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chapter 3

A Material Defense of Inductive Inference

John D. Norton

1 Introduction

Skepticism about inductive inference is so deeply woven into our philosophi-
cal tradition that we name its many forms after our philosophical heroes or vil-
lains: Hume’s problem of induction, Hempel’s problem of the raven, Goodman’s 
problem of grue, and Quine’s problem of underdetermination. This prolifera-
tion of skepticisms surrounds inductive inference with a miasma of philosoph-
ical decay. Yet, at the same time, inductive inference in science brings us the 
most extraordinary achievements. We live with a disturbing tension. Doubting 
inductive inference in the generality is philosophically respectable. There 
can be no inductive justification of inductive inference, Hume assured us. Yet 
doubting inductive inferences in the specific seems pointlessly quarrelsome. 
Are we to doubt the inductive inferences that tell us that the planets orbit the 
sun, that matter is made of atoms, that life evolved, that microbes carry conta-
gion, and so on? To echo C. D. Broad’s lament, inductive reasoning is the glory 
of science but the scandal of philosophy.1

The standard response by philosophers is to quarantine our skeptical 
doubts in an isolation ward where the fever may rage. We do not allow the 
contagion to pass beyond these confines, lest we risk derision when our non- 
philosophical friends discover that we think nothing justifies the belief that 
the sun will rise tomorrow.

Sometimes skepticism is merely troublesome sophistry and quarantine is 
the best response. However, sometimes skepticism is a clue that there is a real 
problem. If the skepticism is persistent, spanning not just centuries but millen-
nia, it might well be a strong signal of a deep, unsolved, foundational problem. 
This I believe to be the case with inductive inference. The skepticism persists 
because have not properly identified the foundational problem and so have 
had no chance to solve it.

 1 Broad’s exact wording has proven less quotable: “May we venture to hope that when Bacon’s 
next centenary is celebrated the great work which he set going will be completed; and that 
Inductive Reasoning, which has long been the glory of Science, will have ceased to be the 
scandal of Philosophy?” (1926: 67).
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The real problem is that we have simply misunderstood how inductive 
inference works. We think it is sufficiently like deductive inference that we can 
model our account of inductive inference on it. We try to distinguish the valid 
inductive inferences from the invalid in the same way as we do with deduc-
tive logic— by checking which of them conforms with one of a set of universal 
inference schemas. That is how formal logic works. Valid inferences are distin-
guished from invalid ones by their form. After two millennia, we need to accept 
that this model has failed for inductive inference and is responsible for the 
lingering miasma that surrounds inductive inference.

We dispel it with a better understanding of the nature of inductive infer-
ence. The correct model, I will argue below, is that inductive inferences are not 
warranted by conformity with a universal template. None succeed universally, 
so that there is no universally applicable logic of induction. Rather, inductive 
inferences are warranted not formally but materially. They are justified by 
facts, that is, by the factual matter that is itself the content of argumentation.

My principal goal in this paper is to illustrate how this material theory of 
induction emerges as the natural response to our failure to identify a univer-
sal formal logic of inductive inference. In Section 2, I will review several of 
these failures, including the failure of universality of Bayesian inductive logic. 
In Section 3, I will argue that the mode of its failure will lead us directly to the 
material theory of induction, which replaces the ever- elusive universal logic 
of inductive inference with many localized logics of induction, each adapted 
to specific domains by the facts prevailing there. Section 4 provides a gen-
eral argument for the view. It is illustrated in Section 5 and 6 with the case of 
Galileo’s law of fall. Conclusions are in Section 7.

2 Skepticism about Universal Logics of Inductive Inference

There is no formal logic of inductive inference that succeeds universally. 
I stress the “universally.” Most logics work quite well somewhere. I assert that 
none work everywhere. This is a strong claim and one that needs considerable 
work to sustain. For there are very many formal logics of inductive inference. 
My approach has been to coalesce these many logics into one of three large 
families of accounts, each of which is powered by one idea. This coalescence 
makes the refutation tractable, for the failure of universality of representatives 
of each family is easier to demonstrate. This exercise has been explored a little 
more fully elsewhere (Norton 2003, 2005). Here I will reproduce a few exam-
ples of it.
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2.1 Inductive Generalization
The first family is inductive generalization.2 It is powered by the notion that 
an instance confirms a generality. Expressed in syllogistic logic, it becomes 
the schema of enumerative induction. Expressed in first order predicate logic, 
it becomes Hempel’s instance account of confirmation. This is the argument 
form most commonly invoked in traditional skeptical analyses. The past 
history of sunrises inductively supports future sunrises. The past history of 
bread nourishing inductively supports bread always nourishing. They are all 
instances of this schema of enumerative induction:

Some As are B
—————
All As are B

The schema has survived only through our willful indulgence of ignoring what 
everyone surely knows— that, most commonly, when some As are B, it is not 
the case that all As are B. The schema simply does not work. Its uncritical use 
almost always produces bad results. We avoid disaster only by carefully con-
trived selection of our As and Bs.

