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What was Einstein's principle of
Equivalence?*
JOHNNORTON

1. Introduction
In October and November 1907, just over two years after the completion ofhis special theory of relativity, Einstein made the breakthrough that set himon the path to the general theory of relativity. While preparing a reviewarticle on his new special theory of relativity, he became convinced that thekey to the extension of the principle of relativity to accelerated motion layin the remarkable and unexplained empirical coincidence of the equality ofinertial and gravitational masses. To interpret and exploit this coincidence,he introduced a new and powerful physical principle, soon to be called the\principle of equivalence" upon which his search for a general theory of re-lativity would be based. Moreover, with the completion of the theory andthroughout the remainder of his life, Einstein insisted on the fundamentalimportance of the principle to his general theory of relativity.Einstein's insistence on this point has created a puzzle for philosophersand historians of science. It has been argued vigorously that the principle inits traditional formulation does not hold in thc general theory of relativity,Consider, for example, a traditional formulation such as Pauli's in his 1921Encyklop�adie article. For Pauli the principle asserts that one can alwaystransform away an arbitrary gravitational �eld in an in�nitely small regionof space-time, by transforming to an appropriate coordinate system (Pauli1921, p. 145).In response, such eminent relativists as Synge (1960, p. ix), and evenEddington before him (1924, pp. 39{41), have objected that a coordinatetransformation or change of state of motion of the observer can have no e�ecton the presence or absence of a gravitational �eld. The presence of a \true"gravitational �eld is determined by an invariant criterion, the curvature ofthe metric. The gravitation-free case of special relativity is just the case inwhich this curvature vanishes, whereas the true gravitational �elds of generalrelativity are distinguished by the nonvanishing of this curvature.This objection has immediate rami�cations for the \Einstein elevator"thought experiment, which is commonly used in the formulation of the prin-ciple of equivalence. In this thought experiment, a small chambers such as
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an elevator, is accelerated in order to transforms away a gravitational �eldpresent within it or, depending on the version at hand. to produce a gravita-tional �eld in an initially gravitation-free chamber. Now in general relativity,nonvanishing metrical curvature is responsible for tidal gravitational forces.Their e�ects can be used by an observer within the chamber to decide whetherthe gravitational �eld present is a true gravitational �eld or is due to the ac-celeration of the chamber in gravitation-free space. Alternatively, they canbe used to determine whether an apparently gravitation-free chamber is infree fall in a gravitational �eld or moving uniformly in gravitation-free space.It is signi�cant that the e�ects of these tidal forces do not vanish as the boxbecomes arbitrarily small. For example, the tidal bulges arising in a freelyfalling liquid droplet do not vanish as the droplet in made arbitrarily small,ignoring such e�ects as surface tension (Ohanian 1977).Of course it has proved possible to retain a principle of equivalence ingeneral relativity. But to do this, the principle might be given quite newformulations, which seem to carry us far from Einstein's original intentions.For example, in its \weak" form the principle merely asserts the equality ofinertial and gravitational mass.1 Or in another form, it asserts that all phe-nomena distinguish a unique a�ne structure for space-time (Anderson 1967,pp. 334{338). Alternatively, we can retain a traditional formulation of theprinciple, such as Pauli's, by reading the restriction to in�nitely small regionsof space-time as denying access to certain quantities such as curvature, whichare constructed from the higher derivatives of the metric tensor. But thenthe principle is reduced to a simple and, as far as questions of foundations areconcerned, not especially interesting theorem in general relativity. CertainlyEinstein could not represent such a result as a fundamental principle of histheory.My purpose in this paper is to determine precisely what Einstein tookhis principle of equivalence to be, to show how it �gured historically in hisdiscovery of the general theory of relativity, and to show the sense in whichhe took it to be fundamental to that theory. In particular I will seek todemonstrate that Einstein's version of the principle and the way he soughtto use it are essentially di�erent from the many later versions and applicationsof the principle. As a result, we shall set that the objections rehearsed earlierfrom the later debate over the principle of equivalence are peripheral to theconcerns of Einstein's version of the principle and that this version does �ndcompletely satisfactory and uncontroversial expression in the general theoryof relativity.In the following section, as a focus for the remainder of the paper, lwill present one of the clearest and most cautious of Einstein's formulationsof the principle or equivalence and in Section 3, l will develop su�cientformal apparatus to negotiate certain ambiguities in it. In particular. I willintroduce the concept of a three-dimensional relative space of a frame ofreference, which is essential to the understanding of Einstein's principle andmuch of his early work on his general theory of relativity.In Sections 4 and 5, I will review the role the principle played in the 1907
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to 1912 period of Einstein's search for his general theory of relativity. InSection 4, I will outline how the principle enabled Einstein to construct anovel relativistic theory of static gravitational �elds and, in Section 5, I willoutline the sense in which he believed the principle would enable an extensionof the principle of relativity to accelerated motion.In Sections 6, 7, and 8, I will examine the principle of equivalence withinEinstein's general theory of relativity, whose basic formal structure waslaid down by Einstein and Marcel Grossmann in 1912 and 1913 and whichachieved its '�nal form in November 1915. In Section 6, I will review aspectsof Einstein's transition from a three- to a four-dimensional formalism, and,in Sections 7 and 8, l will review the status of the principle in the theory.In particular, we shall see its crucial heuristic role in the transition from thespecial to the general theory.In Sections 9 and 10, I will relate Einstein's version of the principle andthe results he drew from it to the \|in�nitesimal" principle of equivalence,such as that formulated by Pauli, and which is now commonly but mistakenlyregarded as Einstein's version of the principle. In particular, I will analyzein some detail a devastating objection Einstein had to this version of theprinciple. It follows from the objection that, insofar as it can be preciselyformulated, the in�nitesimal principle is trivial. In Section 1 1, I will reviewEinstein's attitude to Synge's now popular identi�cation of \true" gravitatio-nal �elds with metrical curvature. Finally, in Section 12, I will draw togetherthe threads of my story and answer the question posed in the title of thispaper.
2. Einstein's Formulation of the Principle of Equivalence
Einstein has given us many statements of the principle of equivalence in histreatments and discussions of the general theory of relativity. But none isclearer or more cautious than the formulation he gives in a 1916 reply toKottler's claim that Einstein had given up the principle of equivalence in thegeneral theory of relativity (Einstein 1916b). Einstein began by introducingthe limiting case of special relativity in which he de�ned a \Galilean system".I quote this here for later reference:

1. The Limiting Case of the Special Theory of Relativity. Let a �nitespace-time region be free from a gravitational �eld, i.e., it is possibleto set up a reference system K (\Galilean system"), relative to whichthe following holds for the region considered. Coordinates are measureddirectly in the well-known way with unit measuring rods, times with unitclocks, as is customarily assumed in the special theory of relativity. Inrelation to this system an isolated material point moves uniformly andin a straight line, as was assumed by Galileo.
He then proceeded to his statement of the principle:
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2. Principle of Equivalence. Starting from this limiting case of the specialtheory of relativity, one can ask oneself whether an observer, uniformlyaccelerated relative to K in the region considered, must understand hiscondition as accelerated, or whether there remains a point of view forhim, in accord with the (approximately) known laws of nature, by whichhe can interpret his condition as \rest." Expressed more precisely: do thelaws of nature, known to a certain approximation, allow us to consider areference system K 0 as at rest, if it is accelerated uniformly with respectto K? Or somewhat more generally: Can the principle of relativity beextended also to reference systems, which are (uniformly) accelerated re-lative to one another? The answer runs: As far as we really know the lawsof nature, nothing stops us from considering the system K 0 as at rest. Ifwe assume the presence of a gravitational �eld (homogeneous in the �rstapproximation) relative to K'; for all bodies fall with the same accelera-tion independent of their physical nature in a homogeneous gravitational�eld as well as with respect to our system K'. The assumption that onemay treat K 0 as at rest in all strictness without any laws of nature notbeing ful�lled with respect to K 0, I call the "principle of equivalence"
For Einstein, the basic assertion of the principle of equivalence is that\one may treat K 0 as at rest.. . . " I will defer discussion of exactly what heintended with this assertion until Section 5. The assumption upon which thisassertion is based|that acceleration can produce a gravitational �eld|is atpresent more commonly associated with the principle of equivalence. Theway in which it is used, however, is distinct from its use in \traditional"formulations of the principle such as Pauli's. In the latter, by reversingEinstein's argument, one assumes that one can always transform away an ar-bitrary gravitational �eld in general relativity within an in�nitesimal regionof space-time, Einstein however considers only the homogeneous gravitatio-nal �eld produced by uniform, nonrotating acceleration in the Minkowskispace-time of special relativity. In addition, there is clearly no restriction toin�nitesimal regions.These last features are typical characteristics of Einstein's preferred for-mulation of the principle and appear in many of the statements of the princi-ple that Einstein gave throughout the half century of his working life. Theseinclude his �rst published formulation of the principle in 1907, some liveyears prior to the completion of the general theory of relativity (Einstein1907. p. 454), his well-known 1911 communication on gravitation (Einstein1911 pp. 898{899, and his 1916 review of the just-completed theory (Einstein1916a, pp. 772{773).2 The principle is de�ned in these terms in The Mean-ing of Relativity the work which came closest to his "textbook" on relativity(Einstein 1922, pp. 57{58). Finally, it appears again in this form in one ofhis last discussions of the question, the 1952 appendix to his popular book,Relativity (Einstein 1952, pp. 151{152).Einstein's next step in his reply to Kottler was to insist pointedly that hisprinciple did not allow one to transform away arbitrary gravitational �elds.Rather it dealt only with those gravitational �elds that could be transformed
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away and which we would now identify as associated with Minkowski space-time.3. Gravitational Fields not only Kinematically Conditioned. One canalso invert the previous consideration. Let the system K 0, formed withthe gravitational �eld considered above, be the original one. Then onecan introduce a new reference system K, accelerated with respect to K 0,with respect to which (isolated) masses (in the region considered) moveuniformly in a straight line. But one may not go on and say: if K 0 isa reference system provided with an arbitrary gravitational �eld, thenit is always possible to �nd a reference system K, in relation to whichisolated bodies move uniformly in a straight line, i.e., in relation to whichno gravitational �eld exists. The absurdity of such an assumption is quiteobvious. If the gravitational �eld with respect to K 0, for example, is thatof a stationary mass point, then this �eld certainly cannot be transformedaway for the entire neighborhood of the mass point, no matter how re�nedthe transformation arti�ce. Therefore, one may in no way assert thatgravitational �elds should be explained so to speak purely kinematically;a \kinematic, not dynamic understanding of gravitation" is not possible.Merely by means of acceleration transformations from a Galilean systeminto another, we do not become acquainted with arbitrary gravitational�elds, but those of a quite special kind. which, however, must still satisfythe same laws as all other gravitational �elds. This is only again anotherformulation of the principle of equivalence (in particular in its applicationto gravitation).
In short, he rules out an extension of the principle to arbitrary gravitational�elds on the grounds that an acceleration of the reference system can onlyproduce gravitational �elds of a quite special kind. Such comments appearquite frequently in Einstein's writings, throughout his life. They appear inhis publications 3 and in his correspondence, right up to the last years of hislife.4 What might seem striking to the modern reader here is Einstein's failureto consider the possibility of transforming away arbitrary gravitational �eldsin in�nitesimal regions of space-time. The omission was not a peculiarityof this particular discussion of the principle, for I have been unable to �ndany sustained treatment by Einstein of such an extension of the principle.5Nevertheless we can readily infer Einstein's attitude to this possibility. InSection 9, we shall see that he believed that one cannot distinguish the mo-tion of a point-mass unin
uenced by a gravitational �eld from other motionsif one considers only in�nitesimal regions of the manifold. It follows im-mediately from Einstein's comments above that it is meaningless to talk inany thoroughgoing sense of transforming away a gravitational �eld in suchin�nitesimal regions.The task of explicating Einstein's formulation of the principle of equi-valence and even some of the preceding discussion is by no means straight-forward. To begin, we must deal with Einstein's failure to maintain suchdistinctions as those between frames of reference and coordinate systems andbetween three-dimensional and four-dimensional concepts.6 For example, we



