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The Hole Argument
John Norton
University of Pittsburgh

The “hole argument” shows that spacetime substantivalism leads to a radical form of
indeterminism in a broad class of spacetime theories.] My purpose in this note is
twofold. First I shall present a short and informal version of the argument in the form
developed in Earman and Norton (1987). Second I will show how the argument can be
extended to the case of “manifold plus further structure” substantivalism whenever that
further structure admits certain common symmetries.

1. An Illustration of the Mathematical Devices Used

The hole argument depends on the possibility of displaying two models of some
spacetime theory which agree everywhere but within a small neighborhood of the space-
time manifold. To illustrate how two such models are arrived at, I will describe the con-
struction for the easy to visualize special case of a spatially homogeneous and isotropic
expanding universe in general relativity. It will be clear how the construction can be
extended to other spacetime theories.

A model of general relativity is a triple <M,g,T> which represents a physical situation
deemed possible by the theory. M is a four dimensional differentiable manifold which is a
set of point-events laid out in a continuum with neighborhoods that are four dimensional.
For the above case of an expanding universe, the stress-energy tensor T represents the
smoothed out matter of the galaxies. In Figure 1, this smoothed out matter is pictured by
the world lines of the galaxies. The diverging of these world lines is a manifestation of
the expansion of the universe. Each of these galaxies is in free fall. The metrical structure
g of the spacetime determines which trajectories in the manifold are free fall trajectories
as well as a large number of other properties related to gravitation and the metrical
behavior of rods and clocks. This metrical structure is pictured in Figure 1 by the little
light cones drawn at various places.

A diffeomorphism on the manifold M is just a map that assigns points in M to points
in M in a smooth, invertible manner. We are interested in a special case which we call a
“hole diffeomorphism”. To define one, we choose any neighborhood of M we please and
call the chosen neighborhood “The Hole”.2 A hole diffeomorphism h is just the identity
map outside The Hole and comes smoothly to differ from the identity within The Hole.
An example is shown in Figure 1. A diffeomorphism can “carry along” the structures g
and T defined on the manifold. If the diffeomorphism h maps the point p to the point hp,
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Figure 1 Hole Diffeomorphism Applied to an Expanding Universe in General Relativity

then a world line that passes through p is carried along to a world line that passes through
hp. The carry along under hole diffeomorphism h of T is called h*T. It is shown in Figure
1. Notice that the carried along trajectories of the smoothed out matter of the galaxies are
no longer free fall trajectories of the metric g. However we can also define the analogous

carry along h*g of the metric g. The trajectories of the carried along galaxies will now be
free fall trajectories of the carried along metric h*g.

We now have two triples: the original model <M,g,T> and a diffeomorphic copy
<M,h*g,h*T>. The fact that the first triple is a model of the theory does not guarantee
that the diffeomorphic copy is also a model, that is, also represents a physically possible
situation according to the theory. A very important theorem in general relativity, however,
assures us that diffeomorphic copies of models are themselves models. This theorem
depends only on the fact that general relativity is what we call a “local spacetime theory”:
the fields g and T of the theory are specified solely by tensorial differential equations.
Most commonly discussed spacetime theories can be formulated as local spacetime theo-
ries in which all the fields of the models are determined by tensorial differential equa-
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tions. The hole argument applies to all spacetime theories in their local formulations.
Newtonian spacetime theory and special relativity, for example, both admit local formu-
lations3 and the result is given generally as:

Gauge Theorem (Active General Covariance): If Mod is any model of a local
spacetime theory and h any diffeomorphism defined on its manifold then the dif-
feomorphic copy h*Mod is also a model of the theory.

The standard assumption in general relativity texts is that two diffeomorphic models
such as these represent the same physical situation. This assumption is an instance of the
more general assumption which applies to all spacetime theories and is stated as:

Leibniz Equivalence: Diffeomorphic models in a spacetime theory represent the
same physical situation.

