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Late in 1907, Einstein turned his attention to the question of gravitation
in his new theory of relativity. It was obvious to his contemporaries that
Newton’s theory of gravitation required only minor adjustments to bring
it into agreement with relativity theory. Einstein’s first published words
on the question (Einstein 1907b, part V), however, completely ignore the
possibility of such simple adjustments. Instead he looked upon gravita-
tion as the vehicle for extending the principle of relativity to accelerated
motion. He proposed a new gravitation theory that violated his fledgling
light postulate and related the gravitational potential to the now variable
speed of light. Over the next eight years, Einstein developed these earliest
ideas into his greatest scientific success, the general theory of relativity,
and gravitation theory was changed forever. Gravitational ficlds were no
longer pictured as just another inhabitant of space and time, like electric
and magnetic fields. They were part of the very fabric of space and time
itself. }

In light of this dazzling success, it is easy to forget just how precarious
were Einstein’s early steps toward his general theory of relativity. These
steps were not based on novel experimental results. Indeed, the empirical
result Einstein deemed decisive—the equality of inertial and gravitational
mass—was known in some preliminary form as far back as Galileo. Again,
there were no compelling theoretical grounds for striking out along the path
Einstein took. In 1907, it seemed that any number of minor modifications
could make Newtonian gravitation theory compatible with Einstein’s new
special theory of relativity. One did not have to look for the relativistic
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salvation of gravitation theory in an extension of the principle of relativity.
Einstein himself would later label the motivations for his new approach
“epistemological” (Einstein 1916, section 2).

Through the years of his struggle to develop and disseminate general
relativity, one of Einstein’s greatest strengths was his celebrated mastery
of thought experiments. If you doubted that merely uniformly accelerating
your coordinates could create a gravitational field, Einstein would have you
visualize drugged physicists awakening trapped in a box as it was uniformly
accelerated through gravitation-free space (Einstein 1913, pp. 1254-1255).
Would not all objects in the box fall just as though the box were unaccel-
erated but under the influence of a gravitational field? Was not a state of
uniform acceleration fully equivalent to the presence of a homogeneous
gravitational field?

As vivid and compelling as Einstein’s thought experiments proved to
be, they still could not mask the early difficulties of Einstein’s precarious
speculations. Even a loyal supporter, Max von Laue, author of the earliest
textbooks on special and general relativity, had objected to Einstein’s idea
that acceleration could produce a gravitational field. How could this be
possible, he complained, since this gravitational field would have no source
masses.! Einstein’s evolving theory had to compete with a range of far more
conservative and more plausible approaches to gravitation, and it was to
these that physicists such as von Laue looked for a relativistic treatment of
gravitation.

We must ask, therefore, about Einstein’s own attitude toward these al-
ternatives. In particular, what of the possibility of a small modification
to Newtonian gravitation theory in order to render it Lorentz covariant and
thus compatible with special relativity? Had Einstein considered this possi-
bility? What reasons could he give for turning away from this conservative
but natural path? It turns out that Einstein had considered and rejected this
conservative path in the months immediately prior to his first publication
of 1907 on relativity and gravitation. He felt such a theory must violate
the equality of inertial and gravitational mass. He was forced to revisit
these considerations in 1912 with the explosion of interest in relativistic
gravitation theories. He first continued to insist that a simple Lorentz co-
variant gravitation theory was not viable. In the course of the following
year, however, he came to see that he was wrong and that there were ways
of constructing Lorentz covariant gravitation theories compatible with the
equality of inertial and gravitational mass.

After an initial enchantment and subsequent disillusionment with Abra-
ham’s theory of gravitation, Einstein found himself greatly impressed by
a Lorentz covariant gravitation theory due to the Finnish physicist Gunnar
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Nordstrom. In fact, by late 1913, Einstein had nominated Nordstrom’s
theory as the only viable competitor to his own emerging general theory
of relativity (Einstein 1913). This selection came, however, only after a
series of exchanges between Einstein and Nordstrom that led Nordstrom to
significant modifications of his theory.

Einstein’s concession to the conservative approach proved to have a
silver lining; under continued pressure from Einstein, Nordstrdm made his
theory compatible with the equality of inertial and gravitational mass by
assuming that rods altered their length and clocks their rate upon falling
into a gravitational field so that the background Minkowski space-time
had become inaccessible to direct measurement. As Einstein and Fokker
showed in early 1914 (Einstein and Fokker 1914), the space-time actually
revealed by direct clock and rod measurement had become curved, much
like the space-times of Einstein’s own theory. Moreover, Nordstrom’s
gravitational field equation was equivalent to a geometrical equation in
which the Riemann—Christoffel curvature tensor played the central role. In
it, the full contraction, the curvature scalar, is set proportional to the trace of
the stress-energy tensor. What is remarkable about this field equation is that
it comes almost two years before Einstein recognized the importance of the
curvature tensor in constructing field equations for his own general theory
of relativity! In this regard, the conservative approach actually anticipated
Einstein’s more daring approach.

Einstein now had an answer to the objection that general relativity in-
troduced an unnecessarily complicated mechanism for treating gravitation,
the curvature of space-time. He had shown that the conservative path led
to this same basic result: Gravitational fields come hand-in-hand with the
curvature of space-time.