10 John Norton
shall see that when Einstein speaks of a four-dimensional coordinate system,he may be referring to a four-dimensional coordinate system simpliciter, aframe of reference, or even a three-dimensional space associated with theframe. In the following section, I will introduce su�cient formal apparatusto deal with this problem, and then with it, we shall �nd that there is littledi�culty in understanding Einstein's intentions. Then we can turn to askprecisely what Einstein means when he talks of a gravitational �eld producedby acceleration and in what sense the associated states of acceleration canbe regarded as being \at rest".
3. On Reference Systems and Relative Spaces
In this section, I will deal with structures associated with the semi-Riemannianmanifolds of special and general relativity.In such manifolds, it is now customary to represent the intuitive notion ofa physical frame of reference as a congruence of timelike curves. Each curverepresents the world line of a reference point of the frame. The velocity ofthese points is given by the tangent vectors to the curves, where de�ned.We shall usually deal with frames of reference in rigid-body motion andwe can readily nominate the state of motion of such frames because of thelimited number of degrees of freedom associated with them.7 In particular,an inertial frame of reference in a Minkowski space-time is a congruence oftime-like geodesics in rigid-body motion. and therefore its reference pointsmove with constant velocity.A coordinate system fxig(i = 1; 2; 3; 4) is said to be \adapted" to a givenframe of reference just in case the curves of constant x1, x2, and x3 are thecurves of the frame. These three coordinates are \spatial" coordinates andthe x4 coordinate a \ "time" coordinate.With these de�nitions, Einstein's talk of \accelerated coordinate systems"can be made precise. A coordinate system is \accelerated" just in case it isadapted to an accelerating frame of reference. In this manner of speaking,a transformation from one frame of reference to another can be representedat least locally by a transformation between coordinate systems adapted toeach frame.Similarly we can represent the \Galilean" reference system mentioned inthe last section as a coordinate system in Minkowski space-time, adapted toan inertial frame of reference and chosen so that the metric has componentsdiag(�1;�1;�1; c2), where c is a positive constant|the coordinate speed oflight. In such a coordinate system, di�erences of coordinates along curves,for which all but one coordinate is held �xed, are equal to the proper time orproper length of that segment of the curve, according to whether the curveis space-like or time-like. This implements Einstein's requirement that thecoordinates be given directly by clock readings and measuring operationswith rigid rods.Presumably Einstein required thc coordinates of his accelerated coordi-nate systems to have as much of a similar direct metrical signi�cance as was
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possible. Methods and scope for constructing analogous coordinate systemsin the context of Newtonian theory and special and general relativity are wellknown (sec, for example, Friedman 1983, pp. 79|84, 129{135, 181{183).However this discussion of Galilean and other systems in four-dimensionalspace-time does not entirely capture Einstein's intentions. He was also con-cerned with certain three-dimensional spaces, which are alluded to through-out his discussion of the principle of equivalence. It is appropriate to callthese spaces "relative spaces", because of their similarity to the \relativespace" Newton de�ned to contrast with his absolute space (Newton 1729,p. 6).8 Einstein himself introduces the concept of this space in the introduc-tions to his accounts of relativity theory, where it is presented as our mostprimitive notion of space (Einstein 1922, pp. 3{4,. 1954a, pp. 5{8). Itarises through our experience that a given physical body can be extendedby bringing other bodies into contact with it. The space of all such possibleextension is the relative space of the body.lf we think of the time-like curves of a frame of reference as the world linesof physical bodies, then these bodies de�ne a single relative space, insofar aseach of the bodies can be extended to contact any other body of the frame.The geometric properties of this space can be investigated in the familiarmanner by laying out in�nitesimal rigid rods, which are at rest in the frame.An example of this, which Einstein discussed frequently, is the relative spaceof a uniformly and rigidly rotating frame of reference in Minkowski space-time. In particular one �nds there that the geometry of the relative space isnon-Euclidean.9The properties of the relative space de�ned by a given frame of refe-rence can be precisely speci�ed, although not in general by isomorphismwith a three-dimensional hypersurface in the space-time manifold with theassociated induced geometrical structure. The nature candidates for suchhypersurfaces|the three-dimensional hypersurfaces orthogonal to the curvesof the frame of reference|simply fail to exist if the frame of reference is ro-tating even in Minkowski space-time, for example.Rather, we formally de�ne the relative space RF of a frame of referenceF in a four-dimensional manifold M as follows. F de�nes an equivalencerelation f under which points p and p0 of M are equivalent if and only ifthey lie on the same curve c of F . The relative space RF is the quotientmanifold M=f and has the curves of F as elements. Coordinate charts of RFare inherited directly from the coordinate charts of M , which are adaptedto the frame, ensuring that RF has a well-de�ned local topology. That is,if fxig(i = 1; 2; 3; 4) is a chart in a neighborhood of M adapted to F , thenthere will be a chart fyig(i = 1; 2; 3) in the corresponding neighborhood ofRF for which yi(c) = xi(p)(i = 1; 2; 3) whenever p lies on c.A positive-de�nite metric gr is induced on RF as follows. At any point pon c we de�ne the (unique) orthogonal metric gorth as the restriction of thespace-time metric g to any three-dimensional hypersurface Hc(p) orthogonalto c at p. A di�eomorphism h, which maps points of Hc(p) in a neighborhoodof p to points in a neighborhood of c in RF , is such that, if p0 lies on the
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curve c0 of F , then h(p0) = c0 � gr at p is de�ned as the image of gorth at punder h.10 (Intuitively, we take gr to be the three-dimensional spatial metricrevealed to an observer co-moving with the frame through the laying out ofin�nitesimal rods.)Since point p of c here is chosen arbitrarily, it is clear that the resultinginduced metric will only be uniquely de�ned in certain special cases. Thesespecial cases turn out to be just those in which the frame of reference is inrigid-body motion, for the requirement of rigid-body motion can be expressedas the requirement of constancy of the orthogonal metric along the world linesof the body. More speci�cally, what is required is the vanishing of the Liederivative of gorth, that is, LV gorth = 0, where V is the tangent vector �eldof F .11 General relativity deals with space-times that do not always admitrigid-body motions. Obviously, in these cases we will be unable to constructa relative space with a well-de�ned metric. To deal with the phenomenaEinstein considers, we need to de�ne a few more structures in these relativespaces. A gravitational �eld will be represented by a scalar �eld in nearlyall the cases we need consider. A moving point-mass M will be representedby a scalar, its rest mass, and an appropriately parameterized curve C, itstrajectory in the relative space RF . C can be inferred readily from the pointsof intersection of M 's world line with the time-like curves of the frame. Thatis, ifM 's world line c at parameter value x intersects the curve c0 of frame F ,then C is the map that takes x to c0. The velocity and acceleration vectorsof C can now be de�ned in the usual way. lf c is parameterized by propertime, we would then arrive at the point-mass's proper velocity and properacceleration.In certain important special cases, it is possible to introduce a \frametime" into the relative space RF of a frame F . These cases are those inwhich the relevant neighborhood of the manifold can be foliated by a familyof hypersurfaces, orthogonal to the curves of the frame F . Pick any curve cof F , parameterized by proper time. Informally, we shall think of this curveas the frame clock of F and its relative space RF . Disseminate the time itmarks by the following procedure. De�ne a scalar �eld T on the space-timemanifold whose constant-value hypersurfaces coincide with the hypersurfacesof the foliation and whose value agrees with the proper-time parameterizationof c. Of course T will only be be de�ned up to an additive constant.This frame-time can now be transferred to the structures de�ned in RFby obvious means. For example the trajectory C of a moving point-massM in RF can be parameterized by T , if T is also used to parameterize M 'sworld line in the procedure for constructing C. From this parameterization,we would then arrive atM 's frame velocity and frame acceleration. Througha similar procedure, a time-varying �eld in RF , induced by a �eld de�nedin the space-time manifold, can be represented by a family of �elds indexedby T . The parameterization and indexing of structures in RF by T gives acriterion of simultaneity.12
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Clearly, in general we shall not be able to de�ne a frame time. A rotatingframe, for example, has no orthogonal hypersurfaces. Even if there are suchhypersurfaces, the frame time may not be unique. A rigid, uniformly ac-celerating frame in Minkowski space-time admits orthogonal hypersurfaces;but the frame times de�ned by each of its curves di�er by a multiplicativeconstant, although they yield the same simultaneity criterion. However, ifthe frame is an inertial frame in Minkowski space-time then the same frametime is de�ned by all curves of the frappe, up to an additive constant.We can recover a \standard formulation" of special relativity|correspon-ding to the original three-dimensional formulation of the theory introducedby Einstein in 1905|by writing the laws that govern physical processes inMinkowski space-time in terms of structures de�ned within the relative spaceof an inertial frame, using the relative space's frame time. This formulationwill hold just in any relative space of an inertial frame. Quantities describingthe same process viewed from two di�erent inertial relative spaces will berelated by the Lorentz transformation in the familiar manner.Generalizing, we construct a standard formulation of a four-dimensionalspace-time theory, in any given relative space that admits a frame time, byre-expressing its laws in terms of structures de�ned in the relative space,parameterized where necessary by the frame time. Thus we can construct astandard formulation of special relativity in the relative space of a rigid uni-formly accelerating frame|and it will look quite di�erent from the standardformulation associated with an inertial frame.Einstein commenced his description of the principle of equivalence in hisreply to Kottler by mention of space-time. It is now clear, however, thatthe phenomena he proceeded to describe are considered in relation to therelative spaces of the frames of reference. An isolated material point in aGalilean system can only be properly described as \mov[ing] uniformly andin a straight line" in the relative space. There it is represented by a geodesicof the relative space (\straight line"); its proper time and its frame timeparameterization are directly proportional to the metrical distance along thecurve (\move uniformly"). Use of either parameterization in this way alsogives two general de�nitions of \uniform straight-line motion" in relativespaces, which agree in this case.Similarly it is more natural to understand Einstein's requirement thatthe coordinates of the Galilean system be \measured directly in the well-known way" with rods and clocks as referring to operations described in therelative space and out of which the Galilean space-time coordinate system isconstructed.But most important of all, when Einstein speaks of \the presence of agravitational �eld" in his reply to Kottler, clearly we should understand itto be present in the relative space of the frame of reference in question. InMinkowski space-time, there is a gravitational �eld in the relative space ofthe accelerated reference system but not in the relative space of the Galileansystem. This is certainly more satisfactory than trying to speak of the pre-sence of a gravitational �eld in space-time in this context. For then we
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would have to assume that a change of frame of reference can \produce" agravitational �eld in space-time even though it does not change the worldline of the point-mass on which the newly produced �eld is supposed to act.This somewhat cumbersome mixture of three- and four-dimensional con-cepts in Einstein's formulation of the principle of equivalence derives directlyfrom the fact that, for the �rst �ve years of its life, the principle and thegravitation theory associated with it were treated entirely within the samethree-dimensional formalism Einstein had used in his 1905 special relativitypaper. In particular, the spaces Einstein dealt with in this period were in-variably the relative spaces of frames of reference. Nevertheless, Einstein's1916 formulation and his original 1907 formulation of the principle read al-most identically, even though the former was associated with a theory thatcould not readily be written in a three-dimensional formalism. In the fol-lowing section I turn to examine this early period of Einsteinian work. Iwill be concerned with showing precisely which structures Einstein chose torepresent the gravitational �eld in the relative spaces he dealt with.
4. A New Theory of Gravitation
4.1. A New Concept of Gravitational Field
Einstein made clear from the inception of the principle of equivalence in 1907that its main purpose was to enable the extension of the principle of relativityto accelerated motion. 13 But for the �ve years following 1907, his actual useof the principle involved the development of a novel relativistic theory ofstatic gravitational �elds out of which his general theory of relativity wouldemerge in 1912 and 1913. The principle assured him that a certain structure(\inertial �eld") arising in the relative space of a uniformly accelerated frameof reference in Minkowski space-time was just one special type of gravitational�eld. The properties of this structure could be examined minutely usingthe known results of special relativity and the properties of other types ofgravitational �elds could then be inferred.That this structure (whose properties will be developed and outlined inSection 4.2) could be regarded as a gravitational �eld requires a change inour understanding of what a gravitational �eld is. We must now accept thatgravitational �elds can have an existence dependent on the relative spaceconsidered and that the choice of relative space may decide whether or nota single given process is regarded as acted on by a gravitational �eld. Theobvious objection, which was put by Laue to Einstein in 1911, is that thistype of gravitational �eld cannot be \real" since it has no source masses.14Einstein's later response to this objection was that it is essential to �eldtheory to be able to conceive of �elds, such as gravitational �elds, as existingindependently of their sources.15
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In e�ect, Einstein asks us to give up the familiar concept of gravitational�eld as that which mediates the gravitational interaction of bodies. In itsplace in the relative space of frames of reference, regardless of whether theyare accelerated or not, we infer the existence of a structure that is responsiblefor the deviations from uniform straight-line motion of a free point-mass,without concerning ourselves with what generates that structure. FollowingEinstein's lead, we would take such a structure to be a gravitational �eld byde�nition, if the deviations associated with it are independent of the point'smass.Using this de�nition, we could now describe as gravitational �elds theinertial �elds arising in relative spaces of rigid frames of reference in arbitrarystates of acceleration in Minkowski space-time. It is di�cult to imaginethat Einstein would contradict this result. Nevertheless, as I have pointedout, he formulated his principle of equivalence only for the case of uniformacceleration.There were most probably several reasons for this additional restriction.In the early years of the principle of equivalence, in order to convince skep-tical contemporaries that inertial �elds could be regarded as gravitational�elds, he had to show that they behaved exactly like known gravitational�elds|that is, like Newtonian gravitational �elds|aside of course from thequestion of source masses. If the principle of equivalence is formulated ina Newtonian space-time, as Einstein did sometimes in these earlier years,16 the requirement that the inertial �eld behave exactly like a Newtonian�eld places severe restrictions on the allowed states of motion of the frameof reference.In Newtonian mechanics, the inertial �eld induced on the relative spaceof a rotating frame of reference contains a Coriolis �eld, which exerts a forceon a body dependent on its velocity. A structure representing such a �eldwill contain vector potentials, such as those arising in electromagnetic the-ory, rather than the familiar scalar potential of the Newtonian gravitational�eld.17 The inertial �eld induced on the relative space of a frame of referencein rectilinear acceleration can be represented by a scalar potential satisfyingLaplace's equation. But if the acceleration is not uniform the resulting �eldwill be nonconservative due to the explicit time dependence of the potential.In this case of a Newtonian space-time, we are led directly to Einstein'schoice of a uniformly accelerated frame of reference for the formulation of theprinciple of equivalence. For only in this case will the structure concernedin the relative space behave exactly like a Newtonian gravitational �eld. Itwill be a scalar �eld, it will satisfy Laplace's equation, and its gradient willbe equal to the acceleration of otherwise free point-masses in the space.It would be natural for Einstein to continue to formulate the principle ofequivalence in terms of the special case of uniform acceleration in Minkowskispace-time as well, if only in the interests of continuity. In addition, we canidentify at least three complexities arising with the use of rotating frames ofreference or those in nonuniform acceleration in Minkowski space-time.First, the associated relative spaces would have non-Euclidean geometries,
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if they were well de�ned. This was a problem Einstein was well aware of froma very early stage. But he treated it as a separate issue from his principle ofequivalence, usually by consideration of a rotating frame of reference.Second, he would be unable to introduce a frame time into the relativespace, making very di�cult the description of phenomena in the space by astandard formulation of a theory such as he used in 1907{1912.Third, the trajectory of a light signal exchanged between two points inthe relative space would di�er on the forward and return journeys. In a letterof June 1912 to Ehrenfest, in which Einstein discussed the failure of his 1912gravitation theory to deal with the �elds associated with rotating frames ofreference, he mentioned this failure or the \reversibility of light paths" insuch �elds and described how dealing with them would be the next step (EA9{333).In any case, after the completion of the general theory of relativity, whenthe di�culties of the earlier gravitation theory had been resolved, there is asuggestion in one or two places in Einstein's writings that he was preparedto extend the formulation of the principle to the case of frames of referencein rotation or nonuniform acceleration (for example, Einstein 1922. p. 59;l952, pp. 151{154).
4.2. The 1907{1912 Theory
Einstein's 1907{1912 theory of static gravitational �elds achieved its mostdeveloped form in two consecutive papers in the latter year (Einstein 1912a;1912b). The theory may be represented most precisely in four-dimensionalterms, although Einstein had not yet begun to use them. It was basedon exploiting certain especially simple properties of uniformly acceleratingframes of reference in Minkowski space-time. These special properties canbe derived from the result that one can always �nd a coordinate systemfxig(i = 1; 2; 3; 4) adapted to a uniformly accelerating frame in Minkowskispace-time in which the metric has the form