The problem becomes quite apparent if we look at real cases in science. After 
extraordinary labors spanning years, Marie Curie finally managed to isolate a 
mere tenth of a gram of radium chloride. She inspected its crystalline form 
and, on the strength of this one sample’s properties, immediately declared a 
general conclusion: “The crystals, which form in very acid solution, are elon-
gated needles, those of barium chloride having exactly the same appearance as 
those of radium chloride” (1904: 26). This inference, and many she made that 
are like it, involve highly selective choices of A and B. She could have general-
ized from her tenth of a gram sample to conclude that all radium chloride is in 
Paris; or prepared by chemists by fractional crystallization; or comes in tenth 
of gram weights; or is roughly at room temperature; and so on endlessly. She 
chose only very specific As and Bs.

How can a formal theory accommodate this narrowness of selection? The 
only resource is to add extra formal clauses to the schema that specify just 
which As and Bs are allowed. It takes only a little reflection to see how hope-
less is the task. We must find clauses that will authorize just Curie’s careful 
selection as well as all those that might come up in every other application 

 2 For a pedagogic introduction, see Norton (2010a).
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of the schema. Indeed, a non- chemist will likely fail to see just how carefully 
contrived is Curie’s selection of the property to be generalized. We shall see 
below that the choice of B as “elongated needles [exactly like] those of barium 
chloride” was no mere idle convenience. It was carefully chosen.

2.2 Hypothetical Induction
This family of accounts of inductive inference is powered by the notion that 
an hypothesis accrues inductive support when it deductively entails affirmed 
evidence. The most familiar form is the astronomical saving of the appear-
ances. Hypotheses over the motions of heavenly bodies accrue support when 
they conform to, and correctly predict, the celestial motions we observe (the 
“appearances”). The great difficulty with this basic notion is its profligacy. 
If we have any hypothesis that saves the appearances, so will any logical 
strengthening of it. Each of Copernican astronomy simpliciter and Copernican 
astronomy, conjoined with some of his neoPlatonic assertions about the sun, 
both save the celestial phenomena equally well. Are they then equally well  
supported?

As a result, there have been many attempts to rein in simple hypothetical 
induction, often called “hypothetico- deductive confirmation.” It is done by 
adding conditions that must be met before an hypothesis can accrue support 
from its affirmed deductive consequences. I will discuss just one. According 
to “inference to the best explanation,” we require that the hypothesis not just 
entail deductively the affirmed evidence; it must also explain it. In his cele-
brated work, J.J. Thomson (1897) found that cathode rays deflected in electric 
and magnetic fields just as if they were constituted of massive charged parti-
cles with a specific mass to charge ratio. The best explanation of this fact was 
that cathode rays just are beams of these particles. He thereby set aside the 
alternative view: “the almost unanimous opinion of German physicists [that] 
they are due to some process in the aether” or, more briefly, some sort of wave  
phenomenon.

The success of the inference was short lived. By the 1920s, with the 
rise of quantum mechanics, the wave character of the electron was soon 
affirmed. Davisson and Germer (1927) found that cathode rays, scat-
tered off a crystal of nickel, formed diffraction patterns just as if the rays 
were waves with wavelengths given by the quantum de Broglie formula.3  

 3 Curiously, J.J. Thomson’s son, G.P. (George Paget) conducted similar experiments at the same 
time and also affirmed the wave character of electrons. J.J. did not find this to be a refutation 
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The best explanation was that these rays are de Broglie waves of this  
wavelength.4

We have two inferences to the best explanation that give strikingly different 
conclusions. That fact alone does not impugn inference to the best explana-
tion as an inductive inference form. For inductive inference is fallible, and the 
display of failed inductive inferences may merely be illustrating the fallibility. 
Rather, the two inferences illustrate the major failing of inference to the best 
explanation. It is that explanation, understood formally, contributes rather lit-
tle to the outcome of the inference. That outcome is mostly controlled by the 
factual background we assume when making the inference.

This manifests in the fact that both of these inferences provide strong sup-
port for their hypotheses. However, the schema of inference to the best expla-
nation provides no formal structure for these judgments of strength. If we know 
in the abstract that some hypothesis is the best explanation of the evidence, 
we have no way to assess how strongly the hypothesis is supported. It may be 
strong, weak, or negligible. However, once we look at the specifics in the back-
ground facts, we can then make the judgment, at least qualitatively. Thomson’s 
cathode rays respond in perfect concert to electric and magnetic fields of vary-
ing intensity, as expected of charged particles. Davisson and Germer’s cathode 
rays deliver a diffraction pattern that is the distinctive fingerprint of waves of 
the requisite wavelength. Hence, both inferences are strong.