A common justification for this equivalence is the fact that diffeomorphic models
agree on all observables under the standard physical interpretations of the mathematical
structures. For example, the original and carried along galaxies of Figure 1 may traverse
The Hole by very different trajectories. But the time each requires to traverse the hole, as
measured by co-moving clocks will be the same provided the first is determined by the
original metric and the second by the carried along metric. Similarly any other observable
that we might select pertaining to the phenomena in The Hole will fail to distinguish
between the original and carried along model. A general justification of this claim and
Leibniz Equivalence is based on Einstein’s “point-coincidence” argument. (See Norton,
1987.) This argument asserts that all observables are fully reducible to coincidences at
point-events such as the collision of two particles or the coincidence of a pointer with a
given mark on a scale. Since all such coincidences are preserved under the carry along,
all observables must also be left unchanged in the transition to the carried along model.

2. Consequences of the Denial of Leibniz Equivalence: Radical Local Indeterminism

Two diffeomorphic models are in general distinct mathematical entities—they will
have different components in the same coordinate chart. Thus we are not forced by logi-
cal necessity to assume that both represent the same physical situation, although, of
course, this assumption is routinely made in general relativity texts. Let us pursue the
consequences of denying Leibniz equivalence.

If we deny Leibniz equivalence, we conclude that diffeomorphic models represent
distinct physical situations. However diffeomorphic models agree on all observables. So
we must conclude that they represent distinct physical situations which cannot be distin-
guished by any observationally verifiable differences. In the heyday of logical positivism
this conclusion alone would have been sufficient to terminate any further consideration of
the denial of Leibniz equivalence.

For those undeterred by observationally unverifiable differences, there is a further
undesirable consequence revealed by the hole argument: radical local indeterminism in
all local spacetime theories. To see how this indeterminism arises, take the example of the
local spacetime theory of general relativity and consider the two models of an expanding
universe pictured in Figure 1. The two models agree exactly everywhere outside The
Hole since the diffeomorphism that carries one into the other is the identity outside The
Hole. But they come smoothly to differ within The Hole. Thus the fullest specification of
all the fields outside The Hole will not enable the theory to determine how the model will
develop into The Hole, no matter how small The Hole is in spatial and temporal extent .
This indeterminism is of a very extreme form rarely encountered in non-quantum theo-
ries. Under it, the only way that one can determine the model over the entire manifold is
by specifying it everywhere. If the specification omits any neighborhood no matter how
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small, the above construction shows us that the theory will fail to determine the model
within that neighborhood.

It is important to see that this form of indeterminism is undesirable because of the
special way that it arises. Since diffeomorphic models agree on all observables, the denial
of Leibniz equivalence amounts to the assumption that there are physically significant
properties of the models that transcend observational verification. The construction of the
hole argument reaffirms the dubious nature of these extra properties. It shows that these
extra properties are not only opaque to observation but are also opaque to the theory itself
in this sense: the theory is unable to determine how these properties will develop into an
arbitrarily small neighborhood of the manifold, given a full specification of the properties
everywhere else.

3. Who Must Deny Leibniz Equivalence?

Spacetime substantivalists must deny Leibniz equivalence. Spacetime substantivalism
is an extreme form of realism about certain structures in spacetime theories. It holds that
spacetime is a substance in so far as it is something that has an existence independent of
its contents. I do not know how to make the notion of “independent existence” precise
here. But this much is clear of the substantivalist position. If the contents of spacetime are
rearranged in some way in spacetime—for example everything is spatially translated
three feet in some direction—then the substantivalist must say that we arrive at a physi-
cally distinct situation. For an important physical property has changed: the spatiotempo-
ral locations of the contents.

This necessary commitment of substantivalists and the ensuing conclusion of the
physical distinctness of observationally indiscernible states of the world is precisely what
Leibniz exploited in his challenge to the Newtonian Clarke in his third letter of their
famous correspondence (Alexander, 1956). Leibniz considered, for example, the case of
the bodies of the world replaced in space in such a way that East and West are exchanged
but all other relations preserved. The Newtonian space substantivalist must insist that a
new world has been formed even though it is indiscernible from the old one.

In local spacetime theories, the mathematical entity which most naturally represents
spacetime are the manifolds of the models. This view is defended in Earman and Norton
(1987). It leads the substantivalist to what we call “manifold substantivalism”. The mani-
fold substantivalist must insist that the rearrangement of spacetime structures against the
background of the spacetime manifold leads to a structure that represents a different
physical situation. Since the carry along under diffeomorphism effects just such a rear-
rangement, the manifold substantivalist must insist that a model of a spacetime theory
and a (non-identical) diffeomorphic copy of it represent different physical situations.
Thus the manifold substantivalist must deny Leibniz equivalence and accept the undesir-
able consequences outlined in Section 2. In particular the extra physical properties intro-
duced by this substantivalist must be opaque to both observation and the laws of the
physical theory in the sense given above.

