling 

the moon. 

 That the moon eclipses the sun shows that the moon must be closer to us than the sun. 

Are they roughly the same distance from us? If they are the same size, then they must be roughly 

the same distance from us. But if the sun is two, three or four times larger than the moon, then by 

simple geometry the sun must be two, three or four times more distant from us than the moon. As 

Figure 2, shows, we cannot know which until we know the true size ratio of the sun to the moon. 

But we cannot know that ratio until we know the ratio of the distances. 

 

 
Figure 2. Many possible ratios of distances to the sun and moon. 

 

We are trapped once again in an evidential circle. 

3. Aristarchus: Breaking the Evidential Circles 

 Both circles can be broken if we expand the evidence considered and we are ingenious 

enough to do it in just the right way. This was the principal content of a remarkable document 

authored by Aristarchus of Samos, who lived roughly from 310 to 230 BCE. The work is 

presented in Greek and English translation in Heath (1913) under the title “Aristarchus on the 

Sizes and Distances of the Sun and Moon.” Aristarchus breaks the evidential circle with two 

expansions of the evidence brought to bear. First, he introduces the angular positions of the sun 

and moon when the moon is precisely half illuminated, that is, at “dichotomy.” Second, he 
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introduces the behavior of the moon during an eclipse of the moon, when it passes through the 

earth’s shadow. 

 When the moon is exactly half full, the sun, earth and moon form a right-angled triangle, 

with the right angle at the moon. The angle at the earth is recoverable as the observable angular 

separation of the sun and moon. The shape of the triangle, shown in figure 3, is thereby fixed and 

the ratio of the earth-sun to earth-moon distance can be read off from it. 

 

 
Figure 3. The earth, moon and sun at lunar dichotomy (not drawn to scale). 

 

All that is needed is the angular separation of the sun and moon at dichotomy, as seen from the 

earth. That is provided by the fourth of six hypotheses announced by Aristarchus (as given in 

Heath, 1913, p.353): 

That, when the moon appears to us halved, its distance from the sun is then less 

than a quadrant by one-thirtieth of a quadrant. 

Since a quadrant is 90 degrees, Aristarchus reports here that the angular separation of sun and 

moon is 87 degrees. After some analysis, Aristarchus arrives at a ratio for the earth-sun to earth-

moon distance that lies between 18:1 and 20:1. 176  

 
176 Aristarchus did not have tables of tangents to consult, which now makes our computation 

trivial. The exact result is tan 87 = 19.08.  
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 The method is ingenious and correct. However, it required the unattainable: a very 

accurate measurement of the angular separation of the sun and moon at the moment of 

dichotomy. Aristarchus greatly underestimated the true ratio of 389:1.177 

 As far as the ratios of distances where concerned, Aristarchus had broken the evidential 

circle. He had established, he believed, the ratio of distances to the sun and room. He could then 

infer directly to the ratio of the diameters of the sun and moon. It must be the same. It must also 

lie between 18:1 and 20:1. 

 Aristarchus then turned to determine not just the ratios of the distances to the sun and the 

moon, but their individual values. They were expressed as ratios with the diameter of the earth, 

whose value was then taken to be known well enough. Heath (1913, p. 399) presumes that 

Aristarchus did as did Archimedes and accepted Dicaearchus’ estimate of a circumference of 

300,000 stades. Eratosthenes’ famous measurement of the earth’s size came later. What 

Aristarchus realized was that these individual distances could be recovered from phenomena 

observable at the time of an eclipse of the moon. To determine these individual distances, 

Aristarchus introduced a decisive new datum concerning an eclipse of the moon (Heath, 1913, p. 

353): 

That the breadth of the [earth’s] shadow is [that] of two moons. 

That is, as the moon passes through the umbra, the conically shaped, full shadow of the earth, the 

moon’s diameter was just half that of the umbra, as Figure 4 shows. What results is a 

complicated geometric figure that has been reproduced in many old manuscripts and modern 

treatises and is not drawn to scale in Figure 4. 

 

 
177 Dreyer (1953, p. 136) diagnoses the error as follows: “Because the method, though 

theoretically correct, is not practical, as the moment when the moon is half illuminated cannot be 

determined accurately. The angle of ‘dichotomy’ is in reality 89o 50’ instead of 87o.” 
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Figure 4. Aristarchus’ Figure for Determining the Distances to the Sun and Moon. 

 

The lower figure depicts the essential geometry and is reproduced from Heath’s (1913, p. 330) 

analysis. 178 

 Since the ratio of the diameters of the sun s and moon l are known, as are also the ratios 

of the distances from the earth to sun S and earth to moon L, it turns out that the geometry of 

Aristarchus’ figure is fixed. This may not be obvious from inspection of the figure; and it takes 

some calculations to determine it. Since they are tedious and not especially illuminating, the 

reader is referred to Heath’s (1913, pp. 330-31) reconstruction. Aristarchus arrived at a diameter 

for the sun as a ratio to the earth’s diameter that lies between 19/3 and 43/6 and a diameter for 

 
178 This work is in the public domain. 
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the moon as a ratio to the earth’s diameter that lies between 19/60 and 43/108. Once again, with 

the diameters of the sun and moon determined, it was a simple matter to determine the distances 

to the sun and moon from the known angular size of each as seen from the earth. 

 The actual numbers reported by Aristarchus are quite far from the actual ratios in our 

sun-moon-earth system.179 His calculations depended on his earlier underestimate of the ratio S/L 

of the earth-sun and moon-sun distances. They were compounded by his taking erroneously that 

the angular size of the moon is 2 degrees, whereas Archimedes in the Sand-reckoner had 

attributed the correct 1/2 degree to Aristarchus.180 

 While Aristarchus’ final numbers differ greatly from the actual values, his methods were 

correct and ingenious, marred only the need for an impractical datum and a curious error in 

estimating the moon’s size. Van Helden (1985, p.7) singles out Aristarchus’ second moon eclipse 

technique as: 

…a method that, when fully developed by Hipparchus and Ptolemy, was to be the 

centerpiece of all determinations of absolute celestial distances until the seventeenth 

century. 

4. Measurements of Parallax 

 The methods reviewed so far require that the disks of the sun and moon be discernible. 

As long as astronomers use only naked eye methods, these methods cannot determine distances 

to the planets, for optical instruments are needed to resolve their disks. There is a general method 

that, in principle, is capable of determining the distance to any celestial object that is visible from 

earth. That is the measurement of its parallax. It is the difference in direction of some object as 

seen from different places on earth. Measuring it requires observations to be taken at two 

different places on earth at the same time. For the case of a rotating earth, parallax can also be 

measured from one position on earth when the rotation moves that position to another location in 

space. 

 
179 Aristarchus’ ratio for the sun is 6.3 to 7.2, where the modern figure is 109. His ratio for the 

moon is 0.31 to 0.40, where the modern figure is 0.27. 
180 See Heath (1913, p. 311-14) for analysis of this curious error. 
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 Horizontal parallax uses the earth’s radius as the baseline for measurement.181 Figure 5 

shows an observer at A on the earth’s surface who finds the object at P to be at it the zenith, that 

is, directly overhead. A second observer at B, located at a distance of one quarter the earth’s 

circumference, finds the object to have just dipped below the horizon. If we draw BC parallel to 

AP, the bearings of the object at P differ for these two observers by the angle of parallax, CBP. 

This angle is equal to the angle BPA, which is the angle subtended by the earth’s radius from P. 

 
Figure 5. Horizontal Parallax 

 

This angle is called the “horizontal parallax,” since the name reflects B’s observing P on the 

horizon. For a distant object, the angle is small182 and is related inversely to the distance to the 

object by 

distance = radius of earth / horizontal parallax in radians 

In practice, the horizontal parallax is not measured directly. A smaller displacement on the 

earth’s surface is used and the horizontal parallax inferred from it. 

 Once again, eclipses provided the opportunity for potentially informative measurements. 

An eclipse of the sun will be total when seen on one part of the earth’s surface, yet only partial 

when seen from another. Encoded in this difference is a measure of the parallax of the moon. 

Hipparchus and Ptolemy after him applied this approach to records of lunar eclipses to estimate 

lunar parallax.183  While the method is correct in principle, its successful application is difficult 

 
181 It is distinguished from annual parallax, in which the radius of the earth’s annual orbit about 

the sun is used as the baseline for measurement. It is applied when considering distances to stars. 
182 The figure greatly exaggerates the angle. For the moon, the horizontal parallax varies around 

roughly a degree. For the sun it is about 8.8 second of arc, that is 2.4 thousandth of a degree. 
183 For details, see Van Helden (1985, pp. 10-19). 
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because of the need to measure angles precisely. The moon’s parallax of about one degree is the 

largest for celestial objects. Others are dauntingly smaller. Measurement of the tiny solar 

parallax of 8.8 seconds of arc was beyond the reach of the ancient astronomers. 

5. The Parallax of Mars 

 The difficulty of measuring tiny parallactic angles was only overcome centuries later 

when telescopic observations were possible. Even then, the approach was indirect. The earth-sun 

distance was most sought, once heliocentric Copernican astronomy became established. It 

determined, as we shall see below, all the other distances. However direct measurement of the 

parallax of the sun remained beyond the astronomers’ reach, if only because the brilliance of the 

sun’s glow precluded direct observations locating the sun against the stellar background. Instead, 

it proved feasible to determine the parallax of Mars and, using the known ratio of sizes of the 

earth’s and the Martian orbits, then compute the earth-sun distance. 

 Best known of these measurements of parallax from the 17th century is Cassini and 

Richer’s measurement of the parallax of Mars in 1672, using simultaneous measurements of the 

position of Mars from France and Cayenne in South America. The opportunity for the 

measurements was an opposition of Mars to the sun. That meant that Mars was making one of its 

closest approaches to the earth and thus susceptible to the most accurate measurements. Their 

efforts yielded the parallax of Mars at this time in its orbit and thus also its distance from the 

earth. Using the then known ratio of the sizes of the earth’s and the Martian orbits, the crucial 

earth-sun distance could be estimated. They arrived at an earth-sun distance of 87,000,000 miles, 

which is comfortably close to the modern value of around 93,000,000 miles.184 Both Berry 

(1898, pp. 205-209) and Van Helden (1985, Ch. 12) emphasize that the closeness of these 

numbers is less impressive once one recognizes the large error margin associated with the 

Cassini result. 

6. The Transits of Venus 

 The ancient astronomers had found solar eclipses to afford an opportunity to determine 

the parallax of the moon. These eclipses arise when the moon passes exactly between the earth 

 
184 See Long (1742, pp. 290, 292) for an early account. 
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and the sun. An analogous circumstance arises when the planet Venus passes exactly between 

the earth and the sun. Since Venus is so much farther away from the earth than the moon, the 

effect is much less dramatic. Venus appears telescopically as a tiny dot migrating over the 

surface of the sun. If this “transit of Venus” is observed from different locations on the earth’s 

surface, Venus will be seen to transit across the disk of the sun in different locations on the disk. 

 The path of Venus traces a chord across the circular disk of the sun. Determining the 

length of the chord fixes its location on the disk. The longest chords are diameters of the circle; 

and the shorter the chord the farther is it from a diameter. The most accurate way to estimate the 

difference in chord lengths was to time how long the transit took, when viewed from different 

locations. Since a transit requires about six hours, accurate times of transit were well within the 

grasp of measurement of early clocks. The transit times reflect directly the chord length and thus 

reveal differences of location of the transits against the sun’s disk. 

 Observing a transit of Venus from different places on earth enabled the parallax of Venus 

and the sun to be determined. Of the expeditions to observe the transit of Venus, the best known, 

especially to Australians, is that of Captain Cook, who sailed to Tahiti for this purpose in 1769. 

The measurements of the Cook expedition were compared with those taken in other locations, 

notably Lapland. The resulting parallax of the sun was determined to be in the range of 8 to 9 

seconds of arc, which is in agreement with the modern value of about 8.8 seconds of arc.185 

Subsequent transits were observed in 1874, 1882 and more recently in 2004 and 2012. 

 The calculation of the parallax of Venus and sun from these observations must correct for 

many factors. The highly simplified analysis Figure 6 brings out the element that is most 

important for our purposes. 

 
185 For accounts of the transits, associated measurements and calculations, see Airy (1881, pp. 

144-60) and Newcomb (1892, pp. 177-92). That these expeditions and measurements were of 

considerable popular interest in the nineteenth century is suggested by the publication of popular 

works like Forbes (1874). 
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Figure 6 Transit of Venus186 

 

Points A and B are the locations of two observers on the earth’s surface. They are as widely 

separated as possible. A may be in the Northern hemisphere. B might be in the Southern 

hemisphere. The lines of sight AVD and BVC pass through Venus at V to different locations D 

and C on the sun’s disk. The distance CD is the separation between the two transit paths 

observed. If the absolute distance of CD can be determined, it can be scaled up to give the 

absolute diameter of the sun. Since the angular size of the sun as seen from the earth is readily 

measured, the distance to the sun can be recovered. 

 Triangle ABV and DCV are similar. Thus the distance sought, CD, can be found from the 

formula 

CD = (DV / AV) . AB 

The distance AB is the known distance between the two observers on earth. The ratio DV/AV is 

determined by the ratios of the sizes of the planetary orbits. These last ratios were given by 

 
186 Redrawn from Airy (1881, p. 153). 
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Copernican astronomy, as we shall see below.187 Without knowledge of this ratio, we would be 

trapped once again in the familiar evidential circle. A small ratio DV/AV would lead to a small 

distance CD and a small earth-sun distance. A large ratio DV/AV would lead to a large distance 

CD and a large earth-sun distance. Some further datum, such as the absolute length CD itself, 

would be needed to break the circle. 

7. The Need for Hypotheses 

 The efforts recounted above reveal the limits of simple geometric triangulation as a 

means of determining distances to bodies in our planetary system. This approach was able to 

arrive at a distance to the moon and, when pressed to the extreme in the 17th century, a distance 

to Mars at its closest approach to earth. Even as late as the 18th and 19th centuries, these 

methods of triangulation had to be supplemented by further knowledge of the planetary system if 

their results were to be extended to a determination of the earth-sun distance. The 17th century 

determination of the distance to Mars could only be extended to an estimate of the distance to the 

sun by drawing upon the known ratio of the sizes of the orbits of the earth and Mars. The 18th 

and 19th century observations of the transits of Venus were unable to return any absolute 

planetary distances at all until they were augmented by the known ratio of the sizes the orbits of 

the earth and Venus. 

 At the close of the 19th century, observations of the transit of Venus remained the best 

way to determine distances within the solar system. After a lengthy treatment of the transits of 

Venus, Simon Newcomb (1892), then a leading authority in astronomy, added a discussion 

entitled “Other Methods of Determining the Sun’s Distance, and their Results.” (pp. 192-99) The 

promise of these other methods was then unfulfilled. Newcomb could only say of them (p. 192) 

 
187 Hipparchus’ analogous determination of the parallax of the moon at the time of solar eclipse 

avoided the need for a corresponding ratio. He could assume that the sun was so very much 

farther from us than the moon that the sun’s rays arrived in parallel lines on the earth. 
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that “…at least two of which [methods] we may hope, ultimately, to attain a greater degree of 

accuracy than we can by measuring parallaxes.”188 

 From the earliest times, the sort of supplements needed was already present as hypotheses 

of various types. Our histories of astronomy treat the early ones dismissively since most of these 

early supplements were quite in error. Since, our concern here is not the correctness of the results 

but the appropriateness of the inductive strategies, we can arrive at a more favorable appraisal. 

Direct evidence, such as distance measurements by triangulation, can fail to give us the extent of 

results sought, such as the distances to the sun and distant planets. We can then conjecture or 

hypothesize those facts that would extend the inductive reach of the evidence available to us. 