This lesser formal role for explanation reflects the deeper problem with 
inference to the best explanation. It is not a properly developed logic at all. 
It lacks a unique, stable, formal account of explanation. Accounts of explana-
tion are notoriously scattered. If to explain is to subsume under a covering law 
from which the explanandum is deduced, inference to the best explanation 
reverts to simple hypothetico- deductive confirmation, unless we can provide 
a general characterization of just what a law is. If we take explanation to be 
the displaying of probability raisers, then we need to find a probability space 
in which we can assign probabilities to the various propositions concerning 
the nature of cathode rays. Or if to explain is to display the causes, then we 
need to find a clear pathway through the tangled thicket that is the present 
literature on causation. Or if to explain is to unify, we need some account of the 

of classical physics, but instead an affirmation of the success of a classical account of the 
electron as a composite particle and field structure. For further discussion of J.J. and G.P.’s 
work and their interactions, see Navaro (2010).

 4 That just this hypothesis specifically is supported is clear from Davisson’s (1937) and G.P. 
Thomson’s (1937) cautious formulations in their Nobel Prize acceptance speeches, as well as 
the award speech (Pleijel 1937).
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difference between mere conjunction of propositions and their unification. 
Perhaps we can make progress on all of these questions. But that is mere hope 
for the future and is not now giving us a precise formal theory of inductive 
inference. It is, to use Lipton’s (2004: 2, 55, 57) wording, more a “slogan.” It is an 
advertisement for what might one day be a properly developed logic.

2.3 Probabilistic Induction
Philosophical fashions change. Even though the idea has been with us for cen-
turies, it is only in the last few decades that a probabilistic approach to induc-
tive inference has risen to be the dominant approach, in the form of Bayesian 
confirmation theory. Its appeal is immense. There are many contexts in which 
it produces analyses of extraordinary power. It also has the virtue of a mechan-
ical calculus. Once you have determined the probability space and have a mod-
icum of probability assignments, solving an inductive problem, even of some 
complexity, may reduce to mere computation, often only a little more chal-
lenging than simple arithmetic.

This undeniable appeal has encouraged Bayesians to discount or overlook 
the shortcomings of the system. Two shortcomings are of foundational impor-
tance. First, the Bayesian view is that the entirety of inductive inference is 
subsumed by its probabilistic approach. This is mistaken. Bayesian analysis 
succeeds only in constrained domains in which grounding for its probabilities 
can be found. Elsewhere it returns meaningless numbers that can mislead pro-
foundly. Second, the Bayesian view mischaracterizes the nature of inductive 
inference. It regards this as a branch of mathematics, so that the explication 
of inductive inference is largely the deriving of theorems in the probability 
calculus. I will argue below that inductive inference is better characterized as 
an inseparable part of empirical science.

Elsewhere, I have joined a minority tradition of Bayesian critics and written 
at some length on the shortcomings of Bayesian confirmation theory (Norton 
2008, 2010b, 2010c, 2011). Here I will work through one problem to illustrate 
some of the lingering weaknesses of Bayesianism. Norton (2010b)  identifies 
the “inductive disjunctive fallacy” to which Bayesians are prone. It arises as 
follows. Assume that we have a very large number N+ 1 of mutually exclusive 
and exhaustive outcomes a0, a1, …, aN. Now assume that we simply have no 
evidence that supports any of the outcomes whatever. It is not that we have 
no grounds that favor any one outcome over another. Rather, our evidence is 
completely bereft of anything helpful in deciding their truth or in discriminat-
ing among them.

How can a Bayesian characterize this circumstance of what I shall call “com-
pletely neutral inductive support”? Each of a0, a1, …, aN must be assigned a very 
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small probability, spreading the measure widely, for otherwise we are favoring 
one. Write this as

P(ai) =  smalli where i =  0, 1, …, N.

The actual value smalli assigned to each ai can vary. They definitely need not 
all be the same. They merely need to be very small and non- zero, for a zero 
amounts to a negative certainty. We now compute the probability assigned to 
the disjunction of all the outcomes, excluding a0:

P(a1 or … or aN) =  P(a1) +  … +  P(aN) =  small1 +  … +  smallN

Since the sum of all the probabilities must be unity (“additivity”), we know that

1 =  small0 +  small1 +  … +  smallN

so that

small1 +  … +  smallN =  1 -  small0 =  nearly- one

This last sum must be nearly one, since small0 is very small. Combining these, 
we have

P(a1 or … or aN) =  nearly- one

That is, we are now near certain of (a1 or … or aN) or, equivalently, near certain 
that the outcome is not a0.