diag(�1;�1;�1; c2)
where c = 1 + bx1 and b is a constant. It follows immediately that the geo-metry of the relative space is Euclidean, inheriting the coordinates fxig(i =1; 2; 3) as Cartesian coordinates. Further, the space-time can be foliatedby a family of hypersurfaces orthogonal to the frame, the hypersurfaces ofconstant x4. Therefore we can introduce a frame time.For convenience, select the world line of the frame for which x1 = x2 = x3 = 0as the frame clock and call t the frame time disseminated by it. The choiceas frame clock of any of the other world lines of the frame would alter t bya constant multiplicative factor and thus not materially a�ect the results.Thus Einstein could introduce a standard formulation of special relativityin the relative space. In particular, it followed in this standard formulationthat the motion of a free point-mass, whose world line was a geodesic in thespace-time, was governed by the equation
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d=dt(�vi=c) = ��@c=@xi;
where � = 1=(1 � v2=c2)l=2; vi = d=dt(xi) is the three-velocity of the point-mass, and v is its magnitude.This relation closely parallels the relation

acceleration = �gradient of scalar �eld
governing the motion of a freely falling point-mass in traditional Newtoniangravitation theory and in which the point's mass also does not appear. Thusin accord with the discussion of Section 4.1, Einstein could view the motion ofthe point-mass in the relative space as under the in
uence of a gravitational�eld whose scalar potential was c and which was responsible for the deviationsfrom uniform straight-line motion.Note that while the scalar �eld c was introduced earlier via the g44 com-ponent of the Minkowski metric in a particular coordinate system, it canbe described in coordinate-free terms: c is just the Minkowski norm of thetangent four-vector of the curves of the frame, when parameterized by theframe time. It can be seen that c will have a constant value along each ofthese curves and therefore a unique, well-de�ned value at each point of therelative space.Recalling that the coordinates fxig(i = 1; 2; 3) are inherited as Cartesiancoordinates by the Euclidean relative space, the relation c = 1 + bx1 nowcan be seen to assert that the gravitational potential c varies linearly with(Euclidean) distance in one direction in the relative space. This is exactly theway a traditional Newtonian potential behaves in the case of inhomogeneousgravitational �eld.There were some complications however, in addition to the usual rela-tivistic corrections; c turned out to be the isotropic speed of light in therelative space, measured with frame time, which it now followed must alsovary with position in the relative space. It could be shown that the ratesor clocks at rest in the relative space would vary with c and, therefore, withposition.Now that Einstein had a �rm grasp on relativistic gravitational �eldsin the one special case of homogeneous �elds, it was a simple matter toinfer the properties of arbitrary static gravitational �elds by a natural andhopefully unproblematic generalization. To do this, Einstein left the standardformulation of the theory unchanged, except for relaxing the condition thatc vary linearly with distance in the direction of acceleration. Following themodel of Newtonian theory, he now required that c satisfy a weaker condition,the �eld equation �c = �c�;
where � is the mass density and k a constant.This step amounted to the transition to the relative spaces of more ge-neral semi-Riemannian manifolds with static space-time metrics of Lorentz
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signature. The relative spaces are those of frames of reference whose velo-city vectors are Killing vector �elds. The metric must be static rather thanjust stationary, since the space-time must admit a foliation by a family ofhyper-surfaces orthogonal to these frames, in order for a frame time to bede�ned for use in the standard formulation. The requirement that the rela-tive spaces still be Euclidean further restricts the space-time metric to thosewhose orthogonal metrics are Euclidean.It follows that there always exists a coordinate system (x; y; z; t) adaptedto the frame in which the space-time metric has the form diag(�1;�1;�1; c2)and the relative space inherits the coordinates fx; y; zg) as Cartesian coordi-nates. As a result, Einstein's 1912 theory is sometimes described as a theoryof space-times with the line element

ds2 = �dx2 � dy2 � dz2 + c2dt2;
where c = c(x; y; z), although his theory actually deals with the relativespaces of such space-times.It is interesting that the �eld equation chosen here for the relative spacecorresponds to the �eld equation for the space-time metric

R = k0T
where R is the Riemann curvature scalar, T is the trace of the stress-energytensor of a dust cloud, and k0 is a constant, although when Einstein formu-lated his theory he could not have known this.In the second of the 1912 papers cited, Einstein described the di�cultieshis bold new theory soon encountered. In order to retain the equality of ac-tion and reaction of forces, that is, to retain a law of momentum conservation,Einstein found himself forced to a modi�ed �eld equation

�pc = (k=2)pc�:
This new �eld equation no longer admitted the homogeneous �eld associatedwith uniform acceleration in Minkowski space-time as a solution, unless oneconsidered only in�nitely small regions of the relative space. Einstein con-fessed that he had resisted this development, since it now meant that hisprinciple of equivalence could only be Formulated in in�nitely small regionsof the relative space, even though it still dealt only with the simplest case ofuniform acceleration in Minkowski space-time.18
4.3. The Temporary Limitation To In�nitesimal Regions
Because of the super�cial similarity between this version of the principle andthe in�nitesimal principle of equivalence now common in the context of ar-bitrary gravitational �elds in general relativity, some writers have regardedthis development as, for example, \the dawn of the correct formulation of theprinciple of equivalence as a principle that holds only locally" (Pais 1982, p.205). It certainly was not as far as Einstein was concerned. The limitation



Einstein's principle of Equivalence 19
to in�nitesimal regions of the relative space was not introduced to homoge-nize inhomogeneous �elds, as it is in the modern in�nitesimal principle. Hisprinciple still dealt only with homogeneous �elds produced by uniform ac-celeration. (Note that the inhomogeneous �elds of his 1912 theory were notproduced by acceleration but by generalizing the properties of homogeneous�elds.) Therefore, the need for such a limitation, in the case of �elds thatwere already homogeneous, was a source of some puzzlement to him and hedispensed with it as soon as he could. But before he could, there were yetmore problematic developments concerning the principle of equivalence. Irelate them here in the hope of nipping in the bud the myth of Einstein's1912 introduction of the modern in�nitesimal principle of equivalence.In late 1912 and early 1913. In this climate of uncertainty about theprinciple, Einstein made his major breakthrough to the Entwurf theory withthe mathematical assistance of his friend Marcel Grossmann (Einstein andGrossmann 1913). The new theory contained virtually all the essential fea-tures of the �nal general theory of relativity. However, they were unable toincorporate generally covariant gravitational �eld equations in it. Einsteinwas able to remove this defect only after nearly three years of intense workand thereby arrived at his �nal general theory or relativity (see Norton 1984).During this period, Einstein omitted to mention the catastrophe that hadbefallen the principle of equivalence. Because of their restricted covariance,it can be shown that the �eld equations of the Entwurf theory do not hold incoordinate systems adapted to uniformly accelerating frames of reference inMinkowski space-time, even allowing restrictions to in�nitely small regionsof space-time. In the language of Einstein's 1916 formulation of the principlein his reply to Kottler, this meant that he could not regard such coordinatesystems as \at rest". That is, according to his new theory, the principle ofequivalence was false if formulated for this standard and simple case.Therefore, in the introduction to the Entwurf paper, Einstein had topresent the principle of equivalence as a result drawn from his earlier theoryof static �elds; for he still based the principle on the assumption that a uni-form acceleration of the reference system in Minkowski space-time produceda homogeneous gravitational �eld even if only in an in�nitely small region ofthe relative space. Presumably because of this problem, Einstein avoided thedetailed discussion of the equivalence of the inertial �eld of uniform accelera-tion and homogeneous gravitational �elds in the three years in which he heldto the Entwurf theory, for this theory entailed no such equivalence. But heretained the principle of equivalence, for it was essential to the conceptualdevelopment of his theory. In addition, the notion of the equivalence of iner-tial and gravitational �elds was central to the theory. However, the extent towhich his Entwurf theory admitted this equivalence was not entirely clear.This di�culty was resolved dramatically and completely with Einstein'sNovember 1915 adoption of the generally covariant �eld equations of hiscompleted general theory of relativity. The restriction of the principle ofequivalence to in�nitely small regions of space disappeared from his writings.
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5. Extending the Principle of Relativity
Einstein's early success in constructing a new gravitation theory from hisprinciple of equivalence is partly responsible for the still prevalent miscon-ception that this was its essential purpose. To combat this, he frequentlystressed that the principle did not provide a recipe for producing arbitrarygravitational �elds by acceleration. The real point of the principle, as hehad made clear in 1907, was that it enabled an extension of the principle ofrelativity to accelerated motion. Thus in the 1916 formulation of the prin-ciple quoted in Section 2, the principle itself is "the assumption that onemay treat [the uniformly accelerated reference system] K 0 as at rest in allstrictness without any laws or nature not being ful�lled with respect to K 0."Prior to 1913 and the development of the basic formal structure of thegeneral theory of relativity, Einstein gave no sustained discussion of preciselywhat he required in an extension of the principle of relativity and how theprinciple of equivalence was to help bring it about. However, we can recon-struct Einstein's position on these questions in this early period by consi-dering the discussion he gave in an introductory section of his 1916 reviewof the general theory of relativity, called \On the grounds which suggest anextension of the postulate of relativity" (Einstein 1916a, pp. 771{773). Thissection concluded with a formulation of the principle of equivalence. Further,it dealt only with concepts that would have arisen in the pre-1913 period,suggesting that he was rehearsing arguments essentially from this period ofhis work. In particular, the discussion focused exclusively on the relativespaces of frames of reference.Einstein began by pointing out an \epistemological defect" of classicalmechanics and special relativity, enabling us to locate his arguments in New-tonian and Minkowski space-times. In a celebrated thought experiment, heconsidered two 
uid spheres in relative rotation and noted that only one ofthem can be free of centrifugal distortion. But there is no observable dif-ference between the relative spaces or the rest frames of each sphere, otherthan the state of motion of the distant masses of the universe, in which, heconcluded, the cause of the centrifugal distortion is to be sought. This ledto the following requirement for relative spaces