Elsewhere, I have given a more detailed account of Einstein’s response
to the conservative approach to gravitation and his entanglement with Nord-
strdm’s theory of gravitation (Norton, 1992). My purpose in this chapter is
to concentrate on one exceptionally interesting aspect of the episode. Asin
Einstein’s better-known work on his general theory of relativity, the episode
was dominated by a sequence of compelling thought experiments.? These
experiments concentrate the key issues into their simplest forms and present
them in a way that makes the conclusions emerge convincingly and effort-
lessly. In this chapter I will review this sequence of thought experiments
as it carries us through the highlights of the episode.

In particular, we will see how one of the more arcane areas of spe-
cial relativistic physics proved decisive to the development of relativistic
gravitation theory. It emerged from the work of Einstein, von Laue, and
others that stressed bodies behave in strikingly nonclassical ways in rela-
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tivity theory. For example, a moving body can acquire energy simply by
being subjected to stress, even though it may not be deformed elastically
by the stress. Nonclassical energies such as these provided Einstein with
the key for incorporating the equality of inertial and gravitational mass into
relativistic physics.

1. First Thought Experiment: Masses Falling from
a Tower

The bare facts of Einstein’s initiation into the problem of relativizing grav-
itation theory are known. In late September 1907, Einstein accepted a
commission from Johannes Stark, editor of Jahrbuch der Radioaktivitdt
und Elektronik, to write a review article on the principle of relativity.> That
review (Einstein 1907b) was submitted a little over two months later, on
December 4, 1907. Its concluding part contained the earliest statement of
what came to be the principle of equivalence and of the bold conjectures
about gravitation that followed from it. What we know only from later
reminiscences by Einstein is that, in this brief period between September
and December, he considered and rejected a conservative Lorentz covariant
theory of gravitation.*

Einstein recalled that he knew how one could take Newton’s theory
of gravitation and render it Lorentz covariant with small modifications to
its equations. Newton’s theory is given most conveniently in the usual
Cartesian coordinates (x, y, z) by the field equation
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for the gravitational field potential ¢ generated by a mass density p, where
G is the gravitational constant, and by the force equation

f=-mVe )

for the gravitational force f on a body of mass m. The adaptation to special
relativity of the field equation to which Einstein alluded was obvious. One
simply replaces the Laplacian operator V2 of (1) with the manifestly Lorentz
covariant d’Alembertian [1? to recover
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where v is an invariant mass density and ¢ the time coordinate. An analo-
gous modification of (2) would also be required. Einstein (1933, pp. 286
287) continued to explain that the outcome of his investigations was not
satisfactory.

Vi =
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These investigations, however, led to a result which raised my strong
suspicions. According to classical mechanics, the vertical acceleration
of abody in the vertical gravitational field is independent of the horizontal
component of its velocity. Hence in such a gravitational field the vertical
acceleration of a mechanical system or of its center of gravity works out
independently of its internal kinetic energy. But in the theory I advanced,
the acceleration of a falling body was not independent of its horizontal
velocity or the internal energy of the system.

This did not fit with the old experimental fact that all bodies have the
same acceleration in a gravitational field. This law, which may also be
formulated as the law of the equality of inertial and gravitational mass,
was now brought home to me in all its significance. I was in the highest
degree amazed at its existence and guessed that in it must lie the key
to a deeper understanding of inertia and gravitation. I had no serious
doubts about its strict validity even without knowing the results of the
admirable experiments of Edtvos, which—if my memory is right—I
only came to know later. I now abandoned as inadequate the attempt to
treat the problem of gravitation, in the manner outlined above, within
the framework of the special theory of relativity. It clearly failed to do
justice to the-most fundamental property of gravitation.

The result that troubled Einstein in the theory he advanced came from the
relativistic adaptation of the force law (2). As Einstein pointed out in his
reminiscences, this adaptation could not be specified so unequivocally. We
can proceed directly to the result, however, if we use four-dimensional
methods of representation not available to Einstein in 1907. The natural
adaptation of (2) is

du, ¢

Fp=m—=-m

, 4
dr 0xy @

where F, is the gravitational four-force acting on a body of rest mass m
with four-velocity U,,; T is the proper time.> We can now apply (4) to the
special case of a body whose three-velocity v has, at some instant of time,
no vertical component in a static gravitational field. If the gravitational
field at that instant at the mass acts along the z-axis of coordinates, so that
the z-axis is the vertical direction in space, then it follows from (4) that the
vertical acceleration of the mass is given by

d&__(l_v_z)aji 5)

dr c2/ 3z’

We see immediately that this vertical acceleration is reduced as the hori-
zontal speed v is increased, illustrating Einstein’s claimed dependence of
the rate of fall on horizontal velocity.
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The “old experimental fact,” which this result contradicts, surely be-
longs to the famous fable in which Galileo drops various objects of different
weights from a tower. Einstein and Infeld (1938, pp. 37-3 8) certainly iden-
tify this story when they wrote:

What experiments prove convincingly that the two masses [inertial and
gravitational] are the same? The answer lies in Galileo’s old experiment
in which he dropped different masses from a tower. He noticed that
the time required for the fall was always the same, that the motion of a
falling body does not depend on the mass.

We can combine these ingredients to make explicit the thought experiment
suggested by Einstein’s analysis. Masses are dropped from a high tower,
some with various horizontal velocities and some with none. According
to (5), the masses with greater horizontal velocity fall slower, contradicting
Einstein’s expectation and the familiar classical result that they should all
fall alike. See Figure 1.

2

'® after equal
times

Figure 1. Vertical fall slowed by horizontal velocity in a Lorentz covariant theory
of gravitation.