Recall the initial assumption: we simply have no evidence at all concern-
ing the truth of the outcomes. Yet a simple, rather mindless, manipulation 
of the probabilities has given us near certainty, in contradiction to our initial 
assumption. Hence, I characterize this inference from no evidence about the 
outcomes to near certainty as an inductive fallacy, the “inductive disjunctive 
fallacy.”

One might imagine that no one would seriously fall into the mechanical 
manipulation of probabilities that leads to the fallacy. It turns out that there 
are many instances of it, as recounted in Norton (2010b: sect. 4). For exam-
ple, Van Inwagen (1996: 95) uses it to answer the (pseudo) profound question, 
“Why is there anything at all?” The answer proceeds, in effect, by attaching the 
possible world with no beings to outcome a0, since there can be only way to 
have no beings. All of the very many possible worlds with beings are attached 
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to outcomes a1, …, aN. It is now concluded that outcome a0 of a world with no 
beings is “as improbable as anything can be” (1996: 99).

Once the fallacy is displayed, its source is clear. It stems directly from the 
key formal property of a probability measure: it is an additive measure. All of 
the probabilities of mutually disjoint outcomes must add to unity. Hence, we 
have no way to represent completely neutral support. If we assign a very small 
probability to some outcome, additivity forces us to assign high probability to 
the disjunction of the rest. That is, we assign strong support or belief to the 
original outcome’s negation; and that is incompatible with having completely 
neutral evidential support.

There are, broadly speaking, two ways in which Bayesians can respond. 
I categorize them as an “inelastic” and an “elastic” response. With the inelas-
tic response, the Bayesian insists that the probabilistic computations must be 
respected. There is no fallacy. There is merely an error in our interpretation. 
Perhaps we should simply discount the possibility of completely neutral evi-
dence at the outset. Or, more credibly, a subjective Bayesian may insist that all 
of the probabilities involved are arbitrarily selected subjective beliefs, akin to 
the way in which subjective Bayesians treat prior probabilities. The difficulty 
with this last response is that, once we discount the probabilities as expressing 
mere opinion, they cease to represent degrees of inductive support, as they 
should in an inductive logic. The probabilities are supposed to transform from 
pure opinion to a measure of inductive support as conditionalization pro-
ceeds. However, there is no objective criterion in the system that tracks the 
conversion. Merely having a high probability is not enough to show that the 
conversion is near completion, as the inductive disjunctive fallacy illustrates.5 
Given these failures, in my view, the only viable inelastic response is simply to 
accept that there are cases that elude the Bayesian system and that this is one 
of them. The computation is mathematically correct but merely inapplicable 
to the case at hand.

The elastic response accepts that the additivity of a probability measure 
prevents it from representing directly situations of completely neutral induc-
tive support. However, probability measures can be used indirectly to rep-
resent them. The proposal is to replace a single probability measure with a 
set of them. Complete neutrality of evidential support would be captured by 
allowing all probability measures over the outcome space into the set. The pro-
posal is appealing initially, since the complete neutrality of inductive support 

 5 This version of the inductive disjunctive fallacy includes no conditionalization. However, 
conditionalization could be added merely by extending the ai to include very many more 
outcomes aN+ 1, …, aM, and then conditionalizing on all of the outcomes excluding these.
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appears to be captured by allowing in everything possible in the probabilists’ 
repertoire. If everyone speaks equally, no one is favored.

While the proposal fails for technical reasons,6 it should be resisted by 
probabilists for a principled reason. It is, in effect, giving up the core of the 
probabilists’ theory: that relations of inductive support are represented by 
an additive measure. The elastic response allows that the proper account of 
inductive support includes non- additivity. Probability measures are demoted 
to artifices. That is, they become adjunct structures used to simulate another 
non- additive logic whose principles are not clearly articulated. We no longer 
have a probabilitistic logic of induction. Rather we have an elastic language 
that is deformed as needed to accommodate whatever inductive behavior is 
deemed appropriate in the case at hand.

In sum, both elastic and inelastic responses lead to the same outcome: there 
are inductive problems that lie outside the Bayesian reach.7 We arrive at this 
directly from the inelastic response and also from the elastic response since 
the latter reduces additive probability measures merely to tools used in the 
simulation of non- additive inductive relations of support.

3 Material Theory of Induction

Examples such as these indicate that there is no formal account of inductive 
inference that succeeds universally. However, inductive inferences succeed. 
These examples also suggest how that is possible. In the case of inference to 
the best explanation, we saw that explanation itself played a negligible role. 
What supported the conclusions were background facts. That idea, taken to its 
extreme, is the core thesis of a material theory of induction:

Inductive inferences are warranted by facts, not by formal schemas.
The clearest illustration is in Curie’s induction on radium chloride. The attempt 
to explicate it with the schema of enumerative induction failed. We could not 
justify why the schema should be limited precisely to the few properties of 
radium chloride that Curie so confidently generalized.