Of all imaginable spaces R1; R2, etc, in any kind of motion relatively to one another,there is none which we may look upon as privileged a priori without reviving theabove-mentioned epistemological objection. The laws of physics must be of such anature that they apply to systems of reference in any kind of motion. (Einstein 1916a,p. 772)
Einstein then prceeded to formulate the principle of equivalence that enablesa uniformly accelerated observer to avoid inferring that he is \really" accel-erated and enables us to regard the uniformly accelerated reference systemK 0 as just as \privileged" or \stationary" as the unaccelerated system K.Since Einstein's discussion was in terms of relative spaces, it is clear thatthe \laws of physics" were being considered in their \standard formulations"
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described in Section 3. The standard formulations of classical mechanicsand special relativity in question would be those then generally available,that is, those de�ned in the relative spaces of inertial frames (henceforth\inertial spaces"). These standard formulations would hold only in inertialspaces and therefore fail to satisfy Einstein's requirement that they \applyto [the relative spaces of] systems of reference in any kind of motion". Thusthey would single out inertial spaces and their associated inertial frames asprivileged.In response, Einstein used the principle of equivalence to propose a moregeneral theory, a theory of homogeneous gravitational �elds, whose standardformulation will hold not only in inertial spaces but in uniformly acceleratedspaces as well. The relativistic version of this theory is quite familiar to usnow from Section 4 and presumably also to Einstein's readers of 1916. It isjust his 1907{1912 gravitation theory, restricted to the case of a homogeneousgravitational �eld. In this way, Einstein broadened the set of privilegedframes and relative spaces to include those in uniform acceleration.Precisely what Einstein achieved with this result has not always beenproperly understood. His point can be made more clearly by avoiding refe-rence to the standard formulation of theories, which has proven to be confu-sing to modern readers steeped in the four-dimensional formulation of thesetheories.The focus of Einstein's concern is the necessity in special relativity andclassical mechanics of presuming an immutable division of relative spacesand frames of reference into the privileged inertial and the noninertial. Theprinciple of equivalence enabled him to eliminate the immutability of thisdivision, by reinterpreting the nature of the inertial e�ects which distinguishthe privileged inertial spaces and frames from all others. He explained this toa correspondent in a letter of July 12, 1953, reminding him that the principlecould not be used to generate arbitrary gravitational �elds by acceleration:

The equivalence principle does not assert that every gravitational �eld (e.g., the oneassociated with the Earth) can be produced by acceleration of the coordinate system.It only asserts that the qualities of physical space, as they present themselves froman accelerated coordinate system, represent a special case of the gravitational �eld.It is the same in the case of the rotation of the coordinate system: there is de factono reason to trace centrifugal e�ects back to a `real' rotation.19
Through the principle of equivalence, Einstein proposed that we do notregard these distinguishing inertial e�ects as depending on an immutableproperty of the accelerating relative space, but as arising from the presenceof a �eld in the relative space, which was to be seen as a special case of thegravitational �eld. This view could be extended beyond the case of uniformacceleration of the principle. Within this view, relative spaces would have nointrinsic states of motion|none would be \really" rotating for example|andin this sense they would all be indistinguishable. However, any relative spacecould become inertial according to the particular instances of the gravita-tional �eld de�ned on the relative spaces. Similarly, all frames of reference
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would be indistinguishable, until the introduction of any particular instanceof the gravitational �eld made some inertial and others not.This crucial aspect of Einstein's account has been commonly misunder-stood. The fact that an accelerated frame remains distinguishable from anunaccelerated frame in both special and general relativity is irrelevant tothe extension of the principle of relativity. Einstein's account requires thateach instance of the gravitational �eld distinguish certain frames as inertialand others as accelerating. The decision as to which frames will be inertialand which accelerated, however, must depend only on the particular instanceof the gravitational �eld at hand and not on any intrinsic property of theframes.20At this stage of his development of general relativity, Einstein's impor-tant innovation did not yet lie in the introduction of an empirically newtheory. According to the principle of equivalence, his theory of static gra-vitational �elds was predictively identical to special relativity in the case ofhomogeneous gravitational �elds. Rather, it lay in a new way of lookingat the division of structures between space and the �elds it contains in thecontext of special relativity. Speci�cally, he no longer regarded the struc-tures accounting for inertial e�ects as a part of space. Rather he now lookedupon them as associated with the �elds de�ned in space and, in particular,intimately related to gravitation. This move stripped space of the privilegedframes to which he objected.Einstein's \Gestalt switch" can be described more precisely if we presentit more explicitly in four-dimensional terms. Of course, Einstein himself didnot begin to work explicitly in such terms until �ve years after his original1907 formulation of the principle of equivalence.In the old view of special relativity, the background arena of space andtime, against which physical processes unfold, is a Minkowski space-time,that is, a pair: hM; gi, where M is a four-dimensional manifold and g aMinkowski metric. This background arena admits certain privileged struc-tures: inertial frames of reference and their associated inertial spaces.In the new view of special relativity, we are informed by the principle ofequivalence that the structure responsible for inertial e�ects, the Minkowskimetric g, is not an intrinsic part of the background arena of space and time.Rather, it is a �eld de�ned against that background and actually a specialcase of the �eld structure that also accounts for gravitational e�ects. Thebackground arena of space and time is now just the bare space-time manifoldM . InM in the absence of a metric, we can still introduce frames of referenceas congruences of curves, although we cannot require them to be time-like,and we can still de�ne their relative space, although they will have no inducedmetric. Clearly in terms of M alone, all such frames and correspondingly allrelative spaces will be indistinguishable and therefore none will be privileged.Following the model of classical gravitation theory, special relativity inthis new view circumscribes the metric �elds allowed on the manifold by adi�erential �eld equation. It requires a metric of Lorentz signature and witha vanishing Riemann curvature tensor
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Riklm = 0
This requirement does not specify a unique Minkowski metric, but a largeset of Minkowski metrics. Because of this, the theory does not single outany frame of reference as privileged in a particular \background space" (i.e.,manifold), even though each metric allowed by the theory will single outcertain frames as inertial and others as noninertial. For, speaking informally,it can be shown that there is always a Minkowski metric allowed by the theoryin which any well-behaved noninertial frame would become inertial. Thisresult, given more precisely later, rests entirely on an active interpretation ofthe general covariance of the preceding �eld equation.In a space-time manifoldM , let g be a Minkowski metric and F an inertialframe of reference, that is, one whose time-like curves are geodesics in rigid-body motion. Let F 0 be any frame of reference in the neighborhood U 0 of M(or even any congruence of curves which need not be all time-like), for whichthere exists a coordinate system x0i with domain U 0 adapted to F 0. (Such aframe is \well behaved".) Now in some neighborhood U of M there existsa coordinate system fxig adapted to F whose range coincides with that ofx0i. h is a di�eomorphism that maps p to hp such that xi(p) = x0i(hp).Then it follows that F 0 is an inertial frame of reference, with respect to theMinkowski metric g0, which is the image of g under h.21The essential features of the old and new way of viewing special relativityare summarized in Table 1.
TABLE 1. Comparison of old view of special relativity with new view in-formed by principle of equivalence.Old view New view
Background arena ofspace and time Minkowski space-time= hM; giwhereM = four dimensionalmanifoldg = Minkowski metric

Four dimensional manifold Monly

Examples of contents/processes in space andtime
Electromagnetic �elds, matterin dust clouds, etc. Electromagnetic �elds, matterin dust clouds, etc.Any Minkowski metric = spe-cial case of structure inducinggravitational �elds

Priviledged framesof reference in back-ground of space andtime?
Yes, each hM; gi has a uniqueset of inertial frames. No, bare manifold M hasno priviledged frames of re-ference. Any well-behavedframe can be made inertialby de�ning an appropriateMinkowski metric on M



24 John Norton
The equivalence of all frames embodied in this new view goes well beyondthe result that Einstein himself claimed in 1916 from the principle of equiva-lence. He claimed only an equivalence of inertial and uniformly acceleratedrelative spaces, that is, of inertial and uniformly accelerated frames. Theestablishment of a wider equivalence would have been straightforward, evenif inessential in view of the fact that he had the general theory of relativityin hand by then. But he most likely chose to avoid this extension because itwould have required him to �nd standard formulations of a gravitation the-ory, similar to his 1907{1912 theory, which would hold in relative spaces offrames in rotation or nonuniform acceleration. I listed some of the di�cultiesEinstein would face in this task in the last section.In any case, Einstein could not simply take special relativity. viewed inthe new way, as a theory extending the principle of relativity in the wayrequired for two reasons. First, the principle of equivalence clearly indicatedthat the theory was not complete. The structure accounting for inertia mustalso account for all gravitational e�ects. The Minkowski metric of specialrelativity, however, could only account for e�ects due to gravitational �eldswhich could be transformed away over some neighborhood of a relative spaceby transforming to a new relative space. So Einstein immediately continuedfrom his statement of the principle of equivalence, quoted earlier from his1916 review article, by observing that \in pursuing the general theory ofrelativity, we shall be led to a theory of gravitation.. . . " We shall see that itwas the completion of this task that yielded the general theory of relativity.The second reason was more subtle but far more important and can onlybe touched on informally here. The theory was also causally incomplete. Aswe have seen, Einstein required a complete theory of inertia to account forthe disposition of inertial frames in space-time in terms of the only availableobservable cause, the distribution and motion of the masses of the universe.Special relativity in any of the forms described cannot be that theory. Thedisposition of inertial frames and the Minkowski metric which determinesthem is completely una�ected by any change in these masses. In some largeneighborhood of space-time, such changes might include the setting of allmasses into rotation about a central axis or even the conversion of all theirenergy into radiation and its resulting dissipation.However it was natural for Einstein to expect that the extended theory,which dealt with general gravitational e�ects, would explain the observeddisposition of inertial frames of reference in terms of the matter distributionof the universe. For the structure that determined this disposition wouldbehave in many aspects like a traditional gravitational �eld and therefore bestrongly in
uenced by any motion of its sources, the masses of the universe.Although Einstein's hopes were not borne out by later developments, hemade clear in his earliest relevant publications that he expected his newgeneral theory of relativity to implement a \hypothesis of the relativity ofinertia", which required inertia to be nothing other than the resistance of abody to acceleration with respect to other bodies (Einstein 1913b, pp. 1260{1262). This, of course, would forbid universes, all of whose masses were
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rotating about a local inertial compass. He had already sought and foundsmall e�ects he felt were consistent with this hypothesis. They included thedragging of the inertial frames of reference inside a rotating shell of matterand were similar to those discussed in his Meaning of Relativity (Einstein1922, pp. 100{103). Clearly he also related this hypothesis to his 1907{1912theory of static gravitational �elds, for in 1912 he had published a paperwhich demonstrated the existence of similar such e�ects in that theory too(Einstein 1912d).
6. The Breakdown of Relative Spaces
It was inevitable that Einstein would give up the use of standard formulationsof theories in his search for a general theory of relativity. For the relativespaces used by these formulations would only have well-de�ned geometriesif the associated frame is in rigid motion, which is by no means generallythe case. Even in Minkowski space-time, no nonuniformly rotating framecan move rigidly. Worse, the relative space will only have the frame timerequired by standard formulations if the space-time admits a foliation byhypersurfaces orthogonal to the frame. Even uniformly rotating frames inMinkowski space-time do not admit such a foliation.In his general theory of relativity, Einstein turned to the four-dimensionalspace-time formulation of theories. As indicated in the last section, he nowalso came to regard the four-dimensional space-time manifold without fur-ther structure as the background of space and time against which physicalprocesses unfold.One can de�ne very few reference structures in such a manifold. Framesof reference as congruences of world lines can be de�ned. But without furtherstructure, such as a metric, they cannot be described as time-like or have anoverall state of motion assigned to them. The richest reference structureavailable is the arbitrary space-time coordinate system, whose coordinatevalues can have no metrical signi�cance, such as Einstein had required in hisGalilean reference systems.So in the general theory of relativity, Einstein proceeded to use arbi-trary space-time coordinate systems as the reference structures from whichto view physical processes and formulate physical principles. In his exposi-tions of general relativity, Einstein typically made this transition from frameof reference and relative space to arbitrary space-time coordinate system byconsidering the relative space of a frame of reference in uniform rigid rota-tion in Minkowski space-time (for example, Einstein 1916a, pp. 773{776,.1922, pp. 59{62). He would show that the spatial geometry is non-Euclideanand conclude that the coordinate system used there could not have the samedirect metrical signi�cance of spatial coordinates in his Galilean referencesystems. Similar results followed from attempts to retain a time coordinate,presumably for space-time, whose value would coincide with the readingsof clocks at rest in the frame. Einstein then introduced the use of arbi-trary space-time coordinate systems as a natural extension of the methods
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developed in the nineteenth century for dealing with non-Euclidean spatialgeometries.This argument gave psychologically natural grounds for introducing themethods of di�erential geometry into relativity theory. However, it failedto demonstrate the completeness of the demise of relative spaces in generalrelativity. The relative space of the argument's uniformly rotating frameof reference still has a well-de�ned geometry, unlike the relative spaces ofother frames of reference in space-times with more general semi-Riemannianmetrics. Einstein turned to this problem in his popularization Relativity(1954a), most of whose discussion is set in terms of the relative spaces of\reference bodies" ( = frames of reference). In chapter 28 he points out thatrigid reference bodies will in general no longer be available in general relati-vity and that \the Gauss coordinate system has to take the place of the bodyof reference". He then proceeds to describe the di�culties and arti�cialityof retaining the use of nonrigid reference bodies (and by implication theirassociated relative spaces with ill-de�ned geometries) through the discussionof what he calls \reference molluscs".In the same chapter, Einstein gave his well-known reformulation of theextended principle of relativity|"All Gaussian co-ordinate systems are es-sentially equivalent for the formulation of the general laws of nature"|andproceeded to explain that this requirement was satis�ed by a theory if its lawswere written in a generally covariant form. Naturally, this meant that hisgenerally covariant general theory of relativity realized the extended principleof relativity.Einstein has taken the principle of equivalence to assert the equivalenceof inertial and uniformly accelerated relative spaces, an assertion that is sub-sumed by the extended principle of relativity. So it was easy for Einstein toconclude, in continuing his reply to Kottler, that the principle of equivalencewas automatically satis�ed by his general theory of relativity:

