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Abstract In eternally inflating cosmology, infinitely many pocket universes are
seeded. Attempts to show that universes like our observable universe are probable
amongst them have failed, since no unique probability measure is recoverable. This
lack of definite probabilities is taken to reveal a complete predictive failure. Inductive
inference over the pocket universes, it would seem, is impossible. I argue that this
conclusion of impossibility mistakes the nature of the problem. It confuses the case
in which no inductive inference is possible, with another in which a weaker inductive
logic applies. The alternative, applicable inductive logic is determined by background
conditions and is the same, non-probabilistic logic as applies to an infinite lottery.
This inductive logic does not preclude all predictions, but does affirm that predictions
useful to deciding for or against eternal inflation are precluded.

Keywords Cosmology · Eternal inflation · Inductive logic · Probability

1 Introduction

There is awidespreadpresumption in physics:whenweare facedwith an indefiniteness
in some physical process, that indefiniteness is to be represented probabilistically. For
otherwise, it is thought, we shall be unable tomake predictions concerning the process.
This presumption has remained mostly tacit, largely, I believe, because it has been
applied with great success in many domains. All of statistical physics depends on the
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presumption that the random behavior of systems of very many components can be
represented probabilistically.

With such success it is easy to lose sight of the fact it is an empirical question
whether probability theory is applicable to a given physical systems. This truism is
surely widely recognized, but almost never expressed. A rare exception is Marc Kac
(1959, p. 5), who put it this way1:

To me there is no methodological distinction between the applicability of differ-
ential equations to astronomy and of probability to thermodynamics or quantum
mechanics.
It works! And brutally pragmatic as this point of view is, no better substitute has
been found.

And, we might add, as long as it works, we should continue using probability theory;
and not ask too many troublesome questions. When it fails, however, we need not
collapse in despair. It is time to ask troublesome questions. If the applicability of
probabilities is an empirical question determined by the facts of the physical system,
then is it not an empirical question whether some other formal representation will
succeed where probabilities have failed?

My purpose here is to review a case in which probabilities fail but another formal
representation of the indefiniteness succeeds. It arises in recent cosmology in the con-
text of the “measure problem.” The version of the problem to be described here arises
in so-called “eternal inflation.” According to this theory, the universe persists indefi-
nitely in a state of very rapid, inflationary expansion, driven, in the simplest versions,
by the exotic matter of a single inflaton field. During the inflationary expansion, it
spins off infinitely many pocket universes in which the exotic matter of the inflaton
field reverts to ordinary matter. Some of these pocket universes may well be like our
observable universe. Others may be unlike our observable universe.

The prospects of inflationary cosmology as a viable theory would be greatly
advanced if it could be established that pocket universes very much like ours are
not just possible, but are to be expected. Otherwise the existence of our observable
universewould bemerely a fortuitous coincidence in the theory. The standard approach
to demonstrating this expectation is to seek a probability measure over the different
properties observers will find in the pocket universes. The measure problem is that
there is no natural measure recoverable.Manymeasuresmay be imposed on the pocket
universes. All face difficulties. None has proven to be uniquely successful.

To see the particular difficulty addressed in this paper, we simplify the problem
by dividing the pocket universes into those like ours (“like”) and those unlike ours
(“unlike”). Eternal inflation provides a countable infinity of each. Computing the ratio
of probabilities of like to unlike requires us to compute the ratio of an infinity to an
infinity, without any of the normal means of regularizing such a computation. Recog-
nition of this difficulty has now divided those who work on inflationary cosmology
into a majority that continues to search fruitlessly for a serviceable measure; and a

1 While I believe that Kac’s view is widely held, a quite extensive search in the literature has failed to find
similar, clear statements of the empirical character of the applicability of probability theory to physical
problems, beyond remarks by Bohm quoted in Sect. 5 below.
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minority that portrays the failure of the search for a measure as a blanket failure of the
power of the theory of eternal inflation to make predictions.

Where both sides agree, however, is on the tacit assumption that the indefiniteness of
the pocket universes has to be represented probabilistically. It is, they agree, either that
or the theory has failed. The proposal of this paper is that this assumption fails in this
case and should be discarded for eternal inflation. I will argue that we can still reason
inductively about the prospects for universes like ours. However the natural inductive
logic—the “infinite lottery” logic—is predictively weaker than a probabilistic logic
and quite foreign to intuitions that have been tutored by schooling in probabilistic
thinking. It is, however, the logic that the problem specification delineates. To resist it
makes about as much sense as resisting the logic of probabilistic inferences over coin
tosses and die throws.

My proposal is not that the predictive problems of eternal inflation are resolved by
adopting this logic. They are not. The new logic affirms them. We must distinguish
between the narrower case in which the prospects for useful prediction are limited and
the broader case in which no inductive logic is applicable at all. Here, an inductive
logic is applicable, but one of its positive consequences is that the prospects for useful
prediction are limited.

Myprincipal point concerns inductive logic, not prediction. For too long, in both sci-
ence and philosophy of science, too many of us have tacitly accepted a false dilemma:
either an indefiniteness can be treated probabilistically or it cannot be treated at all.
Eternal inflation provides a clear example in present science in which there is a third
option. A different, non-probabilistic logic is applicable to its indefinitenesses.

Section 2 below will review how the measure problem arises in eternal inflation-
ary cosmology through the need to form ill-defined ratios of infinities. It has become
standard in the inflationary cosmology literature to illustrate the problem with what
I call the “counting argument.” It uses a simple reordering of a sequence of numbers
and will be described in Sect. 3. The following Sect. 4 will recount the widespread
view amongst cosmologists that the failure of probability theory in this case threat-
ens to bring a complete failure of the overall theory of eternal inflation, for, they
fear, such a theory is deprived of its predictive powers. To help support an alterna-
tive diagnosis, Sect. 5 will review claims that probabilistic representation requires
specific hospitable background conditions. Section 6 will invert those claims: if such
background conditions do not favor probabilistic representation, then, I will argue
there, it is an empirical matter to determine which inductive logic is favored by them.
Section 7 will reconfigure the counting argument to derive core behaviors of the appli-
cable, non-probabilistic logic. The next Sect. 8 recalls that the logic so identified is
the same logic as governs drawings from a fair, infinite lottery. While this logic is
weaker predictively than a probabilistic logic, Sect. 9 reports inferences that can be
made using it. The most important consequence for eternal inflation is a positive result
that affirms its predictive woes: virtually all distributions of like and unlike across a
countable infinity of pocket universes are assigned equal chances. Hence the logic
cannot discriminate among them. Section 10 has conclusions. An appendix develops
the essential, pertinent content of the theory of eternally inflating cosmology.
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2 The measure problem

In an eternally inflating cosmology, the bulk of the universe undergoes a never-
ending, rapidly accelerating expansion that is unlike what we see in the observable
portion of the universe. During this process, pocket universes are spun off continu-
ally by probabilistic processes described in the Appendix. These pocket universes
are no longer inflating and may be or may not be like our observable universe.
One of them, it is supposed, is our observable universe. These pocket universes,
together with the inflating regions, form a multiverse. It would be better for the
empirical grounding of inflationary cosmology if pocket universes like our observ-
able universes are to be expected. Otherwise the existence of our observable universe
would merely be a fortuitous coincidence in a multiverse of pocket universes. A
long-standing goal of eternal inflation theorists has been to assess the probability
of pocket universes like our observable universe and, it is hoped, to show them prob-
able.