4. An Escape? Manifold plus Further Structure Substantivalism

The full force of the hole argument is directed against manifold substantivalism. One
might think, therefore, that the substantivalist can escape the undesirable consequences of
the hole argument by choosing not just the manifold, but the manifold plus some further
structure to represent spacetime. For example one might choose the manifold plus metric
in both special and general relativity. Or in Newtonian spacetime theory one might
choose the manifold plus absolute time one-form, Euclidean spatial metric and the affine
connection adapted to them. For concreteness below, I shall assume that manifold plus
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further structure ("mpfs”) substantivalists do make these choices for the “further struc-
ture” in Newtonian theory, special and general relativity.

A simple intuitive consideration reveals roughly when this escape via mpfs substanti-
valism will succeed or fail. The hole argument goes through against the manifold sub-
stantivalist because the spacetime theories we consider provide no means of individuating
physically the points of the manifold other than through the further structures defined on
them. Thus one produces no changes in the observational consequences by rearranging
the individuating structures over the manifold by means of a carry along. Moreover the
laws of the theory seem indifferent to whether one carries out such rearrangement. Thus
we would expect similar problems for mpfs substantivalism if the “further structure”
exhibits symmetries. For loosely speaking, the presence of these symmetries represent a
failure of the further structure to individuate fully the points of the manifold. These intu-
itions are made more precise in two claims.

Claim 1: Observational indistinguishability. If the “further structure” selected by
the mpfs substantivalist admits any symmetry transformation at all, then the mpfs
substantivalist is committed to the distinctness of observationally indistinguishable
states of affairs in local spacetime theories.

Justification. Let the theory have models <M,S,C>, where M is a differentiable mani-
fold, S represents the “further structure” and C represents the remaining “contents” of
spacetime. Let S have the non-identical symmetry h, so that by definition h*S=S. Consider
the two structures <M,S,C> and <M,S,h*C>. If one of them is a model of a local space-
time theory, the gauge theorem guarantees that both are models. The mpfs substantivalist
must say that they represent physically distinct situations since C has been rearranged
against the spacetime background of <M,S>. But we have that
<M,S,h*C>=<M,h*S ,h*C>. Thus the mpfs substantivalist must say that the two diffeo-
morphic models <M,S,C> and <M,h*S,h*C> represent physically distinct situations.
However from earlier we know that such diffeomorphic models agree on all observables.

Theories that exhibit symmetries required for Claim 1 to hold include flat Newtonian
spacetime theory, special relativitX and general relativity applied to spatially homoge-
neous and isotropic cosmologies.

Claim 2: Indeterminism. If the “further structure” includes certain common sym-
metries, such as spatial homogeneity and isotropy, then we can recover a form of
indeterminism analogous to that arrived at in the hole argument in local spacetime
theories.

Justification. The construction needed to establish this result is more complicated than
that required for the hole argument. I will give it for the case of special relativistic elec-
trodynamics. It will be clear that analogous constructions are possible for the other theo-
ries cited. Special relativistic electrodynamics has models <M,g,F>, where M is an R4
differentiable manifold, g a Lorentz signature metric tensor and F the Maxwell field ten-
sor. The model set of the theory contains just all such triples in which g satisfies the van-
ishing of the Riemann curvature tensor as its tensorial field equation and F satisfies
Maxwell’s equations. For simplicity we assume that F is fully inhomogeneous and
anisotropic. Assume that the mpfs substantivalist selects <M,g> as representing space-
time. Let t be a translation by unit spatial distance in some direction. t is a symmetry of g
so that we have

t*g=g.
It is possible to decompose the translation t into the composition of two parts as shown in
Figure 2. To do so, we select any two parallel hypersurfaces of simultaneity, which
divides the manifold into three regions. Call the the one between the hypersurfaces the
“present” and the remaining two the “past” and the “future”.
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Figure 2 Decomposition of a Spatial Translation in a Minkowski Spacetime