A gravitation theory violates the principle of equivalence, in the sense which l under-stand it, only then, if the equations of gravitation are satis�ed in no reference systemK 0, which is moving non-uniformly relative to a Galilean reference system. That thisreproach cannot be raised against my theory with generally covariant equations is evi-dent; for here the equations are satis�ed with respect to each reference system. Therequirement of general covariance of equations embraces the principle of equivalenceas a quite special case. (Einstein 1916b, p. 641) 22
Einstein's reformulation of the extended principle of relativity as the re-quirement of general covariance is unproblematic in so far as it is based onthe fact that the space-time manifold without any additional structure hasno privileged coordinate systems. This fact immediately entails that thereare no privileged frames of reference and, therefore, no privileged relativespaces. For were any frames privileged, the coordinate systems adapted tothem would also be privileged.However, as has been frequently objected, it is hard to see how this re-quirement could capture all that Einstein required in an extension of the
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principle of relativity, when there are simple generally covariant formula-tions of many other theories apart from general relativity. These includespecial relativity, Nordstr�om's theory of gravitation, and Newtonian gravita-tion theory. Of course Einstein was aware of this at least in the case of the�rst two theories.A thorough analysis of Einstein's intentions here and their re�nement inhis later work is a complex task that goes well beyond this paper. Neverthe-less, I will make a few tentative comments concerning Einstein's early viewof the question to make his remarks more plausible.For Einstein, violations of the extended principle of relativity need notbe limited to the laws of a theory. They could also arise in its solutions, thatis, in models or classes of models of the theory. For example he pointed outin a 1917 paper on the cosmological problem that it was \contrary to thespirit of the relativity principle" to introduce solutions of the �eld equationsof general relativity by imposing a boundary condition of a Minkowski metricat matter-free spatial in�nity (Einstein 1917, p. 147). This introduces pri-vileged coordinate systems in which the metric approaches the form diag(-1,-1, -1, 1) as the limit to spatial in�nity is taken. In addition, these privi-leged coordinate systems were objectionable since there was no observablecause for their special status, contradicting the hypothesis of the relativityof inertia.Clearly, solutions of generally covariant formulations of special relativityand Newtonian theory would necessarily involve the introduction of similarlyobjectionable privileged coordinate systems in one form or other. Minkowskispace-time, even regarded as a model of general relativity, would be objec-tionable for the same reason. However, Einstein believed that the introduc-tion of these boundary conditions would not always be needed in the case ofhis general theory of relativity. In his 1917 paper he continued to demonstratehow the �eld equations of general relativity, augmented with the cosmologicalterm, admitted solutions without the use of boundary conditions at spatialin�nity. To arrive at these solutions, one needed only to specify the massand world lines of the universe's smoothed-out dust cloud of matter on themanifold and invoke other natural requirements, such as the symmetry ofthe metric with respect to these world lines, and its isotropy about them.In 1918, Einstein described a solution generated in this way as satisfying\Mach's Principle" (Einstein 1918a, p. 241). This principle required that themetric tensor be determined completely by the matter of the universe and wastaken to be the natural generalization of the hypothesis of the relativity ofinertia. In a footnote, he pointed out that he had not previously distinguishedthis principle from the (extended) principle of relativity and that this hadcaused confusion. So, at least at this time, the general theory of relativityseemed to be the only viable theory satisfying all his requirements concerningthe relativity of motion. It was clearly impossible for special relativity orNordstr�om's theory to exhibit such Machian behavior, irrespective of thecovariance of their formulations.
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7. Generating General Relativity
Einstein had come to recognize that a general theory of relativity was to befound as a four-dimensional theory of gravitation. The principle of equiva-lence provided the crucial starting point: the identi�cation or the Minkowskimetric as an instance of the four-dimensional space-time structure represent-ing gravitational �elds. For Einstein had found that the Minkowski metriccan induce gravitational �elds on the relative spaces of a Minkowski space-time.Einstein's discovery of the gravitational properties of the Minkowski me-tric was a remarkable feat. Unlike so many other discoveries in physics. itseems to have been almost totally unanticipated by his contemporaries.The role of the principle of equivalence in Einstein's development of hisnew gravitation theory remained essentially the same as in his earlier 1912theory of gravitation. The principle yields a special case of the gravitational�eld, whose properties are then generalized in a natural way to arrive at ageneral theory of gravitation.However, from the perspective of the general theory of relativity. Einsteinhad no prospect of arriving at the correct laws of a general theory of the gra-vitational �elds of relative spaces, as long as he worked within the frameworkof his 1912 theory. This follows immediately if we recall that Einstein soughtto characterize arbitrary static gravitational �elds as structures induced ontorelative spaces by the special type of static space-times I described in Section4.2.In these space-times, in the source-free case, one can readily demonstratethat the �eld equations of general relativity, that is, the requirement of thevanishing of the Ricci tensor Rim = 0;
entails the vanishing of the Riemann-Christo�el curvature tensor

Riklm = 0:
This in turn entails that the only source-free gravitational �elds in relativespaces which the theory can deal with correctly, from the perspective of thegeneral theory of relativity, are those induced by acceleration in Minkowskispace-time. In addition, it follows from an evaluation of the componentsof the curvature tensor in a coordinate system adapted to the acceleratingframe that this acceleration must be a uniform rectilinear acceleration.23
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Unfortunately, in the period 1912 to 1915, Einstein believed that thearbitrary static space-times associated with his 1912 theory ought also to besolutions of the �eld equations of his new general theory of relativity. I haveargued elsewhere in detail that this played a major role in his failure to adoptthe generally covariant �eld equations of his �nal theory in this period. (secNorton 1984).Nevertheless, Einstein commonly used the principle of equivalence to re-cover and motivate the basic formal structure of his general theory of relati-vity in an argument whose strategy was essentially the same as that used in1912. Einstein presents the argument in a compact and well-developed formin a 1951 letter to Becquerel, in which the role of the principle of equivalenceis made especially clear.24 He begins by using the equality of inertial andgravitational mass to justify introduction of the principle, which is formu-lated in terms of relative spaces: \An inertial space without gravitational�eld is physically equivalent to a uniformly accelerated space, in which thereis a (homogeneous) gravitational �eld. (Equivalence hypothesis.)" Then af-ter introducing the requirement of general covariance, he proceeds with thesteps he numbers as the third and fourth of his argument:
(3) One kind of space is completely known to us, that is empty Minkowski-space, inwhich the interval ds, as given by

ds2 = �dx21 � dx22 � dx23 + dx24
can be measured immediately by resting clocks and measuring rods. Through anonlinear transformation, this becomes

ds2 = gikdxidxk;
where ds has the same value as a Minkowski system. The gik depend on the coordi-nates and, according to the equivalence hypothesis, describe a gravitational �eld (ofa more special kind),(4) In general coordinates, a gravitational �eld of the more special kind satis�es thedi�erential equations Riklm = 0
from the loosening of which the �eld law of an arbitrary pure gravitational �eld mustfollow. For this, only Rkl = Rskls
comes into consideration. It is natural to assume that ds expresses the naturallymeasured interval also in the case of a general pure gravitational �eld.
Because of its extreme brevity, Einstein's argument requires some expli-cation. In his step 3, he appears to identify a coordinate e�ect, the non-constancy of the components gik, with the presence of a gravitational �eld.His real intention emerges, however, if we recall his practice of tacitly as-sociating changes of frame of reference with coordinate transformations. Inparticular, a nonlinear coordinate transformation can represent the changefrom an inertial frame of reference to a rigidly and uniformly acceleratedframe of reference, which is precisely the case considered in the statement ofthe principle of equivalence just given. In this case, the nonconstancy of the
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gik is now associated with the presence of a homogeneous gravitational �eldin the relative space of the accelerated frame, for as we have seen in Section4, the potential of such a �eld is given by g44 in a coordinate system adaptedto the frame.Thus Einstein's step 3 is multifaceted. The introduction of an arbitrarycoordinate system makes the presence of a metric tensor in Minkowski space-time formally explicit as a matrix of components gik. At the same time Ein-stein uses the principle of equivalence to point out that this metric inducesa gravitational �eld of a special type in the relative space of an acceleratedframe of reference. This justi�es interpreting the Minkowski metric as a par-ticular instance of the four-dimensional generalization of such gravitational�elds.Interpreting the Minkowski metric in this way indicates that Einstein canarrive at a four-dimensional theory of arbitrary gravitational �elds, whichwill also be his general theory of relativity, by generalizing the propertiesof the Minkowski metric in a manner analogous to the way that uniformgravitational �elds can be generalized to nonuniform �elds in Newtoniantheory. He �nds that the way to proceed is straightforward. The generaltheory will deal not only with Minkowski metrics, but also others of Lorentzsignature.This argument appears throughout Einstein's earlier work, but in a slightlyless-developed form.25 For it was only in his later years that he explicitly re-nounced the use of a separate stress-energy tensor as the source term in the�eld equations and used these equations only in their source-free form.This source-free form of the �eld equations can be arrived at readily inthe argument, as Einstein shows earlier, by merely contracting the 
at space-time condition of special relativity. The argument appears commonly in thismore complete form in his later writings.26The earlier examples of the argument also contained an important addi-tion to the example quoted earlier. Einstein would note that in the Galileanreference system of special relativity, a free point mass moves uniformly ina straight line. Such motion is represented in Minkowski space-time by atime-like geodesic, which satis�es the condition that the interval be extremalalong the curve:

� Z ds = 0
It was natural to assume, the argument continued, that this requirementwould also be satis�ed by the world line of a free point-mass in the moregeneral case of the general theory of relativity. I will return to the importanceof this point in Section 9.In short, we have seen in this section that the principle of equivalenceenabled Einstein to see that one structure was responsible for inducing bothinertial and gravitational �elds and that the Minkowski metric was a specialcase of it. Einstein summarized this insight in a compact 1918 statement ofthe principle:
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Principle of Equivalence: inertia and gravity are wesensgleich [identical in essence].From this and from the results of the special theory of relativity it necessarily followsthat the symmetrical \fundamental tensor" (g��) determines the metrical propertiesof space, the inertial behavior of bodies in it, as well as gravitational action. (Einstein1918a, p. 241)27