This is an entirely responsible epistemic strategy, as long as we remember that adopting an 

hypothesis takes on an inductive debt. It has to be discharged by further investigation that will 

provide independent inductive support for the hypothesis. Only then have we given the new 

results a solid foundation inductively in evidence. 

8. Pythagorean and Platonic Harmonies 

 The Pythagorean and Platonic tradition in antiquity provided a quite rich if chaotic set of 

hypotheses concerning the distances to the celestial bodies. Their basis was a combination of 

ideas in musical harmony and simple arithmetic relations. In his creation myth, Timaeus, for 

example, Plato offers the following relative distances: 

Moon          1 

Sun             2 

Venus         3 

Mercury     4 

Mars           8 

Jupiter        9 

Saturn      27 

 
188 How things change!  Lasers, reflected off mirrors left on the moon by manned and unmanned 

missions in the 1960s and early 1970s, now determine the distance to the moon to within a few 

centimeters. We can now also use radar echoes to measure distances to the planets. 
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These ratios arise from interleaving of the numbers of two geometric progressions: 1, 2, 4, 8 and 

1, 3, 9, 27. These are just a small part of a rich collection of proposals.189 

 If Plato’s ratios are correct, the inductive benefit is immediate. We need only determine 

the absolute distance to any one of these celestial bodies. Then the absolute distance to all the 

others can be determined from the ratios. What would suffice is just one of the later 

determinations of the distance to the moon by Aristarchus or Hipparchus. 

 It is easy for us now to dismiss these harmonic hypotheses as mere, wild speculation.190 

They were highly speculative. That they were likely incorrect would already have been apparent 

to Aristarchus and Hipparchus. For Plato locates the sun at twice the distance from earth as the 

moon.  Both Aristarchus and Hipparchus had determined that the sun is much more distant. That 

does not make Plato’s conjectures epistemically irresponsible. Conjectures of some sort were the 

only way then available to advance the project of determining distances to celestial bodies 

beyond the distances accessible to measurement by triangulation. Might it just be that this 

particular implementation the harmonic idea is flawed? Might further refinement produce a 

proposal that can survive independent scrutiny? 

 Johannes Kepler has unchallengeable credentials in astronomy. He felt that these 

harmonic ideas found their proper expression in the new heliocentric, Copernican astronomy. His 

1596 Mysterium  Cosmographicum accounted for the number of planets and the ratios of 

planetary orbits by a celebrated geometric construction involving the five Platonic solids, nestled 

between spheres. The image from his 1596 work, shown here as Figure 7, is widely reproduced. 

 

 
189 For a terse review, see Dreyer (1953, p. 62, pp. 178-82). 
190 Dreyer (1953, p. 181) writes: “In reality therefore we ought hardly to take the planetary 

intervals, as determined by the sphere-harmony, seriously; the whole doctrine is quite analogous 

to that of astrology, but is vastly more exalted in its conception than the latter, and it deserves 

honourable mention in the history of human progress.” 
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Figure 7. Kepler’s Construction 

 

Kepler’s 1619 Harmonices Mundi proceeded to find musical harmonies in planetary motions. 

While we now dismiss these parts of Kepler’s work as mistaken, they were part of a serious 

investigation. They were hypotheses that failed to find independent evidential support. Had they 

found such support, we would now be celebrating Kepler’s prescience. 

 The tradition of seeking mathematical harmonies persists. In his 1933 Herbert Spencer 

lecture, an older Einstein revealed his conversion to a form of mathematical Platonism.191 He 

wrote (1933): 

 
191 See Norton (2000) for an account of Einstein’s conversion. 
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 Our experience hitherto justifies us in believing that nature is the realisation of the 

simplest conceivable mathematical ideas. I am convinced that we can discover by 

means of purely mathematical constructions the concepts and the laws connecting 

them with each other, which furnish the key to the understanding of natural 

phenomena. 

Lest there be any doubt that Einstein saw his formulation of these ideas as fulfilling the program 

initiated millennia ago in ancient Greece, he added: 

But the creative principle resides in mathematics. In a certain sense, therefore, I 

hold it true that pure thought can grasp reality, as the ancients dreamed. 

9. Ptolemy’s Planetary Hypotheses 

 The supreme expression of geocentric astronomy in antiquity was Ptolemy’s Almagest. It 

provides elaborate geometric constructions for the motions of the celestial bodies: the moon, the 

sun and the planets. The constructions, however, were independent of the absolute sizes of the 

orbits of each body. Take, for example, the construction for Venus. This planet moves roughly 

with the sun in its annual course around the heavens. But Venus is sometimes ahead of the sun 

and sometimes behind it. This direct and retrograde motion of Venus was accounted for in 

Ptolemy’s construction by attaching the planet to a rotating epicycle, as shown in Figure 8. The 

epicycle’s center moves along a deferent circle such that this center remains aligned with the 

mean sun. (The actual motion of the sun deviates slightly from the mean motion.) 
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Figure 8. The Ptolemaic Epicycle for Venus 

 

 The figure shows Venus’ motion drawn within that of the sun. That is not needed to recover the 

retrograde motion of Venus. As long as the alignment of the center of the epicycle and the sun is 

retained, the construction for Venus could be expanded so that its motion would be outside those 

of the sun; or Mars; or Jupiter; or Saturn. The constructions for each celestial body in Ptolemy’s 

Almagest could be scaled up or down, so that any order of the sun and planets was possible. 

 The determination of the absolute sizes of these trajectories was taken up in a later work 

by Ptolemy, Planetary Hypotheses. The portions of Planetary Hypotheses dealing with these 

distances have been lost in the extant Greek texts. Goldstein (1967) found them in a later Arabic 

translation and his paper presents an English translation of the Arabic along with the original 

Arabic text.192 In addition to the geocentric supposition, Ptolemy’s analysis depended on two 

hypotheses: 

 
192 For further analysis, see Van Helden (1985, pp. 21-27). 
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Order. The celestial bodies increase in distance from the earth in the order: moon, 

Mercury, Venus, sun, Mars, Jupiter, Saturn. 

Packing. The celestial bodies are packed together as closely as their geometrical 

constructions allow.  

These hypotheses provided Ptolemy with the ratios of the distances to the celestial bodies. He 

could then combine these ratios with his estimate of the absolute distance to the moon to recover 

the distances to all the celestial bodies. 

 These hypotheses did not derive from considerations of musical and mathematical 

harmony. Rather they rested on quite prosaic, physical considerations. To recover Order, we 

know that the moon is closer to the earth than the sun and stars since the moon eclipses them. 

The rest of the order was harder to pin down. The stars have the fastest motion in the Ptolemaic 

system, with Saturn, then Jupiter and then Mars lagging successively more behind them. 

Assuming that proximity of speed reflects proximity in space, Ptolemy could conclude that 

Saturn is closest to the stars, then comes Jupiter and then Mars. By this criterion, the sun, Venus 

and Mercury come next. However, the criterion could not give an order for them since their 

average motion against the stars was the same. Ptolemy settled on the order: the sun, then Venus 

closer to earth and then Mercury closer still. He reasoned that the closeness of Mercury to the 

moon was justified by the similarity in their eccentric motions and since the frequent retrograde 

motion of Mercury resembled the turbulent motions of the air above the earth’s surface. Similar 

reasoning placed Venus at the next distant position. 

 To establish the absolute distances to these celestial bodies, Ptolemy employed the fact 

that, his constructions would take each body nearer and farther from the earth. The epicycle 

shown in Figure 8 does this, as does Ptolemy’s use of eccentric circles, that is, circles whose 

center is slightly displaced from the earth. Ptolemy could determine from these constructions the 

ratio of the distances of closest approach to the earth (perigee) and the farthest displacement 

(apogee). He now assumed (“Packing”) that all the constructions were packed together as closely 

as the geometry allowed, without the danger of any of the trajectories intersecting. That is, the 

apogee of the moon will coincide with the perigee of Mercury; and the apogee of Mercury will 

coincide with the perigee of Venus; and so on. 
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 Ptolemy could only offer the physical plausibility of this packing assumption: “This 

arrangement,” he wrote,193 “is most plausible, for it is not conceivable that there be in Nature a 

vacuum, or any meaningless and useless thing.” He could not have been so certain of the 

assumption for he then proceeded to allow that if there are empty spaces, the distances cannot be 

smaller than those he had determined. 

 Starting with Ptolemy’s value of 64 earth radii for the apogee of the moon, Ptolemy used 

the ratios of perigee to apogee to determine stepwise the distances to all the celestial bodies. The 

perigee of Mercury is then 64 earth radii. The ratio of perigee to apogee for Mercury is 34:88, so 

its apogee is at 64 x (88/34) = 166 earth radii. Continuing these calculations leads to the results 

summarized in Table 1.194 
 Perigee Apogee Ratio 

Moon 33 64 33:64 

Mercury 64 166 34:88 

Venus 166 1,079 16:104 

Sun 1,160 1,260 57.5:62.5 

Mars 1,260 8,820 1:7 

Jupiter 8,820 14,187 23:37 

Saturn 14,187 19,865 5:7 

Table 1. Ptolemy’s Distances in Units of Earth Radii 

Ptolemy encountered one discrepancy. His independent estimate of the perigee of the sun is 

1,160, which does not match the computed apogee of Venus of 1,079. Ptolemy suggested that the 

discrepancy may merely derive from slight errors in the underlying observations. To continue, 

Ptolemy used the independently derived figure of 1,160 for the sun’s perigee. 

 Kepler’s Mysterium Cosmographicum happens to include a figure that includes all these 

celestial bodies in Ptolemy’s system, with their epicycles, drawn approximately to the scale set 

by the distances of Table 1. 

 
193 Quoted from Goldstein (1967, p. 8). 
194 Ptolemy’s text delivers these results in a continuous narrative. This convenient tabular 

summary is provided by Van Helden (1985, p. 27). He notes that the value of the apogee of 

Jupiter of 14,187 is a small error of calculation and should be 14,189. 
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Figure 9. Kepler’s Drawing of the Ptolemaic System 
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 In assuming the geocentric configuration of celestial bodies and in making the 

assumptions Order and Packing, Ptolemy had taken on an inductive debt. Until it was 

discharged, that is, until independent evidence for the assumptions was found, the evidential case 

for his distances was incomplete. Ptolemy counted as evidence for his packing hypothesis the 

closeness of the two estimates of the distance to the sun’s perigee: the Packing derived estimate 

of 1,079 and the independent estimate of 1,160. While encouraging, that closeness was not 

enough to discharge the inductive debt. Further independent support was needed. While 

Ptolemy’s system remained the authoritative system for over a millennium, that further 

independent support never came. Ptolemy’s system was abandoned in favor of another whose 

inductive debts were discharged and with spectacular success.195 

10. The Copernican Hypothesis 

 Nicolaus Copernicus’ 1543 On the Revolutions of the Heavenly Spheres is somewhat 

tame in purely astronomical terms. In simplest concept, it merely rearranges the circles of 

Ptolemy’s geocentric system in a more apposite way. It is in another sense earth moving. That 

rearrangement sets the earth into twofold motion: spinning on its axis and orbiting the sun. 

 This basic supposition of Copernican heliocentric astronomy was routinely known as the 

“Copernican hypothesis” or “hypotheses” in Copernicus’ own sixteenth century and in the 

succeeding seventeenth century. Moxon’s (1665) “Tutor” offered the reader on its title page: “an 

Explanation of the Copernican Hypothesis and Spheres.” Hooke (1674) uses the expression 

liberally. In the sixteenth century, the term “hypothesis” was tainted by Osiander’s surreptitious 

insertion of an anonymous preface into Copernicus’ 1543 work. He reduced Copernicus’ 

proposal to a mere convenience of calculation that did not reveal true causes. He wrote:196 “For 

these hypotheses need not be true nor even probable. On the contrary, if they provide a calculus 

consistent with the observations, that alone is enough.” 

 Copernicus himself made little use of the term, but does not seem averse to it. 

Conveniently he does equate the term in its usage by the Greeks as equivalent to “principles and 

 
195 For a survey of the persistence of Ptolemy’s packing hypothesis through to the time of Kepler 

in the sixteenth century, see Goldstein and Hon (2018). 
196 Dobrzycki (1978, p. xvi). 
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assumptions.”197 As far as I can see, the term “hypothesis” does not appear in his earlier draft 

manuscript, Commentariolus. However, the main proposals of his heliocentric astronomy are 

called “assumptions.”198 Rheticus uses the term “hypothesis” freely in his preliminary accounting 

of Copernicus’ proposal, Narratio Prima, written prior to 1543.199 He goes to some pains to 

defend the truth of the hypotheses he identifies in Copernicus’ system. His defense foreshadows 

the present notion of hypothetico-deductive confirmation: that it is a mark of truth if an 

hypothesis has true consequences. Rheticus puts it this way:200 “Aristotle says: ‘That which 

causes derivative truths to be true is most true.’”201 In this context, then, the common usage of 

the term hypothesis referred to an adventurous proposal. Contrary to Osiander’s pessimism, its 

truth could be secured through argument and evidence and it was so secured as we move to from 

the sixteenth to the seventeenth century. 

 For present purposes, what matters is that adoption of Copernicus’ heliocentric system 

proved the key step in expanding the astronomers’ capacity to determine the distances to celestial 

bodies.  Ptolemy needed to add hypotheses, Order and Packing, to his geocentric constructions 

in order to fix the ratios of these distances. Copernicus needed no such additions to determine the 

ratios of the orbital sizes. His heliocentric constructions already fixed them.  

 The recovery of these ratios followed from how Copernicus’ system reduced the number 

of independent assumptions needed, over those required by Ptolemy. Consider, for example, 

Ptolemy’s construction for Venus as shown in Figure 8. What Copernicus realized was that two 

motions in Ptolemy’s system were really just one. That is, the annual motion of the center of 

Venus’ epicycle along the deferent and the annual motion of the sun were not real motions at all. 

Rather, there was just the single annual motion of the earth around a central point near the sun; 

and then around the sun itself in later developments of heliocentrism, such as by Kepler. If an 

 
197 Dobrzycki (1978, p. 7) Copernicus writes: “…[astronomy’s] principles and assumptions, 

called ‘hypotheses’ by the Greeks, …” 
198 Rosen (1971, p. 58). 
199 Reproduced in translation in Rosen (1971). 
200 Rosen (1971, p. 142). 
201 There is an extensive secondary literature on Copernicus’ attitude to hypotheses. For more, 

see Rosen (1971, pp.22-33). 
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observer on earth was unaware of the earth’s motion, it would appear that both the sun and 

Venus were orbiting the earth. These two circles were just apparent motions arising from 

displacing the true motion of the earth to the Venus and the sun. 

 To accommodate this realization, Copernicus rearranged the circles of Figure 8 to recover 

those of Figure 10. As shown at the top of Figure 10, the two circles of the Venus’ deferent and 

the sun were collapsed to a single circle; and that circle was transposed to become the orbit of the 

earth around the sun. Venus’ epicycle now became its true orbit, centered on the sun. 

 
Figure 10. Venus in the Copernican System 
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This new heliocentric construction for Venus no longer admitted the arbitrary rescaling of 

planetary distances that troubled Ptolemy’s system. Venus’ maximum elongation—the maximum 

angular distance it strayed from the sun—was about 45 degrees. That fact of observation 

immediately fixed the ratio of the sizes of Venus and the earth’s orbits. The line EV in Figure 11 

traces the line of sight to Venus at its maximum elongation. Since EV is tangent to the circle of 

Venus’ orbit, EVS is a right angle. If we take the simplest case of the angle EVS equal to 45 

degrees, then the triangle EVS is right angled, with equal sides EV and VS adjacent to the right 

angle of triangle EVS. Using Pythagoras’ theorem, it follows that the ratio of the size of Venus’s 

orbit to that of the earth’s orbit, SV to SE, is 1 to  , that is 0.71 to 1. 