2. Second Thought Experiment: Spinning Tops and
Heated Gases

It is not so obvious why Einstein found the outcome of this first thought
experiment to be so troubling that he felt justified in abandoning the search
for a Lorentz covariant theory of gravitation. The dependence is a minute
effect, second order in v/c. Indeed, one might well wonder how even the
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most ingenious experimentalist could compare the rate of fall of a mass with
that of another whizzing past at a horizontal velocity close to the speed of
light. Even if this were possible, the experiment had surely not been done
in 1907. How could Einstein reject this minute effect as incompatible with
an “old experimental fact” whose traditional origins lay with Galileo?

The answer resides in the fact that Einstein derived the dependence of
vertical acceleration on the “horizontal velocity or the internal energy of
the system.” What Einstein meant by this was made clear in 1912 when the
Finnish physicist Gunnar Nordstrom published the first of a series of papers
on a Lorentz covariant, scalar theory of gravitation (Nordstrom 1912). The
essential assumptions and content of Nordstrom’s theory were contained
in equations (3) and (4) above. Nordstrém did correct, however, a problem
with (4). It turns out that this force law can only hold for a mass moving
so that the rate of change of the gravitational potential along its world line
is zero. (This condition holds instantaneously for the special case used to
derive [5].) Thus the force law (4) requires modification if it is to apply to
masses along whose trajectories ¢ is not constant. Nordstrom found two
suitable modifications. He favored the one in which the rest mass m of the
body is assumed to vary with the gravitational potential ¢. In particular, he
readily derived the dependence

m = my exp(%), ©

where my is the value of m when ¢ = 0.

By October 1912, when Nordstrdm sent his paper to Physikalische
Zeitschrift, Einstein’s novel ideas on gravitation had become a matter of
public controversy. In July, Einstein found himself immersed in a vitriolic
dispute with Max Abraham, who saw in Einstein’s admission of a variable
speed of light a “death blow” to relativity theory (Abraham 1912). In his
response, Einstein (1912, pp. 1062~1063) published his 1907 grounds for
abandoning Lorentz covariance in the most general form he could manage.
In any Lorentz covariant gravitation theory, he argued, be it a four-vector or
six-vector theory, gravitation would act on a moving body with a strength
that would vary with velocity. Any such theory was unacceptable, since it
violated the requirement of the equality of inertial and gravitational mass.

Therefore it is not at all surprising that Nordstrom attracted Einstein’s
attention when he published just such a theory. Einstein’s reaction was so
swift that Nordstrom was able to mention it in an addendum to his original
paper! The addendum began (Nordstrom 1912, p. 1129):

Addendum to proofs. From a letter from Herr Prof. Dr. A. Einstein I
learn that he had already earlier concerned himself with the possibility
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used above by me for treating gravitational phenomena in a simple way.
He however came to the conviction that the consequences of such a
theory cannot correspond with reality. In a simple example he shows
that, according to this theory, a rotating system in a gravitational field
will acquire a smaller acceleration than a non-rotating system.

Einstein’s reflection on the acceleration of fall of a spinning system is
actually only a slight elaboration of the situation considered in the first
thought experiment above. Each element of a suitably oriented spinning
body in a gravitational field has a horizontal velocity. Thus, according
to (5), which obtains in Nordstrom’s theory, each element will fall slower
than the corresponding element without that velocity. What is true for each
part holds for the whole. A spinning body falls slower than the same body
without rotation.

This example now makes clear Einstein’s remark about internal energy.
When the body is set into rotation, its parts gain kinetic energy, so its
overall energy and its inertia are increased. However, through (5), there is
a decrease in the gravitational force acting on it, so that its acceleration of
fall is decreased. That is, its rate of fall decreases as the internal energy
and inertia increases. Presumably Einstein thought the spinning body just
one example of a general effect of this type. In much later reminiscences,
Einstein used the example of a kinetic gas.” As the gas is heated, each
molecule moves faster and thus falls more slowly. Thus the aggregate of
molecules, the heated gas, falls more slowly than a colder gas. These two
examples comprise the second thought experiment. See Figure 2.

Einstein’s result in this form is a far greater threat to Lorentz covariant
theories of gravitation such as Nordstrom’s, for it points to effects that
might well be experimentally testable. Perhaps the effect might transcend
detection by a Galileo-like timing of the fall of spinning tops or hot gases,
but would it escape an apparatus similar to that of the E6tvos experiment?
Nordstrom seemed to think so, for he continued his appendix by dismissing
Einstein’s argument on the basis of the effect being “too small to yield a
contradiction with experience.” This dismissal depended on a rather bold
assumption: that there are no common systems of matter in which a great
part of the internal energy, and thus inertia, is due to the kinetic energy
of internal motions. Such systems, if they existed, would fall markedly
slower than others according to Nordstrdm’s theory. Nordstrom may well
have been right that no measurable effect would arise from the spinning of
a body, but could he be sure that the energy of commonplace matter did not
already have a significant kinetic component? The fundamental theory of
matter was then in a state of turmoil and scarcely able to assure him either
way. A more prudent Einstein was unwilling to take the risk. Should it turn
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Figure 2. Spinning bodies fall slower than when not spinning. Hot gases fall slower
than cold gases, in Nordstrom’s theory.

out that a significant part of the total energy of various types of ordinary
matter was due, in different proportion, to an internal kinetic energy, then
Nordstrom’s theory might well be refuted by simple observations of the fall
of different substances from a tower.