8. A Manner of Speaking
It was not uncommon for Einstein to associate the nonconstancy of thecomponents of the metric tensor, or, equivalently, the nonvanishing of theChristo�el symbols in a given coordinate system with the presence of a gra-vitational �eld. In particular, he would describe the Christo�el symbols asthe \gravitational �eld strengths" or \components of the gravitational �eld",for in a coordinate system in which these symbols vanished, free point-massesmove \uniformly in a straight line". Therefore, these components \conditionthe deviation of the motion from uniformity" (Einstein 1916a, p. 802).As in the last section, this association of the Christo�el symbols withgravitational �eld strengths can be explicated by recalling that Einstein of-ten tacitly referred to frames of reference and their relative spaces whenhe talked explicitly only of a coordinate system adapted to them. If a co-ordinate system adapted to a uniformly accelerating frame of reference inMinkowski space-time is chosen so that its spatial coordinates are Cartesian,then the Christo�el symbols will contain only the spatial derivatives of theg44. However, these derivatives together form a �eld strength, the three-vector gradient of the potential of the homogeneous gravitational �eld in theassociated relative space.The connection made here between the Christo�el symbols and the �eldstrengths of the gravitational �elds in relative spaces depends on a carefulchoice of space-time and coordinate system. Einstein, however, did not makethis clear in his work and rarely quali�ed the identi�cation of nonvanishingChristo�el symbol and gravitational �eld strength.This practice has undoubtedly caused confusion. In a letter of Jan-uary 1951, Laue challenged Einstein on this point.28 He gave the examplein Minkowski space-time of the transformation to curvilinear spatial coor-dinates from a Galilean coordinate system with no alteration in the timecoordinate. Since this transformation is not associated with a change ofstate of motion, the resulting nonvanishing of \�eld strengths" is physicallycounterintuitive.Einstein began his response by stressing that the Newtonian concept ofgravitational �eld (\a1l the expressions obtained from the potential") is dif-ferent from the concept of the relativistic gravitational �eld (\everythingformed out of the symmetrical gik").29 This corresponds to the distinctionmade here between the gravitational �elds of relative spaces, which are usu-ally represented by scalar �elds, and their four-dimensional generalization,the metric �eld. Nevertheless, as he continued to explain, it was possibleto forge a heuristic link between these two concepts and this link was the
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principle of equivalence:

Heuristically, the interpretation of the �eld existing relative to a system. parallellyaccelerated [parallel beschleunigten] against an inertial system (equivalence principle)was naturally of decisive importance, since this �eld is equivalent to a Newtonian gra-vitational �eld with parallel lines of force. In this case, the Newtonian �eld strengthsare equal to the spatial derivatives of the g44. Correspondingly, if one wants to, onecan designate the �rst derivatives of the gik or the displacement quantities �[a�neconnection] as gravitational �eld strengths, which certainly have no tensor character.In this manner of speaking, the introduction of cylindrical coordinates leads to theappearance of �eld strengths in a Galilean space. With this it is only a question of amanner of speaking.
Here Einstein uses the special case described earlier to justify speaking of the�rst derivatives of the gik (which determine the Christo�el symbols and thea�ne connection in these space-times) as gravitational �eld strengths. Onecan continue to use this manner of speaking in other cases, but as Einstein'sresponse indicates, it should be used with some caution.This attitude to the description of the Christo�el symbols as gravitational�eld strengths was not a later development in Einstein's thought. It is alsoclearly evident in his 1916 reply to Kottler. There he says of this nomen-clature, referring also to the nongenerally covariant stress-energy pseudo-tensor of the gravitational �eld, that \it is meaningless in principle and onlyintended to make concessions to our physical thought habits" but that it\appears to me, at least provisionally, not without value to maintain thecontinuity of thought" (Einstein 1916b, p. 641).Today, some �fty years later, we insist that coordinate e�ects be carefullydistinguished from physical e�ects. Examples such as Laue's show the confu-sion that would otherwise arise. Therefore, the provisional value of Einstein'smanner of speaking is no longer evident. Einstein continued his response toLaue by stressing the important point beneath his manner of speaking, whichinvolved no equivocation about coordinate e�ects:

It is essential however, that a gravitational �eld exists in the sense ofgeneral relativity also in the case of a Galilei or a Minkowski space, evenif the �eld strengths in the sense de�ned above vanish. In the theory ofrelativity, just the dimensionality of the �eld is the only thing that remainsof the earlier physically independent (absolute) space.
In a given space-time, the nature, and even existence, of a gravitational�eld in a relative space will depend on the choice of frame of reference de�ningthe relative space. But this relative-space dependence of these gravitational�elds does not extend to their four-dimensional generalization, the space-time metric. All space-times of general relativity contain such a metric�eld|a gravitational �eld \in the sense of general relativity"|regardlessof the frame of reference of relative space under consideration. This holdsequally for Minkowski space-times, even though we can always �nd relativespaces in them that are gravitation-free in the older sense. In short, in general
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relativity a Minkowski space-time is not the gravitation-free special case.
9. The In�nitesimal Principle of Equivalence
Einstein's contemporaries of the early 1920s regarded the relative-space de-pendence of the gravitational �eld as the basic assertion of the principle ofequivalence, rather than the occasion for inference to a more fundamentalstructure. Naturally, they were dissatis�ed that Einstein dealt only withthis relative-space dependence in the very simple case of the homogeneousgravitational �elds of uniformly accelerated reference systems in Minkowskispace-time. They sought an extended statement of this dependence thatwould apply directly to arbitrary gravitational �elds (Pauli 1921, pp. 145{147; Silberstein 1922. pp. 10{13). They believed that this could be achievedin general relativity on the basis of the notion that special relativity holdsin in�nitesimally small regions of the space-time manifold, tacitly assumingthat special relativity is a gravitation-free special case. As a result, theirconstruct of the principle was very di�erent from Einstein's and lays stresson the notion that a gravitational �eld can always be transformed away.30Pauli's classic formulation of the resulting principle reads:

For every in�nitely small world region (i,e., a world region which is so small thatthe space- and time-variation of gravity can be neglected in it) there always exists acoordinate system K0(X1; X2; X3; X4; ) in which gravitation has no in
uence eitheron the motion of particles or any other physical processes (Pauli 1921, p. 145).31
Pauli continued to explain a little later that

The special theory of relativity should be valid in K0. All its theorems have thus tobe retained, except that we have put the system K0, de�ned for an in�nitely smallregion, in place of the Galilean coordinate system.
In particular, this meant that the metric adopted the form diag(l, 1, 1, - 1)in K0.This \in�nitesimal principle of equivalence" can be connected to Ein-stein's version at least super�cially by noting that classical gravitational �eldsbecome homogeneous in in�nitesimal regions of the relative space. InvertingEinstein's usual argument, they can then be transformed away at least in-�nitesimally by an appropriate acceleration of the reference system. One thenregards the Pauli version of the principle as a four-dimensional restatementof these two results.Of course this in�nitesimal principle and the discussion of its connectionto Einstein's version is beset with a number of serious technical di�culties.The notion of both three- and four-dimensional \in�nitesimal regions" andthe sense in which special relativity holds in such regions are unclear. Further,the actual statement of the principle makes it look as though it deals solelywith a coordinate e�ect. These problems will be addressed shortly.The popularity of the in�nitesimal principle derives at least in part fromits leading to a particularly attractive result; that it is possible to recon-
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struct much of the space-time manifold of general relativity as a patchworkof in�nitesimal pieces in which special relativity holds.Moritz Schlick, in his in
uential two-part article on space and time in theMarch 1917 issues of Die Naturwissenschaften, attempted just such a recon-struction (Schlick 1917). \We stipulated," he wrote, \that in an in�nitelysmall region and in a reference system in which the bodies considered haveno acceleration the special theory of relativity holds." It followed that ina \local" coordinate system, such as Pauli's K0, the interval between twoin�nitesimally separated events is given by

ds2 = (dX1)2 + (dX2)2 + (dX3)2 � (dX4)2:
Transforming to an arbitrary space-time coordinate system fxig(1 = 1; 2; 3; 4),the expression for the interval became

ds2 = g11(dx1)2 + 2g12dx1dx2 + : : :+ g44(dx4)2;
where the symmetric coe�cients gik(i,k = 1, 2, 3, 4) represent the componentsof the metric tensor in the new coordinate system. Schlick was thus able toinfer that the new theory would involve a metric tensor and to arrive atmany of its properties by considering the properties of the interval as givenin special relativity.In addition, Schlick considered the motion of a free material point. Byreviewing its motion in the relative spaces of both local and accelerated coor-dinate systems and invoking the principle of equivalence, he concluded thatthe components of the metric tensor in the new coordinate system determinethe gravitational �eld in the latter space. It also followed from special re-lativity that the world line of such a particle in the local coordinate system(Xi) would be a geodesic. Since this was an invariant property, it wouldalso be true of the world line in all coordinate systems, such as (xi). He theninvoked the \principle of continuity" to justify the important conclusion thatthe world line of a free material point would be a geodesic in �nite regionsof the manifold as well.Einstein has used arguments very similar to those just described. In par-ticular, he used the assumption that special relativity holds in in�nitesimalregions of the space-time manifold of general relativity in a manner closeto that of Schlick, to introduce the metric tensor and some of its proper-ties, especially those relating to the behavior of in�nitesimal rods and clocks(Einstein 1916a, pp. 777{778; 1922, pp. 62{64).32 However, this assumptionwas never related to the principle of equivalence, which was always formu-lated in Minkowski space-times. In addition, he was cautious in his use ofthis assumption, since he held that it was only true to a limited extent.This emerged in the correspondence between Einstein and Schlick followingSchlick's article.We know from this correspondence that Einstein had seen Schlick's articleprior to its publication and that he approved of it wholeheartedly.33 Six weeksafter their initial exchange, however, Einstein wrote to Schlick to point outan error in one of the arguments sketched out here:
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The derivation of the law of motion of a point mass given on page 184proceeds from the motion of a point being a straight line, when consideredin the local coordinate system. But from this nothing can be derived. Ingeneral, the local coordinate system has a meaning only in the in�nitelysmall and in the in�nitely small every continuous line is a straight line.The correct derivation runs as follows: in principle there can exist �nite(matter-free) parts of the world for which

ds2 = dX21 + � � � � dX24
with an appropriate choice of the reference system. (If this were notthe case, then the Galilean law of inertia and the special theory of rel.could not have held good.) In such a part of the world, the Galilean lawof inertia holds with this choice of reference system; and the world lineis a straight line, and therefore a geodesic, with an arbitrary choice ofcoordinates.That the world line of a point is a geodesic in other cases too (if none otherthan gravitational forces act) is an hypothesis, even if a very obviousone.34