In spite of 2 decades of attention, determining the appropriate probability measure
has proven very troublesome. It is now known as the “measure problem.” Vilenkin
(2007, p. 6777; his emphasis) gives a typical definition:

The key problem is then to calculate the probability distribution for the constants
[in the laws governing the pocket universes]. It is often referred to as the measure
problem.
The probability Pj of observing vacuum j can be expressed as a product

Pj � P (prior)
j f j , (1)

where the prior probability P(prior)
j is determined by the geography of the land-

scape and by the dynamics of eternal inflation, and the selection factor f j
characterizes the chances for an observer to evolve in vacuum j. The distri-
bution [(1)] gives the probability for a randomly picked observer to be in a given
vacuum.

Note that the probability sought is the probability that an observer finds the designated
vacuum state, not merely that such a state arises.

Many measures have been proposed. Winitzki (2007, §5.3.2, 2009, §6.1) divides
them into two types. The “volume-based” measures are derived from the ensemble of
all observers at all events in spacetime. The “world-line based” measures employ a
smaller ensemble of observers in the vicinity of one cosmically co-moving worldline
or even one arbitrarily chosen timelike geodesic.

The difficulty is that none of these measures is unproblematic and no uniquely
defined, natural measure has been found that solves the problem adequately. A
volume measure might need to slice the spacetime into spacelike surfaces of
simultaneous events. In the “gauge problem” (as described by Winitzki 2007,
p. 179, 2009, p. 88), there prove to be many ways to effect this slicing with-
out any being naturally preferred. However, the differences make a difference
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to the resulting measures. This is just the first of many problems.2 For exam-
ple, a measure can be recovered by considering a volume of spacetime that
grows indefinitely towards the future. Since eternal inflation creates new pocket
universes at an accelerating rate3 as the universe evolves, the sampling of this
scheme is heavily weighted towards young, newly created pocket universes. This
creates what Guth (2000, §7) calls the “youngness problem”: an older universe
like our own is extremely unlikely, even in relation to one that is only slightly
younger.

The most enduring problem, however, is mentioned most frequently: the measure
requires taking the ratios of infinities; and these ratios are not well defined. Freivogel
(2011, p. 2) puts it most simply. If observation of A occurs NA times and observation
of B occurs NB times, then the ratio of the probabilities of A to B is

pA
pB

� NA

NB
(2)

Freivogel continues:

The major obstacle of principle to implementing the program of making predic-
tions by counting observations in the multiverse is the existence of divergences.
Eternal inflation produces not just a very large universe, but an infinite universe
containing an infinite number of pocket universes, each of which is itself infinite.
Therefore, both the numerator and the denominator of [(2)] are infinite. We can
define the ratio by regulating the infinite volume, but it turns out that the result
is highly regulator-dependent.

Several notions are invoked here. First, the idea that observation counts directly yield
probabilities tacitly or explicitly (e.g. Winitzki 2007, p. 163, 2009, p. 28) relies on
something like Vilenkin’s (1995, p. 847) “principle of mediocrity”:

The principle of mediocrity suggests that we think of ourselves as a civilization
randomly picked in the metauniverse.

Second, the measure problem involves two distinct notions of probability. One derives
from the physics of the probabilistic dynamics of the inflating universe. The other arises
from distributing uncertainty uniformly over pocket universes through the principle
of mediocrity. It is this latter probability that is the ultimate source of the problem.

A simple analogy illustrates the difference. Consider an array of fair coins, all laid
out with no particular order. The coins are tossed.4 The physics of coin tossing will
give a definite probability of heads for each coin of 0.5. One of these coins, we know
not which, is “our coin.” We ask for the probability of it showing heads. We employ
the principle of mediocrity to assure us that any of these coins is equally likely to be

2 For more details of the difficulties, see Smeenk (2014), which is a recent survey of the measure problem
in the philosophy of science literature.
3 When counted by the protocol Guth (2000, §7) describes.
4 At the risk of laboring the obvious: each coin corresponds to a pocket universe and heads or tails corre-
sponds to the observed property.
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ours, so that the probability of heads is proportional to the number of heads in the
array; and the same for tails.

In the unproblematic case, we have a large but finite number of coins. We infer
from the coin tossing dynamics of a fair coin that very likely the numbers of heads
and tails in the array will be nearly equal. The probability ratio of heads to tails in
then well-estimated by the ratio of the numbers of heads to the numbers of tails, as
(2) requires. This result is inferred without using the principle of mediocrity. It agrees
with what an application of the principle would deliver, reaffirming the principle.

The problematic case arises when the array is infinite. Then there will be infinitely
many heads and infinitelymany tails. Equation (2) asks us to take the ratio of an infinite
to an infinity, which is not well defined.

The third notion in Freivogel’s statement is the use of a regulator to recover a
well-defined ratio in (2). In the analogy, it works by taking some finite set of the
coins, computing the ratio of heads to tails in it and then letting the selected set grow
infinitely large, until all the coins are included. The ratio sought is the limit of the
ratios computed for the finite sets.

The difficulty with this approach is that there is no restriction on how we select
the set and how we add to it in the approach to infinite inclusion. Different regulators
employ different protocols and can produce different limiting ratios. We might add
two heads to the set for every tail until all the coins are included and recover a two
to one ratio in the limit. Or we might reverse the protocol and add one head for every
two tails, so that we recover a one to two ratio in the limit. Since we have no way
to decide which is the correct regulator, even with a regulator, the probability ratio
corresponding to (2) will have no definite value. We shall see more of this problem
below in the “counting argument.”

A caution: the coin analogy oversimplifies in the following aspect. Once we know
that the probability of a head on each coin is 0.5, it does not matter that there are
infinitely many of them. We know that the probability of a head on our coin is 0.5.
Determining the probability this way corresponds to using a “world-line based” mea-
sure, mentioned above, for we are tracking the history of one coin or, correspondingly,
one small set of observers. The disanalogy is that these worldline based measures
exhibit an objectionable sensitivity to initial conditions. Winitzki (2007, pp. 179–180,
2009, p. 89) notes that the “volume-based” measures do not have this problem and are
therefore preferred by him.

Finally, this analogy brings to the fore an enduring difficulty in this entire analysis.
There is nothing wrong with the idea that we are equally uncertain—that is, indiffer-
ent—as to which of the many supposed civilizations of the multiverse is ours. The
problems start when we assume that this indifference is to be represented by equality
of probability. Aswas argued inNorton (2008), the tacit transformation of indifference
to equality of probability has led generations falsely to impugn what is otherwise a
fundamental truism of evidence, the principle of indifference. This same transforma-
tion, sometimes in the guise of the “self-sampling assumption,” is responsible for what
looks initially like perplexing paradoxes in cosmology. Further examination, such as
given in Norton (2010), shows themmerely to be simple fallacies, engendered directly
by the presumption that indifference must be represented as equality of probability.
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These papers are just a part of a flourishing literature that seeks better represen-
tations of indifference. See Benétreau-Dupin (2015a, b). Elkin (manuscript) and Eva
(manuscript) for various proposals.