 

 
Figure 11. Fixing the size of Venus’ orbit 

 

This last calculation is simplified by assuming that Venus’ orbit is a perfect circle centered on 

the sun. The deviations from this simplification complicate the determination only slightly.202 A 

 
202 For details see Van Helden (1985, pp. 43-44). 

2
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similar rearrangement gives the Copernican construction for Mercury and the determination of 

its orbital size. 

 The outer planets, Mars, Jupiter and Saturn, required slightly different rearrangements. 

Their epicycles were not the representation of their true motions, but merely the superposition of 

the earth’s motion onto their true motions. Similar analysis within the circles of the Copernican 

rearrangement gives the ratios of the sizes of each of these outer planetary orbits to that of the 

earth’s. The analysis is a little more complicated. A greatly oversimplified version conveys the 

basic geometry of the analysis. Contrary to the reality, we assume that an outer planet is not 

moving. Then we can determine the ratio of the sizes of the orbits by checking how far the earth 

progresses in its orbit between two orientations. First, the distant planet P is in direct opposition 

to the sun S, indicated by the earth at E’ in Figure 12; and second, the distant planet P is at 

quadrature, that is at a right angle to the earth-sun distance, indicates by the earth at E in Figure 

12. 

 
Figure 12. Distance to an Outer Planet 

The angle ESP is known from how far the earth has moved in its orbit. Observing the change in 

which stars are directly overhead at midnight would give the angle directly. Simple trigonometry 

on the right angle triangle SEP tells us the ratio of sizes SP/SE is 1/cos(ESP). This method is 

inapplicable in practice since the planet P will move during the time that the earth progresses 

from E’ to E. In the case of slow moving Saturn, which has period of 29.5 years, the movement 

will be slight. However the analysis must correct for it. The correction is straightforward.203 

 
203 For a simplified construction see Crowe (2001, Ch. 6). 
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11. Securing the Copernican Hypothesis 

 Copernican heliocentric astronomy and its later refinements proved key to the 

determination of planetary distances in the centuries that followed. For it provided the ratios of 

the sizes of the orbits of the planets. All astronomers needed was a single absolute measurement 

of one distance. Then all the rest could be recovered from the ratios. This was the procedure used 

after the seventeenth century determination of the parallax of Mars and the eighteenth century 

observations of the transits of Venus. This was the same strategy used by Ptolemy. His 

determination of the distance to the moon triggered a cascade of computations that gave all the 

distances. However, the difference was that independent evidence for Ptolemy’s hypotheses 

never emerged. Ptolemy’s inductive debt was never discharged. The Copernican hypothesis 

fared much better. 

 To begin, the Copernican system had an advantage over the Ptolemaic system in the 

practical challenges of securing evidential support. The Copernican system needed fewer 

independent hypotheses and thus fewer independent items of evidence. Ptolemy had to posit as 

an independent hypothesis that the centers of the epicycles of Mercury and Venus always aligned 

with the mean sun, as shown in Figure 8. This alignment was automatic in the Copernican 

system since the center of Mercury and Venus’ orbits simply was the mean sun. Similarly, 

Ptolemy had to posit that the epicycles of the outer planets, Mars, Jupiter and Saturn, moved in 

perfect concert with the motion of the sun, such that their retrograde motion coincided with their 

opposition to the sun. Copernicus needed no such posits. These effects followed automatically 

from his recognition that these epicycles were merely the superposition of the earth’s annual 

motion on the true motions the outer planets. Even just to recover an order for the planets in their 

distances from the earth, Ptolemy had to posit additional hypotheses concerning their periods and 

motions. Copernicus needed no such additional posits. In his system, the relative distances of the 

planets from the sun could be recovered from careful measurements of planetary positions. 

 As time passed, further evidence emerged. Galileo used his telescope to observe Venus in 

1610 and he reported his results in his 1613 Letters on Sunspots. He saw Venus exhibiting a 

variety of moon-like phases that could only be if its motion took it both closer to the earth than 

the sun and also farther from the earth than the sun. This contradicted Ptolemy’s system in which 

Venus is always closer to the earth than the sun, but fitted the Copernican hypothesis that Venus 

orbits the sun. 
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 It was Isaac Newton who made the decisive advance that fully discharged whatever 

residual inductive debt heliocentric astronomy may have carried. His 1687 Principia provided a 

complete mechanics for the motions of the bodies in heliocentric astronomy. At the same time, 

celestial mechanics was combined with terrestrial mechanics in a single unified system. Any 

challenge to heliocentric cosmology would eventually end up having to challenge the entirety of 

this new physics. 

12. Crossing of Relations of Support 

 The most useful relationship concerning the ratios of sizes of planetary orbits in the new 

astronomy is Kepler’s so-called204 third law. It asserts in its modern form that the square of the 

periods of a planet’s orbit T2 is proportional to the cube of the semi-major axis of its elliptical 

orbit R3. Since the periods of two planets are quite accessible to measurement, the relationship 

provides a rapid determination of the ratios of their distances from the sun. The relationship 

between this law and Newton’s mechanics provides a striking illustration of how relations of 

inductive support can cross over one another. 

 The distance-period relationship for the planets was first reported by Kepler for the mean 

distance from the sun, among the many harmonies of his 1619 Harmonices Mundi. In Book 3 of 

his Principia, Newton (1934, Vol. 2, pp. 401-405) enumerated the phenomena from which his 

system of the world would be inferred. Phenomenon IV was Kepler’s relation for the planets, 

asserted in terms of the mean distances. Phenomena I and II asserted the same relation for the 

moons of Jupiter and of Saturn. Within Newton’s mechanics, this relation could be translated 

almost immediately into a result central to Newton’s system: the acceleration due to the 

gravitational attraction of a body such as the sun diminishes with the inverse square of distance. 

We can see how rapidly the result follows if take the simple case of a planet or a moon in a 

perfectly circular orbit of radius R with period T. It follows that the speed of the object is V = 

2pR/T. Newton’s mechanics sets the centrally directed acceleration A of such a motion equal to 

V/R2. We can now combine these relations as 

 

 
204 By for example Maxwell (1894, p. 113). 

A = V
2

R
= (2π )

2R2

T 2 ⋅ 1
R
= (2π )

2R3

T 2 ⋅ 1
R2

= constant ⋅ 1
R2
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where Kepler’s third law allows us to set R3/ T2 to a constant. 

 Here we have the first relation of support: 

from Kepler’s third law to Newton’s inverse square law of gravity. 

It is possible to run the inferences in the above equalities in reverse and thereby infer Kepler’s 

third law from the inverse square law: 

 

We read from these equalities that R3/ T2 must be a constant if we first assume the inverse square 

law. Thus, it is quite possible to have a relation of support that proceeds in the other direction: 

from Newton’s inverse square law of gravity to Kepler’s third law. 

Since the relation is a deduction, given the requisite background assumptions of Newton’s 

mechanics, it is especially strong. 

 This second inference is commonly given in mechanics texts. Is it merely a formal 

derivation purely of mathematical interest? Or should we conceive it also as a relation of 

evidential support proceeding in a direction opposite to that of Newton’s original relation? That 

we can and should so conceive it follows from a complication revealed by more careful analysis. 

The analysis above requires that the mass S of the central body, such as the sun, should be 

considerably greater than the mass P of the orbiting body, such as a planet. If this assumption is 

relaxed, Maxwell (1894, pp. 113-115) gives the correction that must be applied to the original 

form of Kepler’s third law: 

R3 = constant (S+P) T2 

Deviations from the original law are small according to this formula, as long as P is very much 

smaller than S. However, for cases in which P grows large in relation to S, then the orbital 

periods will become smaller than predicted by the original relation from the orbital sizes. 

Maxwell proceeded to show that such deviations have been measured for the more massive 

planets, Jupiter, Saturn and Uranus. 

 Thus Newton’s mechanics does not merely recover Kepler’s third law. Rather it tells us 

the circumstances under which the law holds and gives a more general law that will hold when 

we deviate from those circumstances. In doing this, Newton’s mechanics provides evidential 

support for Kepler’s third law. 

A = constant 1
R2

= V
2

R
= (2π )

2R2

T 2 ⋅ 1
R
= (2π )

2R3

T 2 ⋅ 1
R2
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13. Conclusion 

 The determination of distances in our planetary system illustrates how hypotheses are 

used to extend the otherwise limited inductive reach of evidence. This is a procedure that is used 

quite widely in science. What makes the present case study revealing is that the investigations 

extended over millennia. That means that its stages are readily dissected. We can see in this slow 

development that evidence unaided by hypotheses was quite limited in its reach. Direct 

measurements of distances to celestial bodies by triangulation returned very little, in spite of the 

most energetic and ingenious of efforts. This reach was decisively furthered by various systems 

of hypotheses: harmonic, Ptolemaic and Copernican. That each of the three considered here 

yielded different results underscores the provisional nature of the results. They are only given a 

secure inductive foundation when independent evidence is found for the hypotheses used and the 

inductive debt taken on in assuming them is discharged. 
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Dowsing: The Instabilities of Evidential Competition 

1. Introduction 

 Chapter 4, “The Uniqueness of Domain-Specific Inductive Logics,” addressed the 

possibility that a single collection of empirical facts might evidentially support multiple sciences 

equally well. This circumstance would negate the power of evidence to determine a definite 

theory and compromise the uniqueness of our mature sciences. Worse, since these facts also 

determine the applicable inductive logic, we would then have multiple logics applicable in the 

same domain. Inductive anarchy would prevail. 

 In that earlier chapter, I argued that this possibility has not arisen in the case of mature 

sciences, which are well-supported by an extensive body of empirical evidence. There is, for 

example, only one periodic table of the elements and only one chemistry derived from it. Further 

I argued that the material theory of induction provides a mechanism that precludes the 

persistence of equal support for such multiple sciences. It is based on an instability in the 

competition among rival theories. In so far as the differences between competing theories 

manifest in empirically decidable disagreements, evidence can point in favor of one over the 

other.205 One theory then secures more facts than its rival. Since background facts so secured can 

then authorize more inductive inferences, that gain enhances its inductive reach, while at the 

same time weakening that of the rival. The enhanced theory is then better placed to achieve more 

successes at the expense of its rival. A continuation of the process leads to the evidential 

dominance of one theory. 

 Where might we look to see this process within real sciences? The natural place is among 

the many fields of endeavor labeled as pseudosciences: astrology, parapsychology, telepathy, 

telekinesis, crystal healing, psychic surgery and much more. For these endeavors purport to offer 

 
205 If the differences have no empirical manifestation, then we must ask if the differences 

between them matter. Are they the same theories empirically, but dressed up in different 

theoretic clothing? Do one or both contain elements superfluous to their empirical content? 
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bodies of knowledge in competition with established science. Each proposes facts radically at 

variance with standard science. If they are correct, then these facts would induce an inductive 

logic quite different from that of standard science.206 

 These endeavors are routinely disparaged by established science. The term 

“pseudoscience” is not intended to be flattering. In my view, these pseudosciences are quite 

properly disparaged, for the case has been made abundantly that they lack proper evidential 

support. The tradition of challenging the evidential credentials of these endeavors is as old as 

these endeavors themselves. Recently, a leading role among many in these efforts has been taken 

by “CSICOP” (Committee for the Scientific Investigation of Paranormal Claims). It was founded 

in 1976 and later renamed as “CSI” (Committee for Skeptical Inquiry). Its major vehicle of 

publication is the magazine Skeptical Inquirer, whose pages have offered evidential scrutiny of 

extraordinary claims since the magazine’s inception in 1976 as The Zetetic. 

 The goal in this chapter is not once again to make the evidential case against these many 

pseudosciences. Rather, it is to see if their evidential collapses resulted from the mechanism 

sketched earlier. It would be impractical and redundant to trace the collapse in many of these 

sciences. One will suffice as an illustration. The practice of dowsing is well-suited to this 

analysis. For the practice itself is narrowly defined: a dowser walks over a candidate area of land, 

seeking underground water sources, or, in the original tradition, metallic ores. The dowser 

employs some instrument as a detector. A forked hazel twig is traditionally preferred. The 

detection event is unambiguous: the detector moves, clearly and sometimes even violently, in 

response to the water or metal ores sought. Finally, success or failure is unambiguously 

determinable. Either there is water present there, or not; or the sought metal ore is there, or not. 

There has been a long-standing debate over the effectiveness of dowsing. Its proponents are 

zealous in offering extraordinary tales of unlikely successes. Its critics are equally zealous in 

denouncing the practice as superstitious hokum. 

 
206 Another example of a variant logic is among conspiracy theorists. Many proceed under the 

assumption that nefarious hidden powers are systematically misleading the public for their own 

ends. The presumption of this fact leads the conspiracy theorists to an inverted inductive 

principle: strong evidence against their theory is actually evidence of the perfection of the 

deception by the hidden powers. Evidence “against” is really evidence “for.” 
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 The literature on dowsing is so massive that I make no effort to do it justice here. My 

goal is solely to investigate the competition between proponents and skeptics; and to show that 

an instability in the competition leads to the collapse of the scientific credibility of dowsing and 

the evidential dominance of its scientific skeptics. 

 Section 2 below briefly sketches the emergence of dowsing in the historical literature. 

Sections 3 to 6 recount the factual disputes surrounding dowsing: which physical theory if any 

governs the process (Section 3); how is the water sought by dowsers distributed geologically 

(Section 4); is there really any effect in the first place (Section 5); and finally could the effect be 

merely unconscious self-deception (Section 6). Section 7 reviews how proponents and skeptics 

end up presuming different inductive logics because they differ in their presumptions of the 

prevailing facts. Section 8 concludes by displaying the instability that leads to the evidential 

dominance of the skeptics.  

 We shall see that the competition unfolded in two levels: that of theory and of the 

phenomena. At the level of theory, in the sixteenth century, proponents and skeptics had 

positions of comparable strength. The physical interaction between metallic ores and the 

dowser’s rod fitted well enough with the qualitative understanding of electric and magnetic 

effects. With the continuing investigations of each field, theories of electricity and magnetism 

developed by the end of the nineteenth century into a quantitatively precise, candidate theory of 

everything. This dominant theory supported the inference that there is no physical effect in 

nature corresponding to dowsing. The proponents of dowsing had nothing to match. They were 

reduced to speculating that the effect derived from some sort of qualitatively described, psychic 

process. 

 At the level of the phenomena, proponents and skeptics were once again in comparable 

positions in the sixteenth century. Proponents could point to a well-established and apparently 

successful practice of dowsing. Skeptics could point to the uncomfortable fact that dowsing did 

not work for everyone. The discovery of the ideo-motor principle in the nineteenth century 

allowed skeptics to block the inference from the motion of the dowser’s rod to a real process of 

detection. The motion was due to unconscious muscular actions by the dowser. The proponents 

could offer no comparable account of why dowsing failed for some. Proponents could infer from 

the success of the later tradition of water dowsing to the reality of a real process of water 

detection. The inference was warranted by the assumption that underground water was sparsely 
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distributed an otherwise hard to locate. The inference lost its warrant with the recognition that 

underground water tables are widely dispersed and hard to miss in a random drilling. The failure 

of dowsers to detect their targets was established in the twentieth century for all but the most 

ardent believers by statistical analysis of well-crafted tests.  

 Finally, the successes of skeptics at the theoretical and phenomenological levels were 

mutually reinforcing. The theory deployed by the skeptics left no niche for the dowsers’ physical 

processes of detection. Using this as a warranting fact, skeptics could infer from the failure of 

dowsers in tests to the conclusion that any apparent dowsing successes in the phenomena must 

be spurious. Conversely the failure of dowsers in these tests supported the conclusion that the 

skeptical theorists’ had not somehow overlooked a theoretical process that could underpin 

dowsing. 