The justification for this restriction cannot be found in any formal analysis 
of predicates and properties. Rather, it lies in the researches of chemists in the 
nineteenth century. The core result is known as “Haüy’s Principle” and is named 
after one of its earliest proponents, Reny Just Haüy. It asserts that, generally, 

 6 Completely neutral support should be invariant under negation. Sets of probability mea-
sures, no matter how extensive, do not exhibit this invariance. See Norton (2007: sect. 6).

 7 For another example, see Norton (2010c).
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each crystalline substance has a single characteristic crystallographic form. 
The principle is grounded in extensive researches into the chemical composi-
tion of crystalline structures and into how their atoms may be packed into lat-
tices. That means that, once one has found the characteristic crystallographic 
form of some sample of a substance, generally one knows it for all samples.

Curie’s inductive inference is warranted by Haüy’s Principle and not by con-
formity to any inductive inference schema. There is an inductive risk taken 
in this conclusion, as indicated by the “generally” in the principle. Some sub-
stances admit polymorphism, which means that they form more than one type 
of crystal.

We can now see why Curie’s induction is limited specifically to the crystal-
lographic form of radium chloride rather than to the many other properties 
of Curie’s one tenth gram sample: Haüy’s Principle is restricted precisely in 
this way. Indeed, its formulation is extremely hard- won. We now know that all 
crystals fall into one of seven crystallographic families. They are defined by the 
axes characteristic of the crystalline lattice.8 Discerning these families consti-
tuted a major mathematical challenge, and it was only after the mathemati-
cal problem was solved that truly reliable inductive inferences on crystalline 
forms were possible. When Curie identified radium chloride crystals as just 
like those of barium chloride, she was adopting the expediency of not speci-
fying the family formally, but of merely allowing that it was the same as that 
of barium chloride. This in turn lent credence to her induction since another 
principle of chemistry, the law of isomorphism, allowed that analogous chem-
icals formed similar crystals.

This core idea of the material theory of induction can be applied in the 
other examples. Probabilistic induction is warranted, according to the mate-
rial theory, just in so far as there are background material facts authorizing the 
use of probabilities to represent degrees of support. Such circumstances might 
include inferences over populations where physical probabilities are intro-
duced through an assumption of random sampling. In the case of the induc-
tive disjunctive fallacy above, the probabilistic analysis failed since, by careful 
design, the problem situation is bereft of just the facts needed to authorize the 
use of probabilities in inductive inference.

 8 The simplest system is the cubic system. When one learns that table salt form cubic crystals, 
one might imagine that its crystals are all little cubes. They are not. Rather, they are many 
shapes with the distinctive property of being derivable from cubes by cleavage along cleav-
age planes.
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4 A General Argument for the Material Theory of Induction

There are two major premises in the general argument. The first is this:
 (1) Deductive inference is not restrictive; inductive inference is restrictive.
This premise expresses the distinction traditionally drawn between deductive 
and inductive logic. Deductive inference is not restrictive, in the sense that the 
conclusion of a deductive argument expresses no further factual restriction 
than that already expressed by the premises. Inductive inference is restric-
tive, in the sense that the conclusion of an inductive inference must prohibit 
some of the possibilities that are logically compatible with the premises, else it 
would be deductive. It follows that, for any inductive inference, we can always 
find scenarios, even if contrived, that are inhospitable to the inference so that 
its use in them is not appropriate. That the context of an inductive inference 
is hospitable is a contingent property of the context. Securing an hospitable 
factual background is all that is needed to warrant the inference. The fact— 
the truth— that the background is hospitable is the warrant of the inductive 
inference:
Hence, inductive inferences are warranted by facts.
Often, of course, we proceed with an inductive inference on the presumption 
that our warrant is a truth. The proper use of the inference is dependent on a 
later affirmation of the truth of the warrant.

This requirement for a factual warrant applies to probabilistic inductive 
inference. To say that a circumstance is extremely probable or improbable 
is to assert a factual claim, albeit probabilistic, that goes beyond the facts in 
evidence.