3 The counting argument

There is a vivid and simple way of presenting the core difficulty of the measure
problem. Its formulation will prove helpful in the analysis to be given later. The
earliest presentation I found in the literature is Guth (2000, §6); and it is reproduced
in Guth (2007, §4):

To understand the nature of the problem, it is useful to think about the integers
as a model system with an infinite number of entities. We can ask, for example,
what fraction of the integers are odd. Most people would presumably say that
the answer is 1/2, since the integers alternate between odd and even. That is, if
the string of integers is truncated after the N th, then the fraction of odd integers
in the string is exactly 1/2 if N is even, and is (N + 1)/2 N if N is odd. In any
case, the fraction approaches 1/2 as N approaches infinity.
However, the ambiguity of the answer can be seen if one imagines other orderings
for the integers. One could, if one wished, order the integers as

1, 3, 2, 5, 7, 4, 9, 11, 6, . . . , (3)

always writing two odd integers followed by one even integer. This series
includes each integer exactly once, just like the usual sequence (1, 2, 3, 4,…).
The integers are just arranged in an unusual order. However, if we truncate the
sequence shown in Eq. (3) after theN th entry, and then take the limitN → ∞, we
would conclude that 2/3 of the integers are odd. Thus, we find that the definition
of probability on an infinite set requires some method of truncation, and that the
answer can depend nontrivially on the method that is used.

This counting argument uses the integers to implement an alternative regulator such
as described in the last section. Guth’s set grows by adding two odd numbers for
every even number and thus arrives at a limiting probability of 2/3 for odd numbers.
Correspondingly, we grew the set of coins so that there were two heads added for
every tail and arrived at a probability of heads of 2/3.

This counting argument reappears in almost exactly the same form in the subsequent
literature on eternal inflation. We find forms of it in Tegmark (2005, p. 16, 2007, p.
122) and Vilenkin (2007, p. 6779); and a more formal version in Hollands and Wald
(2002b, p. 5). Steinhardt (2011, p. 42) gives a version with coins:

As an analogy, suppose you have a sack containing a known finite number
of quarters and pennies. If you reach in and pick a coin randomly, you can
make a firm prediction about which coin you are most likely to choose. If the
sack contains an infinite number of quarter and pennies, though, you cannot.
To try to assess the probabilities, you sort the coins into piles. You start by
putting one quarter into the pile, then one penny, then a second quarter, then
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a second penny, and so on. This procedure gives you the impression that there
is an equal number of each denomination. But then you try a different system,
first piling 10 quarters, then one penny, then 10 quarters, then another penny,
and so on. Now you have the impression that there are 10 quarters for every
penny.
Which method of counting out the coins is right? The answer is neither. For an
infinite collection of coins, there are an infinite number of ways of sorting that
produce an infinite range of probabilities. So there is no legitimate way to judge
which coin is more likely. By the same reasoning, there is no way to judge which
kind of island is more likely in an eternally inflating universe.

4 When can we make predictions?

These presentations of the counting argument are surrounded by air of urgency, unusual
in the physics literature. For it is assumed that if there are no probabilities assignable
to different outcomes, then the theory cannot make predictions at all. Hence Guth
(2000, §6, 2007, §4) introduces the above counting argument with a sobering counsel
(my emphasis):

In an eternally inflating universe, anything that can happen will happen; in fact,
it will happen an infinite number of times. Thus, the question of what is possible
becomes trivial – anything is possible, unless it violates some absolute conser-
vation law. To extract predictions from the theory, we must therefore learn to
distinguish the probable from the improbable.

Responding to Guth’s remark above and perhaps reflecting more broadly on the prob-
lems raised in his article, Steinhardt (2011, p. 42) concurs that the situation is dire. He
continues his recounting of the coin counting analogy with:

Now you should be disturbed. What does it mean to say that inflation makes cer-
tain predictions—that, for example, the universe is uniform or has scale-invariant
fluctuations—if anything that can happen will happen an infinite number of
times? And if the theory does not make testable predictions, how can cos-
mologists claim that the theory agrees with observations, as they routinely
do?

While Guth and Steinhardt agree on the threat to prediction from the counting argu-
ment, they do not agree on its ultimate import. Guth, such as in Guth et al. (2014,
§4–5), along with a mainstream of inflationary cosmologists, regard the problem of
finding the right regulator as no more serious than problems routinely faced at one
time or another by all physical theories. Tegmark (2005, p. 13) expressed this view
quite succinctly:

On an optimistic note, the measure problem (how to compute probabilities)
plagued both statistical mechanics and quantum physics early on, so there is real
hope that inflation too can overcome its birth pains and become a testable theory
whose probability predictions are unique.
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Steinhardt and his co-authors, Anna Ijjas and Abraham Loeb, see it otherwise. The
predictive difficulty, encapsulated in the counting argument, is symptomatic of a deeper
failure by inflationary cosmology overall to make definite predictions.

The tensions between the two positions has escalated into a public debate that has
been aired in the more popular scientific press. See Ijjas et al. (2013, 2014, 2017) and
responses in Guth et al. (2014). Guth and (2017) is a strong rejoinder to Ijjas et al.
(2017) in a letter to the editor of Scientific American. It is co-signed by 32 of the
leading figures in modern cosmology. Ijjas, Steinhardt and Loeb seem undeterred by
this display of the might of the authorities. In their response,5 appended to the text of
the letter, they reaffirm the failure of prediction (my emphasis):

And if inflation produces a multiverse in which, to quote a previous statement
from one of the responding authors (Guth), “anything that can happen will
happen”—it makes no sense whatsoever to talk about predictions. Unlike the
Standard Model, even after fixing all the parameters, any inflationary model
gives an infinite diversity of outcomes with none preferred over any other. This
makes inflation immune from any observational test.

5 When probabilities are warranted

Where both sides of this dispute agree is that the uncertainty expressed by the principle
of mediocrity is to be expressed by an equality of probabilities. But no probability can
do this when the uncertainty is distributed over infinitely many possibilities without a
unique regulator.

The central contention of this paper is that one cannot assume by default that all
uncertainties are to be expressed by probabilities. Rather their expression by proba-
bilities will, in each case, require background conditions that specifically favor it. It
is routine for there to be such background conditions. In physical applications these
conditions are commonly supplied by the chances of a physical theory. If there is a one
in two chance of a head on the toss of a fair coin, or of a thermal or quantum fluctuation
raising the energy of system, then our uncertainty over whether each happens is well
represented by a probability of one half.