By the time of submission of his next paper on the theory in January
1913, Nordstrdm had become more wary (Nordstrém 1913a). While still
insisting (p. 878) that no observable effect would arise in the case of spinning
bodies, he was prepared to raise the question of whether the “molecular
motions of a falling body” would influence the rate of fall. He did not state
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directly that the effect might be measurable, but the effect did worry him,
since he began to speculate on a way of incorporating the effect into his
theory.

3. Third Thought Experiment: The Energy of
a Stressed Rod

Nordstrom’s paper of January 1913 was devoted to a question that would
ultimately completely alter the direction of development of his theory. The
paper asked which quantity represented the inertial mass of a body. The
question was far from trivial. Recent work in the relativistic theory of
continua had shown that there were inertial effects that arose when a body
was stressed for which there were no classical analogs. Nordstrom ob-
served (1913a, p. 856) that it had proved possible to ignore this question
and develop a complete mechanics of extended bodies without explicitly
introducing the concept of inertial mass. This luxury could no longer be
afforded, he continued, when one worked in a relativistic gravitation the-
ory, because of the very close connection between inertial and gravitational
masses. One had to represent the inertial mass of a body in a way that al-
lowed for inertial effects in stressed bodies that cannot be attributed directly
to an individual mass.

The body of results to which Nordstrom referred had reached its mature
form in the work of von Laue (1911a, 1911b). There von Laue essentially
presented the modern theory of relativistic continua, introducing the no-
tion of the general stress-energy tensor of matter. The results to which
Nordstrom alluded took the following form. If one applied a stress to a
body without deforming it or setting it into motion, then both the energy
and momentum of the body would remained unchanged in its rest frame.
However, if one viewed this same process from a frame of reference in
which the body was in motion, then the energy and momentum of the body
might change. For example, if the body was influenced by a shear stress®
pgy in its rest frame and then viewed from a frame of reference moving at
velocity v in the x direction, then in that frame the body would acquire a
momentum in the y direction. The momentum density g, due to the stress
is given by’

v o, '
8y =V Pxy: @)
If the stress was a normal stress pf:x in the rest frame, then, when viewed in

the relatively moving frame, the body would have acquired both energy and
an x-directed momentum. The energy density W and momentum density

Einstein and Nordstrém: Thought Experiments 13
g acquired is given by

2V o 2V o
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These are the effects for which there are no classical analogs. They proved
decisive in the relativistic analysis of a number of celebrated thought ex-
periments and real experiments, most notably the Lewis and Tolman bent
lever and the Trouton—Noble capacitor.'?

One of the clearest and earliest analyses of these nonclassical effects
is due to a thought experiment of Einstein (1907a, section 1; 1907b, sec-
tion 12) and was given in the context of his discussion of the inertia of
energy. He imagined an extended body at rest carrying a charge distribu-
tion. He then imagined that, at some definite instant in its rest frame, the
body comes under the influence of an external electromagnetic field. The
net external forces are assumed to balance so that the body remains at rest.
The effect of the continued action of the forces, however, is to induce a state
of stress in the body. Einstein now redescribed this process from a frame in
which the body moved uniformly. Because of the relativity of simultaneity,
the body does not come under the influence of the external field at one
instant. For a brief period, some charge elements are under the influence of
the field and some are not. During this period, the external forces exerted
by the field do not balance, so that there is a net external force exerted on
the body. Work is done on or by the force as the body moves, and there
is a net transfer of energy. This energy is the energy described in (8) and
associated with the induction of a stressed state in the body.!!

The beauty of this thought experiment is that it derives the effects of
equations (8) directly from the most fundamental, nonclassical effect of spe-
cial relativity, the relativity of simultaneity. Forces applied simultaneously
in one frame of reference need not be seen as applied simultaneously in
another. The resulting temporary imbalance leads to an energy and momen-
tum transfer in the latter frame only and these transferred quantities emerge
as those of (8). Einstein’s analysis is mathematically quite complicated,
however, since he considers a body of arbitrary shape and charge distribu-
tion. Recapitulating Einstein’s analysis for a simpler case is sufficient to
reveal the essential physics. That case is a rod of uniform cross section
with equal charges at either end. This is the third thought experiment. See
Figure 3.

The rod has rest length I, cross-sectional area A, and extends from
x' = 0to x’ = [ in its rest frame (x’, ¢'). At a specific instant ¢’ = 0 in its
rest frame, the rod comes under the influence of a field that applies equal but
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Figure 3. Stressing a moving rod changes its energy and momentum.

oppositely directed forces F to the charges. For concreteness, assume the
forces are directed away from the rod along its length. The forces induce a
tensile stress on the rod in its rest frame!?

p). =—F/A.

If we redescribe this stressing of the rod in a frame (x, t) 13 in which the
rod moves at velocity v in the +x direction, we find that the two forces are
not activated simultaneously because of the relativity of simultaneity. The
force F on the trailing end is activated at a time y 5/ earlier than the force F
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on the leading end. For this short time period the external force F on the
trailing end is not balanced by the other external force. As a result, work is
done by the motion of the rod against the force. The resulting loss of energy
from the rod is Fl yz—i and the loss of momentum FI ¥ 2. Recalling the
above expression for p?, and that the volume of the rod in the frame (x, ¢)
is V = Al/y, we recover expressions for the energy E and x-momentum
G, gained by the rod in the process of being stressed:

2
v v
E= VZZZ‘PSxV and G, = )’zgpgx v.

