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1. Introduc5on 

 Einstein’s general theory of relativity admits spacetimes in which time travel is possible, 

in the sense that they harbor closed timelike curves. That this is so has been known since at least 

Goedel’s (1949) time travel solution of Einstein’s l-augmented gravitational field equations. 

Since then, many other time-travel spacetimes have been found within Einstein’s theory, such as 

are afforded by Kerr black holes. They have attracted considerable attention in both physics and 

philosophy, as reported in Earman et al. (2022) and Smeenk et al. (2023). Some proposals 

require exotic physics, such as is needed by Morris et al. (1988), to open a wormhole that 

connects different parts of spacetime. Others escape this complication in wormhole creation by 

simply stipulating a topology altering connection between two parts of the spacetime. 

 The simplest proposal takes a Minkowski spacetime and merely identifies two spacelike 

hypersurfaces, so that the present evolves back to itself. This “cylinder” universe has the global 

topology of SxR3. While such stipulations produce spacetimes that are, in my view, admissible 

within Einstein’s theory, one could be forgiven for the sense that time travel has been introduced 

artificially into the theory by our meddlesome stipulation as opposed to a sound reason of 

physics. Earman et al. (2022) have reviewed the difficult and still open question of whether we 

could do something that might bring about a time machine, that is, bring about closed timelike 

curves. At least some time-travel universes are so structured that we can point to a cause of 

temporal anomaly. In Tipler’s (1974) proposal, frame dragging effects are produced by a rapidly 

rotating cylinder of matter and they are sufficient to lead to closed timelike curves. 

 
1 My thanks to John Earman, John Manchak and David Malament for helpful comments on an 

earlier draft; and to Bob Wald for helpful discussion on characterizing conical singularities. 
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 This paper presents one of the simplest time-travel universes admitted by Einstein’s 

theory in the sense that it is topologically R4, matter free and everywhere geometrically flat, 

except for a singular, two-dimensional surface around which timelike geodesics are deflected 

back into their past. The example is offered as a pedagogically useful addition to our repertoire 

of time-travel universes. We might, if we are so inclined, attribute the possibility of time travel to 

the disturbing influence of the singularity.2 The spacetime is otherwise unremarkable, in being 

everywhere locally flat, like the spacetime of special relativity. 

 As a preview, Figure 1 is a caricature of the time travel spacetime. The spacetime to the 

left of the figure is roughly Minkowskian and is more accurately so as we go farther left. The 

usual time direction there is left-right. The spaceships shown are moving inertially along timelike 

geodesics. No rocket motors fire. As they approach the singularity on the right of the figure, their 

geodesics are deflected so that their motion in time is reversed when they return to the spacetime 

on the left of the figure. They are there able to communicate with their past selves, by, for 

example, sending them a light signal as shown. The spacetime is not time orientable. That is, no 

consistent division of timelike motions into future and past is possible. Any such division will be 

contradicted by the return of the motion after it passes the singularity. Time travelers encounter 

their past selves aging in the opposite local time sense. 

 
2 My view is that such attributions are purely of heuristic value. It is argued in Norton (2003, 

forthcoming) that seeking a notion of causal influence over and above the relations already 

provided by the prevailing physical theory is yet another of the many attempts at a priori physics, 

all of which have met with little success over millennia. 
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Figure 1. Time travel in the time travel spacetime 

2. The Space5me 

 The geometrical structure of the spacetime is given by the line element for the interval s: 

ds2 = (r2/4) cos q dq 2  –  cos q dr2  +  r sin q dq dr  –  dy2  –  dz2                      (1) 

where polar coordinates r, q have values r > 0 and 0 £ q < 2p. Cartesian coordinates y, z have 

values -∞ < y, z < ∞. The metrical coefficients in a coordinate basis xi = (q, r, y, z) are: 
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⎢
⎢
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⎥
⎥
⎤

                                        (2) 

This coordinate system, shown in Figure 2, “goes bad” at the origin r = 0, since an event there 

would be assigned all values of the angle coordinate q. It will turn out, as shown in Section 7 

below, that there is a singularity at r = 0 in the sense that taking a continuous limit from the 

surrounding spacetime provides no unique extension of the metrical structure to r = 0. If events 

are allowed at or added to the manifold at r = 0, then the spacetime manifold is globally R4. For 

all events other than at r = 0, it will become apparent in Section 3 that the spacetime is metrically 

flat with the usual Lorentz signature of a Minkowski spacetime. That is, any open, R4 

neighborhood of the spacetime excluding r = 0 is isometric with an open R4 neighborhood of a 
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Minkowski spacetime. Thus, it satisfies Einstein’s unaugmented, source-free field equations 

everywhere, except at r = 0. However, as Figure 1 already suggests, the spacetime is not time 

orientable. 