Define t, to be the identity map in the future, to coincide with t in the past and, in the
present, to be a smooth interpolation between them. Similarly define tg, to be the identity
in the past, to coincide with t in the future and, in the present, to be a smooth interpolation
between them. The two interpolations in the present are to be chosen so that we have:

t=1tyuq * t .
In accord w1t?15%he E:u:;}lffer discussion, the mpfs substantivalism must hold that translating
F to t*F across the spacetime background of <M,g> will produce a structure representing
a physically different situation; the various parts of F are now located at different spa-
tiotemporal events. That is, this substantivalist must conclude that the two models
<M,g,F> and <M, g,t*F> represent different physical situations. Exploiting the fact that
t¥g=g we can say:

Model I, <M, g,F>, represents physical situation I.

Model II, <M, t*g t*F>=<M,g,t*F>, represents physical situation II.
Now recall that we could proceed from model I to model II by a two step transformation:
the application of tg, followed by the application of t,. Figuratively:

<M,g,F> (tgyure) = <M tryrure * 8stiuture ¥F> (tpas)— <M, t*g t*F>=<M, g, t*F>
Let us call the intermediate model <M, tgypure * 8 tiuwre F> “model III”. Note that it is dif-
feomorphic to both model I and II, so it represents a physical situation observationally
indistinguishable from those represented by models I and II. Now ask what physical situ-
ation is represented by model III. There are three possible answers:5

(a) physical situation I

(b) physical situation I

(c) a physical situation other than I or 1I.
Any answer leads to indeterminism. For example, consider answers (b) or (c). The selec-
tion of either entails that the two diffeomorphic models, model I and model III, represent
distinct physical situations. However by the construction of the diffeomorphism tg, .
that relates the two models, they agree in the past and come smoothly to disagree in the
future—and the disagreement matters physically since the models represent different
physical situations. This is a classic instance of future directed indeterminism. The full
specification of the model in the past fails to determine the development of the model
into the future. Correspondingly, if the answer selected is (a), one considers model III and
model II which leads by analogous arguments, to past directed indeterminism. (The time
reversibility of the theory enables us to convert this past directed indeterminism into a
future directed indeterminism if we wish.)
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The construction given is one of the simplest. It could be extended to give the indeter-
minism more of a “hole-like” character. For example, by decomposing the translation t
into more parts we could give a version of the construction in which the underdetermined
neighborhood consists of only an arbitrarily thin slice of the manifold bounded by two
parallel hypersurfaces of simultaneity.

Finally, I note that the above construction exploited only the fact that the spacetime
<M, g> of special relativity admits spatial translations as symmetries. Thus analogous
arguments can be mounted in any theory which admits such symmetries or analogous
ones like like spatial rotations. Thus it follows that an indeterminism akin to that of the
hole argument faces mpfs substantivalists in at least the following theories: flat
Newtonian spacetime theory, special relativity and general relativity applied to spatially
homogeneous and isotropic cosmologies.

5. Conclusion

The analysis of spacetime substantivalism given here is not based on the belief that
determinism is or ought to be true. Earman (1986) has catalogued admirably the many
ways that determinism can fail even in classical theories. The force of the attack on
spacetime substantivalism comes from the way that the indeterminism arises. The space-
time substantivalist is forced to introduce properties which must have physical signifi-
cance, even though they remain inaccessible to observational verification and are opaque
to the laws of the spacetime theory in so far as the theory cannot determine their develop-
ment.

Addendum: Replies to the Criticism of Maudlin and Butterfield

Tim Maudlin’s essentialism offers an escape for substantivalists from the hole argu-
ment which depends on the analysis of which properties are essential to spacetime. In so
far as the escape reduces to the endorsement of manifold plus further structure substanti-
valism, I have outlined in Section 4 above the circumstances under which the escape
fails and succeeds. Whenever the spacetime admits no symmetries, then the mpfs sub-
stantivalist escape succeeds. Whenever the spacetime admits symmetries in the way indi-
cated, then the mpfs substantivalist escape fails. Overall we might say that the escape
enjoys partial success. For, through it, spacetime substantivalism need not always lead to
the disastrous consequences—they only arise sometimes. Of course there is a surer
escape: the denial of spacetime substantivalism.