The second premise is this:
 (2) There is no universally applicable warranting fact for inductive inferences.
One might to try to warrant inductive inferences by means of a universal fact. 
Such was the proposal by Mill (1882: bk. iii, chap. iii, 223) when he sought to 
ground induction in the “universal fact, which is our warrant for all inferences 
from experience, … that the course of nature is uniform”. However, no such sin-
gular fact has been forthcoming. Candidates turn out to be either optimistic, 
contingent falsehoods or vacuous truths. Rather, as we see in the examples of 
this paper, the facts warranting inductive inferences are varied and show no 
indication of deriving from a single, common, universal fact. The warranting 
facts may impose some regularity on the inductive inferences that they support. 
Those regularities, when described systematically, will form an inductive logic. 
Since there is no universal warranting fact, the resulting inductive logics will be 
applicable only to the restricted domains in which the warranting facts obtain:
Hence, all induction is local.
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5 Illustration: Galileo’s Law of Fall

An illustration will show once again the necessity of background facts for 
inductive inference to be supported. Here is an insoluble inductive problem. 
Given the first members of a sequence of numbers: 1, 3, 5, 7, …, what comes 
next? There are many choices. We could continue as the odd numbers: 1, 3, 
5, 7, 9, 11, …; the odd prime numbers including 1: 1, 3, 5, 7, 11, 13, …; countably 
many more continuations for which rules can be given;9 and uncountably 
many more for which no finite rule can be given. With the problem as posed, 
we have no means to discern among the possibilities. No inductive logic can 
help us.

What makes the problem inductively insoluble is that the factual context in 
which the sequence arises is not specified. Once we know the factual context, 
we can rule out some, many, or most of the possible continuations. We can 
infer inductively.

What we infer will depend sensitively on the background facts. There are 
many possible factual contexts in which these numbers may appear. They may 
merely be the numbers read from the right- hand pages of a book; or from the 
decimal expansion of 359/ 2645.10 Or they may be the numbered balls drawn 
by a randomizing lottery machine. Or they may be numbers offered to us in a 
question in an iq test. Or they may be numbers devised by a clever psycholo-
gist who plans to deceive us. Once we know these background facts, the possi-
bilities are reduced and an inductive inference is possible.

The inferences will be fully controlled by these facts and different in each 
case. If the numbers are page numbers, we will expect the continuation as the 
familiar odd numbers. If the numbers are lottery drawings, we will spread our 
expectations probabilistically over the remaining numbered balls. The cases of 
the iq test and the deceiving psychologist are more complicated. Each of these 
background facts will engender a different inductive logic that applies just to 
the domains in which those background facts prevail.

Let us pursue one case. The numbers 1, 3, 5, 7, … turn out to be classics in 
the history of science. Galileo’s (1638) Two New Sciences presents Galileo’s law 
of fall in several forms: the speed of fall increases in proportion to the time of 

 9 The function f(n) =  (2n- 1) +  (n- 1)(n- 2)(n- 3)(n- 4) g(n) returns the original sequence 1, 3, 5, 7 
for n =  1, 2, 3, 4. But for n =  5, 6, 7, … it returns different numbers according to the arbitrary 
selection of the function g(n).

 10 359/ 2645 =  0.13572778828 ….
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fall; or the distance fallen increases with the square of the time of fall. It could 
also be expressed so:

Hence it is clear that if we take any equal intervals of time whatever, 
counting from the beginning of the motion, such as ad, de, ef, fg, in 
which the spaces hl, lm, mn, ni are traversed, these spaces will bear to 
one another the same ratio as the series of odd numbers, 1, 3, 5, 7; …

Third Day, Naturally Accelerated Motion, Thm. ii, Prop. ii, Cor. i

That is, a freely falling body falls incremental distances 1, 3, 5, 7 in successive 
units of time. Thus the total distances fallen in the successive units of time 
are 1, 1+ 3= 4, 4+ 5= 9, 9+ 7= 16, and we recover the more familiar squares of the  
times.

These incremental distances may have a more direct place in Galileo’s dis-
covery. Stillman Drake (1978: 89) conjectures that Galileo may have measured 
experimentally the distances that a body falls in equal times by using the sur-
rogate for free fall of a ball rolling down a groove in an inclined plane. Gut 
frets were arranged across the groove, so that the noises made by the pass-
ing ball beat a uniform rhythm in time. Then the spacing of the frets would 
measure the incremental distances. Drake’s text reproduces a Galileo manu-
script (87) in which, Drake believes, Galileo recorded the positions of the gut  
frets.11

We will never know exactly how Galileo posed the inductive problem to 
himself. So let us pose a Galileo- like problem in which we are allowed only to 
use the resources available to Galileo. We imagine that Galileo has measured, 
nearly enough, that incremental distances fallen in unit time are in the ratios 1 
to 3 to 5 to 7. What is the continuation?

Without some further background assumption, nothing can be inferred. 
Galileo apparently assumed that the continuation is governed by a simple rule, 
expressible in the limited geometric and arithmetic language available to him. 
This immediately directs him to the odd numbers for incremental distances 
and to the squares for total distances fallen.