2. The Phenomenon Established 

 The modern tradition in dowsing seems to have started among the miners in Saxony and 

the Hartz mountains in what is now modern-day Germany. It was well established by the 

sixteenth century. From there it spread over Europe and beyond. The process presumed to create 

the detection was one of a direct physical interaction between underground metallic ores and the 

dowser’s instrument.  Since the interaction was, apparently, manifested routinely, it was 

reasonable to expect some general theoretical basis for it. That such an interaction was possible 

lay well within the then current state of physical theorizing. Barrett (1911, p. 169) suggested that 

a then common belief was that certain trees are attracted by metallic ores and droop over them. 

Agricola, who gives the first extended account of dowsing, reported the belief. Proponents of 

dowsing assert (1556, p. 39) “that movement of the twig is caused by the power of the veins and 

sometime this is so great that branches of trees growing near a vein are deflected toward it.” It 

would then only be a small step to detach a twig from the tree and use its attraction towards the 

metallic ores as a means of detection. 

 Such an attraction would seem little different from the attractions then known in 

electrostatic phenomena and magnetism. Agricola (1556, p. 39) likened the action to that of a 

magnet attracting iron. Proponents of dowsing, he reported, explain the failure of some people to 

succeed at dowsing through “some peculiarity of the individual, which hinders and impedes the 

power of the veins.” Agricola’s report reveals the rudimentary nature of the relevant science. For 
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he likened this explanation to the supposed power of garlic to weaken a magnet. “For a magnet 

smeared with garlic juice cannot attract iron…” Garlic has no such powers, of course, and that is 

a fact easily recovered by a simple test.207 

3. Disputes over the Theory of Dowsing Processes 

 At its inception, the effect of metallic ores on the dowser’s twig was likened to the effects 

of electrical and magnetic attraction. It was rudimentary to see that the dowsing effect was not 

mediated by then known magnetic and electric actions. Most ores sought by it were not magnetic 

and wooden twigs were not susceptible to known magnetic action. Then known electrical actions 

only persisted if the systems were carefully insulated. The theoretical question was then whether 

dowsing had revealed a physical process to be added to the known processes of magnetism, 

electricity and gravity. We shall see that, in the ensuing centuries, theories of electricity, 

magnetism and gravity grew in strength. Yet accounts of the mechanism of dowsing languished. 

They lagged in their attempts to copy the latest developments in these last theories. By the end of 

the nineteenth century there was no longer a theoretical niche in which dowsing processes could 

reside. There was no credible physical mechanism. We shall see that the most articulate of the 

proponents had to resort to clairvoyance and psychic processes as the foundation of dowsing. 

3.1 Effluvial Theory of Dowsing 

 Agricola reported no theoretical foundation for the phenomenon, beyond its similarity in 

some aspects to other processes like magnetic attraction. Here his level of reporting was 

comparable to that of Gilbert’s De Magnete, the influential treatise on electricity and magnetism 

published almost a half century later in 1600. Gilbert’s work was devoted to establishing the 

observed phenomena of magnetism and electricity and speculating on how the magnetism of the 

earth may be associated with celestial processes. There was no detailed proposal for the 

mechanism of magnetic and electric effects.208 

 
207 For a brief history of this curious notion, see May (1979). 
208 Contrary to some later reports (as given in Bynum, 1981, p. 111), the notion of “effluvia” 

seems to have no major role in De Magnete. I found only one use of the word in the volume 

(Gilbert, 1600, p. 78). 
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 Matters were soon to change. William Pryce’s (1778) treatise on mining argues strongly 

in favor of the efficacy of dowsing. It includes an extensive theory of the mechanism, formulated 

in terms of the effluvia proposed by the then popular corpuscular philosophy (p. 114): 

It [the dowsing rod] was much talked of in France towards the end of the 

seventeenth century; and the corpuscular philosophy was called in to account for it. 

The corpuscles, it was said, that rise from the Minerals, entering the rod, determine 

it to bow down, in order to render it parallel to the vertical lines which the effluvia 

describe in their rise. In effect the Mineral particles seem to be emitted from the 

earth: now the Virgula [dowsing rod] being of a light porous wood, gives an easy 

passage to those particles, which are very fine and subtle; the effluvia then driven 

forwards by those that follow them, and pressed at the same time by the atmosphere 

incumbent on them, are forced to enter the little interstices between the fibres of the 

wood, and by that effort they oblige it to incline, or dip down perpendicularly, to 

become parallel with the little columns which those vapours form in their rise. 

Pryce turned from this report to an extended narrative aimed at establishing the plausibility of 

this this theory of effluvia, drawing on the work of Robert Boyle. He gave no citation to Boyle’s 

work. Perhaps he intended Boyle’s (1673) energetic promotion and defense of effluvia. In any 

case, the effluvial theory described by Pryce bears a striking similarity to the effluvial theory of 

magnetism advocated by Descartes in his Principles of Philosophy. (1644, Part IV). Pryce 

concluded his defense of the effluvial theory with an analogy to magnetism. Effluvia from the 

earth can magnetize iron as shown by (p. 116): 

… the polarity and magnetism of an old Iron bar taken from a church window, 

where it has stood upright for many centuries, is proved to derive its virtue from the 

magnetick effluvia of the earth. 

We are encouraged to make the unspoken inference that effluvia from mineral ores can also act 

on dowsers’ twigs. 

 We may assess the equivocal status of the theory in the mid seventeenth century of 

Descartes and Boyle from Boyle’s own synoptic report on dowsing. He concluded in his essay 

“Of Un-succeeding Experiments” with the lament (1669, p. 92): “What to determine concerning 

the truth of this perplexing experiment, I confess not to know.” 
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3.2 Resistance by Skeptics 

 At the same time as proponents of dowsing were advancing theories of its operation, 

there was a persistent tradition of theoretical skepticism. Agricola’s earliest account of dowsing 

is often reported by proponents of dowsing. They regularly omit mention of his quite astute 

skepticism about the process. He noted how unlike dowsing was from the well-established 

processes of electric and magnetic attractions (p. 41): 

But, in truth, all those objects which are endowed with the power of attraction do 

not twist things in circles, but attract them directly to themselves; for instance, the 

magnet does not turn the iron, but draws it directly to itself, and amber rubbed until 

it is warm does not bend straws about, but simply draws them to itself. If the power 

of the veins were of a similar nature to that of the magnet and the amber, the twig 

would not so much twist as move once only, in a semi-circle, and be drawn directly 

to the vein… 

Dowsing was, Agricola noted, a theoretical anomaly in his time whose properties were unlike 

electricity and magnetism. That, of course, precluded it having an electrical or magnetic nature. 

 Since Pryce’s work was a practical manual for mining, we should not expect it to provide 

the most up to date science. The effluvial theory of dowsing that he reported represented the 

level of theorizing from a century before his writing. At the time of Pryce’s writing, physical 

theorizing had changed. Descartes’ qualitative speculations about effluvia had been replaced by 

quantitative measures of forces. Isaac Newton’s precise, quantitative account of gravity in his 

Principia of 1687 had supplanted Gilbert’s speculation on the role of magnetism in celestial 

motions and Descartes cosmic vortices. In 1785, seven years after Pryce’s work was published, 

Charles Coulomb presented seven memoires to the French Académie Royale des Sciences in 

which he reported his careful, quantitative measurements of electric forces. 

 These theoretical troubles for dowsing continued. As long as theories of electricity, 

magnetism, gravitation and other forces remained qualitative, dowsers could speculate that their 

twigs were responding to some combination of these forces within the standard scientific 

repertoire or some additional but analogous force. Over the course of the next hundred years, 

theories of electricity and magnetism matured into the precise electrodynamics of Maxwell, 

Hertz, Lorentz and others that is still taught today as classical electrodynamics. Their theories 

annexed other processes. Light, it turned out, was merely a propagating ripple in the 
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electromagnetic field. While the heat of gases was reduced to random motions of their 

molecules, heat radiation was found to be just another portion of the electromagnetic spectrum. 

 With this maturation, the theoretical niche in which dowsing speculation could flourish 

was gone. It was no longer plausible that metallic ores or water, buried underground, could exert 

some force on hazel twigs, while evading the now thorough and quantitatively precise 

measurements of the nineteenth century physicists. The skeptics, brandishing their mature theory 

of electrodynamics, were moving from success to success, from strength to strength, while the 

dowsers’ theories were in retreat and their theories successively weakened. 

3.3 Collapse of the Dowsing Theory 

 Undeterred, proponents of dowsing continued to urge some sort of electric or magnetic 

process as the basis of dowsing. By the later part of the nineteenth century, dowsing had become 

more prominent as a means of locating underground water. Latimer (1876, p. 26) urged it arose 

as an electrical effect: “… the friction of running waters underground produces an electric 

current which causes the switch to turn.” In evidence, he recounted no exacting measurements, 

no experiments with running water and no detailed computation within then developed theories 

of electromagnetism. Instead he wore wooden sandals, insulated electrically from the ground by 

four ink bottles, and attempted to dowse. So insulated, he noted (p. 18), his dowsing powers were 

extinguished. 

 While dowsing proponents persisted in these efforts, they became targets of derision by 

skeptical scientists. Charles Boys, the English experimental physicist, wrote a scathing review in 

Nature of B. Tompkins’ 1899 volume, The Theory of Water Finding by the Divining Rod: Its 

History, Method, Utility and Practice. Tompkins, Boys reported, attributed the efficacy of 

dowsing to electrical action and quoted him as asserting the “well-known scientific fact that 

water is a generator of electricity.” Elsewhere he reported Tompkins asserting that minerals and 

water emit effluvia. Tompkins followed the tradition of dowsers who claimed that their method 

could detect much more than metallic ores and water. Their detecting powers extended to 

precious metals, including gold, boundaries and murderers. To see if the rod is detecting gold, 

one needed only to put gold in each hand, whereupon the motion of the rod ceases. Boys then 

mocked Tompkins: 

We can only infer that the murderer can be discriminated by putting a murderer in 

each hand, but this is not stated. 
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His sobering conclusion is: 

But when they [dowsers] put forward preposterous “scientific explanations” such as 

I have extracted, it makes it very difficult not to come to the almost inevitable 

conclusion that the water-finder has no case… 

An anonymous reviewer of papers on dowsing by William Barrett and T. V. Holmes wasted no 

words on derision, but dismissed without discussion the possibility that successful dowsing 

results from electrical action. The reviewer wrote (Anon, 1898, p. 353): 

Moreover, as a physicist, he [Barrett] does not bring to this task any acquired 

training which is helpful in unravelling the problem; for the only point at which the 

divining rod touches physics--the assumption that electricity is its motive power--

may be dismissed without investigation. 

And still the dowsing theorists persisted. Another, later anonymous reviewer in Nature (Anon a, 

1940) gave a much more restrained dismissal of J. Cecil Maby and T. Bedford Franklin’s 1939 

The Physics of the Divining Rod. The volume had attempted to ground dowsing processes in 

something resembling current physical theory. The reviewer’s verdict was dry and devastating. 

    The theoretical section, by the second author, postulates some form of cosmic 

radiation resulting in electromagnetic waves of ten metres wave-length. There 

seems to be no direct evidence for such waves, and the author’s discussion of their 

polarization cannot be justified on our present knowledge 

    In presenting facts and theories to the scientific world, there is a well-accepted 

and necessary procedure. It is to be regretted that the authors have not followed this 

procedure, thus making the position of the scientific reviewer impossible. 

A convenient marker of the collapse of a physical theory of dowsing is provided by the physicist 

and psychic researcher William Barrett. He investigated dowsing extensively, convinced himself 

of its reality and provided a non-physical explanation of it in his 1911 volume Psychical 

Research (p. 183, his emphasis): 

The explanation, I believe, is not physical, but psychical. All the evidence points to 

the fact that the good dowser subconsciously possesses the faculty of clairvoyance, 

a supersensuous perceptive power such as we have described in a previous chapter. 

This gives rise to an instinctive, but not conscious, detection of the hidden object 

for which he is searching. 
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The rod, on this account, is then moved by unconscious muscular action. 

 Today, over a century later, when clairvoyance has secured no scientific credibility, we 

find this retreat to clairvoyance a damning concession of failure. It would not have been so for 

Barrett. He was a founder of both the British Society for Psychical Research and the American 

Society for Psychical Research. They advocated the reality of psychic phenomenon and 

promoted research into them. 

4. Dispute over Geology 

 Once the locus of dowsing had moved toward detection of underground water, a new 

dispute emerged. Just how is the underground water sought by dowsers distributed? The dowsers 

portrayed the water as commonly residing in flowing streams. For the flow of the water, as we 

saw above, is hypothesized to produce the electricity mediating in its detection. Latimer (1876, p. 

23-24) boasted of his prowess as a dowser in locating a stream of water just ten feet from a well 

that had run dry; and of locating a stream in a yard unfamiliar to him in the dark of night. 

 These findings of water are impressive only if the distribution of underground water is 

sparse and otherwise hard to locate. Critics, however, were quick to dispute this supposition. The 

anonymous reviewer, reported above, recorded Holmes, whose work was under review, as 

making the point clearly (Anon, 1898, pp. 355-56) 

He points out, in the first place, that the astonishment caused by the dowser’s 

success is largely due to the fact that the dowser himself, and usually those who 

employ him, always believe that water-finding is a matter of locating a “spring,” 

which it is possible to miss by a few inches, so that the achievement becomes as 

wonderful as finding a buried jar of ancient coins. But, as Mr. Holmes points out, 

while water sometimes runs in underground fissures, water bearing strata usually 

cover acres or miles, over any point in which a well may be successfully sunk. 

Similar points about the ease of finding water are made in an anonymously authored U. S. 

Geological Survey pamphlet of 1988 (Anon b, p. 10): 

The natural explanation of “successful” water dowsing is that in many areas water 

would be hard to miss. The dowser commonly implies that the spot indicated by the 

rod is the only one where water could be found, but this is not necessarily true. In a 
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region of adequate rainfall and favorable geology, it is difficult not to drill and find 

water! 

Thomas Riddick (1951) makes this same point and many more in a scathing review of a book 

written by Kenneth Roberts about the well-established dowser, Henry Gross. Riddick, a water-

works engineer, decried at length Roberts’ “apparent lack of even the most elementary 

knowledge of the principles of water-works engineering.” The title, “Dowsing is Nonsense,” 

does not hide the fury within the article. 

5. Dispute over the Phenomena 

5.1 The Early Dispute 

 While dowsers maintained a healthy and profitable profession, there are reports from all 

eras that many in the mining industry itself were skeptical of the reality of the dowsers’ detecting 

powers. Agricola (1556, p. 40) reported it as “in dispute and caus[ing] much dissention amongst 

miners.” Paracelsus was a contemporary of Agricola, both being born in 1493 or 1494. He gave a 

terse warning (as translated in Waite, 1894, p. 185): 

You must take particular care, however, not to let yourselves be beguiled by 

divinations obtained through uncertain arts. These are vain and misleading; and 

among the first of them are the divining rods, which have deceived many 

miners.*209 If they once point out rightly, they deceive ten or twenty times. 

The idea that we count both successes and failures in assessing dowsing is later refined greatly 

and is the basis of the twentieth century statistical tests of dowsing reported below. 

 A century later, Boyle (1669, p. 93) tell us: “Among the Miners themselves I found some 

made use of this Wand, and other laughed at it.” Even Pryce (1778, p. 116) had to concede that 

“many deny, or at least doubt.” Coupled with these doubts were strong suspicions that at least 

some dowsers were frauds and tricksters. Agricola (1556, p. 41) obliquely suggests deception in 

 
209 Editor’s footnote here: “Elsewhere Paracelsus says that it is faith which turns and directs the 

divinatory rod in the hand. --De Origine Marborum Invisibilium, Lib. I.” I thank Jennifer Whyte 

for alerting me to Paracelsus’ admonition. It must have been written prior to 1541, the year of his 

death. 
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calling successful dowsers “cunning manipulators” and pointing out that a forked twig of flexible 

wood “turns in a circle for any man wherever he stands.” 