Unfortunately I do not think that Jeremy Butterfield’s most ingenious escape via
counterpart theory even enjoys this type of partial success. Butterfield’s escape depends
on endorsing what he calls “One”, which asserts that at most one of two diffeomorphic
models of a spacetime theory can represent a physically possible world. If “model”
means “mathematical structure which a theory selects as representing a physically possi-
ble situation” then “One” ought to assert that at most one of two diffeomorphic struc-
tures can represent a physically possible world according to a given spacetime theory.
The first problem is that “One” directly contradicts the active general covariance of our
local spacetime theories as expressed in the gauge theorem above. The models of a local
spacetime theory are all structures of the appropriate type that satisfy the theory’s tensori-
al field equations. John Earman and I stressed this “all” in our (1987, p.517) by explicitly
introducing a “completeness condition”. This completeness condition allows derivation
of the gauge theorem in local spacetime theories. This theorem contradicts “One” by
guaranteeing that a diffeomorphic copy of a model is itself a model and thus represents a
physically possible situation.

Let us set this worry aside. We might choose, for example, to deviate in some way
from the local formulation of the spacetime theory. I still do not think that the escape
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works. Given two diffeomorphic structures, at most one is a model of the theory according
to “One”. Take the case in which one of them is a model. How are we to distinguish the
real model from the imposter? There must be some property which distinguishes them and
the property must be physically significant in so far as it tells us which structure represents
a physically possible world. Since the real model and the imposter are diffeomorphic, this
property cannot have observational consequences. If we mistakenly choose the imposter
as a model, we would interpret it as representing a physically possible world indistinguish-
able observationally from that represented by the real model. Similarly the property eludes
the tensorial field equations of local spacetime theories. Take exactly the set up of the hole
argument with the real model specified on the manifold everywhere outside The Hole.
These field equations will be unable to distinguish between the development into The
Hole of the real model or of one of its infinitely many diffeomorphic copy-imposters.
Thus the counterpart theorist is in precisely as bad—or as good—a situation as the mani-
fold spacetime substantivalist. Both introduce properties which must have physical signifi-
cance, even though they remain inaccessible to observational verification and are opaque
to the laws of local spacetime theories.

Notice finally that the problem of the real model and the imposter must face anyone
who would seek an escape from the hole argument by avoiding the local spacetime for-
mulation of spacetime theories.

Notes

IThe hole argument was advanced by Einstein in 1913-1914 as an argument against
the acceptability of generally covariant field equations in general relativity. Its clearest
statement is Einstein (1914, pp.1066-67) and the role it played in Einstein’s thought is
discussed in Norton (1987). The non-triviality of the argument was revealed to modern
readers by Stachel (1980). For a novel approach to the reading of Einstein’s version of the
argument, see Norton (forthcoming).

2The name was introduced by Einstein for his version of the argument which applied
to a special case in which The Hole was a matter free neighborhood—a hole!—in a mat-
ter distribution.

3For special relativity, the theory has models <M,g>, where M is a four dimensional
differentiable manifold and g a Lorentz signature metric. The field equation is simply the
vanishing of the Riemann curvature tensor.

4In both Claim 1 and 2, for the case of general relativistic cosmologies, the construc-
tions must use a matter distribution whose stress-energy tensor is spatially homogenous
and isotropic, but which is spatially inhomogeneous or anisotropic in some other proper-
ty. An example of such a matter distribution is a uniformly expanding cloud of non-
interacting dust particles, each with the same mass, but not all of them identical particles.

50One might be tempted to add the fourth answer “no physical situation at all”. To do
so violates the gauge theorem stated above for local spacetime theories. If one persists
nonetheless, one must then face the problem of the real model and the imposter described
in my reply to Butterfield below.

6A closer reading of Maudlin’s text reveals to me that he cannot advocate the type of
mpfs substantivalism described above. He holds that a hole diffeomorphism fails to trans-
form a model of a theory into another model, since the transformed mathematical structure
does not represent a physically possible situation. Thus his escape fails in the same manner
as Butterfield’s: first, he violates active general covariance and, second, he must face the
problem of the real model and the imposter. (I thank Jeremy Butterfield for this point.
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