Did Galileo make this assumption explicitly? It is indicated informally in 
Two New Sciences when Galileo introduces the gains of speed in free fall with 
the rhetorical question, “why should I not believe that such increases take 

 11 They were 33; 130; 298; 526; 824; 1,192; 1,620; 2,123 (corrected to 2,140). A short computation 
(by me) shows that the intervals between these distances, taking 33 to be the unit, are: 1; 
2.94; 5.09; 6.91; 9.03; 11.15; 12.97; 14.67; which are quite close to the odd numbers 1, 3, 5, 7, 9, 
11, 13, 15.
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place in a manner which is exceedingly simple and rather obvious to every-
one?” (1638: 161). There is a stronger statement in the Assayer, where Galileo 
writes thus:

Philosophy is written in this grand book, the universe, which stands con-
tinually open to our gaze. But the book cannot be understood unless one 
first learns to comprehend the language and read the letters in which it 
is composed. It is written in the language of mathematics, and its charac-
ters are triangles, circles, and other geometric figures without which it is 
humanly impossible to understand a single word of it; without these, one 
wanders about in a dark labyrinth. (1623: 237– 238)

Galileo does not present the Platonic assumption as abstract metaphysics. It is 
a methodological guide. It is also a factual assumption. There are many ways 
that things might be in the world. Galileo’s Platonism rules out all possibilities 
save those that can be described simply in the language of mathematics.

The restriction to simple rules is powerful. But it is not powerful enough 
to rule out all other continuations of 1, 3, 5, 7. One further, often overlooked, 
assumption rules out these others. Galileo’s ratios of 1 to 3 to 5 to 7 to … for the 
incremental distances fallen in unit time succeeds whatever unit is taken for 
time. It might be a second, a half second, a pulse beat, and so on. The same 
is true for the total distance fallen. Their ratios are always the squares: 1 to 
4 to 9 to 16 to … To see how this works arithmetically, take the incremental 
distances:

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, …

Now choose a new unit of time, equal to two of the old units. Hence the incre-
mental distances fallen in the new doubled units of time are these:

1+ 3, 5+ 7, 9+ 11, 13+ 15, 17+ 19, …
=  4, 12, 20, 28, 36, …
=  4×1, 4×3, 4×5, 4×7, 4×9, …

The ratios 1 to 3 to 5 to 7 to … are preserved.
Galileo knew this. He wrote in Corollary 1 above that the result holds if we 

select “any equal intervals of time whatever”. It is a remarkable fact, strongly 
suggested by his experiments. Galileo had no accurately measurable stan-
dard unit of time. He had no atomic clock that could deliver one second with 
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extraordinary precision. His units of time were selected arbitrarily in the con-
text of the experiment. When an arbitrary selection of a unit of time delivers 
just the ratios 1 to 3 to 5 to 7 to …, either Galileo happened by sheer good for-
tune onto just the right unit of time; or any selection of unit will return the 
same result. Galileo clearly chose the second option.

This insensitivity to choice of unit is a powerful factual restriction. Virtually 
all laws of fall will not respect it. Consider, for example, fall in a resisting 
medium. It initially follows Galileo’s law but then asymptotically approaches 
a limiting constant velocity. The motion will require a time, characteristic of 
the specific arrangement, to achieve this terminal velocity, nearly enough. That 
time parameter gives the motion a definite temporal scale and precludes pres-
ervation of the law under a change of the unit of time.

Galileo could quickly affirm, as we did above, that his law of fall respects this 
invariance under the selection of the time unit (to use a slightly more modern 
phrasing). He would also have found it impossible to write any other simple law 
of fall that conformed to it, while preserving the initial segment of incremental 
distances 1, 3, 5, 7. We do not know if Galileo recognized just how complete this 
restriction is. Mathematical techniques not available to him show that the only 
laws of fall that respect this invariance have the total distance fallen growing 
as a simple power of time (see Norton 2014a). These yield a correspondingly 
restricted set of laws for the incremental distances. The incremental distance 
d(t) fallen in the unit of time between times (t– 1) and t satisfies the follow-
ing: d(t) is proportional to tp –  (t– 1)p, where p is any real number greater than 
0. The only case of linear dependence of d(t) on t arises when p= 2, for then

d(t) is proportional to t2 –  (t- 1)2 =  t2 –  (t2- 2t+ 1) =  2t- 1

These are the odd numbers of Galileo’s law, for when t =  1, 2, 3, …, 2t- 1 =  1, 3, 5, ….
We need no appeal to simplicity to reduce the possibilities to this one law. 