 It is also striking that proponents of dowsing rely heavily on anecdotal evidence. Latimer 

(1876, p. 10) set out his agenda as “I think I have it in my power to demonstrate to you, 

principally from my own personal experiences—the relation of which I beg you to accept as 

strictly accurate…” The demonstration then proceeded through a sequence of boasts of grand 

dowsing successes from his own professional practice. A favorite anecdote is of Jacques Aymar 

who, in 1692, used his dowsing powers to solve a notorious murder case in Lyon. The accounts 

of the episode, while supposedly based on objective contemporary accounts, read like a lurid 

detective novel, with astonishing moments of high drama. Barrett (1911, p. 172) included it in 

his history, favorable to dowsing, but did briefly concede that Aymar was “subsequently 

somewhat discredited owing to his failure in some tests…” Barin-Gould (1877, pp. 60-78) 

related the story in all its lurid details. The account included Aymar’s final entrapment in a test 

that resulted in him being labeled an impostor and sent away “in disgrace.” Barin-Gould does 

not, however, find the exposé to be “conclusive evidence of imposture throughout his career.” 

 At least one commentator was not so credulous. In their colorful exposé of the folly of 

belief in dowsing, Ozanam and Montucla (1803, pp. 259-267) leave no doubt of their skepticism, 

calling dowsing “illusion, or philosophical quackery.” (pp. 259-60) Their exposé includes the 

tale of Aymar and suggests that his successful detection depended on ordinary, earlier knowledge 

of the murders.210 They conclude their account of Aymar’s fraud with a lament (p. 263): 

How could rational minds imagine that an action morally bad, could communicate 

any physical quality to the authors of it? That the murderer of a human being, or 

stolen money, should have an effect on the rod, rather than the person who had 

killed a sheep, or money merely displaced? Those who can believe in such reveries 

must be exceedingly weak. 

 
210 They report without giving the reasons “There is reason to think…” that Aymar had 

witnessed the murders. The remark may be more than a rhetorical flourish, since these are 

French authors writing in France closer in time to the events. 



 371 

5.2 The Modern Dispute 

 Such weakness persisted. At least as early as the late 19th century, dowsing proponents 

sought more objective experimental evidence of dowsing. Hansen (1982) is a review of the 

previous century of experimental research into dowsing. It provides an extensive synopsis of 

dowsing related experiments of various types. For example, the “biophysical” seek to establish a 

dowser’s sensitivity to electric and magnetic fields. The “physiological” seek to establish 

physiological responses of dowsers.  There are many of these tests. The bibliography is over four 

pages long. However, the results are inconclusive. Hansen’s final summary says (p. 362): 

In spite of the large number of investigations made into dowsing, its status remains 

unclear. This is largely a result of sloppy experimental procedure and or report 

writing. 

It is hard to see how a century of such inconclusive investigation is anything other than a 

damning indictment of dowsing’s physical reality. It is, supposedly, an effect so strong that it can 

break the dowsers’ twigs and lead them to pass out or vomit. Yet a century of careful 

experimentation fails to establish it. We understand Hansen’s curious conclusion best by 

recalling that the vehicle of publication for his review is the Journal of the Society for Psychical 

Research. 

 The strongest experimental evidence against dowsing came in the form of controlled 

trials, which have occurred sporadically over the past century. Gregory’s (1929) report collects 

and details the tests of dowsing then known to him, many of them unfavorable. Notable among 

them is a carefully constructed, blinded test organized by Sir John Cadman of the Anglo-Persian 

Oil Co. (now British Petroleum) at their experimental station at Meadhurst, Sudbury-on-Thames, 

England in 1925 (pp. 340-43). Dowsers were tested in their abilities to detect various 

combinations of buried deposits of water, oil or empty barrels. The result was failure, or, to quote 

Cadman “a complete fiasco”; “in no case were the diviners able to show any justification for 

their contention that they could discover such deposits.” 

 In another such test, the stage magician and parapsychology debunker, James Randi, 

organized a controlled trial of dowsing in Sydney, Australia, in July 1980. Dowsers were asked 
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to identify which of ten buried pipes contained running water. Despite the dowsers’ confidence, 

they performed merely at chance levels.211 

 The largest test of dowsing abilities was conducted in Germany with funding from a 1986 

grant of DM 400,000 from the government ministry, Bundesministerium für Forschung und 

Technologie. It was completed in 1990. Some 500 dowsers were subject to 10,000 individual 

tests. Most performed at chance levels. The few—43—who showed more promise were 

subjected to further tests in a barn, which is in German “Scheunen.” These tests came to be 

known as the “Scheunen experiment.” The dowsers were to locate a position on the barn’s 

second floor directly above a water pipe placed randomly on the floor below. The experimenters 

proclaimed successful demonstration of the reality of dowsing. A critic, however, found the 

experimenters’ statistical analysis so flawed as to reverse their conclusion. Enright (1995, p. 360) 

concluded: 

A reexamination of the data on which that conclusion was based, however, 

indicates that no persuasive evidence was obtained for a genuine, reproducible 

dowsing skill. The absence of reproducibility suggests that the entire research 

outcome can reasonably attributed to chance. 

The German investigators (Betz et al. 1996) disputed this damning appraisal and Enright (1996) 

reaffirmed it. 

 While the practice of dowsing and disputes over it persist today, establishment skepticism 

over it has been unequivocal and well-entrenched for over a century. A 1917 report by the 

United States Geological Survey responded to the “large number of inquiries received each year 

by the United States Geological Survey” over the efficacy of dowsing. The “Introductory Note” 

(pp. 5-6) was written by Oscar E Meinzer, who is widely recognized as the founding figure of 

modern groundwater hydrology. His verdict was unequivocal: 

It is doubtful whether so much investigation and discussion have been bestowed on 

any other subject with such absolute lack of positive results. It is difficult to see 

how for practical purposes the entire matter could be more thoroughly discredited… 

 
211 James Randi, “Australian Skeptics Divining Test,” 

https://www.skeptics.com.au/resources/articles/australian-skeptics-divining-test/ March 29, 

2020. 
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He goes on to suggest that part of the dowsing profession is populated by swindlers, who are 

deliberately defrauding people. He concluded: 

To all inquirers the United States Geological Survey therefore gives the advice not 

to expend any money for the services of any “water witch” or for the use or 

purchase of any machine or instrument devised for locating underground water or 

other minerals. 

6. The Ideo-motor Principle 

 This entrenched skeptical conclusion is that there is no real dowsing effect. This presents 

a problem for the skeptics. Some dowsers are, presumably, frauds and swindlers. However, there 

are many who sincerely believe they have the ability and have had the profound experience of 

their twig or rod moving as if under the influence of powerful external forces. Why else would 

these dowsers allow themselves to be subject to carefully controlled tests? 

 The skeptical response came in the codification of something long suspected: a sincere 

dowser may be unconsciously moving the twig. Ellis (1917, p. 16) noted the idea already 

advanced in the seventeenth century by Gaspard Schott and Athanasius Kirchner. The modern 

tradition was initiated by William Carpenter (1852). He argued that muscular motion may occur 

without our conscious volition and he dubbed the effect the “ideo-motor principle.” It explains, 

he assured us, “numerous phenomena which may have been a source of perplexity…” They 

include (p. 153, Carpenter’s emphasis): 

… the movements of the “divining rod,” and the vibration of bodies suspended 

from the finger; both which have been clearly proved to depend on the state of 

expectant attention on the part of the performer, his Will being temporarily 

withdrawn from control over his muscles by the state of abstraction to which his 

mind is given up, and the anticipation of a given result being the stimulus which 

directly and involuntarily prompts the muscular movements that produce it. 

This possibility had an immediate application in England in the mid nineteenth century when 

interest in spiritualism was growing. Participants in séances were startled to find the table under 

their hands moving, while none were consciously moving it. Michael Faraday, then an eminent 

experimental scientist, devised a simple test. He placed stacks of cardboard and other materials 

under the hands of the people resting on the table in the séance. The stacks were so devised that 
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they would respond differently according to whether the sitters’ hands were being dragged by a 

table that moved first, or whether their hands moved first and pushed the table. The latter case 

was demonstrated unequivocally. Faraday reported his results in a letter to the London Times, 

June 30, 1853.212 

 This ideo-motor principle or just the idea of unconscious movement enabled skeptics to 

account for how sincere dowsers might nonetheless find their twigs moving, as if under some 

external power. It also explained why sincere dowsers were so successful in controlled trials 

when they knew where the target was, but failed when they were blind to it. Indeed, it could even 

account for some of the limited successes of dowsers. For, as is often noted, there are ordinary 

clues above ground that a dowser may unwittingly discern. So, Gregory (1928, p. 331) 

concluded: 

Hence a man going over a tract of ground may notice signs of water unconsciously, 

and some slight mental action may cause the twitching of a finger and a jerk of the 

rod. While some dowsers may be deliberate frauds, and others may be duped by 

their vanity, many of the best dowsers probably act by their dissociated mental 

activities. 

The flexibility of the ideo-motor principle also proved to be useful to proponents of dowsing. 

When it had become increasing clear that dowsing did not operate by familiar physical processes 

such as electricity and magnetism, we saw above that Barrett (1911, p. 183) resorted to 

clairvoyance as the active mechanism. But how might a clairvoyant thought be known by the 

dowser’s twig? Unconscious muscular movement by the dowser transmits it, Barrett concluded. 

7. The Diverging Inductive Logics 

 The preceding sections have recounted the dispute among proponents and skeptics of 

dowsing over which are the facts governing dowsing. According to the material theory of 

induction, different facts will support different inductive logics. Since these differences among 

 
212 Presumably Faraday knew of Carpenter’s proposal since Faraday was an active contributor to 

the same volume of the Proceedings as the one in which Carpenter’s paper appeared. For an 

account of the origin and development of the idea of ideo-motor action, see Hyman (1999). 
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the facts proposed and presumed by each group are large, we should expect and will find these 

differences reflected in differences in their inductive inferences. 

 The easiest to see arises from differences in views over the facts of the geological 

distribution of the water sought by dowsers. If one believes with the dowsers that underground 

water is distributed sparsely in veins, then one will infer that a dowser’s successful prediction of 

water provides good inductive support for the efficacy of dowsing. For success, if dowsing were 

ineffective, would be unlikely. If, however, one believes with skeptics that water is often 

distributed broadly in readily accessible water tables, then one will find a successful dowser’s 

prediction of water to be evidentially inconsequential. The success is assured independently of 

any special powers of the dowser. 

 A richer divergence in the inductive logics derives from differences over whether there is 

a real physical process directly connecting the dowser’s target and the movement of the dowser’s 

twig. If one believes with the mainstream of dowsers that there is such a process, then a dowser’s 

success is expected and provides some additional support for facts already believed, the efficacy 

of dowsing. The problem cases are those in which dowsing fails. In that circumstance, under this 

logic, we have evidence for a secondary disturbing process or other confounding factor resulting 

in the failure. The research agenda is to find it. We have seen already that such failures might be 

explained by proponents of dowsing in a way familiar even to modern parapsychologists: in 

Agricola’s (1556, p. 39) words “some peculiarity of the individual, which hinders and impedes 

the power of the veins.” 

 If, however, one believes with the skeptics that no real physical process directly connects 

the dowser’s target and the movement of the dowser’s twig, then matters are exactly reversed. 

The failure of a dowser is expected and provides some additional support for facts already 

believed, the inefficacy of dowsing. The successes are the problem cases. They are evidence for 

some secondary process that emulates successful dowsing. The research agenda is to find it. 

Perhaps the dowser unconsciously reacted to ordinary signs of the target; or success was assured 

by the prevalence of water; or the reports of success are exaggerated or heavily selected. 

 These last remarks pertain just to the beliefs of the two sides over which are the 

prevailing facts that thus which are the appropriate inductive inferences. Of course, at most one 

of these logics can be applied correctly to dowsing. That one logic is determined by which are 

the facts actually prevailing over dowsing. 
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8. Conclusion: The Inductive Instability 

 We can now summarize the inductive instability that led to the collapse of the credibility 

of dowsing and the evidential dominance of the skeptics. Initially, when the practice first 

emerged in the sixteenth century, neither proponents nor skeptics could claim a decisive 

advantage. If anything, skeptics were at a striking disadvantage. For dowsing was an established 

practice. Its operation was directly visible in the unambiguous motions of the dowsers’ twigs; 

and there was a financially quite successful profession of dowsers serving the mining industry. 

What followed was a steady stream of self-reinforcing victories by the skeptics that so weakened 

the dowsers’ claims that they lost scientific credibility. 

 As far as the observed reality of the process itself was concerned, the evidential case was 

quite unstable, at least in the shorter term. The successes of dowsers strengthened the dowsers’ 

case and weakened the skeptics. Correspondingly, the failures reversed these judgments. These 

failures were a concern for dowsers from the start. For there were always skeptics who suspected 

self-deception and even dishonesty by the dowsers. An enduring history of failures is more 

damaging to the dowsers than the skeptics. For the dowsers make the positive claim of the 

existence of a definite process. Yet they prove unable to delineate the precise conditions under 

which that process is guaranteed to appear. Pryce, who championed the efficacy of dowsing, 

curiously had to concede that he himself was unable to dowse (1778, p. 116): 

As many deny, or at least doubt, the attributed properties of the divining rod, I shall 

not take upon me, singly to oppose the general opinion, although I am well 

convinced of its absolute and improveable virtues. It does not become me to decide 

upon so controvertible a point; particularly, as from my natural constitution of mind 

and body, I am almost incapable of co-operating with its influence; and, therefore, 

cannot, of my own knowledge and experience, produce satisfactory proofs of its 

value and excellence. 
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That is troublesome for an effect that was supposedly akin to the reliable processes of magnetism 

and electricity. The persistence of these failures over the centuries must erode the strength of 

support for dowsing.213 

 The identification of ideo-motor effects in the nineteenth century, gave a new advantage 

to the skeptics at the expense of the dowsers. Pryce had emphasized the honesty and reliability of 

those giving favorable observational reports of dowsing. Pryce writes of one (1778, p. 116): 

… my worthy friend Mr. William Cookworthy, of Plymouth, a man, not less 

esteemed for his refined sense and unimpeachable veracity, than for his chemical 

abilities. 

Just as the honesty of this observer weighed favorably upon Pryce, so also does the sincerity and 

honesty of at least some of the dowsers who appear to practice successfully. This part of the case 

for dowsing was now eliminated. Ideo-motor effects gave skeptics a serviceable account of the 

illusion of the effectiveness of dowsing. The ideo-motor effects were reproducible reliably. The 

effect would be present just when the agent knew the targeted answer. 

 Finally failures of controlled trials of dowsing completed the experimental side of the 

skeptics’ case. 

 In parallel with these developments, the strengthening of theories of magnetism, 

electricity, gravitation and more left no theoretical niche for the physical processes that would 

have to mediate in dowsing, if the effect was a real one. The process unfolded in an instability in 

which successes by skeptics strengthened their case, while weakening that of the dowsers. That 

is, as theories of electricity, magnetism and other physical forces advanced, the theoretical niche 

available for the physical basis of dowsing contracted. The dowsing theorists were perpetually 

retreating and shifting their theoretical ground with yet another speculation. Meinzer gave an 

acerbic appraisal (Ellis, 1917, p. 5): 

A favorite trick for appealing to uneducated persons and yet making specific 

disproof impossible is to give as the working principle of such a [dowsing] device 

 
213 Here we might compare their continuing difficulties with the comparable problem faced by 

proponents of cold fusion to produce the effect reliably in the laboratory. See Chapter 4, 

“Replicability of Experiment,” Section 5, in The Material Theory of Induction. 



 378 

some newly discovered and vaguely understood phenomenon, as, for example, 

radioactivity. 

Dowsers repeatedly retreated to speculations within existing theories that fell far short of 

professional standards and then finally to suppositions of psychic effects. 