 

 
Figure 2. Cylindrical coordinates of the spacetime and its singularity 

In Figure 2, the singularity at r = 0 is drawn as a line within a three-dimensional space. The 

figure suppresses one dimension of the four-dimensional spacetime by collapsing the y- and z-

axes. Thus, the singularity is really a two-dimensional surface enclosed within a four-

dimensional space. 

 It follows immediately from (1) and (2) that the metrical structure is translation invariant 

in the y and z directions. That is, y à (y + constant) and z à (z + constant) are both isometries. 

The interesting, time-travel related physics happens in surfaces of constant y and z; that is in 

surfaces spanned by the coordinates r and q. 

 We shall see below that two families of intersecting lightlike curves in these surfaces are 

given by: 

𝑟 = "
√%()!*+

, 𝑟 = "
√%,)!*+

                                                            (3) 

for k > 0. The lightcones adapted to these curves are illustrated in Figure 3 for a surface spanned 

by the coordinates r and q: 
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Figure 3. Light cone structure in a surface of constant y and z 

The Cartesian coordinates shown in Figures 2 and 3 are defined by 

u = r sin q     x = r cos q     y = Y     z = Z                                                  (4) 

Briefly, at q = 0, the light cones indicate a timelike direction orthogonal to the radial direction. 

As we proceed in both the +q and -q directions, the light cones tip towards the singularity at r = 

0. At q = ±p, they meet such that timelike curves can pass directly into the singularity. If the 

lightlike curves intersect the x axis at x = ±k, then they intersect the u axis at u = ±k /Ö2 and are 

asymptotic to x = ±kÖ2. 

 The region of spacetime for very negative x coordinates will appear much like an 

ordinary Minkowski spacetime. That is, for regions of very large, negative x in the vicinity of the 

x-axis, q » p , cos q » -1 and sin q » 0, the line element (1) then approximates the Minkowskian 

ds2 =  dr2  - dv2 –  dy2  –  dz2 if we introduce the new coordinate v such that dv = r dq. It is only 

for events near the singularity at x = r = 0 that the light cones tip toward the -x-axis and such that 

lightlike curves are eventually deflected around the singularity. 

 Timelike geodesics, similarly, behave much like in an ordinary Minkowski spacetime for 

the region with very negative x coordinates. As we enter regions close to the singularity at x = u 

= r = 0, the timelike geodesics are deflected around the singularity and reversed in their 
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direction. More precisely, we shall see below that a family of timelike geodesics, for arbitrary 

fixed values of y and z, is given by 

r  =  k/cos(q/2)                                                                             (5) 

where k > 0 is an arbitrary constant. The disposition of these geodesics is shown in Figure 4.3 

 
Figure 4. A family of timelike geodesics 

The geodesics intersect the x axis at x = k, the u axis at u = kÖ2 and, as they extend in the -x 

direction, are asymptotic to u = ±2k. While these geodesics do not form closed curves, if we 

adopt a position far enough in the -x direction, the two parts of each geodesic can be connected 

by another timelike curve, shown as a dashed curve in Figure 4. If we connect parts of these 

 
3 Caution is advised in reading these diagrams. The polar coordinates r and q  and Cartesian 

coordinates u and x do not have their usual metrical significance. Metrical judgments using them 

should be mediated by the line element (1) and metrical coefficients (2). 
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curves in obvious ways, we get closure in the sense of a single timelike curve that intersects its 

past self. 

 An observer whose worldline coincides with one of these timelike geodesics, needs no 

acceleration to travel back in time. After sufficient proper time has passed, that observer will 

encounter the observer’s past self, but aging in the opposite time sense. 

 More generally, this spacetime is not time orientable in the usual sense of the existence of 

an everywhere non-vanishing, continuous, timelike vector field. That is, if we stipulate that some 

timelike vector, at some event, points in the future direction, parallel transporting that vector 

along one of these timelike geodesics in both directions will eventually return it to a 

neighborhood where it has a contradicting time sense. 