There are, however, physical systems conceivable to whose indefinite behaviors
no probabilities can be adapted. Norton (manuscript b) describes several. When such
physical chances are not present, there is a temptation to introduce them in a convenient
fable. Inflationary cosmology illustrates the temptation. It was motivated by Guth
(1981) as a solution to the cosmic horizon and flatness problem. These problems arose
because very specific initial conditions are needed in standard cosmology to return the
present day nearEuclidian spatial geometry andnear homogeneousmatter distribution.
The temptation arises when we judge these specific initial conditions improbable and
ask how such improbable conditions could come about.

Hollands and Wald (2002a, p. 2044) criticize the question as depending on a fable:

5 For an extended version of their response, see http://physics.princeton.edu/~cosmo/sciam/index.html#
faq.
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An image that seems to underlie the posing of these questions is that of a blind-
folded Creator throwing a dart towards a board of initial conditions for the
universe. It is then quite puzzling how the dart managed to land on such spe-
cial initial conditions of Robertson-Walker symmetry and spatial flatness. If the
“blindfolded Creator” view of the origin of the universe were correct, then the
only way the symmetry (and perhaps flatness) of the universe could be explained
would be via dynamical evolution arguments.

In a later defense of this paper of 2002, Hollands and Wald (2002b, p. 5) reinforce
their criticism:

First, probabilistic arguments can be used reliably when one completely under-
stands both the nature of the underlying dynamics of the system and the source
of its “randomness”. Thus, for example, probabilistic arguments are very suc-
cessful in predicting the (likely) outcomes of a series of coin tosses. Conversely,
probabilistic arguments are notoriously unreliable when one does not understand
the underlying nature of the system and/or the source of its randomness.

The idea that probabilistic inference in each circumstance requires some definite,
positive condition to favor it, seems undeniable. It is foundational to a more general
approach to inductive inference that I call the “material theory of induction.” However
one finds the point rarely made in the physics literature. In a context different from
that of cosmology, David Bohm gives a sharp, clear and extended statement of it. His
target (1957, pp. 17–18) is the “subjective interpretation of probability” in which “it is
supposed that probabilities represent, in some sense, an incomplete degree of knowl-
edge or information concerning the events, objects, or conditions under discussion.”
His analysis drives towards the conclusion:

Evidently, then, the applicability of the theory of probability to scientific and
other statistical problems has no essential relationship either to our knowledge
or to our ignorance. Rather, it depends only on the objective existence of certain
regularities that are characteristic of the systems and processes under discussion,
regularities which imply that the long run or average behaviour in a large aggre-
gate of objects or events is approximately independent of the precise details that
determine exactly what will happen in each individual case.

This conclusion is quite right to ground the applicability of probabilistic reasoning in
factual properties of the systems and processes. The only qualification needed is that
the existence of stable long run frequencies may be only one type of factual property
that can ground this applicability.

6 Recovering an inductive logic from background conditions

If the background conditions do not favor the representation of uncertainties by prob-
abilities, we should ask whether these conditions favor some other representation. To
do so is to allow that this representation is an empirical matter, just as is the content of
each physical theory.Wewould not demand that electrons must be bosons when all the
evidence speaks against it. Why demand that uncertainties must be represented prob-
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abilistically when the background conditions speak against it? Why not ask if those
background conditions determine a different representation? Let us call that new rep-
resentation the “chance” of some configuration, where we leave open just what that
notion is, until its properties are fixed by the background conditions.

The properties of this notion of chance are controlled by two facts among the
background conditions. The first is the principle ofmediocrity,6 now extended to apply
to pocket universes rather than civilizations as in Vilenkin’s original formulation in
Sect. 2 above. The second is the fact that there is a countable infinity of pocket universes
over which the principle is applied. To see their import, consider some labeling of the
pocket universes by numbers 1, 2, 3,… The principle of mediocrity tells us that we
should be indifferent among the pocket universes in identifying which is our own. That
is, we have no preference among the label numbers; and this indifference remains no
matter how we permute7 the labels. Consider universe number 5 in some labeling;
and the new universe to which the number 5 is attached after any permutation of the
labels. According to the principle of mediocrity, we should judge both universes to
have the same chance. More formally, our assignments of chance are invariant under
any permutation of the labels.

The same holds not just for individual pocket universes, but for sets of them. Con-
sider some set with label numbers {3, 27, 589,…} in the first labeling; and the set
of universes identified by these label numbers after the permutation. We must judge
both sets of universes to have the same chance. This can be expressed as an invariance
condition:

Two sets of pocket universe have the same chance, if a permutation of labels
maps one to the other.

The condition for a permutation to map one set to another is that each set has the
same cardinality and that the complements of each set have the same cardinality. That
means that sets with equal chances can be divided into three general types.

First are finite sets:
finiten: a set with n members, where n � 1, 2, 3,…

So sets of type finite3 with labels {1, 2, 3} and {4, 5, 6} are mapped onto each other
by a permutation that includes:

1 → 4, 2 → 5 and 3 → 6
The complements of each set are {4, 5, 6, 7, 8,…} and {1, 2, 3, 7, 8,…}. To be a
permutation, the relabeling must also map the first complement set onto the second.
This is achieved if the remainder of the permutation is

4 → 1, 5 → 2, 6 → 3 and 7 → 7, 8 → 8, 9 → 9,…
Hence we conclude the sets with labels {1, 2, 3} and {4, 5, 6} have equal chances.

A second type are infinite sets whose complements are finite:

6 The principle of mediocrity is really just a version of the familiar principle of indifference, as discussed
in Norton (2008). It is less epistemic than the traditional cases of indifference, for it rests in part on the
empirical assumption that observers will arise in all pocket universes that are like ours.
7 A permutation is a one to one mapping of the numbers. That is, number labels are redistributed over
the pocket universe so that, every universe receives a number, no universe receives more than one and all
numbers are used.
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infiniteco-finite-n: an infinite set whose complement is finite of size n.
The sets with labels {4, 5, 6, 7, 8,…} and {1, 2, 3, 7, 8,…} of the above example
are infiniteco-finite-3. The above permutation maps the first to the second. Hence we
conclude the sets with labels {4, 5, 6, 7, 8,…} and {1, 2, 3, 7, 8,…} have equal
chances.

The third type is the most interesting:
infiniteco-infinite: an infinite set whose complement is also infinite.

The set odd numbered universes {1, 3, 5,…} is an example, since the complement is
the set of even numbered universes {2, 4, 6,…}, which is also infinite.

To restate the key result, all sets of the same type have the same chance.
Now consider binary properties distributed over these pocket universes. We will

use “like,” which means the pocket universe is like ours; or it negation “unlike.” We
could have chosen many other properties: the inhomogeneities in the matter distribu-
tion is above some threshold or not; the matter density is above critical or not; the
cosmological constant (if we add it into the model) is in such and such a range, or
outside it; and so on. However the analysis will be the same for all.

It will be convenient to specify two forms of the “like” property: a broader one,
“like1”; and a narrower one, “like2.” Possessing like2 entails possessing like1, but not
conversely. There are many ways to instantiate these properties. Since the measured
density parameter Ω is very close to one, we might associate like1 with 0.8 < Ω < 1.2
and like2 with 0.9 < Ω < 1.1.