 These two observational and theoretical tracks were also mutually reinforcing. When 

observational or experimental tests fail to manifest an effect, there is always some possibility that 

a different set of conditions might nonetheless produce it. The skeptics could dismiss this 

possibility by pointing to the lack of a theoretical niche in known physics for processes that 

could mediate in dowsing. The skeptical theorists, however, might worry that their theories had 

failed to probe all the material processes in their domain of investigation. These theorists could 

reassure themselves that they had not missed some novel process at work in dowsing by pointing 

to the failure of objective testing to discover any such process. 

 In sum, the early viability of both proponents and skeptics’ position was unstable under 

further investigation. As those investigations proceeded, on the experimental and theoretical 

tracks, they favored the skeptics. The investigations reinforced each other, accelerating the 

skeptics’ advantage and leading to their evidential dominance. 
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Stock Market Prediction: When Inductive Logics Compete 

1. Introduction 

 This chapter continues the investigations of Chapters 4 and 13 into the possibility that a 

single body of evidence might support competing theories equally well. That possibility is 

precluded, it was argued, by an instability in the competition among rival theories. As long as the 

evidence is pursued sufficiently, that instability will lead to one theory prevailing over its rival. 

A small advantage gained from evidence by one theory amplifies its inductive powers at the 

expense of the rival. This amplification leads to an acceleration of the gains of that theory against 

its rival and speeds the latter’s demise. This process can be completed quite quickly. The 

competition between dowsers and their skeptics of the last chapter was exceptional in its slow 

pace. The stability of our mature sciences arises from the repeated elimination of rivals by this 

process. Many outcomes of this process fill most of our present science. 

 This chapter provides an illustration, occurring now, of an otherwise rarer and enduring 

competition of theories and their associated inductive logics. The competition has endured over 

decades and shows no sign of a speedy resolution. It arises through efforts to predict the changes 

in prices of stocks in the stock market. The competition is relatively easy to assess, since the 

predictions are generally unambiguous and their successes or failures soon evident. Either the 

stock price went up as predicted, or it did not. 

 Four systems of prediction will be described. Each is presently in vogue and each has a 

history extending over many decades. Each is, in effect, an inductive logic, for each uses past 

stock performance and related facts to discern which among many future possibilities are more 

likely. The four systems to be discussed are: 

• Fundamental analysis 

• Technical analysis 

• Random walk/Efficient market analysis 

• Fractal/scale free analysis 
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They are sketched in Sections 2 below. Since each of these systems has spawned evolving 

research programs of great complexity, a rudimentary sketch of each is all that is possible here. 

Each sketch will seek only to indicate the ideas that motivated the system and its founding 

hypothesis in its simplest and original form. That, however, will be sufficient for our purposes. 

For such sketches provide enough to illustrate the differences between the systems and the 

dynamics of the competition between them.214 The mutual incompatibility of the different 

systems is widely recognized and manifests in repeated attempts by proponents of each system to 

impugn the others. A representative sample of such cross-system criticism is collected in 

Sections 3. For our purposes, the important point is that the criticism focuses on proposing facts 

troublesome for the competition. This is how the material theory of induction dictates that 

differences among systems are to be resolved: it is by further factual investigation. A concluding 

Section 4 summarizes general features of the competition and how the factual investigations 

proposed could drive the field towards a single inductive logic if only they were pursued. 

2. The Systems 

 Multiple systems of inductive logic are possible, temporarily. This is a natural artifact of 

the way these systems are constructed. Each is based on founding propositions that warrant the 

logic’s inferences. We shall see in the examples of stock market prediction below that these 

founding propositions are introduced initially as hypotheses without full inductive support. The 

expectation of proponents of each system is that this support will eventually accrue. Until this 

happens, the systems will remain legitimately in conflict, while proponents of each seek the 

strong inductive support needed. 

2.1 Fundamental Analysis 

  This venerable approach is based on a simple idea. Each stock, it is supposed, has an 

intrinsic value. Often there will be discrepancies between the market price of the stock and its 

value. These discrepancies will not last. If you can identify a stock whose prices is well below its 

intrinsic value, then it can be purchased with the confidence that the price will rise, eventually. 

Correspondingly, a stock whose price is well above its intrinsic value would be a poor long-term 

 
214 For an engaging historical survey of the development of these systems, written by a 

philosopher of science, see Weatherall (2013). 
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investment, since its price will eventually fall. These last two sentences are predictions 

inductively supported by the founding hypothesis of fundamental analysis: 

Hypothesis of fundamental analysis: Each stock has an intrinsic value. Discrepancies 

between the intrinsic value and the market price of a stock will eventually be removed by 

price moves. 

This system has a rich pedigree. The work widely known as the “bible of value investing”215 is 

Graham and Dodd (2013). It was first published in 1934 and is now in its sixth edition. The 

legendary investor Warren Buffett endorsed the volume and its approach:216 

… I studied from Security Analysis while I was at Columbia University in 1950 and 

1951, when I had the extraordinary good luck to have Ben Graham and Dave Dodd 

as teachers. Together, the book and the men changed my life. 

On the utilitarian side, what I learned then became the bedrock upon which all of 

my investment and business decisions have been built… 

There is of course considerably more to fundamental analysis. Graham and Dodd is a work of 

766 pages. Perhaps the most delicate issue is the determination of the intrinsic value of a stock. It 

cannot merely be the market price on pain of trivializing the whole system of analysis. One 

important element will be the dividends paid by the stock. Others include less tangible judgments 

of the stability of the stock’s business model and its management’s acumen and abilities. 

 Fundamentalists make their predictions on the basis of an exhaustive examination of 

companies behind the stock. In this aspect, fundamental analysis employs a far larger body of 

evidence than the three remaining approaches discussed below. These latter approaches make 

their predictions solely on the basis of the history of past stock prices and volumes of trades. 

2.2 Technical Analysis (“Chartists”) 

 Technical analysis starts with an observation that can be made by any casual observer of 

a chart of stock prices over time: the line tracing the prices exhibits all sorts of interesting 

patterns, some of which appear to repeat. The core supposition made by technical analysts—

“chartists”—is that these patterns are sometimes signals that, properly interpreted, reveal to 

traders subsequent moves in stock prices. The origins of this type of analysis go back to Charles 

 
215 So reported by Seth Klarman in his preface to Graham and Dodd (2013, p.xiii). 
216 Preface to Graham and Dodd (2013, p. xi) 
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Dow in the late nineteenth century. This is the same Dow of the Dow Jones Industrial Average. 

The approach has been refined by many hands. A recent, authoritative exposition is Edwards, 

Magee and Bassetti (2019), which is the eleventh edition of a work first published in 1948.217 

 There are many suppositions underlying that approach. The editor and reviser of the 

seventh edition attributes to John Magee three principles (Edwards, Magee and Bassetti , 2019, 

p. xxxix): 

1. Stock prices tend to move in trends. 

2. Volume goes with the trends. 

3. A trend, once established, tends to continue in force. 

A primary goal of technical analysis is the identification in their charts of the signals indicating a 

reversal of a trend. These signals appear in a bewildering array of patterns in the charts that are 

given suggestive names, such as “head and shoulders,” “symmetrical triangles,” “the diamond” 

and many more. 

 The existence of these signaling formations is attributed to the behavior of traders 

reacting to shifts in the market, where this behavior is in turn explicated by an understanding of 

the traders’ psychology. A simple example is the existence of support and resistance levels, 

which appear as plateaus of constant price with time in the charts. A support arises when a surge 

in purchasing forms a plateau that halts a downward trend in prices. A resistance arises when a 

surge in selling forms a plateau that halts a rising trend. 

 Following the analysis of Edwards, Magee and Bassetti (2019, Ch. 13), support and 

resistance will arise at price levels where, in the past, there was a larger amount of trading. The 

reason lies with the psychology of the traders who were involved in these earlier trades. For 

example, traders may purchase stock at some price level, confident in its price rising. If, instead, 

the price rises and falls, traders who have continued to hold the stock may lose confidence in 

their purchase. When the price rises again and passes through the price at which these traders 

originally purchased, they would be tempted to sell since then they would have lost nothing on 

the trade, other than transaction costs. The resulting surge in selling would flood the market and 

 
217 Another version of technical analysis is the Elliot wave theory, popularized by Frost and 

Prechter (2017). It asserts that trader psychology produces nestled waves whose compound 

action comprises the movements of prices in the market. 
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temporarily suppress further price rises. That is, the price would be a resistance level. An 

inversion of this process could convert this same price level into a support level. If instead the 

traders grow more confident in the wisdom of the purchase, they might regret not initially 

purchasing more at the original price. They might be inclined to buy more of the stock when it 

fell in price to that original level. Then the surge in purchasing forms a support level. 

 A more elaborate pattern, prominent in technical analysis, is the “head and shoulders.” 

This consists of three peaks in succession in the charts. In its most characteristic form, the first 

and third peaks are of the same height and the second peak is higher. The overall shape is loosely 

like the silhouette of a person’s head and shoulders. Its appearance, we are told by Edwards, 

Magee and Bassetti (2019, p. 44) is common and it is, they assure us, “by all odds, the most 

reliable of the Major Reversal Patterns.” That is, we can be confident that the stock price will fall 

once this pattern arises. Their confidence is so high that they later report (p. 48): 

The odds are so overwhelmingly in favor of the downtrend continuing once a Head-

and-Shoulders Formation has been confirmed, it pays to believe the evidence of the 

chart no matter how much it may appear to be out of accord with the prevailing 

news or market psychology. 

As with support and resistance, this head and shoulders formation does not arise by chance. It is 

a product of the psychology of traders. Edwards, Magee and Bassetti (2019, pp. 43 - 44) describe 

a plausible scenario in which the formation would come about. They imagine a well-financed 

coterie that has purchased heavily in some stock. When it has risen to the price at which they 

plan to sell, they proceed to sell off their holdings hesitantly, so as not to precipitate a collapse in 

the stock’s price. In their telling of the scenario, the cautious stopping and starting of the selling 

happens in just the right way to produce the head and shoulders pattern. 

 The volume proceeds in this fashion in identifying a quite prodigious repertoire of 

patterns for traders to seek and use as signals of reversals in prices. Of course, none of the 

patterns is infallible. Every few pages, we are warned of “false moves” or “false signals” 

confounding the technical indicators. We can summarize the hypothesis that warrants the 

inferences of this mode of analysis as: 

Hypothesis of technical analysis: The psychology of market traders leads to trading 

behavior that imprints distinctive patterns on the changes in time of prices and volumes. 
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The unique association of the earlier and later part of the pattern is strong enough that the 

presence of the former predicts the coming of the latter. 

2.3 Random Walks 

 The two analytic systems reviewed so far are optimistic. If traders use the right system, 

each system maintains, the traders’ predictions can lead them to profitable trading. Another 

approach is pessimistic. Traders, this approach says, are engaged in fierce competition with one 

another. Any usable indication of a market move is seized and exploited to the full. This happens 

so rapidly that any actionable indication has already been anticipated and the move it foretold is 

already built into the present price of a stock, at least as far as ordinary investors are concerned. 

Chance alone governs price movements. It is just self-deception to think that one can beat the 

averages of market behavior by sophisticated techniques of prediction. The best one can do is to 

follow a “buy and hold” strategy that minimizes trading expenses and let one’s fortunes rise with 

the market as a whole. 

 Here is how Paul Samuelson (1965, p. 41) put it, posing it as an enigma that introduced a 

famous paper: 

“In competitive markets, there is a buyer for every seller. If one could be sure that a 

price will rise, it would have already risen.” Arguments like this are used to deduce 

that competitive prices must display price changes over time, [formula], that 

perform a random walk with no predictable bias. 

The mathematically precise statement of this form of predictive pessimism is the random walk 

model. It asserts that stock prices meander in a manner akin to the process that Einstein in 1905 

predicted for small particles suspended in a liquid. These small particles are impacted on all sides 

by many fluid molecules. The accumulated effect of very many of these uncorrelated collisions 

is the jiggling known as Brownian motion. It is the best-known example in science of a random 

walk. The proposal is that stock market prices execute a random walk about their mean values. 

Most importantly, whether the stock will momentarily rise or fall is statistically independent of 

what it did moments before. 

 The random walk hypothesis for markets was first proposed by Bachelier (1900) prior to 

Einstein’s work of 1905. A more recent version is elaborated in Fama (1965). The conditions 

needed for prices to exhibit a random walk are well-known. Drawing on Fama (1965, pp. 40-41), 

they are: 
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Hypothesis of the random walk: price changes are governed by a probability 

distribution with a finite mean and variance; and successive price changes are 

probabilistically independent. 

The most significant predictions supported by the random walk model are negative. The best one 

can do predictively is to determine the probability distribution of price changes. An examination 

of the past history of changes in prices, no matter how thorough and extensive, can provide 

nothing more. It follows that all the indicators of technical analysis are predictively useless. 

 While the random walk model supports few positive predictions, there is one that has 

proven to be quite important. The conditions above for a random walk are sufficient to allow the 

application of the central limit theorem of probability theory to the accumulation of many price 

changes. That theorem tells us that, if we sum sufficiently many smaller price changes, the 

resulting accumulated price change conforms with a Gaussian or normal distribution. Once one 

knows the standard deviation “s” of the distribution, the range of probability changes in prices is 

well circumscribed. They will mass around the mean: 95.4% will on average lie within two 

standard deviations of the mean. The probability of larger changes diminishes exponentially, 

since the tail of the normal deviation is exponentially thin. Deviations of six sigma, “6s,” or 

more are vastly improbable. They arise with a probability of about 2 x 10-9. That is, they occur 

on average once in roughly 500 million changes.218 

2.4 The Efficient Market Hypothesis 

 The random walk hypothesis is customarily coupled with what is known as the “efficient 

market hypothesis.” It is the idea already sketched above that any usable indication of future 

price changes has already been reflected fully in the present price. Markets are efficient at 

exploiting all usable indications immediately, so that there are none left for ordinary investors to 

exploit. The efficient market hypothesis is commonly taken to be the grounding of the random 

walk model. We see it in the Samuelson’s enigma above. Burton Malkiel (2015) in his successful 

popularization. Random Walk Down Wall Street, writes favorably (preface) of the efficient 

market hypothesis. However he also portrays the hypothesis (p. 26) as an “obsfucation” of the 

 
218 You would be correct to wonder whether this prediction conforms with the stock market’s 

history of rarer but memorable crashes. This issue will be taken up in the next section. 
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random walk hypothesis that is deployed by academics who are attempting to parry critics of the 

random walk hypothesis. 

 His hesitation is well-justified, for the efficient market hypothesis is both imprecisely 

delimited and weaker logically than the random walk hypothesis. It cannot, by itself, sustain the 

random walk hypothesis. A significant imprecision lies in a failure to specify just which sorts of 

information can count as an indication of future price changes. Fama (1970, p. 383) identifies 

three candidates. If the information is merely that of the past history of prices, we have the 

“weak” form of the hypothesis. If the information includes all publicly available information, we 

have the “semi-strong” form. Finally the “strong” form applies when some monopolistic groups 

have access to all information relevant to price changes. Fama (1970, p. 384) seeks to give the 

hypothesis more precise expression in terms of the probabilistic expectations of prices over time. 

Roughly speaking, it asserts that the expected price of a security at a later time rises just by the 

increase expected on the best current information. It is immediately clear, as Fama shows (pp. 

386-87), than a condition on probabilistic expectations is weaker than the random walk 

hypothesis, for this latter hypothesis concerns the full probability distributions, and not just their 

expectations. To his critique, I add that the efficient market hypothesis, as commonly stated, is 

not necessarily a probabilistic hypothesis at all. It can be expressed for changes, stochastic or 

otherwise, that are not governed by a probability distribution. 

 These last considerations show that an efficient market is not sufficient to produce a 

random walk. It is also not necessary. For a random walk could also arise if traders were 

maximally inept and merely traded on idiosyncratic whims. 