Einstein's objection bears directly on the assumption that special relativitydoes hold in an in�nitesimal region of the space-time manifold of generalrelativity. He claims that it can only hold in a limited sense, for in suchregions we cannot formulate the requirement that the world line of a freepoint-mass be a geodesic. (Note that Einstein called such lines \straight" in aGalilean reference system, since their spatial coordinates are linear functionsof the time coordinate.)Rather, as Einstein indicates here and as was his own practice elsewhere,when one discusses the motion of free point-masses, one must consider �niteregions of the manifold in both special and general relativity. From theassumption that special relativity holds in�nitesimally in general relativity,it does not follow that the world line of a free point-mass will be a geodesicin general relativity. Einstein's approach here and throughout his early workwas to take this result in general relativity as strongly suggested by thecorresponding result in special relativity, but in the last analysis still anindependent assumption. (Of course, later he sought to derive this result ingeneral relativity from the gravitational �eld equations.)Finally, Einstein's comments here provide one more reason for his failureto retain an in�nitesimal principle of equivalence after he brie
y entertainedone in 1912. As he came to realize, such a principle could not deal with themotion of bodies, the consideration of which formed the core of his princi-ple. In the next section, I turn to examine whether Einstein's objection toSchlick holds. If it does, then he has pointed out a rarely acknowledged, butnevertheless devastating, di�culty for the traditional in�nitesimal principleof equivalence.35 If he is correct, then the restriction to in�nitesimal regionsmakes it impossible to distinguish the geodesic world lines of free point-masses from other world lines and thus it is impossible to judge whether|in
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the words of Pauli's formulation|\gravitation has no in
uence on . . . themotion of particles".
10. The Problem of In�nitesimal Regions
When Pauli and Schlick wrote of special relativity holding in in�nitely smallregions of the space-time manifold of general relativity, they could not havemeant that special relativity holds in its usual sense. For whatever an in-�nitesimal or in�nitely small region is, it must contain at least one point.Special relativity requires the vanishing of the Riemann-Christo�el curva-ture tensor. This requirement is well de�ned at every point of the manifoldand is typically not satis�ed in general relativity.Rather they referred to a coordinate-dependent result, as is suggested bytheir quali�cation that special relativity hold in the region of an appropriatelyde�ned coordinate system. In a neighborhood of any given point p in thespace-time manifold in general relativity, it is possible to introduce a \local"coordinate system K0 so that at p: the components of the metric gik have thevalues diag(l, 1, 1, -1); the �rst (coordinate) derivatives of the componentsof the metric tensor gik;m and thus also the Christo�el symbols vanish; but,in general, the second derivatives gik;mn will not vanish.When special relativity is said to hold in K0 in an in�nitesimal regionaround p, what is meant is the following. In Ko at p, structures de�nedon the manifold, which do not deal with second and higher (coordinate)derivatives of the metric tensor, behave identically to their special relativisticcounterparts at any point of a Minkowski space-time in a Galilean coordinatesystem. The criterion of identical behavior is equality of components of thequantities concerned. For example, in both cases the metric has componentsdiag(l, 1, 1, -1), which means that the coordinate velocity of light will beunity. Both cases are commonly regarded as gravitation free insofar as theChristopher symbols, the \gravitational �eld strengths," vanish. And theworld line of a free point-mass is a \straight" line, in the sense that it satis�esthe condition d2X i=ds2 = 0 at p, where s is the interval. The two cases di�er,however, when quantities containing gik;mn are considered. Most notably thecurvature tensor vanishes only in the case of Minkowski space-time.The ignoring of second and higher derivatives of the metric tensor is usu-ally justi�ed by the introduction of a hierarchy of nested orders of quantities.Examples of �rst-order quantities contain the gik alone; of second-order quan-tities, the gik and gik;m, of third-order quantities, the gik, gik;m, and gik;mn;and so on. One must now imagine that the gik are given at p alone; the gik;mare given by comparing the gik at p and at an in�nitesimally close point; andthe gik;mn by comparing the gik at two points in�nitesimally close to p, thesecond more removed than the �rst. Then, �nally, we imagine that accessto quantities higher than any designated order can be denied by restrictingconsideration to su�ciently small in�nitesimal regions around p.It is now clear that the notion of these in�nitesimal regions is problematicin di�erential geometry, since such regions cannot be equated with neighbor-
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hoods in their usual sense or any other structure commonly employed.If we are to make a consistent evaluation of Einstein's objection to Schlick,the foregoing discussion must be made more precise. First, ambiguous re-strictions concerning in�nitesimal regions will be replaced by restrictions con-cerning orders of quantities. The assertion that special relativity holds in-�nitesimally in general relativity will be taken to mean only that specialrelativity holds at a point in the space-time manifold when quantities up tosecond order only are considered.Second, we can eliminate the dependence on the coordinate system K0and on Galilean coordinate systems in Minkowski space-time by replacing thequantities gik, gik;m, and gik;mn the examples of �rst-. second-, and third-orderquantities mentioned earlier, by the covariant quantities gik, Di, and DiDk,respectively.Di is the unique covariant derivative operator compatible withthe metric gik. The coordinate-dependent notion of identity of quantities inthe space-time manifold of general relativity with corresponding quantitiesin a Minkowski space-time is also naturally replaced by a requirement ofdi�eomorphic equivalence at the two corresponding points of each manifold.Finally, we can extend the hierarchical ordering of quantities to those notconstructed solely out of the metric and its derivatives by a technique basedon one outlined by Geroch.36 We generate subsets of the set of all di�eomor-phisms fhg whose domain is some neighborhood of p and which map p backonto itself. Let g0 be the image or g under such a di�eomorphism and D0i thederivative operator constructed from g'. fh1g are all those di�eomorphismsfor which g0 = g at p. fh2g are all those di�eomorphisms for which D0i = Diat p. fh3g are all those for which D0iD0k = DiDk and so on. We �nd 37

fh1g � fh2g � fh3g � � � �
We can think of the members of fhng as disturbing the manifold about pin a way that will not a�ect the particular nth order quantity used at pto de�ne them. More �guratively, they leave undisturbed the in�nitesimalregion about p needed to determine that quantity. Hence it is natural touse these sets of di�eomorphisms to de�ne the hierarchy of orders of otherquantities de�ned on the manifold. If Q is a quantity de�ned at p, thenthe order of any quantity F (Q) derived from it in the hierarchy of ordersengendered by Q is the smallest value of n for which we always have F (Q0)= F (Q), where Q0 is the image of Q under any member of fhng. Let c be acurve through p di�erentiable to all orders with a tangent vector X. We canalso classify the hierarchy of quantities generated by c at p by consideringthe images of c under members of fhg. If an image curve c0 has the tangentvector X 0, then we �nd that X 0 is �rst order since X 0 = X only under anymember of fh1g. Writing Dx = X iDi, we �nd DX0X 0 = DxX only under themembers of fh2g. Hence DXX is a second-order quantity. Similarly (DX)nXis of order n + 1 for all positive integers n.38Now let the curve c passing through p be a geodesic parameterized by theinterval s and have tangent vector X = d=ds. By de�nition. at every point
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of c in some neighborhood of p, X will satisfy the condition

DXX = 0:
It necessarily follows that at p

DXDXX = 0 DXDXDXX = 0 : : : (DX)nX = 0 : : :
for all positive integers n 39Einstein's objection that \in the in�nitely small every continuous line isa straight line" can now be made more precise. If we restrict ourselves toquantities of �rst order, then at p we can only characterize curves through pby their tangent vectors, if de�ned. But if c* is any curve through p with tan-gent vector X*, then there will always lie a geodesic c through p with tangentvector X equal to X*. That is, as far as �rst-order quantities are concernedone cannot distinguish smooth curves from geodesics. If we read Einstein's\continuous line" as smooth curved then this �rst-order indistinguishabilityseems to express his point more precisely.In the context of the in�nitesimal principle of equivalence however, accessto �rst- and second-order quantities is allowed. It follows that a geodesic cwith tangent vector X will lie indistinguishable from any su�ciently smoothcurve c* with tangent vectorX*, providedX� = X andDX�X� = DXX = 0.Of course, the higher derivatives of X* along c* will not vanish in general. Soc* need not be a geodesic. Since Einstein's objection was concerned in e�ectwith this second-order case, it would have been better stated as \the worldlines of any particles unaccelerated at p (i.e.. DX = 0) are indistinguishablefrom geodesics."It is now also clear that any restriction on the order of quantities accessibleat p will make it impossible to distinguish geodesics from other curves. Ifquantities to order n are allowed, then we cannot distinguish a geodesic cfrom any other su�ciently smooth curve c* if they agree on quantities up toorder n. Nevertheless, c* need not be a geodesic since any of the (DX�)mX*may fail to vanish for m > n� 1.Another way to arrive at similar results is to consider c0, the image of c un-der any member of fhng. By de�nition, c0 will be indistinguishable from c toorder n at p. That is, they will agree on any quantity up to order n that char-acterizes them. For example, X 0 = X, DX0X 0 = DXX; : : : (DX0)(n�1)X 0 =(DX)(n�1)X = 0. But as before, c0 will not be a geodesic in general since itsderivatives of order greater than n� 1 need not vanish.The results of this section vindicate Einstein's objection to Schlick. If weunderstand the in�nitesimal principle of equivalence to assert that specialrelativity holds at a point in the space-time manifold of general relativityup to second-order quantities only, then it follows that we cannot formulatespecial relativity's requirement that the world line of a free point-mass be ageodesic.In the terminology used by Pauli, Schlick, and Einstein, we would say thatin the in�nitesimal region concerned in the \local" coordinate system K0, the
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fact that a world line satis�es the condition d2X i=ds2 = 0 does not mean thatit is a geodesic. This much is obvious once we realize that the restriction toin�nitesimal regions e�ectively involves a restriction to the consideration ofquantities at a single point in the manifold. However, we now also say that,under a consistent treatment of this restriction, the higher derivative terms,which might enable us to distinguish other curves satisfying this conditionfrom geodesics, are not accessible from within these in�nitesimal regions.
11. Real and Fictitious Gravitational Fields
The in�nitesimal principle of equivalence tells us that the space-time mani-folds of special and general relativity share the same �rst- and second-orderstructure at a point. For example, it tells us that metric g and compatiblederivative operator Di at a single point in each manifold are di�eomorphi-cally equivalent. This result is not deep|it really only depends on the factthat both metrics have the same signature.Presumably, this result is what Synge had in mind when he lamented inthe introduction to his well-known text on general relativity that he neverunderstood what I assume to be the in�nitesimal principle of equivalence.

Does it mean that the signature of the space-time metric is +2 (or -2 if you prefer theother convention)? If so, it is important, but hardly a Principle. Does it mean thatthe e�ects of a gravitational �eld are indistinguishable from the e�ects of an observer'sacceleration? If so, it is false. In Einstein's theory. either there is a gravitational �eldor there is none according as the Riemann tensor does not or docs vanish. (Synge1960, p. ix)Synge's response to this di�culty is to insist that the e�ects of a true gravi-tational �eld are distinguishable from those of a �ctitious �eld produced bythe acceleration of the observers through an invariant criterion based on theRiemann-Christo�el curvature tensor.It should now be clear that Einstein would not endorse this response tothe di�culties of the in�nitesimal principle of equivalence. For here Synge isproposing to resurrect precisely the distinction whose breakdown was crucialto Einstein's discovery of the general theory of relativity. Einstein explainedhis attitude to this question in correspondence with late, after Laue hadpointed out that the Riemann-Christo�el curvature tensor vanishes in thecontext of the rotating disk problem:
It is true that in that case the Riklm vanish, so that one could say: \There is nogravitational �eld present." However, what characterizes the existence of a gravita-tional �eld from the empirical standpoint is the non-vanishing of the �lik [coe�cientsof the a�ne connection], not the non-vanishing of the Riklm. If one does not thinkintuitively in such a way, one cannot grasp why something like a curvature shouldhave anything at all to do with gravitation. In any case, no reasonable person wouldhave hit upon such a thing. The key for the understanding of the equality of inertialand gravitational mass is missing.40
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Here Einstein reminds Laue that he had been able to recognize that therelativistic theory of gravitational �elds should be a theory dealing with me-trics of nonvanishing curvature, precisely because he was able to recognizethat special relativity, the theory which dealt with a metric of vanishing cur-vature, was really also the theory of a special type of gravitational �eld. Hecould see this because, in turn, the Minkowski metric induced a structureidentical to a classical gravitational �eld on the relative spaces of accelerat-ing frames of reference and, unlike Synge, he had resisted the temptation ofregarding this structure as somehow �ctitious or di�erent from \real" gra-vitational �elds. (We have seen earlier how the �lik can appear as the �eldstrengths of this structure in the relative spaces concerned.)In the last analysis, over a half century after Einstein found and used thiskey, it matters little to one's application of the theory if one follows Syngeand says that \the Riemann tensor . . . is the gravitational �eld" (Synge 1960,p. viii) or if one follows Einstein and calls the metric tensor the gravitational�eld. For the connection between these structures and the gravitational�elds of relative spaces which they generalize is essentially only a heuristicone. Perhaps Synge's approach is more comfortable for those who wish tocontinue thinking of special relativity as a gravitation-free case. For them, thepresence of a gravitational �eld is the intrusion of some kind of perturbationinto the Minkowski metric, in the same way as classical gravitational �eldsarise as anisotropies in otherwise constant scalar �elds. If the curvature ofa metric �eld is nonvanishing, then even a freely falling observer can detectthis perturbation through the presence of tidal gravitational forces and hemay well also be able to identify some nearby massive body that is largelyresponsible for it. 41Personally however, I �nd Einstein's attitude more comfortable and theassociation of gravitational �elds only with metrics of nonvanishing curva-ture an arbitrary and unnecessary distinction. For such a distinction masksone of the most beautiful of Einstein's insights, that there is no essentialdi�erence between inertia and gravity. According to general relativity, thesame structure|the metric|governs the motion of a body in free-fall in the\gravitation-free" case of special relativity or in free-fall in a classically rec-ognizable gravitational �eld. If we are to call any structure \gravitational�eld" in relativity theory, then it should be the metric.