Division of these expressions by the volume V yields (8).

4. Fourth Thought Experiment: Radiation in
a Massless, Mirrored Box

In his paper (1913a), Nordstrom had asked the right question. What quantity
represents the total inertial mass of a body, including contributions to its
inertial properties that arose from stresses? He sought his answer in the
form of the source density v forequation (3), and he looked in the right place
for his answer. He expected this density to be a quantity derived from the
stress-energy tensor 7}, recently introduced by von Laue. After extensive
discussion, he settled upon 1/c? times the rest energy density of the source
matter as his source density v. The rest frame required for this choice was
the instantaneous local rest frame of a continuous matter distribution—
“dust”—which Nordstrom assumed contributed to the source matter. We
would now express Nordstrom’s choice in manifestly covariant form as

v = _CLZT’“’B“B"’ ©)
where B, is the four-velocity vector field of the continuous distribution of
matter.

Nordstrdm’s answer was close to the correct answer—but not close
enough, as was pointed out by Einstein, in section 7 of his physical part of
Einstein and Grossmann (1913).!4 He reported that von Laue himself, also
in Zurich but at the University of Zurich, had pointed out to Einstein the
only viable choice, the trace of the stress-energy tensor

T =Ty,

Einstein proposed to call this scalar “Laue’s scalar”” What was distinc-
tive about this choice was that it enabled a gravitation theory that employed
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it to satisfy the requirement of the equality of inertial and gravitational mass,
at least “up to a certain degree,” as Einstein put it. This degree included
examples such as those in the second thought experiment above, as we shall
now see.

The key result that enabled satisfaction of this equality was due to
von Laue. Von Laue (1911a) had found a single general solution to a range
of problematic examples within relativity theory. They all involved systems
whose properties appeared to violate the principle of relativity. For exam-
ple, on the basis of classical electromagnetic theory, Trouton and Noble
(1903) believed that a charged, parallel-plate capacitor would experience
a net turning couple if it was set in motion with its plates oblique to the
direction of motion—although their experiment yielded a celebrated null
result. Again, Ehrenfest (1907) had raised the possibility that a nonspher-
ical or nonellipsoidal electron could not persist in uniform translational
motion unless forces are applied to it. In both cases the projected behavior
would provide an indicator of the uniform motion of the system, violating
the principle of relativity.

What these examples had in common was the presence of stresses within
the systems and, with the proper treatment of these stresses, the threat to
the principle of relativity evaporated. Von Laue noticed that these systems
were all what he called “complete static systems,” that is, they maintained
a static equilibrium in inertial frames of reference without interacting with
other systems.!> The basic result characterizing these systems was that, in
their rest frames,

f phdv® =0, (10)

where the integral extends over the rest volume V° of the whole body.
It follows from (10) that the energy and momentum of a complete static
system transforms under Lorentz transformation exactly like the energy
and momentum of a point-mass. Since the dynamics of a point-mass was
compatible with the principle of relativity, so was the dynamics of a com-
plete static system, and one could not expect a violation of the principle of
relativity in the dynamics of these systems.

Von Laue’s analysis was very general and powerful because it needed to
ask very little of the inner structure of the systems. All one needed to know
was whether the system was a complete static system. If it was, one could
ignore the further details and simply imagine a black box drawn around the
system. Its overall dynamics was now determined.

In effect, what Einstein was able to report in Einstein and Grossmann
(1913, section 7) was that von Laue’s machinery could be applied directly
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to the problem of selecting a gravitational mass density. If one chose T
as the gravitational mass density, von Laue’s result (10) entailed that the
total gravitational mass of a complete stationary system in its rest frame
was equal to its inertial mass. For, using (10), for such a system we have!®

B = / Tdv’ = f (P + P2+ Py + Ti) dV°

:/T4% dVO — total __ total

energy ~ inertial mass’

11

where I follow Einstein in simplifying the analysis by neglecting factors of
2, so that energy and inertial mass become numerically equal.

The power and subtlety of this rather beautiful result stood out clearly
in the example that Einstein employed in his discussion. This example is
our fourth thought experiment. The trace T for electromagnetic radiation
vanishes. Thus it would seem that electromagnetic radiation can have no
gravitational mass.!” But what of a system of electromagnetic radiation
enclosed within a massless box with mirrored walls? Would such a system
have any gravitational mass? The radiation itself would not, although that
radiation would exert a pressure on the walls of the box. These walls would
become stressed and, simply because of this stress, the walls would acquire
a gravitational mass. Since it is a complete static system, we need do no
direct computation of the distribution of stresses in the walls. The result
(11) tells us immediately that the total gravitational mass of the system in
its rest frame is given by the system’s total inertial mass. See Figure 4.

The same reasoning can essentially be applied to the spinning bodies
and heated gases of the second thought experiment, if they are set in a
gravitation theory that uses T as its source density. Molecules of gas with
horizontal motion will fall slower than those without this motion, thus they
do have a smaller effective gravitational mass. They exert a pressure on the
walls of the containing vessel, however, which becomes stressed. These
stresses alter the value of T and thereby contribute to the gravitational mass.
Since (11) applies here, we read immediately from it that the gravitational
mass of a gas enclosed in a vessel in its rest frame is given by the inertial
mass of the whole system.