There is a map from binary properties to sets: the set corresponding to “like” is just
the set of universes that carry the property. Hence we can now associate set types with
properties. For example, the property like is infiniteco-infinite just in case the property
like is instantiated by infinitely many universes and the property unlike by infinitely
many universes. So now we have:

All binary properties of the same type have the same chance.
We determine that two properties are of the same type just if there is a permutation of
the labels of the pocket universes that maps the set with the first property onto the set
with the second.

7 The counting argument again

We can now reconfigure the counting argument of Sect. 3 as a means of developing
the behavior of the chance function in the case of properties that are infiniteco-infinite.
Assume that properties like1 and like2 are infiniteco-infinite. We can always select a
permutation of labels so that the like2 universes are odd numbered (Table 1).

This leaves the impression that like2 and unlike2 are each 50% of the universes.

Table 1 Numbering suggests half of universes are like2

1-like2 3-like2 5-like2 7-like2 9-like2 …

2-unlike2 4-unlike2 6-unlike2 8-unlike2 10-unlike2 …
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Table 2 Numbering suggests two thirds of universes are like1 and one third are like2

1-like1, like2 4-like1, like2 7-like1, like2 10-like1, like2 …

2-like1, unlike2 5-like1, unlike2 8-like1, unlike2 11-like1, unlike2 …

3-unlike1, unlike2 6-unlike1, unlike2 9-unlike1, unlike2 12-unlike1, unlike2 …

Table 3 Renumbering of universes in Table 2

1-like1, like2 5-like1, like2 9-like1, like2 13-like1, like2 …

3-like1, unlike2 7-like1, unlike2 11-like1, unlike2 15-like1, unlike2 …

2-unlike1, unlike2 4-unlike1, unlike2 6-unlike1, unlike2 8-unlike1, unlike2 …

Table 4 Renumbering of universes from Table 3 suggests that half of universes are like1

1-like1 3-like1 5-like1 7-like1 9-like1 …

2-unlike1 4-unlike1 6-unlike1 8-unlike1 10-like1 …

Since universes with property like1 are a superset of those with like2 we might
represent the two sets in a different table, Table 2, with a different numbering.

Since the first two rows are like1 but only the first like2, this table leaves the impres-
sion that 66% of universes are like1 and only 33% are like2. A permutation of the
labeling yields a new table, Table 3.

If we consider only the like1 universes in Table 3 and, leaving the assignments of
labels unchanged, merely rearrange the cells in the table, so the display is different
visually, we end up with Table 4.

It now seems that 50% of the universes are the larger set of universes of with
property like1.

We can draw two conclusions from this exercise in relabeling. First, for the case of
infiniteco-infinite universes, impressions of the size of sets as a percentage of the total set
of universes cannot be reflected in the chances. For those percentages are not invariant
under a permutation of labels. Second, the permutation of labels from Table 2 to 3 and
4 maps the set of universes with property like1 to the set with property like2. Hence
the two sets have the same chance, even though the second set is a proper subset of
the first.

Of course the relabeling from Table 2 to 3 and 4 is just the same as the reordering
(2) described by Guth above in the counting argument, where it is used to come to the
same conclusion that percentage counts are not uniquely defined among the various
types of universes.

8 The infinite lottery inductive logic

The last two sections developed the essential content of the inductive logic warranted
by background conditions in eternal inflation cosmology. It turns out to be a familiar
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logic that has been investigated already. It is the logic warranted for a fair, infinite
lottery, in which a natural number is drawn from all the natural numbers without
favoring any. This logic has been developed in greater detail in Norton (manuscript
a). Unexpected physical issues involved in building an infinite lottery machine are
described in Norton (2018), with a correction in Norton and Pruss (2018).

The essential content of the infinite lottery logic is given by assigning unique chance
“V” values to each type of outcome, so as to define a chance function “Ch”:

Ch(finiten) � Vn � “unlikely”, where n � 1, 2, 3,…
Ch(infiniteco-infinite) � V∞ � “as likely as not.”
Ch(infiniteco-finite-n) � V−n � “likely”, where n � 1, 2, 3,…

For completeness, we have the two special cases

Ch(empty-set) � V0 � “certain not to happen”
Ch(all-outcomes) � V−0 � “certain to happen”

The label invariances described in Sect. 6 have only enabled us to assign equalities of
chances.

It seems natural to add inequalities as follows:

V0 < V1 < V2 < V3 < · · · < V∞ < · · · < V−3 < V−2 < V−1 < V−0

for some antisymmetric, transitive and irreflexive order relation “<.” Chance value Vn
is assigned to sets with finitely many members n, which makes it natural to assume
that Vn increases with n. Since all cases of Vn arise with sets of finite size, they all
should be significantly less in value that the value assigned to infinite-co-infinite sets,
V∞. Hence the two are given the informal interpretations “unlikely” and “as likely as
not.” Similar considerations make it natural to assign V−n a value greater than V∞
since V−n is associated with infinite sets that omit only finitely many universes.

The term “natural” is used repeatedly in the last paragraph with some trepidation.
There is a long history of ideas that once seemed natural but later prove dubious. In
a fuller analysis, all justifications using naturalness would have to be replaced with
proper grounding in background conditions.8

9 Prediction

The concern of the counting argument is that it precludes the possibility of prediction
in eternal inflation. My response is that it precludes the possibility of probabilistic
predictions, because it precludes a probabilistic inductive logic. It does not preclude a
different inductive logic warranted by the background conditions, the infinite lottery
logic. The difficulty for cosmologists, however, is that this infinite lottery logic is
weaker in its discriminations and its predictive powers are correspondingly lessened.
The new logic affirms the predictive problems of inflationary cosmology. It does it

8 What can such grounding look like? It would arise in an infinite lottery machine so constructed that, if we
know the outcome is in some finite set of numbers, then the chances are probabilistic. The design details of
the machine provides a grounding that replaces naturalness.
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by going beyond a negative, the mere absence probabilities. It does it by showing a
positive, that these problems are a consequence of the inductive logic applicable.

That an inductive logic can preclude some predictions is familiar in probabilistic
logics in the form of the gambler’s fallacy. If successive outcomes of a spin of roulette
wheel are probabilistically independent, then the probabilistic logic applicable pre-
cludes predictions based on past performance. A long run of successive red outcomes,
no matter how many, is predictively inert. It is no more or less likely that the next
outcome will be red than it was before the long run of red.

The predictive weakness of the infinite lottery machine logic lies in a large increase
in the outcomes to which equal chances are ascribed and which, as a result, cannot be
discriminated in predictions. That is, the logic assigns the same chance valueV∞ to any
universe in which there are infinitely many like pocket universes and infinitely many
unlike pocket universes. That is, virtually all possible distributions of the properties
like and unlike are assigned equal chance. This “virtually all” can be made precise
through set cardinalities. There is an uncountable infinity of ways of distributing these
two properties over a countable infinity of pocket universes. The case just considered
almost completely exhausts this uncountable infinity. The only exceptions are the
two cases of finitely many like universes and finitely many unlike universes.9 These
exceptions comprise only a countable infinity of the distributions.