2.5 Mandelbrot’s Fractals 

 The core supposition of this approach is that the charts recording changes in prices are 

self-similar under changes of time scale. The program of research associated with it is 

inseparable from the work of Benoit Mandelbrot, its chief architect and proponent. He is fond of 

telling heroic tales of his discovery (Mandelbrot, 1997, pp. 5-6, his emphasis): 

… I conceived in the late fifties a tool that was already mentioned, but deserves 

elaboration. I concluded that much in economics is self-affine; a simpler word is 

scaling. This notion is most important, and also most visual (hence closest to being 

self-explanatory), in the context of the financial charts. Folklore asserts that “all 

charts look the same.” For example, to inspect a chart from close by, then far away, 
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take the whole and diverse pieces of it, and resize each to the same horizontal 

format known to photographers as “landscape.” Two renormalized charts are never 

identical, of course, but the folklore asserts that they do not differ in kind. The 

scholarly term for “resize” is to "renormalize" by performing an "affinity," which 

motivated me in 1977 to coin the term “self-affinity.” … The scholarly term for “to 

look alike” is “to remain statistically invariant by dilation or reduction.” 

Self-similarity is the defining characteristic of fractal curves, such as the Koch snowflake. Each 

part is made of smaller parts that are scaled-down versions of the larger part; and so on at all 

levels. Thus that a curve is self-similar is a powerful constraint. A casual reader, however, may 

overlook that self-similarity is not quite so restrictive in the financial application. As the remark 

above allows, the similarity is not exact as with the Koch snowflake. It is only statistical, that is, 

there is a similarity in the probabilistic distributions only, not the curve’s specific shapes, which 

means that the curves merely “look alike” at different scales. 

 We best capture the founding hypothesis by quoting what Mandelbrot calls the “property 

assumed as ‘axiom’” (p. 2) for Mandelbrot (1997), a collection of his papers in fractal finance: 

Hypothesis of Fractal Finance. “Starting from the rules that govern the variability 

of price at a certain scale of time, higher-frequency and lower-frequency variation is 

governed by the same rules, but acting faster or more slowly.” 

Its implementation is straightforward. Consider the probabilistic distribution of price changes 

over one day. That distribution is the same distribution as governs prices changes accumulated 

over a month; and again accumulated over a year. Since the overall magnitude of changes in the 

periods of a day, a month and year are different, we must linearly rescale the distribution in 

moving between these time periods so that the overall magnitudes align and a sameness of 

probabilistic distribution is recovered. Here “sameness” means “same analytic formula.” 

 As it happens, just this form of self-similarity is already manifested in the random walk 

model. Price changes over a large interval of time are just the sums of the changes over the 

smaller component intervals of time. If price changes in small intervals of time are independent 

and normally distributed with finite means and variances, then their distribution over the 

summed time interval will also be normal, but with a mean and variance that are each the sums 

of the means and of the variances of the distributions in the small time intervals. These 
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distributions scale in the sense that we can map any normal distribution into any other by suitable 

linear transformation of its variables. 

 As noted already above, the central limit theorem of probability theory tells us that this 

scaling behavior will eventually emerge as the limiting behavior on sufficiently large time scales 

even when the probability distributions over the smaller time intervals are not normal. It will 

happen as long as the probability distributions over the smaller time intervals are independent 

and have finite means and variances (and, informally speaking, no one time interval makes a 

disproportionately large contribution to the sum). 

 The essential observation Mandelbrot added to this already existing self-similarity is that 

a Gaussian or normally distributed random walk is not the only distribution satisfying self-

similarity. His early (1963) outlined a generalization of this self-scaling behavior that arises 

when the distributions of price changes in the small time intervals are no longer required to have 

finite means or variances. The most general class of distributions that exhibit the self-similarity 

under summation of the distributions were called by Mandelbrot “stable Paretian.” That is, if the 

distribution of price changes in the smaller time intervals is stable Paretian, then so also is the 

distribution of price changes over the summed time interval. These distributions also sustain a 

generalized version of the central limit theorem. The theorem is as stated above. However, we 

can drop the requirement that the component distributions have finite means and variances, but 

we retain their independence. What we are assured to approach in the limit of large sums is a 

stable Paretian distribution, which includes normal distributions as a special case. So once again 

we should expect self-similar behavior to be approached over suitably long time periods.219 

 Mandelbrot’s contribution was not the identification of this extended class of 

distributions and the associated extension of the central limit theorem. As Mandelbrot reported, 

all this work was already done by the French mathematician Paul Lévy some forty years earlier. 

Rather it was to recognize that the non-normal members of the Paretian class were empirically 

better suited to market behavior. As we saw above, the normal distribution makes large jumps in 

prices extremely improbable. Yet such jumps are quite common in real markets. The non-normal 

members of the distribution are distinctive in having “fat tails.” That is, they assign considerably 

 
219 For a contemporary development of Mandelbrot’s analysis, see Fama (1965). A more recent 

analysis of the generalized central limit theorem is in Ibe (2013, Ch. 8). 
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larger probabilities than normal distributions to large deviations from the mean. These deviations 

are the jumps. More specifically, the non-normal Paretian distributions over some real variable U 

all approach asymptotically a simple power law distribution for large U. That is, when U is large, 

the probability of an outcome u greater than U is well-approximated by 

P(u) = C u-a, for C a constant and 0<a<2. As the variable u increases, any of these power laws 

decays towards zero slower than the exponential decay of any normal distribution. 

 Mandelbrot (1997, pp. 29-30) glosses the “scaling” behavior of this tail distribution by 

noting that if we were to learn that U must be at least equal to w, conditioning the original 

distribution on this fact yields the same power law distribution, but now with an altered constant 

C. This seems to me a weak expression of the scaling behavior, which is better captured by the 

generalized central limit theorem. We can forgive Mandelbrot for not giving more mathematical 

details in a semi-popular presentation, since the details become burdensome rapidly. There is no 

explicit expression for the Paretian class of distributions. They are best characterized by an 

explicit formula for the characteristic functions of the distributions. 

 This introduction of Paretian distributions was the first step in a continuing program of 

research by Mandelbrot. Subsequent work introduced the possibility of various failures of 

independence of successive price movements, while still retaining the statistics of Paretian 

distributions with their fat tails. 

2.6 Random Walkers and Fractals Converge 

 The random walk theory and the fractal theory may appear to be distinct systems with 

different logics. That was the view Mandelbrot urged. He was already in (1963, p. 395) 

describing his work as “a radically new approach to the problem of price variation.” There were 

notable differences between Mandelbrot’s approach and that of the random walk theory at the 

outset. Mandelbrot denied two of the basic assumptions of the random walk theory: the finite 

variance of price changes and the independence of subsequent changes. As far as the actual 

predictive apparatus is concerned, the use of distributions with infinite variance and fat power 

law tails comprise the main substance of Mandelbrot’s deviation from the traditional random 

walk theory. The scaling hypothesis by itself is not strong enough to preclude the Gaussian 

random walk theory. Indeed the introduction of infinite variances and fat tailed distributions 

must be supported by observation of the market prices; and those observations might well suffice 

without the scaling hypothesis if our goal is merely the compact summary of the data. 
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 Viewed more broadly, the random walk theory and the fractal approach agree far more 

than they disagree. They share a statistical framework that presumes that prices are 

probabilistically distributed, that market analysis is the mathematical exploration of these 

distributions and that these distributions exhaust what the analyst can know. To a chartist, 

however, whose methods do not include traditional statistical analysis, the differences between 

the random walk theory and the fractal approach will appear to be mere fine-tuning of details in 

an analysis remote and alien to them. 

 More significantly for our purposes, these differences are diminishing. The approaches 

are converging. In the evolving literature surrounding random walks, empirical investigation is to 

decide whether the variances are finite and whether there are failures of independence. It now 

seems to be well established that independence does fail. That recognition is reflected in the 

provocative title of Lo and Mackinlay (1999), A Non-Random Walk Down Wall Street. The title 

is hyperbolic since it turns out that the failures of independence are so slight as not to be 

serviceable as predictive tools for ordinary traders.  

 The mainstream of statistical analysts seems to regard Mandelbrot’s contribution as mere 

refinement, as is apparent from the papers collected in Lo and MacKinlay (1999). The word 

“fractal” appears once (p. 15) and Mandelbrot’s work is addressed, but it is treated as an 

interesting proposal among others for extensions of the probability distributions and 

dependencies of the mainstream analysis. The words “fractal” or “Mandelbrot” do not appear in 

Malkiel (2015). 

 Mandelbrot for his part accepts the core lesson of the random walk theory, the 

unpredictability of price changes. However, Mandelbrot expands this predictive pessimism with 

a warning that price changes may be far larger than the traditional random walker expects. 

Mandelbrot (2004, p.6) writes:220 

… I agree with the orthodox economist that stock prices are probably not 

predictable in any useful sense of the term. But the risk certainly does follow 

patterns that can be expressed mathematically and can be modeled on a computer. 

Thus, my research could help people avoid losing as much money as they do, 

through foolhardy underestimation of the risk of ruin. 

 
220 A similar remark is in Mandelbrot (1997, p.9). 
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3. The Systems Compete 

 The competition among these systems is unsustainable in the longer term if factual 

investigations continue and the full import of evidence is respected. The competition may be 

resolved gently if systems in competition migrate towards one another. This gentle resolution has 

brought the random walk theory and fractal analysis into sufficient agreement that they can be 

regarded as one system. However, if the proponents of competing systems remain intransigent, 

then, I have argued, a thorough factual investigation will lead to at most one ascending while the 

others fail. 

 Proponents of each system do recognize the threat posed by the other systems and have 

put some effort in impugning their competitors. Here I will collect criticisms levied by 

proponents of each system against their competitors’ systems. The main point for our purposes is 

that the criticisms all depend on proposing facts whose truth would undermine the competitors’ 

theories. They are most damaging when the proposed facts directly contradict the founding 

hypotheses of each system. A threat to these founding hypotheses is a threat to the predictive 

capacity of the associated view. That is, it is a threat to the inductive logic embodied by the 

predictive strategies of the strategies. 

 This battle of the foundational facts makes clear one of the principal points of this 

chapter: that the conflict among the systems is to be resolved by factual investigation, as opposed 

to higher level examination of abstract principles of inductive inference. Were the facts proposed 

below by various proponents to be investigated thoroughly and a final decision on each taken, 

that would suffice to leave viable at most one of the systems. The path to this resolution is open. 

Whether it is taken depends on many factors that go beyond the inductive logic. Is there 

sufficient motivation by investigators to carry out the requisite studies thoroughly enough to 

achieve inescapable results? Will proponents of an impugned system accept the results? The 

persistence of the competing programs indicates that these factors have slowed or even stalled 

progress towards the final decision. 

 Here is a sample of the threats mounted against each system. 

3.1 Against Fundamental Analysis 

 Malkiel, the most visible proponent of random walk theory lists three problems for 

fundamental analysis (2015, pp. 128-29, my emphasis): 
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Despite its plausibility and scientific appearance, there are three potential flaws in 

this type of analysis. 

First, the information and analysis may be incorrect. 

Second, the security analyst's estimate of “value” may be faulty. 

Third, the market may not correct its “mistake,” and the stock price may not 

converge to its value estimate. 

He proceeds to elaborate each. Most striking is his disparaging of the very idea of value 

It is virtually impossible to translate the specific estimates of growth into a single 

estimate of intrinsic value. Indeed, attempts to obtain a measure of fundamental 

value may be an unrewarding search for a will-o’-the-wisp. 

Edwards, Magee and Bassetti (2019), the authoritative source in technical analysis, levels quite 

similar criticism against fundamental analysis. They reiterate Malkiel’s concern about poor 

information (p.4): “the bulk of the statistics the fundamentalists study are past history, already 

out of date and sterile because the market is not interested in the past or even in the present.” 

Using an examination of companies listed in the Dow Jones Industrial Average, they also argue 

(p. 6) that high earnings are a poor indicator of which stock prices will grow most. Next, they 

assail the idea of a practically accessible notion of value, urging (p.4) that “…it is futile to assign 

an intrinsic value to a stock certificate.” The claim is reinforced by recounting wild gyrations in 

the price of a share of U. S. Steel over nearly two decades, from 1929 to 1947. Finally, they 

doubt that price movements are connected with the factual bases used by fundamentalists to 

determine value. They assert (p.6): “The [fundamental] analyst assumes causality between 

external events and market movements, a concept which is almost certainly false.” Mandelbrot’s 

(1997, p.8) critique echoes all these concerns: “In the real world, causes are usually obscure. 

Critical information is often unknown or unknowable…”  

 This combined critique assails the essential elements of the founding hypothesis of 

fundamental analysis. Intrinsic value is not in practice ascertainable reliably; and market 

dynamics may not or will not drive prices towards intrinsic value. 

 The claims of this critique are factual matters. The truth of the founding hypothesis of 

fundamental analysis can be established empirically. All fundamental analysts need to display is 

a successful record of identifying intrinsic values to which stock prices eventually converge.  
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3.2 Against Technical Analysis 

  Of all approaches, technical analysis has been subject to the most severe criticism, at 

times bordering on derision.221 Two factors draw this unflattering appraisal. First, to anyone with 

a modicum of statistical sophistication, the methods used to ascertain the chartists’ patterns are 

woefully naïve. It is all too easy to glance at randomness and see order. We do easily see faces in 

the clouds. In a preface to Edwards, Magee and Bassetti (2019, p. xxxv), Richard McDermott, 

President of John Magee, Inc., reports the great man’s response to this concern: 

To the random walker, who once confronted John [Magee] with the statement that 

there was no predictable behavior on Wall Street, John’s reply was classic. He said, 

“You fellows rely too heavily on your computers. The best computer ever designed 

is still the human brain. Theoreticians try to simulate stock market behavior, and, 

failing to do so with any degree of predictability, declare that a journey through the 

stock market is a random walk. Isn’t it equally possible that the programs simply 

aren’t sensitive enough or the computers strong enough to successfully simulate the 

thought process of the human brain?” Then John would walk over to his bin of 

charts, pull out a favorite, and show it to the random walker. There it was—spike 

up, heavy volume; consolidation, light volume; spike up again, heavy volume. A 

third time. A fourth time. A beautifully symmetrical chart, moving ahead in a well-

defined trend channel, volume moving with price. “Do you really believe that these 

patterns are random?” John would ask, already knowing the answer. 

 We would normally pass in silence over such an abysmal display of ignorance of the basics of 

statistical analysis. However, the second factor that encourages circulation of the unflattering 

appraisal is that the methods of technical analysis are pervasive in the financial world. 

Everywhere we find charts annotated in the language of support and resistance levels, breakouts 

and more. There is a pretense of learned insight that is, in practice, resting on novice statistical 

blunders. Yet these instruments are used routinely to make decisions affecting the financial fates 

 
221 Ridicule is a staple in popular literature. See for example Anand Chokkavelu, “Technical 

Analysis is stupid,” at the Motley Fool website, 

https://www.fool.com/investing/value/2010/04/30/technical-analysis-is-stupid.aspx It opens with 

the quote: “Stupid is as stupid does.” – Forrest Gump. 
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of many people. Thus, the long-standing derision is well-earned. Long ago, in their original text, 

Graham and Dodd (1934) reported (p. 608) “many [unnamed] sceptics” who dismiss the analysis 

as “akin to astrology or necromancy.” Mandelbrot (1997, p. 9) had no need of anonymity and 

labeled technical analysis “financial astrology.” 

 A footnote in Graham and Dodd’s original text also report one of the earliest versions I 

have found of a much-repeated rebuke. The idea is that we can fabricate charts using 

randomizers that now spuriously manifest the patterns of the technical analysts but without any 

predictive import. They write (p. 608):222 

Apropos of this attitude, we refer to a statement made by Frederick R. Macaulay at 

a meeting of the American Statistical Association in 1925, to the effect that he had 

plotted the results of tossing a coin several thousand times (heads = “one point up”; 

tails = “one point down) and had thereby obtained a graph resembling in all respects 

the typical stock chart--with resistance points, trend lines, double tops, areas of 

accumulation, etc. Since this graph could not possibly hold any clue as to the future 

sequence of heads or tails, there was a rather strong inference that stock charts are 

equally valueless. Mr. Macaulay's remarks were summarized in Journal of the 

American Statistical Association, Vol. 20, p. 248, June 1925. 