Since it has just one free parameter, p, very little data eliminates all the rest. 
For example, take just the first two numbers –  1, 3 –  of the initial sequence. We 
have d(2)/ d(1)= 3, and p must satisfy this:

3
2 2 1

1 1 1

2 1

1
2 1=

− −

− −
=

−
= −

p p

p p

p p

p
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The unique solution is p= 2.
In sum, the premise of the inductive inference is a measurement of incre-

mental distances of fall in the ratio 1 to 3 to 5 to 7. The conclusion is that dis-
tances of fall in general conform with Galileo’s law. The material facts that 
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warrant it are (a) (Platonic assumption) that fall conforms to a rule that may 
be written simply using techniques available to Galileo, and (b) (invariance 
assumption) that the law is invariant under a change of the unit of time. It 
turns out that (b) alone is sufficient to warrant the inference, which is some-
thing that Galileo may have suspected, but likely could not have shown.

6 The Superfluity of Formal Theory

We might say that Galileo’s law of fall is the best explanation for the numerical 
regularities found in the experiments. However, declaring it so adds nothing 
of any use to the material analysis already given. Once we make the Platonic 
and invariance assumptions just listed, we have specified the result. At best, 
the declaration of a best explanation gives us a sense of comfort with the infer-
ence. At worst, it creates a spurious unity with other inductive inferences that 
are intrinsically different from it, but are now collected under the umbrella of 
“best explanations”. We are misled into seeing a principle of inductive logic, 
where there is nothing beyond superficial similarity.

We can embed Galileo’s inference into a Bayesian analysis. The Platonic 
assumption can be expressed as a prior probability distribution over vari-
ous possible laws that accords higher probability to the simpler law, such as 
in Jeffreys’s (1961: sect. 1.61). We might then also incorporate the invariance 
assumption into the likelihoods. We would then carry out the computations 
required by Bayes’s theorem and discover the happy outcome that Galileo’s law 
of fall is accorded high probability.

Once again, nothing of value has been added to the analysis given in the pre-
ceding section. We have just obscured a simple inductive inference behind a fog 
of probabilities. Without the Platonic and invariance assumptions, a Bayesian 
analysis is unable to deliver any result. But once we make those assumptions, 
we have no need of the Bayesian analysis. It is superfluous. At best, we have 
given merely a probabilistically minded philosopher a sense of comfort with 
the result. At worst, we have misled ourselves into thinking that inductive infer-
ence is merely a sub- branch of the mathematics of the probability calculus.

7 Conclusion

Inductive inference has been a favorite target of skeptical assault for millen-
nia. It has been so, not because of any special malice amongst skeptics against 
inductive inference. It has been so, because it is troubled and because those 
troubles lend themselves to skeptical formulations.
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My claim in this paper is that the root cause of the fragility of inductive 
inference is that, for millennia, we have sought to model our accounts of it 
on deductive inference. That is, we have sought formal theories of inductive 
inference in which good inductive inferences are warranted by conformity to 
universally applicable schemas. The correct account, however, is a material 
account in which inductive inferences are warranted by facts. Underlying this 
is a change in our understanding of the nature of inductive inference. It is not 
a branch of mathematics to be studied in the abstract. It is an inseparable part 
of the empirical content of science.

I doubt that this reorientation will resolve all skeptical challenges to induc-
tive inference. It would be foolish to circumscribe the ingenuity of a skeptic. 
However, notorious skeptical problems concerning inductive inference evapo-
rate. For example, Goodman’s (1983: chap. 3) “grue” challenge fails. Nineteenth- 
century crystallographers faced extraordinary difficulties in determining the 
very few predicates that could be projected for materials like emeralds. Grue- 
ified predicates are not among them and also, probably, “green” is not.12 (One 
might be tempted to reanimate the problem by the strategy of “grue- ifying 
everything”, including the background facts that pick out projectible predi-
cates. The reanimation fails since changing everything turns out to be indistin-
guishable from changing nothing (Norton 2006).

More significantly, the skeptical problem, the Humean problem of induc-
tion, is dissolved. It is argued in Norton (2014) that setting up the problem in 
the first place requires the separation of the matter of inductive inference from 
the warranting structures— that is, from the formal schema to which a for-
mal theory requires inductive inferences to conform. This separation of matter 
from schema leaves a formal theory that is impoverished in its justificatory 
resources; and sufficiently so that the Humean skeptical challenge is easy to 
mount. If one approaches inductive inference materially, however, the distinc-
tion of matter from warranting structure dissolves. It turns out that one can 
then no longer set up the traditional Humean challenge.13

 12 It turns out that all emeralds are green not because of any determining property of the 
mineral beryl that forms emeralds, but because gemologists decree that only beryl that 
is colored green by impurities can be called emerald. That is, “all emeralds are green” is 
simply true by definition. “All emeralds are grue” turns out to be a contradiction.

 13 After the writing of this chapter in 2014, I completed two book manuscripts on the 
material theory of induction: The Material Theory of Induction (BSPSopen/ University of 
Calgary Press, 2021), and The Large- Scale Structure of Inductive Inference. Both are avail-
able for download at https:// sites.pitt.edu/ ~jdnor ton/ jdnor ton.html.
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