Similarly, the individual masses comprising a spinning body do have a
smaller effective gravitational mass because of their motion, but the spin-
ning body is stressed by centrifugal forces. We know from (11), without
calculation, that the contribution of the stresses to the total gravitational
mass exactly compensates for the reduction due the motion of the individ-
ual masses. As before, the total gravitational mass is given by the total
inertial mass.
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Figure 4. Equality of inertial and gravitational mass for complete stationary systems
in a gravitation theory with source density T'.

5. Fifth Thought Experiment: Lowering and
Raising Radiation

At this point, one might anticipate that Einstein would have to capitulate
and cease his opposition to Lorentz covariant gravitation theories. His ob-
jection to these theories had been that they failed to satisfy the requirement
of equality of inertial and gravitational mass. Most damaging was his con-
clusion that this equality would fail in the type of cases dealt with in the
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second thought experiment above. But now his analysis of the choice of T
as source density showed how a Lorentz covariant, scalar theory of grav-
jtation could escape Einstein’s objection in exactly those most damaging
cases.

Einstein was in no mood for retraction, and with good reason. Having
presented T as the only viable choice of gravitational source density, he
proceeded to argue that the choice was a disaster. A theory that employed
T as the gravitational source density must violate the law of conservation of
energy. Einstein’s argument was presented within a thought experiment—
our fifth thought experiment—and it was beguilingly simple. See Figure 5.
He imagined electromagnetic radiation trapped in a mirrored, massless box.
We shall assume it cubic in shape for simplicity. The system is lowered into
a gravitational field. Since it has gravitational mass, an amount of energy
proportional to this mass is extracted.

Einstein now introduced another apparatus to raise the radiation. He
imagined a mirrored shaft extending out of the gravitational field. Within
the shaft are two mirrored, massless baffles, firmly fixed together. The
radiation is introduced into the space between the baffles and is raised out
of the gravitational field as the baffles are raised. We shall again assume
for simplicity that the space between the baffles is cubic.

We have already seen that the gravitational mass of the mirrored box
used to lower the radiation is due entirely to the stresses in its walls. It
now follows immediately that the system of radiation and baffles has only
one-third the gravitational mass of the radiation/box system, forin elevating
the radiation trapped between the baffles, one need move only one-third as
many stressed members. ' Only one-third as much energy need therefore be
supplied to raise the radiation in the baffle apparatus as is released when the
radiation is lowered in the box. Since no energy is involved in raising and
lowering the massless box and baffles when devoid of radiation, a complete
cycle of raising and lowering the radiation yields a net gain of energy. This
violates the law of conservation of energy.

Einstein must have been very pleased with this outcome. In a single
blow, it ruled out not just Lorentz covariant, scalar theories of gravita-
tion, but any relativistic gravitation theory that employed a scalar potential.
Thus the “undeniable complexity” (Einstein and Grossmann 1913, part 1,
section 7) of Einstein’s second-rank tensor theory seemed unavoidable.

6. Sixth Thought Experiment: Lowering and
Raising a Stressed Rod

Einstein’s triumph was short lived. In July 1913, Nordstrém (1913b) sub-
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Figure 5. Trace T as source density violates energy conservation.

mitted his so-called “second” theory to Annalen der Physik. This theory
used the trace T as its gravitational source density and fully exploited the
opportunities it provided for enabling the equality of inertial and gravita-
tional mass. Moreover, it was able to incorporate an escape from Einstein’s
attack on all relativistic scalar theories of gravitation.

The basic equations of the theory remained (3) and (4), except that the
four-force F,, was replaced by a four-force density K ,:

82¢ 32¢ 32¢ a2¢
) gﬁ+5}7+m=g(¢)‘),
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)
K, = —g(¢)v£;,

where u = ict.

The major alteration was the inclusion of the gravitation factor g(¢). Its
purpose was to allow for the fact that the total inertial mass and energy of a
system must vary with the gravitational potential, whereas the gravitational
mass of the system will be independent of the potential. If a system had
inertial mass m when in an external gravitational field of potential ¢, then
its gravitational mass M, was given by

Mg = g(p)m. (12)

If we now considered a matter distribution whose parts lay in regions
of differing gravitational potential, the gravitational mass of the whole
distribution would be given by a g-weighted integral over its volume

M, =/g(¢)vdV.

At this point, the expressions for both g(¢) and the source density v re-
mained undetermined. Nordstrém now reversed the direction of Einstein’s
reasoning. Einstein had shown that choosing T as source density enabled
the equality of inertial and gravitational mass for complete static systems.
Nordstrdm postulated this equality and from it derived Einstein’s choice
for source density

1
V= —EET
and an expression for g
@ =2
89 = axe

The constant A could be set arbitrarily as a gauge freedom. Under the
natural choice A = 0, which yielded the potential ¢’, Nordstrom’s second
theory now provided a very simple relationship between the energy E,
inertial mass m, and gravitational mass M, of a complete stationary system

E =mc* = My¢'.

This dependence of the energy and mass of a system on the gravitational po-
tential ¢’ was closer to familiar classical expressions than the corresponding
result (6) of Nordstrém’s first theory.
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Satisfactory as these results were, they did not yet provide an escape
from Einstein’s objection to all relativistic scalar theories of gravitation. It
is odd that this objection is mentioned nowhere in Nordstrém’s paper, even
though a major part of the paper is devoted to developing effects that were
able to defeat that objection. These effects emerged from a long series of
analyses of different gravitational systems, including Nordstrom’s model
of the electron, stressed rods, light clocks, gravitation clocks, and harmonic
oscillators. Nordstrém found that a very wide range of physical quantities
would depend upon gravitational potential. These included the lengths
of bodies, times of processes, masses, energies, and stresses. When these
dependencies were taken into account, it turned out that Einstein’s violation
of the law of conservation of energy no longer arose.