The rebuke appears often in later literature. Malkiel (2015, pp. 137-38) reports asking his 

students to construct such a chart by coin flipping. 

 Entertaining as such gimmicks may be, they do not really demonstrate the failure of 

technical analysis. If we are to hold the chartists to high statistical standard, we should also apply 

it to ourselves. To conclude that, on a superficial scan, random data may manifest the same 

patterns as the chartists does not prove them wrong. More cautious analysis is needed. Arditti 

and McCullough (1978) found that technical analysts could not pick apart real from randomly 

generated charts beyond chance levels in a well-constructed test.  However Hasanhodzic et al. 

(2010) devised a game in which participants sought to pick real from fabricated charts. The 

 
222 The journal article cited is an anonymous report of an April 17, 1925, dinner meeting of the 

American Statistical Association. Graham and Dodd must be reporting from another source, 

perhaps their own attendance, since the journal text is briefer and uses dice as the randomizers 

not coin tosses. 
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players were given immediate feedback on the correctness of their judgments. The training was 

effective. They quickly learned to pick the real from the fabricated charts. 

 All the examination of fabricated charts can do is to cast doubt on the methods chartists 

use to arrive at their results. A poor method can still yield a correct result. It might just be that 

the psychology of traders does imprint identifiable patterns on the charts, as the founding 

hypothesis asserts. The decisive question to answer is whether the methods work. Here Graham 

and Dodd (1934, p. 609) had already leveled a two-part critique.  As an historical matter, they 

report, the chartists have failed to find a method of prediction that works. “There is no generally 

known method of chart reading which has been continuously successful for a long period of 

time.” This historical report is coupled with a more principled critique: there can be no such 

method, since it would be self-defeating: “If it were known, it would be speedily adopted by 

numberless traders. This very following would bring its usefulness to an end.” 

 Here the fundamentalists, Graham and Dodd, offer the same critique as given later by the 

random walk proponent, Malkiel. He reported empirical studies that show the chartist’s patterns 

lack predictive power (such as on Malkiel, 2015, p. 114). His principal criticism, however, is the 

same efficient-market argument as offered by Graham and Dodd: the chartists’ methods cannot 

work since they are undermine themselves (2015, pp. 156-57): 

Any successful technical scheme must ultimately be self-defeating. The 

moment I realize that prices will be higher after New Year's Day than they are 

before Christmas, I will start buying before Christmas ever comes around. If people 

know a stock will go up tomorrow, you can be sure it will go up today. Any 

regularity in the stock market that can be discovered and acted upon profitably is 

bound to destroy itself. This is the fundamental reason why I am convinced that no 

one will be successful in using technical methods to get above-average returns in 

the stock market. 

 As before, the decision over the cogency of the chartists’ methods is an empirical matter 

to be decided by investigations of the market. In principle arguments, such as those against 

technical analysis, are impressive until empirical investigations show their conclusions false. 

Only then do we realize the fragility of assumptions made tacitly in the arguments. Aronson 

(2007) is a sustained plea for technical analysts to hold their methods to the standards of routine 

statistical analysis. Perhaps Graham, Dodd and Malkiel are correct that enough has been done to 
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refute technical analysis. There are dissenters. Lorenzoni et al. (2007) claim that statistical 

analysis does reveal statistically significant information in two of three patterns: triangle, 

rectangle and head and shoulders. 

3.3 Against Random Walks 

  Here I shall construe the random walk theory most broadly as including the 

possibility of small failures of independence and of distributions with infinite variances. 

It includes Mandelbrot’s fractal approach. This expanded version still retains the main 

idea that distinguishes the original random walk theory and fractal analysis from other 

approaches and draws criticism: markets are sufficiently random as to preclude useful 

prediction of change in prices, beyond the broadest averages. 

 While this failure of prediction directly contradicts the technical analysts, there is 

little in the technical analysts’ authoritative volume, Edwards, Magee and Bassetti 

(2019), to contradict the random walk theory. We have seen Magee’s facile response, 

reported above by McDermott. Otherwise “random walk” and “efficient market 

hypothesis” do not appear in the index or, as far as I can tell, in the text. Aronson (2007, 

pp. 342-55) lays out an extended assault on the efficient market hypothesis. The approach 

is to undermine what he takes to be the founding assumptions of the hypothesis. For 

example, he urges that investors are not rational; that their investing errors are not 

uncorrelated; that arbitrage need not force prices to rational levels; and more. The 

weakness of the critique is that Aronson does not properly separate the efficient market 

hypothesis from the hypothesis of a random walk. However, what is important for our 

purposes is that all the objections depend on factual matters, such as those just listed, and 

their truth can be ascertained by empirical investigations. 

 The authoritative response from the fundamentalists to random walk theory was 

given by Warren Buffett. His extraordinary record of profitable investing alone indicates 

that an astute analyst can make successful predictions over sustained periods. His (1984) 

“Superinvestors of Graham-and-Doddsville” makes the case against the impossibility of 

predicting the market in a quite direct way. He reports nine successful investment funds 

that exceeded market averages in their returns by wide margins; and did so over long 

periods. The longest of them was 1956 to 1984. 
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 This behavior contradicts the unpredictability of markets central to the random 

walk theory. More specifically, when the prices of undervalued stocks eventually rise 

assuredly to their true values, the sequence of upward changes in prices contradicts the 

independence or near independence of the price changes hypothesized in random walk 

theory. 

 The obvious random walk theorist’s response is that, in any large economy with 

many such funds, there will always be outliers that perform well merely by chance. 

Buffett goes to some pains to answer this objection. The funds on which he reports were 

selected prior to their successes. As he put it (p.4): “these winners were all well known to 

me and pre-identified as superior investors, the most identification occurring over 15 

years ago.” Further, Buffett stresses the many differences between the funds, while 

retaining the major common factor: they all follow the Graham and Dodd policy of 

investing when price and values are mismatched. This common factor, we are to believe, 

is responsible for their successes. 

 There is also a casual rebuttal of the efficient market hypothesis, memorable 

because of the credentials of its source (p. 13): 

I’m convinced that there is much inefficiency in the market. These Graham-

and-Doddsville investors have successfully exploited gaps between price 

and value. When the price of a stock can be influenced by a “herd” on Wall 

Street with prices set at the margin by the most emotional person, or the 

greediest person, or the most depressed person, it is hard to argue that the 

market always prices rationally. In fact market prices are frequently 

nonsensical. 

Once again, Buffett’s argument is a direct challenge to the founding hypothesis of the 

random walk theory and its embellished versions. The basis of the challenge is empirical. 

If it is an empirical fact that a particular sort of investment strategy leads to long-term 

profits, well in excess of market averages, then the unpredictability of the market has 

been refuted. 
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4. Conclusion: The Instability of Competing Systems 

 Competing systems arise when analysts proceed from different, mutually incompatible 

hypotheses. The competition should be transient, while we await further evidential scrutiny that 

will decide which, if any, of the hypotheses is well supported. As the full import of the existing 

evidence and that of new evidence is brought to bear, we have seen two ways that the 

competition could be resolved. 

4.1 The Gentle Way: Convergence 

 In the gentler way, one or more of the systems in competition alter their founding 

hypotheses to accommodate evidential pressures. If this process of adaptation proceeds far 

enough, competing systems may converge. This convergence has happened in the case of the 

random walk theory and fractal analysis. While the systems may first appear to be very different, 

they agree on so much at the outset that convergence was easily attained. They both adopt an 

essentially probabilistic outlook using the standard statistical methods of analysis. They differ 

only in smaller matters that can be settled by smaller empirical analysis: Are the variances of the 

probability distributions of price changes finite or infinite? What is the extent and nature of any 

probabilistic dependence among successive price changes? In so far as proponents of the 

approaches accept the results of empirical studies and if the statistical approach is viable in the 

first place, then the convergence was inevitable. 

 In principle, a convergence of this generalized random walk theory and technical analysis 

is also possible. It would be inevitable if chartists would heed Aronson’s urging of the use of 

sound statistical methodology. Either the statistical studies will show a correlation between the 

head and shoulders formation and a subsequent decline in prices; or they will not. Once both 

groups of theorists accept these statistical methods, agreement on the efficacy or otherwise of 

these chartists’ signals is inevitable if only the empirical studies are pursued thoroughly. The 

losing approach would then need to adapt its founding hypotheses accordingly. Or they may both 

adapt to some compromise account containing elements of both original approaches. 

4.2 The Severe Way: Elimination 

 The more severe path to a unique logic arises when proponents of each competing logic 

are intransigent and refuse to adapt their logic to emerging evidence. For the competition is 

unstable. Evidence that turns out to support one system’s founding hypothesis will strengthen 
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that system, while weakening those that disagree with it. A stronger system can infer to still more 

that strengthens it further, while weakening the competition. The process is akin to the instability 

of pencil balanced on its tip. Once the pencil starts to fall to one side, the forces pulling it to that 

side are strengthened and the fall accelerates. 

 The competition between random walk theorists and chartists illustrates this instability. 

The generalized random walk theory depends essentially on the independence or meager 

dependence of the probability distributions of successive price changes. This meager dependence 

needs to be demonstrated, in principle, for each stock or each stock sector index. Each success 

would detract from the prospects of the chartists, whose theories depend essentially on a failure 

of independence. The chartists’ “head and shoulders” formation can only be a reliable indicator 

of a coming reversal if there is a strong correlation between it and subsequent price changes. 

 As this independence is established for more individual stocks or indices, each success 

provides indirect support for independence among untested stocks or indices. This last inference 

is supported by a warranting hypothesis that the mechanisms governing price moves are much 

the same across the market. These successes form a cascade of continuing successes, each 

amplifying the strength of support of the random walk theory’s claims elsewhere. Each also 

brings the corresponding collapse of the competing chartists’ system. This is a cycle of positive 

reinforcement that would terminate in the elimination of technical analysis. 

 The reverse process would arise if, instead, chartists were able to demonstrate with 

statistical rigor the efficacy of one of their formations as a signal for future price movements. 

Such success would contradict the very limited dependence among successive price changes that 

the random walk theory is prepared to accept. The assumption that the mechanisms moving 

prices are much the same across the market would support an inference that similar signals are 

possible elsewhere. As their successes mount, the prospects for the limited dependencies allowed 

by the random walk theory would narrow. Continuing successes would eventually end in the 

demise of the random walk theory. 

 As we saw above, the fundamentalists’ challenge to the other systems is laid out most 

cogently by Buffett (1984). Using the evidence of several successful investment funds, he claims 

that pursuit of value-price discrepancies led them to purchase stocks whose long-term price gains 

greatly exceeds market averages. He argues that the only common factor among them is their 

focus on value. He insists that the successful funds dismissed daily price movements as 
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meaningless distractions. If they prove demonstrably correct about daily price movements, the 

basic supposition of technical analysis would be refuted. If the success of value investing persists 

and is sustainable under careful statistical analysis, then random walk theorists who respect 

statistical methods must accept the fundamentalist approach. Conversely if statistical analysis 

reveals their successes to be merely the luck of a few, then fundamentalists would have to retreat. 

With each new report of a successful value investor, the fundamentalist approach would be 

strengthened, once again under the assumption that the mechanisms moving prices are much the 

same across the market. The random walk theory would be weakened, for it would be harder to 

dismiss these successes as mere chance. 

4.3 Multiple Systems are Possible if They Do Not Compete 

 The processes assuring ascendance of at most one dominant logic arise only when the 

systems truly conflict. The earlier chapter raised the possibility of multiple systems co-existing if 

the domains could be divided so that each logic would apply in its partition only. Such a 

possibility could be realized in principle here. Fundamental analysis draws on a different body of 

evidence from the other three systems and makes predictions over a longer time span. We might 

divide the field of stock market prediction into two partitions. 

 The evidence base for the first is the detailed compilation of facts about all aspects of the 

companies associated with each stock; and the time scale for predictions is some suitably chosen 

longer term. Fundamental analysis would apply in this partition. 

 The evidence base for the second partition is restricted to the past history of stock prices 

and volumes traded. Predictions would be made over the shorter term. The remaining systems 

each have aspirations in this partition. 

 While such a partition is possible in principle, fundamental analysts and those of the 

other systems do regard themselves as being in competition. Each does seek to impugn the basic 

suppositions of the others. 

4.4 Principle and Practice 

 The processes sketched above map out how, in principle, suitable empirical 

investigations can and should eventually dissolve the competition among the logics. 

Convergence to a single logic, then, awaits only analysts willing to undertake the investigations 

and proponents of the systems willing to accept the results. In practice, however, the differing 

systems persist and there is little hope that this circumstance will change. We can speculate about 
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why this is so. Perhaps, the continuing infusion of new traders into the stock market replenishes 

the pool of novice enthusiasts, well-informed on just one system. Perhaps there is too much 

inertia among proponents of each of the competing systems. The chartists are too wedded to their 

charts; the random walk theorists are too wedded to their theorems; and the value investors are 

too wedded to company balance sheets. Whatever the reasons, this persistence reveals little of 

the applicable inductive logic and more of the contingent social factors. 

4.5 Material and Formal Approaches 

 How can competition among different inductive logics in some domain be resolved? 

These examples display how a material approach to inductive inference succeeds in answering 

easily where a purely formal approach cannot. For, according to the material theory, facts 

warrant inductive inferences. Hence, a local resolution is possible merely through investigations 

that establish which are the facts of the domain. Such investigations have been the substance of 

the dispute among the systems discussed here. 

 If instead we were to conceive inductive logics as governed by universally applicable 

formal schemas, then no such easy resolution would be possible. A dispute over which is the 

right logic must proceed at the remotest level of generality, separated from any considerations 

specific to the domain. No such domain specific considerations can enter, tempting as they 

would be. For to say that this logic is better adapted to this domain and that logic is better 

adapted to that domain is to give up the universal applicability of the formal schemas. It is tacitly 

to become a material theorists who looks to facts of each domain to decide which inductive logic 

applies. 

 For example, a probabilist may argue for the probabilistic methods of random walk 

theory on the supposition that all uncertainties everywhere are probabilistic. This is a supposition 

at the highest level of generality that is, I have argued elsewhere in my Material Theory of 

Induction, unsustainable. A more realistic probabilist may merely argue that the sorts of 

uncertainties in stock prices are factually of a type to which probability theory applies. To do that 

is just to adopt the core idea of the material theory of induction: facts in the domain warrant the 

inductive logic applicable. 
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Epilog 

 

 This volume has sought to describe the large-scale structure of the inductive inferences 

and the inductive relations of support in science. While I am satisfied that the many chapters 

devoted to this task have made considerable progress in delineating that structure, I am sure that 

there is much more to be done. The research that led to this volume has been research in history 

and philosophy of science. As I noted in the prolog, that research involves a continuing exchange 

between the philosophy of science and the history of science. One component of the exchange 

needs to be emphasized. I have found that a major source of theses in philosophy of science lies 

in the study of history of science. For that history recounts the many examples of scientists who 

grappled with inductive problems of great difficulty and overcame them with inductive 

maneuvers of still greater ingenuity. Time spent studying the history is philosophically fertile in 

a way that armchair reflection is not. For armchair reflection can only return what we can each 

think up ourselves. A study of the history of science can draw on the ingenuity of generations of 

the cleverest minds at their moments of greatest achievement. It provides an endlessly fertile 

repository of inductive ideas in philosophy of science for those willing to explore it. This volume 

explores only a tiny portion of this repository. Much remains to be found. My hope is that this 

volume will encourage others to enter this repository and see what marvels they can find. 
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