12. What was Einstein's Principle of Equivalence?
Einstein's principle of equivalence asserted that the properties of spacethat manifest themselves in inertial e�ects are really the properties of a �eldstructure in space: moreover this same structure also governs gravitationale�ects. As a result, the privileged inertial states of motion de�ned byinertial e�ects are not properties of space but of this structure and the variouspossible dispositions of inertial motions in space are determined completelyby it. Space of itself is to be expected to designate no states of motion asprivileged.
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This principle guided Einstein to seek his general theory of relativity asa gravitation theory of which special relativity was a special case. Therethe principle found precise theoretical expression. The structure responsiblefor inertial and gravitational e�ects is the metric tensor. The space-timemanifold itself has no properties that would enable us to designate the motionassociated with any given world line as privileged, that is as \inertial" or\unaccelerated." This designation depends entirely on the metric and thea�ne structure for space-time that it determines.The purpose of the \Einstein elevator" thought experiment was to showthat the structures associated with supposedly gravitation-free special rela-tivity were already intimately connected with gravitation. To demonstratethis, he transformed from an inertial frame of reference to a uniformly accel-erated frame and showed that a structure indistinguishable from a classicalhomogeneous gravitational �eld was induced by the Minkowski metric on theg associated relative space.This property of the Minkowski metric enabled Einstein to identify it asan instance of the four-dimensional generalization of classical gravitational�elds. This identi�cation set Einstein on a royal road to his general theoryof relativity. For it e�ectively reduced his task to that of �nding a theorythat generalized the properties of the Minkowski metric in a way enablingtreatment of arbitrary gravitational �elds.Unfortunately, Einstein's contemporaries seized upon one of Einstein'sintermediate results, that in certain cases the gravitational �elds of relativespaces have a relative existence, dependent on the choice of frame of reference.They sought to generalize this result from the simple cases in Minkowskispace-time that Einstein considered to arbitrary gravitational �elds. It hasrarely been acknowledged that Einstein never endorsed the principle thatresults, here called the \in�nitesimal principle of equivalence". Moreover, hisearly correspondence contains a devastating objection to this principle: inin�nitesimal regions of the space-time manifold it is impossible to distinguishgeodesics from many other curves and therefore impossible to decide whethera point-mass is in free fall.Some readers may feel dissatis�ed that Einstein's principle of equivalence�nds the uncontroversial expression indicated above in the general theoryof relativity. On the contrary, I �nd it a source of great satisfaction and atestament to the coherence and clarity of Einstein's vision. For it shows thatEinstein has been completely successful in taking an idea, which was quiteextraordinary when conceived in 1907, and incorporating it completely intothe body of a now universally accepted physical theory. In recent decadesthere has been much criticism of \the" principle of equivalence. But theprinciple under cogent attack has rarely been Einstein's version. For, toparaphrase Einstein's 1916 re
ection on the critics of Mach, \even thosewho regard themselves as Einstein's opponents barely know how much of hisviews they have imbibed, so to speak, with their mother's milk (Einstein1916c, p. 102).42
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Notes

* Reprinted from Studies in History and Philosophy of Science, vol. 16.c
1985 by Pergamon Press. Ltd. with permission.1 For a compact discussion of some principles of equivalence, see Thorne,Lee, and Lightman 1973, pp. 3570{3572.2 This hypothesis is not labeled as the \principle of equivalence" in thisarticle|the term does not appear anywhere in the article.3 For example, Einstein 1911, p. 899; 1954a, pp. 77-78.4 For example, Einstein to T. Levi-Civita, March 20, 1915, EA 16{233; toE. Klug. February 13, 1929, EA 25{126; to L.R. and H.G. Lieber, November20. 1940, EA 15{135; to J. Reyntjens, August 26, 1950, EA 27{144; to A.Rehtz, July 12, 1953, EA 27{134.5 In all the places cited in this section, the only weak exception to this isin the letter to the Liebers where he allows that the gravitational �eld at apoint is \in a certain way �ctitious" because it can be transformed away.6 Earman and Glymour have also remarked on this (1978, p. 254).7 Speci�cally, six degrees of freedom in Newtonian space-times, threein Minkowski space-time and three or less (if any) in an arbitrary semi-Riemannian manifold. See Pauli 1921, pp, 130{132. So a \(rigid) uniformlyaccelerated frame of reference" in Minkowski space-time is speci�ed by re-quiring the reference points to be in rigid motion and one of them to beuniformly accelerated. I shall always read \uniform (rectilinear) accelera-tion" in Minkowski space-time as referring to hyperbolic motion (Pauli 1921, pp. 74{76).8 Torretti 1983, pp. 14{15, 28, de�nes a similar \relative spaces"9 Stachel (1980) has discussed Einstein's use of this example in detail.10 If F is rotating, Hc(p) will be orthogonal to c only. So in general thismapping procedure must be repeated with a new orthogonal hypersurfacefor each c in RF . Most of the discussion of this section can be transferredto Newtonian space-times with little modi�cation. Similar induced metricscould be de�ned in the relative spaces of Newtonian space-times by derivingthem from the three-dimensional metrics of hypersurfaces of simultaneity.11 Pauli 1921, p. 131 writes this as the requirement of the constancy alongc of the components of gorth in an adapted coordinate system. This conditionis equivalent to the vanishing of the frame's expansion tensor, as de�ned in
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Hawking and Ellis 1973, p. 82. Informally, the condition ensures constancyof the orthogonal interval between c and an in�nitesimally close curve c0 ofF in the hypersurfaces Hc.12 In Newtonian space-times, the scalar �eld T is already given for allframes by the absolute time �eld. Therefore every relative space will have aframe time.13 Einstein 1907, pp. 414, 454. Then he wrote (p. 454): \This assump-tion extends the principle of relativity to the case of uniformly acceleratedtranslational motion of the reference system". Einstein did not begin to de-scribe his hypothesis with the compact labels (\equivalence principle" and\equivalence hypothesis" until 1912 and 1913.14 Laue to Einstein, December 27, 1911, EA 16{008.15 see Einstein 19l8b p. 700; 1950, p. 347; 1955b, p. 140.16 In his early (1911) version, Einstein notes that he will \disregard thetheory of relativity" and con�ne himself to \customary" kinematics and \or-dinary" mechanics.17 Einstein brie
y rehearses the problem of characterizing such �elds asNewtonian gravitational �elds in 1920a.18 Einstein relayed his puzzlement at this result to Ehrenfest in a letterof June 1912, EA 9-333. See also Einstein 1912c.19 Einstein to A. Rehtz, July 12, 1953, EA 27-134. In his 1920b, Ein-stein summarizes the principle in similar terms: of . . . the physical propertiesof space prevailing relative to K 0 are completely equivalent to a gravitatio-nal �elders K 0 is a reference system in uniform rectilinear acceleration withrespect to a Galilean system.20 Friedman 1983, pp. 191{195, has given a lucid analysis of the limitedprospects of using a principle of equivalence to yield a generalized principle ofrelativity if the latter is understood to require this type of indistinguishability.21 g0 must be a Minkowski metric, since if g has the form diag(-1, -1, -1, 1)in a coordinate system fyig, then g0 will have the same form in fy0ig, theimage of fyig under h. Similarly the components of g in fxig at p will equalthe components of g0 in fx0ig at hp; therefore: (a) since the curves of constantxi(i = 1; 2; 3) are geodesics of g, the curves of constant x0i(i = 1; 2; 3) willbe geodesics of g0; and (b) since the orthogonal metric of g in the frameF satis�es the rigid-body motion condition, the same will be true of theorthogonal metric of g0 in F 0. From (a) and (b) it follows that F 0 will be aninertial frame of g0.22 In his correspondence about his early work on the general theory, Ein-stein commented brie
y that he saw the principle of equivalence incorpo-rated into the new theory through its covariance properties; Einstein to P.Ehrenfest. Winter 1913{1914?, EA 9-347; Einstein to M. Besso, March 1914(Speziali 1972, p. 53).23 These results also make plausible the failure of Einstein's �rst 1912�eld equation to yield a conservation law, in spite of its similarity to the �eldequations of general relativity. From the perspective of general relativity, wewould only expect his �rst �eld equation to yield consistent results in the
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trivial case of Minkowski space-time.24 Einstein to Becquerel, August 16, 1951, EA 6-074 and 6-075, Einstein'sargument is especially interesting and important, since it is intended to takea skeptic who accepts special but not general relativity step by step from theformer to the latter, carefully delineating the assumptions of each step.25 See Einstein 1913a; pp. 285{286; 1913b, pp. 1255{1256; 1914a, p. 177;1914b, pp. 1032-1033. See also Einstein 1954a, pp. 100-101, for a very clearexposition without formalism.26 See Einstein 1936, pp. 308{309; 1949, pp. 70{73; 1950, pp. 350{351.,1952, pp. 153{154., 1955a, pp. 14{15.27 Einstein used this same notion of identity of essence elsewhere in Ein-stein l912c, p. 1063; Einstein and Grossmann 1913, p. 226; and Einstein1922, p. 58.28 Laue to Einstein, January 8, 1951, EA 16{152.29 Einstein to Laue. January 16, 1951, EA 16{154.30 Compare with Einstein's: \There is no space without gravitationalor inertial �eld. What one calls empty space in the sense of classical orMaxwell's theory, is a gravitational �eld of a special kind, that is one inwhich the gravitational potentials are constant with an appropriate choice ofcoordinates." Einstein to H. Titze, January 16, 1954, EA 23{026/027.31 See also Silberstein 1922, p. 12.32 In a letter to P. Painlev�e, December 7, 1921, EA 19{003, Einsteinstresses that the general theory rests completely on the assumption thatspace-time behaves as it does in special relativity in in�nitely small elementsof the space-time manifold.33 Schlick to Einstein, February 4, 1917, EA 21{568; Einstein to Schlick.February 6, 1917, EA 21{612.34 Einstein to Schlick, March 21, 1917, EA 21{614. Schlick corrected theargument in accord with Einstein's remarks in the republication of the articlein monograph form. See Schlick 1920, pp. 60-62.35 Torretti 1983, pp. 150-151, 316. has made the same objection in thiscontext using virtually the same words as Einstein, but independently ofhim. Torretti writes: \In a Riemannian manifold, every curve is `straightin the in�nitesimal'." He illustrates his point vividly by pointing out thatthe streets which run along both parallels of latitude and meridians on theearth's surface are straight in the in�nitesimal of such cities as Chicago, butonly the meridians are geodesics.36 I am grateful to David Malament for making available to memimeographed lecture notes of Robert Geroch, in which the technique isoutlined.37 If members of fhg map a point with coordinates xk to one with yi, thenat p members of fh1g satisfy yi;k = �ik; members of fh2g satisfy the addi-tional condition yi;km = 0; members of fh3g satisfy the additional conditionyi;kmn = 0 and so on. Commas denote di�erentiation with respect to xk.38 It is important to note that one can only consistently compare ordersof quantities if their orders are assigned within a hierarchy generated by
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the same structure. Any tensor will generate a hierarchy of quantities inwhich that tensor is of �rst order, since all tensors are invariant under themembers of fh1g. For example, the curvature tensor will be of �rst order in ahierarchy it generates, whereas it is of third order in the hierarchy generatedby the metric tensor. In the text I tacitly assume that one can comparethe orders of quantities in the metric tensor hierarchy with the orders ofquantities in the hierarchy engendered by a geodesic through p. This isjusti�ed by the fact that these two hierarchies can be combined as follows.Each member of the set of geodesics fcg through p has a parameterization bythe interval s induced upon it by the metric tensor g. Conversely, given thissame parameterization we can recover the original g, through the conditiong(X;X) = 1 for all tangent vectors X = d=ds. Therefore, for the presentpurpose, we can consider g and associated quantities as well as the set oftangent vectors fXg and associated quantities as dependent on fcg and itsparameterization. In particular, the image of fcg and its parameterizationunder a member of fhg will generate a new metric tensor g0 and a new set oftangent vectors fX 0g. We can now determine the orders of these and relatedquantities in the manner outlined earlier. The expected results do obtain.For example, both g and X are �rst order in this hierarchy.39 This argument establishes the necessity of these additional conditions.Their necessity can be illustrated in the example of a two-dimensional Eu-clidean space. In the usual Cartesian coordinate system, geodesics passingthrough the origin are y = mx, for m a constant. However, the curvesy = xn for all n > 2 satisfy the condition DXX = 0 at the origin. Theconditions (DX)nX = 0 for all positive integers n are not su�cient. In theEuclidean space they are satis�ed at the origin by the smooth curve y = 0when x = 0; y = exp(�1=x2) for all other x, but this curve is not a geodesic.(I am grateful to AI Janis for this last point.)40 Einstein to Laue, September 12, 1950, EA 16{148.41 Einstein and Rosen 1935 have added a curious twist to the standardobjection that the gravitational �elds produced by acceleration cannot be\true" gravitational �elds since they have no sources. Recalling the principleof equivalence by name. they consider a coordinate system fxig adapted toa uniformly accelerated frame of reference in Minkowski space-time and, inthe now familiar manner, associate a homogeneous gravitational �eld withit. This accelerated frame cannot �ll all of Minkowski space-time. In thecase they consider, their frame �lls the submanifold given by (y1)2 � (y4)2,where fyig is the Galilean coordinate system used to de�ne the frame (seetheir footnote, p. 74). They note that the Minkowski metric is a solution ofthe usual gravitational �eld equations of general relativity in the coordinatesystem fxig, but that certain components (T22 and T22) of the otherwiseeverywhere vanishing source stress-energy tensor become singular along thehypersurface xl = 0, which is a boundary of the submanifold containing theaccelerated frame. This represents a kind of source mass or energy distri-bution. They introduce the example so they can proceed to illustrate howsuch singularities can be removed. For further details see Einstein and Rosen
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1935, p. 74.42 Of course, the original quotation is recovered by replacing \Einstein"by \Mach." This image may complement Synge's memorable image of theprinciple of equivalence as a midwife at the birth of general relativity who isnow to su�er burial, but at least with appropriate honors. (Synge 1960, pp.ix{x).
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