The predictions of this new logic are counterintuitive to someone whose intuitions
are trained by a probabilistic logic. The infinite lottery logic will tell us that universes
with properties like1 and like2 have equal chances,10 even though the second is a proper
subset of the first. But it is precisely this fact that expands the set of universes with
equal chances and thereby reduces the discriminating powers of prediction of eternal
inflation.

The infinite lottery logic does admit some predictions. Consider a third property,
“likenarrow”, which we have somehow contrived so that we can expect it to be instanti-
ated at most finitely often in our infinite set of pocket universes. For example, it might
apply to a universe much like ours, but with a single, definite, favored value for the
density parameter Ω , such as unity, or perhaps just any rational number value for it
close to unity. The chance of a universe with the property likenarrow will be Vn for
some finite value of n. Its chance, we are assured, will be less than that for universes
with properties like1 and like2, for these have chance value V∞.

More interesting predictions arisewith repeated, independent trials. Before explain-
ing how something like such repeated trials might be conceived in inflationary
cosmology, let us review briefly how such repeated trials are treated in an infinite
lottery machine, drawing on the more extensive analysis in Norton (manuscript a).
Imagine for example that we have 1000 independent trials, where each trial is a draw-
ing of a number from an infinite lottery machine. We might ask, what is the chance
that all 1000 outcomes are less than N , where N is some very large number. We might

9 Proof sketch: Arbitrarily number the pocket universes 1, 2, 3, … and assign a unique natural number to
each specific distribution of finitely many like pocket universes by the following scheme. If like appears in
pocket universes 2, 3 and 5, then assign the binary number 10110 to its universe; and so on. The totality is
countable since there are countably many binary numbers.
10 Here I assume that both properties are of type infiniteco-infinite.
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compare that with the chance that all 1000 numbers drawn are the same. It turns out
that the first has less chance than the second. The first has a chance Vn, specifically,
VN1000. The second has a chance V∞.

Themost interesting prediction concerns frequencies. It is tempting to think that one
can always recover something like a probability merely from counting the frequencies
of actual outcomes of many, repeated trials. In ordinary probabilistic systems, that is
correct. The frequency of success will eventually stabilize, most likely, and provide
a good estimate of the unknown probability of success. In systems governed by the
infinite lottery logic, this strategy fails. For the logic entails that we can expect no
stabilization of the relative frequencies of success.

Tomake this concrete, consider a large numberN of drawings fromN infinite lottery
machines, one from each. What is the chance that exactly n of them are even? If these
drawings behave like coin tosses, the laws of large numbers in probability theory
would tell us to expect that the number n of even outcomes will mass around N /2 and
that extreme values like n � 0 and n � N will be very improbable in comparison.

This result is not returned by the infinite lottery logic. Each outcome is an N-tuple
of numbers, so the full set is countably infinite. We are indifferent over them all, so
the infinite lottery logic applies to this larger set. A fairly simple analysis in Norton
(manuscript a) shows that, for any 0≤ n≤N , infinitelymany of themwill have exactly
n even numbers; and the complement set of N-tuples with different numbers of even
outcomes will also be infinite. It follows that the chance of drawing exactly n even
numbers among the N drawings is V∞. This is true for all values 0 ≤ n ≤ N . That is,
the chance of 0, 1, 2,…, N even outcomes is the same, no matter how large N . There
is no massing of the chance around N /2. The relative frequencies do not stabilize.

These results can be applied to eternal inflation in the following way. One might
accept that the counting argument precludes the assignment of probabilities to proper-
ties of the pocket universes. However one might imagine that nonetheless something
can be recovered from the actual frequencies of a property in an infinite ensemble
of pocket universes. One way to do that is to divide up the infinitely many pocket
universes into N subsets, each of equal size, and pick without favor11 just one uni-
verse in each. We must arrive at some number between 0 and N for the number of
universes with the property. Surely, we might expect, this number reveals something
about the predictive possibilities in an eternal universe. If the number is close to N /2,
for example, then we would expect predictive possibilities not so different from that of
predictions governed by a probability half of success. The above analysis shows that
these expectations fail. All frequencies for the property between 0 and N are possible
and have equal chance, no matter how largeN is. So recovering this number can reveal
nothing further about the predictive possibilities in eternal inflation than has already
been delivered by the inductive logic itself.12

11 That is, the chance of selection of each universe in each subset is the same in the infinite lottery logic
and will have the chance value V1.
12 Of course direct recovery of this number would require access to all pocket universe, which is beyond
our observational powers. We might imagine assistance from a super-being in undertaking the selection
procedure. Its possibility in principle is all that is needed here, since the inductive logic applies to the process
whether or not we human observers can carry it out.
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The strategy is reminiscent of the gambler’s fallacy mentioned above. A gambler
may know that sequential outcomes of a roulette wheel are independent. Nonetheless,
the gambler hopes that a careful recording and analysis of the frequencies of red and
black will somehow reveal a pattern that would be predictively useful.We know that as
long as probabilistic independence prevails, no such pattern, nomatter how suggestive,
is of any use predictively.

10 Conclusion

The counting argument shows us that we cannot make probabilistic predictions con-
cerning the chance properties of pocket universes in an eternally inflating cosmology.
It does not follow that we cannot make predictions. All that follows is that a prob-
abilistic logic fails as an instrument of prediction. The background conditions of an
eternally inflating universe lead us to a different logic that is the same as the one that
applies to a fair, infinite lottery. This new logic does, however, positively affirm the
predictive problems of eternal inflation. For it assigns equal chance to all universes
that have infinitely like and infinitely many unlike pocket universes; and thus it cannot
discriminate among these universes.

Two ideas lead us to this logic. First is the idea that the selection of the appro-
priate inductive logic is an empirical matter to be decided by the physical facts and
background conditions of an eternally inflating cosmology. Second, among these con-
ditions, the main instrument used to arrive at the logic is the suitably adapted principle
of mediocrity. It translates into an invariance principle: the distribution of chances
over the infinite set of pocket universes is invariant under a permutation of the num-
bers used to label the pocket universes. This invariance principle then determines
the character of the logic all but completely. In this regard, the analysis is quite like
much of what happens in physics. The requirement of Lorentz covariance of spe-
cial relativity is a powerful invariance principle that conditions almost all our present
theories.

Finally there is the counterintuitive character of the infinite lottery logic. It assigns
the same chance to all infinite-co-infinite sets of pocket universes, even if one is
a proper subset of another. This non-additivity will be discomforting to someone
whose intuitions have been trained by probability theory. To attain some comfort,
it is helpful to remember that the basic conceptions of probability theory are not
immediately intelligible. Just what does it mean, a novice may ask, when we say that
some outcome has probability 0.637? Games of chance have proven to be invaluable
in training probabilistic intuitions. We start simply. What does is mean to say that
some outcome has probability one half? We answer: it is the same as a fair coin toss.
The outcome has the same probability as heads.