A simple thought experiment illustrates most simply how the depen-
dence arises in the case of the lengths of bodies and how this dependence
defeats Einstein’s objection. This is our sixth thought experiment. Nord-
strém attributed the thought experiment to Einstein although Einstein pub-
lished it nowhere himself. Since Nordstrém (1913b) was submitted froni
Zurich, the home of both Einstein and von Laue, this raises the question
of precisely who developed the ideas that enable escape from Einstein’s
objection. :

Einstein’s thought experiment cuts directly to the heart of the mecha-
nism that allowed a violation of energy conservation in the fifth thought
experiment. A body gains gravitational mass upon being stressed. This
additional gravitational mass generates energy when the body is lowered
into a gravitational field. That gravitational mass disappears when the body
is unstressed. If we raise the unstressed body, we create a cycle that yields
a net gain in energy. The radiation in the fifth thought experiment actually
only plays an incidental role in providing a mechanism for stressing bodies
that were to be raised and lowered.

The escape Nordstrom and Einstein now offered is ingenious. If a
stressed body expanded upon being lowered into a gravitational field, then
energy would be absorbed as the work required to expand the body against
the stresses. Could the expansion be so adjusted that it absorbed exactly
all the energy released in the fall of the gravitational mass of the stresses
themselves? If so, the construction of an energy-generating cycle would be
blocked. Nordstrom’s (1913b, pp. 545-545) account of Einstein’s thought
experiment shows us that this adjustment is easily achieved (see Figure 6).
He wrote:

Herr Einstein has proved that the dependence in the theory developed
here of the length dimensions of a body on the gravitational potential
must be a general property of matter. He has shown that otherwise
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Figure 6. Gravitational potential dependence of length restores energy conservation.

it would be possible to construct an apparatus with which one could
pump energy out of the gravitational field. In Einstein’s example, one
considers a non-deformable rod that can be tensioned movably between
two vertical rails. One could let the rod fall stressed, then relax it and
raise itagain. Therod hasa greater weight whea stressed than unstressefi,
and therefore it would provide greater work than would be consumed in
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raising the unstressed rod. However because of the lengthening of the
rod in falling, the rails must diverge and the excess work in falling will
be consumed again as the work of the tensioning forces on the ends of
the rod.

Let S be the total stress (stress times cross-sectional area) of the rod
and [ its length. Because of the stress, the gravitational mass of the rod
is increased by

gL,

c ¢
In falling [an infinitesimal distance in which the potential changes by
d¢' and the length of the rod by d/], this gravitational mass provides the
extra work .

- 57 Sldg’.
However, at the same time at the ends of the rod the work

Sdl

is lost [to forces stressing the rod]. Setting equal these two expressions
provides

1 1
—_—— d /= - l
5 =1d,
which yields on integration

I¢’ = const.

Thus simply requiring that the length of a body vary inversely with the

gravitational potential ¢’ is sufficient to preserve the conservation of en-

ergy against the threat of Einstein’s earlier thought experiment. Einstein

clearly accepted this escape, as he acknowledged within his exposition of

Nordstrom’s theory (Einstein 1913, p. 1253) and again more briefly in his
addendum to the journal printing of Einstein and Grossmann (1913).

7. Conclusion

With the intrusion of these kinematical effects into Nordstrdm’s theory, it
ceased to be a conservative, Lorentz covariant theory of gravitation and
became more akin to Einstein’s own theory, in which gravitation, space,
and time were intimately intermingled. Just how close it had come to
Einstein’s theory was revealed by Einstein and Adriaan D. Fokker in a
paper the following February (Einstein and Fokker 1914). Since the times
of all processes and the lengths of all bodies were affected equally by the
gravitational potential ¢, the times and spaces of the background Minkowski
space-time had ceased to be directly measurable by real rods and clocks.
Instead they revealed a non-Minkowskian space-time with the characteristic
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property that there exist preferred coordinate systems (x, y, z, ¢) in which
the invariant interval is given by

ds* = ¢*(dx® + dy* + d2? — c?dr?). (13)

After postulation of this basic property for space-time, the theory de-
veloped in a remarkably similar way to Einstein’s theory. The trajectory
of a body in free fall in the gravitational field was a geodesic of the space-
time. The law of conservation of gravitational and non-gravitational energy-
momentum was given by the vanishing of the covariant divergence of the
stress-energy tensor. Finally, the field equation of Nordstrdm’s second
theory proved to be just

R =kT,

where R is the curvature scalar and k a constant. Einstein was not able to in-
troduce generally covariant field equations based on the Riemann curvature
tensor into his own gravitation theory until November 1915.

In 1914, Einstein could not offer decisive grounds for picking between
his and this final version of Nordstrom’s theory. The strongest argument
he could muster against Nordstrom’s theory was that it failed to satisfy
the requirement of the relativity of inertia, a requirement whose essential
content would be transformed into Mach’s principle. The presence of the
preferred coordinate systems (x, y, z, t) in (13) was judged by Einstein as
a residual, absolute element that had to be jettisoned if the principle of
relativity were to be generalized to accelerated motion.