3 Construc5ng the Space5me 

 The narrative so far has given no clue to the mode of construction of the spacetime. That 

has been done with the hope that the resulting spacetime will be assessed on its merits and not 

discounted because of the simplicity of the construction method. We arrive at the spacetime of 

(1) by an identification on a familiar Minkowski spacetime in the following way. This “source” 

Minkowski spacetime has the line element 

ds2 =  dT2 –  dX2  –  dY2 –  dZ2                                                      (6) 

where as usual -∞ < T, X, Y, Z < ∞. The “target” spacetime of (1) is recovered by introducing the 

coordinate systems of (1) and (4) in such a way as to cover the half of the source Minkowski 

spacetime specified by X ³ 0, as illustrated in Figure 5. 
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Figure 5. Construction of the time-travel spacetime 

 

The construction requires identification of each event of (6) (T, X=0, Y, Z) with (-T, X=0, Y, Z). 

To give further details, it is convenient to replace the T, X coordinates of (6) with polar 

coordinates r, f, defined by 

T = r sin f     X = r cos f                                                      (7) 

where r > 0 and 0 £ f < 2p. The mapping from the half-plane of the source (6) to the full plane of 

the target (1) is carried out by taking the metrical structure of the half Minkowski spacetime of 

(6) at the event (f, r, Y, Z) and mapping it to the event (q = 2f, r, y, z) in the target spacetime. 

Loosely speaking, the new metrical structure (1) is recovered by a doubling expansion of the 

angle variable about f = 0 of the source Minkowski spacetime. It can be written compactly as  

q = 2f                                                                    (8) 

4. Recovering the Metrical Structure and its Flatness 

 The line element (1) can be recovered from the line element (6) of the source Minkowski 

spacetime by a two-step transformation. First, cylindrical coordinates are introduced into (6) by 

the transformation (7). From (7) we have 

dT = r cos f  df  +  sin f  dr 

dX = –r sin f  df  +  cos f  dr 

After substitution and some manipulation, the Minkowksi line element (6) becomes  

ds2 =  r2 cos(2f) df 2 –  cos(2f) dr2  +  2r sin (2f) df dr  –  dY2 –  dZ2                       (9) 
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The second step maps half the source Minkowski spacetime to the target spacetime by the 

substitutions: 

q = 2f      r = r      y = Y      z = Z 

The expression for the line element (9) becomes the corresponding expression (1): 

ds2 = (r2/4) cos q dq 2  –  cos q dr2  +  r sin q dq dr  –  dy2  –  dz2 

Since the source Minkowski metric is everywhere flat and the target spacetime is produced by a 

coordinate transformation, it follows that the new spacetime is also everywhere flat, excluding 

the singularity at r = 0. 

5. Recovering the Light Cone Structure 

 This mapping (8) shows how deflections of the light cone structure of Figure 2 arise. We 

simply need to track how the light cones of the source half Minkowski spacetime are relocated 

and reoriented in the target spacetime under the mapping (8), as shown in Figure 6: 

 

 
Figure 6 Mapping of light cone structure 

 

An important property of the mapping concerns light cones mapped under f = p/2 à q = p and 

those mapped under f = -p/2 à q = -p. Since q = p and q = -p are coordinates of the same event 

(if other coordinates equal), it is essential that the two different mappings yield the same light 

cone. The two mappings deliver light cones such that one is the temporal inverse of the other. 

But since the light cones are time inversion invariant, the two mappings yield the same result. 



 10 

Hence the ensuing metrical structure is fully regular at all events q = ±p (where r>0). It is this 

inversion, however, that precludes the new spacetime being time orientable. 