We can use this same technique with the inductive logic appropriate to an eternally
inflating cosmology. What is the chance of a universe like our own? It is the same as
the chance of drawing an even number from a fair, infinite lottery.
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Appendix: The physics of eternal inflation

This appendix presents a brief synopsis of the physics underlying eternal inflation,
drawing on Liddle (1999, 2003) and Weinberg (2008). The Friedman-Lemaitre-
Robertson-Walker spacetimes represent all homogeneous and isotropic cosmologies.
Its spacetime interval s is given in coordinates (t, r, θ , φ) as

ds2 � dt2 − a2(t)dσ 2 � dt2 − a2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]
(A1)

where the speed of light c� 1, k�− 1, 0 or 1 according towhether the spatial geometry
is hyperbolic, flat or spherical and dσ is the line element of corresponding geometries.
In an expanding universe, where a(t) increases with t, these spacetime coordinates
define a cosmic rest frame. That is, all events with the same time coordinate t form an
ordinary space with coordinates (r, θ , φ) that expands as t increases. Ordinary matter,
such as a galaxy or a particle of dust, that are at rest in the cosmic frame and are thereby
carried with the expansion, retain fixed coordinates (r, θ , φ) through time t. The spatial
distance between two such galaxies, separated by constant coordinate difference13 Δr,
grows with t as a(t) Δr. For small time intervals, Hubble’s law says that the relative
velocity of recession of the two galaxies (d/dt)(a(t) Δr) is proportional to the distance
a(t)Δr between them,withHubble’s constantH the constant of proportionality. Hence
we have

ȧ(t) � da(t)

dt
� H (t)a(t) or equivalently H (t) � ȧ(t)

a(t)
(A2)

where Hubble’s “constant” is written as a function of t to remind us that it varies with
cosmic epoch. It is, in general, a constant only for short time intervals.

The fundamental equations governing the expansion are Einstein’s gravitational
field equations of 1915. Solving them for a homogeneous, isotropic matter distribution
of energy density ρ and pressure p with no cosmological constant term, we recover
two equations:

H2(t) �
(
ȧ

a

)2

� 8πG

3
ρ − k

a2
(“Friedman equation”) (A3)

ä

a
� −4πG

3
(ρ + 3p) (“acceleration equation”) (A4)

where G is the universal constant of gravitation.
Setting aside the pressure term 3p, the acceleration equation (A4) is fully recov-

erable in Newtonian gravitation theory. There it merely relates the deceleration of
cosmic expansion ä due to the mutual gravitational attractions among different parts
of the matter distribution. The 3p term augments this self-attraction driven deceler-
ation in an effect that has no Newtonian counterpart. It arises because stresses, such

13 Because of the isotropy of the space, without loss of generality, the angular coordinate differences have
been set to zero: Δθ � Δφ � 0.
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as an isotropic pressure p, have gravitational effects in general relativity. A familiar
positive pressure, such as found in ordinary matter, decelerates the expansion in the
same way as a positive energy density. Classically pressures alone do not accelerate
or decelerate matter. Only pressure differences have this effect; and there are none in
this homogeneous isotropic cosmology.14

Taking the time derivative of the Friedman equation and rearranging, these two
equations entail an expression for the conservation of energy:

ρ̇ + 3H (ρ + p) � 0 (“fluid equation”) (A5)

Different cosmologies are generated by choosing specific forms of matter for ρ

and p; and different initial conditions. Inflationary cosmology was introduced by Guth
(1981) as a way of solving particular problems in cosmology that need not detain
us here: the horizon and flatness problems. Its central idea is that there was an era
of rapidly accelerating expansion in the early universe. Inflation requires that the
acceleration ä is greater than zero. However ordinary matter has non-negative values
for the energy density ρ and pressure p. The acceleration equation (A4) entails that, for
such matter, the cosmic expansion is constant or decelerating: ä ≤ 0. Since negative
energy densities are discounted, inflationary cosmology depends on positing a form
of matter with a negative pressure. Through the relativistic effect mentioned above, a
negative pressure accelerates the cosmic expansion; that is, it will do so as long as the
combined term (ρ +3p) in the acceleration equation is negative.

Originally, it was hoped that explorations in particle physics might supply a matter
field with the requisite negative pressure. When these hopes faded, a scalar “inflaton”
fieldϕwasposited. It is givengeneric properties,most notably, that there is a potentialV
that associates an added energy densityV (ϕ) to the field ϕ. In the inflationary scenario,
the inflaton field is supposed to be constant across space. It varies only as a function
of t. If a generic Lagrangian is used to characterize the field, as shown in Weinberg
(2008, pp. 526–527), we arrive at a canonical energy momentum tensor; and then, for
the homogeneous isotropic case, the energy density and pressure for the inflaton field
as given in Liddle (1999, p. 14):

ρϕ � 1
2 ϕ̇

2 + V (ϕ) (A6)

pϕ � 1
2 ϕ̇

2 − V (ϕ) (A7)

The pressure pϕ can become negative as long as V (ϕ) is sufficiently great in relation
to ϕ̇2. More specifically, the acceleration equation (A4) provides positive acceleration
ä > 0 when (ρϕ +3pϕ) � 2(ϕ̇2- V (ϕ)) < 0. That is:

ϕ̇2 < V (ϕ) (A8)

14 Liddle (2003, Sect. 3.4) gives the 3p term a hybrid classical-relativistic derivation. During the expansion,
a co-moving volumeV of space changes its energy by dE � −p dV because of the work done by the pressure
p. The 3p term in the acceleration equation is recovered if we use the relativistic “E � mc2” to assign a
gravitating Newtonian mass m to the energy.
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Whether this condition (A8) can be secured depends on the choice of the potential
V (ϕ) and the associated dynamics of the inflaton field ϕ. We recover these dynamics
by substitution the expressions for the inflaton field energy density (A6) and pressure
(A7) into the fluid Eq. (A5), from which we recover

ϕ̈ + 3H ϕ̇ + V ′(ϕ) � 0 (A9)

where V ’(ϕ) � dV (ϕ)/dϕ. In a simple case, the potential is set as

V (ϕ) � 1
2m

2ϕ2 (A10)

so that the time evolution of the field ϕ in (A9) corresponds to that of a spinless particle
of mass m in quantum mechanics.

Inflationary cosmologies of this type are called “chaotic inflation.” The term was
introduced by Linde (1983) to reflect the capacity of this inflationary dynamic to
smooth out arbitrarily jumbled initial conditions. Subsequently the term was special-
ized to cosmologies like Linde’s. “We adopt the modern usage of chaotic inflation to
refer to any model in which inflation is driven by a single scalar field slow rolling from
a regime of extremely high potential energy,” Lidsey et al. (1997, p. 377) report.