The three soon-to-be classic tests of general relativity could offer no
help in deciding between the two theories. Both Einstein’s and Nordstrom’s
theory predicted a red shift in light from the sun and of equal magnitude.
Unlike Einstein’s theory, Nordstrom’s theory predicted no deflection in a
beam of starlight grazing the sun. However, the world would still wait five
years for Eddington’s celebrated expeditions. Finally, accounting for the
anomalous motion of Mercury had not yet emerged as a sine qua non of any
new gravitation theory. Einstein’s theory of 1913 actually failed to account
for this anomalous motion, a shortcoming that was oddly never mentioned in
Einstein’s publications of this period. Nordstrom (1914) analyzed planetary
motions according to his theory. He found that it predicted changes in
planetary orbits that were very small in comparison with the perturbations
due to other planets and thus felt justified in concluding that this theory was
“in the best agreement with experience” (p. 1109).

What decisively changed the standards for evaluation of gravitation
theories was a result communicated by Einstein (1915) to the Prussian
Academy on November 15, 1915. He showed that his gravitation theory,
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now equipped with generally covariant field equations, was able to ac-
count almost exactly for the anomalous advance of Mercury’s perihelion.
Overnight, the margin of error in astronomical prediction allowed a gravi-
tation theory dropped by at least an order of magnitude. As von Laue noted
in his sympathetic review (1917, p. 305), Nordstrém’s theory was no match
for Einstein’s when it came to Mercury, for Nordstrom’s theory predicted
a slight retardation of the planet’s perihelion. The failure was now deemed
so complete that von Laue did not even bother to report the magnitude of
the retardation.

After the excitement of Eddington’s eclipse expedition and the public
acclaim of Einstein and his theory, the fate of Nordstrdm’s theory was
sealed. It could offer little competition to the seductive charms of Einstein’s
theory. By the time of Pauli’s authoritative survey (1921, section 50), in less
than a paragraph Nordstrdm’s theory was dismissed briefly and decisively
as a viable gravitation theory.

NOTES o

1 M. von Laue to A. Einstein, December 27, 1911, EA 16-008. For further
discussion, see Norton (1985, section 4.1).

2 For philosophical analyses of thought experiments from various perspectives,
see Horowitz and Massey (1991), which contains Norton (1986), and see also Brown
(1991) and Sorensen (1992).

3 Einstein to J. Stark, September 25, 1907, EA 22-333.
4 One of the most informative is Einstein (1933, pp. 286-287).

5 Here and henceforth, Greek indices will vary over 1, 2, 3, 4 and Latin indices

over 1,2, 3. ITwill employ the coordinate system (xy, x5, X3, X4) = (x, ¥, 2, 4 = ict)
as was common in four-dimensional physics in the early 1910s. Summation over
repeated indices will be implied.

¢ From the orthogonality of four-velocity U, and four-acceleration du,/dr, we
infer from the contraction of (4) with U, that

¢ dx d¢

O0=F U, = —-m— "% — _ -,
whu = dx, dr g
so that d¢/dr = 0.

"Inalecture given on April 14, 1954, according to notes taken by Wheeler (1979,
p. 188). ’

8 pj) is the (three-dimensional) stress tensor.

Oy =1/y/1—v2/c

10 See Norton (1992, section 9), and Janssen (manuscript).

! Einstein’s analysis did not consider the corresponding exchange of momentum
associated with the temporary imbalance of external forces, which would lead to
the momentum expression in (8). Iadd this to my analysis below since it is a trivial
and obvious extension of Einstein’s original thought experiment.
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12 T follow Einstein in assuming that we are treating a case in which the forces
between the charges on the body are small compared with the external forces and
can be neglected.

13 Ag ysual, we have t = y(t' + (v/cH)x’) and x = y(x' + vt'), where y =
1/4/1—v%/c2.

14 One obvious problem with (9) that Einstein did not mention is that it is ill-
defined for source matter that, unlike dust, has no natural rest frame.

15 Von Laue’s (1911a, section 5) definition was unnecessarily restrictive and did
not include bodies rotating uniformly about their axes of symmetry. Nordstrom
(1913b, pp. 534-535) quietly extended the analysis to “complete stationary” sys-
tems, which did include such rotating bodies.

16 Under Nordstrom’s choice of coordinate system, with x, = ict, Tyy = —(ener-
gy density), whereas under Einstein and Grossmann’s (1913) choice of metricgl
signature (—, —, —, +), Ty = +(energy density). I have also followed Einstein in
simplifying the analysis by ignoring the fact that the total energy of a system must
vary with gravitational potential, whereas its gravitational mass will not. Thus
the expression for the proportionality of the inertial and gravitational mass of a
system must contain a factor that is a function of the gravitational potential. This
effect is explicitly incorporated into Nordstrom’s (1913b) second theory through
the factor g(¢), and the proportionality is expressed as relation (12) of Section 6
below. For the analysis of this section and the following, this g factor can be taken as
approximately constant and its effect absorbed into other constants in the equations.

17 This conclusion holds for free radiation, and for this reason there is no gravi-
tational bending of light in Nordstrdm’s (1913b) second theory, since it employs T
as its source density.

18 T see this most clearly, imagine that each pair of opposing walls of the box
are held together by a slender rod that carries all the stresses needed to hold the
walls against radiation pressure. One set of opposing walls and rods forms the set
of baffles. Three identical sets can be fitted together to form the cubical box.
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