 The analytic expressions (3) for the lightlike curves of Figure 2 are recovered from this 

mapping. First consider “future” (= +T) directed lightlike curves in the source Minkowski 

spacetime: 

T = X + k 

for constant -∞ < k < ∞. In polar coordinates introduced by (7), the curves are 

r sin f = r sin f + k 

or 

𝑟 =
𝑘

𝑠𝑖𝑛𝜙 − 𝑐𝑜𝑠𝜙 

where the range of values of f to which this formula applies must be restricted to ensure that r 

remains positive. (The case of k = 0 is excepted and addressed below.) Under the mapping (8) 

and similar angle restrictions, the expression becomes the first formula of (3)4 

𝑟 =
𝑘

sin	(𝜃2) − 𝑐𝑜𝑠(
𝜃
2)
=

|𝑘|
√1 − sinθ

 

where the restriction to the absolute value of k is all that is needed in the final sinq formula to 

ensure positive values for r. Applying this formula is complicated by the fact that two lightlike 

curves of the source Minkowski spacetime are mapped to form a single lightlike curve in the 

target spacetime. That is, the lightlike curves T = X + k and T = X – k for k > 0 are mapped under 

(8) to give a single curve of (3). These curves are illustrated in Figure 7. 

 
4 The second equality requires the trigonometric half angle identity, sinq = 2 sin(q /2) cos(q /2). 
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Figure 7. Mapping of lightlike curves 

The mapping of the two lightlike curves from the source Minkowski spacetime joins at u = 0, x = 

-k in the target spacetime to yield a single curve. The resulting lightlike curve in the target 

spacetime diverges in the +u direction. That it is asymptotic to x = ±kÖ2 cannot be recovered 

directly from (3). It can be affirmed by re-expressing (3) in the Cartesian coordinates u, x of (4) 

and considering the limit as u à ∞. 

 An analogous computation gives similar results for the “past” (= –T) directed timelike 

curves T = –X + k for constant -∞ < k < ∞. We recover the second expression of (3): 

𝑟 =
𝑘

sin *𝜃2+ + 𝑐𝑜𝑠(
𝜃
2)
=

|𝑘|
√1 + sinθ

 

Once again, two lightlike curves of the source Minkowski spacetime, T = –X + k and T = –X – k 

for k > 0 are mapped under (8) to give a single curve of (3). These curves are illustrated in Figure 

8. 

 
Figure 8. Second mapping of lightlike curves 

The resulting curve in the target spacetime diverges in the –u direction and is also asymptotic to 

x = ±kÖ2. 
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 The special case of k = 0 corresponds to the two lightlike curves T = X and T = -X. The 

formulae (3) are degenerate for them. It is easy to see however that these two curves map under 

(8) to the lightlike curves q = p/2 and q = -p/2, that is, curves that lie on the u axis. 

 A check on the consistency of these results for lightlike curves employs the line element 

(1). If we set ds2 = 0, the line element provides a differential equation that characterizes lightlike 

curves in the r, q  plane: 

B
𝑑𝑟
𝑑𝜃D

&

− 𝑟 tan 𝜃
𝑑𝑟
𝑑𝜃 −

𝑟&

4 = 0 

Some manipulations affirms that the expressions (3) each solve this equation. 

6. Recovering Timelike Geodesics 

 This same mapping makes recovery of timelike geodesics straightforward. In the source 

Minkowski spacetime of (6), a family of geodesics is defined by 

X = k            r cos f  = k 

for fixed values of Y and Z and for k > 0. These correspond under (8) to 

r cos (q/2) = k 

in the target spacetime. Figure 9 shows the geodesics in the source Minkowski spacetime on the 

left and in the target spacetime on the right. 

 
Figure 9. Timelike geodesics 

The construction in the center shows how one can recover qualitative features of the transformed 

geodesic by inspection of the figure. It shows radial lines of constant q from the target spacetime 
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superimposed on the source Minkowski spacetime. The two radial lines q = p and q = -p are 

parallel to the geodesic. Since these two radial line coincide with the -x-axis in the target 

spacetime, we can conclude that the geodesic mapped to the target spacetime will approach lines 

parallel to the -x-axis for very negative x. Similar interpretations can be applied to Figures 7 and 

8. 

7. The Singularity 

 The status of the target spacetime at r = 0 is, so far, unclear. That the polar coordinates 

“go bad” at r = 0 may merely be an artifact of that coordinate system and may not represent a 

pathology of spacetime. Such a benign result arises when polar coordinates are used in a 

Euclidean space. That is not the case here. There is a singularity in the metrical structure of (1) at 

r = 0. It is the type of singularity that is found in the intrinsic geometry of a cone. 

 The simplest cone singularity is produced, figuratively, by taking a flat sheet of paper, 

excising a pie shaped segment and connecting the exposed edges to form a cone, as shown in 

Figure 10. The intrinsic geometry of the surface of the cone remains everywhere flat. However, 

something goes awry at the apex. The familiar way to illustrate it, is to note that the 

circumference of a circle, centered on the apex, no longer obeys the Euclidean result of 

(circumference) =  2p (radius). 