The dynamics provided by (A9) has a familiar analog in classical physics. If ϕ were
a position in ordinary space, (A9) is similar to the equation governing a ball rolling
into a potential well V (ϕ), where its motion is impeded by a friction term 3Hϕ̇ linear
in the velocity ϕ̇. This analogy has controlled the descriptions of chaotic inflation.
When the potential is similar in form to (A10), it has a minimum at the origin ϕ � 0
and grows larger as we move away from it. If the initial field state is far from this
minimum, we have the analog of ball starting high up on the walls of the potential
well and rolling down toward the minimum.

Without the friction term 3Hϕ̇ the ball would accelerate rapidly and fall into the
well; that is, the fieldwould quicklymove to itsminimumvalue ofϕ � 0. The Friedman
equation (A3), however, tells us that H � ȧ/a is large whenever the energy density ρ

is large; and (A6) tells us the energy of the inflaton field will be large whenever the
potential V (ϕ) is large. Thus the changes in time of an inflaton field with large ϕ will
be heavily damped by friction on its way to the minimum. It will move very slowly,
securing the condition (A8) needed for acceleration of the cosmic expansion. It is, in
the mechanical analogy, undergoing “slow roll inflation.”

In slow roll inflation, the governing equations are simplified by assuming that the
field acceleration ϕ̈ is negligible, that ϕ̇ is very small in relation to V (ϕ) and that k � 0,
reflecting the inflationary dynamic that rapidly drives the spatial geometry towards
flatness. Accordingly, the Friedman and acceleration equations (A3) and (A4) are
simplified to

H2(t) � 8πG

3
V (ϕ) (A11)

ä

a
� 8πG

3
V (ϕ) (A12)
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To get a sense of the dynamics, recall that we have from (A2) that ȧ(t) �
da(t)

/
dt � H (t)a(t). In the special case in which H(t) is a constant, this equation is

solved to yield an exponential growth in the scale factor a(t)15:

a (t) � a (0) exp (Ht) (A13)

Of course the Hubble constant H is not constant, but, by equation (A11), is slowly
diminishing as the field rolls downhill and V diminishes. However (A13) provides
a serviceable approximation of the dynamics during the slow roll phase.16 With
each “Hubble time” 1/H, the scale factor is increased by a multiplicative factor of
exp (H.1/H) � e ≈ 2.718. The volume of space increases by a favor of e3 ≈ 20.086.
Since the Hubble time 1/H is very small in this slow roll phase, the expansion is
extremely rapid, the signature dynamic of inflation.

As inflation proceeds, the inflaton field moves slowly towards the bottom of the
potential well V (ϕ). When it nears the bottom, V (ϕ) becomes small and, as a result
of (A11), the friction term in H(t) in Eq. (A9) becomes small. The dynamics (A9)
of the inflaton field now reverts to that of an oscillation at bottom of the potential
well. What is not shown in equation (A9) are couplings between the inflaton field
and ordinary forms of matter in spacetime. Through these couplings, the oscillating
inflaton field transfers its energy to ordinary matter. The disorderly character of the
process produces ordinary matter in a thermal state. This closing phase of inflation is
knows as “reheating.” After reheating, the universe is filled with ordinary matter and
reverts to the normal dynamics of big bang cosmology.

So far, these processes yield an assured end to inflation with no large-scale inho-
mogeneities. To recover the pocket universes of eternal inflation, we need to allow
that the inflaton field, like all matter fields, is a quantum field. As a result, it manifests
quantum fluctuations. At any stage of the inflationary process, these fluctuations in
the inflaton field ϕ are added to the changes due to the classical dynamics of equation
(A9). These quantum fluctuations may either increase or diminish the inflaton field.
While both may occur, their effects are very different. An increase in the inflaton field
takes some region of space to a higher potential V (ϕ) and thus, through (A11), to
a higher Hubble constant and more rapid expansion. Correspondingly, a decrease in
the inflaton field yields a region with slower expansion. The more rapidly expanding
regions grow to fill spacetime more quickly than the more slowly expanding regions.

These two effects combine to yield a dynamics in which most of the spacetime
is returned to regions of high inflaton potential where slow roll inflation persists.
That is, inflation persists indefinitely in most parts of the spacetime. We have “eternal
inflation.” The inflaton field only drops to small values in smaller pockets of spacetime,
where the matter of the inflaton field is converted to ordinary matter by the processes
of reheating. These small pockets become the pocket universes of eternal inflation.

The formal treatment of quantum fluctuations in the inflaton field (see for example,
Linde 2005, §7.3; Lidsey et al. 1997) is so elaborate that it is quite difficult to find any

15 We get a comparable result by eliminating V (ϕ) from (A11): ä(t) � d2a(t)
dt2

� H2(t)a(t).
16 For more careful treatment of this approximation, see Weinberg (2008, §4.2).
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simplified, quantitative account that is still informative. Perhaps the best of these is
Guth’s (2000, §4.2) and Linde (2007, §1.4). Linde (2005, §1.7–1.8) is more detailed
but still accessible.

Quantum fluctuations in the inflaton field exist as components in a quantum super-
position of field states. A delicate issue concerns the probabilistic collapse, or effective
collapse, of this superposition into one of its components, so that we recover a classical
field compatible with the non-quantum parts of the analysis.

The process is driven by the existence of a horizon in spacetime in the inflationary
phase that is spatial distance R � 1/H from us. No process occurring outside this
horizon can ever affect us. Since such effects propagate at or less than the speed of
light, the trajectory of the fastest such effect is given from (A1) as 0 � ds2 � dt2 –
a2(t)dσ 2. If we set the coordinates of an event here and now at t � r � 0, an effect
from the most distant event at the horizon will depart at t � 0 from an event with σ

value σ(R) and arrive at t � ∞. The distance R to this event is:

R � a(0)σ (R) � a(0)
∫ σ (R)

0
dσ � a(0)

∫ ∞

0

dt

a(t)

� a(0)
∫ ∞

0

dt

a(0) exp(Ht)
� a(0)

a(0)

−1

H
exp(−Ht)|∞0

� 1

H
.

where the constancy of H in equation (A13) is assumed.
Quantum fluctuations in the inflaton field produce deviations in the mean field of all

spatial sizes. Those that are smaller than this horizon are evanescent and do not persist.
Following Linde (2005, §1.7–1.8), fluctuations whose spatial extent are linearly of the
order of this horizon 1/H are stretched by the rapid inflationary expansion, so that
they extend beyond the horizon. The stretched portion within the horizon, however,
will be of roughly constant magnitude thoroughout the space within the horizon.
As a result of the heavily damped inflationary dynamics (A9) for an inflaton field
of constant magnitude in space, the field oscillations are halted and its amplitude is
“frozen in,” to use Linde’s (2005, p. 38, p. 118) expression. This, Linde continues,
“may be interpreted … as the creation of an inhomogeneous (quasi)classical field.”
Later (Linde, pp. 113–114) draws an analogy to the Hawking radiation produced by
a black hole when portions of quantized fields pass the black hole’s event horizon
and we “trace out” those portions, so that a superposition of field states reverts to
a more classical mixed state. Linde proposes an analogous cosmological “averaging
over states beyond the horizon.”
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