 
Figure 10. The simplest cone singularity 

A fuller analysis shows that the singular character of the geometry intrinsic to the cone’s surface 

resides in a failure of uniform convergence. That is, if we seek to assign a metric to the apex by 

taking the limit of the metrical structure on radial lines leading to the apex, we find different 

metrics according to the radial line chosen. 
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 Since the construction of the time-travel spacetime is similar to that of the cone, the same 

sort of cone singularity arises at r = 0 in (1). Spacetime singularities of this type have been 

investigated by Ellis and Schmidt (1977, §3). That something is amiss at r = 0 follows if we seek 

to assign light cones to events at r = 0. At all regular events in the spacetime where r > 0, 

timelike curves through the event form the familiar double cone, no matter how close that event 

is to r = 0. If we collect the timelike curves converging towards an event at r = 0, they form a 

single cone. Whatever metrical structure we might assign to events at r = 0, that structure will be 

unlike the metrical structure at all neighboring events since it must produce a single-lobed 

lightcone. 

 The construction of this single-lobed cone is shown in Figure 11. The left of the figure 

shows timelike curves in the source Minkowski spacetime that will transform to this single cone 

in the target spacetime. The right of the figure shows these curves after they are transformed 

under (8) in the target spacetime. 

 
Figure 11. Degenerate light cone structure 

Proceeding more fully, we cannot use the cylindrical coordinate system of (1) to show the 

singular character of (1) at r = 0, since that coordinate system is badly behaved at r = 0. Instead, 

we stipulate that there are manifold points at r = 0. We seek to investigate the metrical structure 

there using the Cartesian coordinate system u, r, y, z, defined in (4), since that coordinate system 

is regular at r = 0. 

 We transform the line element (1) to this new coordinate system using differentials 

derived from (4): 

dq  = (x/r2) du + (u/r2) dx          dr = (u/r) du + (x/r) dx 
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After considerable manipulation, the line element (1) transforms to5 

𝑑𝑠& =
𝑥
𝑟 I

𝑥&/4
𝑢& +	𝑥&L 𝑑𝑢

& −
𝑥
𝑟 M
3𝑢&
4 + 𝑥&

𝑢& +	𝑥& O 𝑑𝑥
& −

𝑢
𝑟 M
𝑢& + 3𝑥

&

2
𝑢& +	𝑥& O 𝑑𝑢𝑑𝑥 − 𝑑𝑦

& − 𝑑𝑧& 

where, as before, r = (u2 + r2)1/2. Using (4) and with some manipulation, this form of the line 

element can be rewritten in terms of q as 

ds2  =  cosq [(cos2q)/4] du2  – cosq [(3/4) sin2q  + cos2q] dx2 

                     – sinq [sin2q  + (3/2) cos2q] dudx  – dy2  – dz2 

Its metrical coefficients in a coordinate basis xi = (u, x, y, z) are 

𝑔!" =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑐𝑜𝑠𝜃(𝑐𝑜𝑠&𝜃)/4 −(𝑠𝑖𝑛𝜃)/2 R𝑠𝑖𝑛&𝜃 + (

3
2)𝑐𝑜𝑠

&𝜃S 0 0

−(𝑠𝑖𝑛𝜃)/2 R𝑠𝑖𝑛&𝜃 + (
3
2)𝑐𝑜𝑠

&𝜃S −𝑐𝑜𝑠𝜃 RB
3
4D 𝑠𝑖𝑛

&𝜃 + 𝑐𝑜𝑠&𝜃S 0 0

0 0 −1 0
0 0 0 −1⎦

⎥
⎥
⎥
⎥
⎤

 

The distinctive property of this form of the line element is not so much the specific values that 

these metrical coefficients take. Rather it is just that these coefficients are functions of q only and 

they are different for different values of q. 

 This fact reveals the character of the singularity at r=0. We may try to define a metrical 

structure at r = 0 in the time-travel spacetime by the requirement of continuity with the metrical 

structure at neighboring events. That is, we seek to assign a metric to the event r=0 as the limit of 

the metric taken along a constant q , radial line terminating in r=0. It now follows that this 

requirement of continuity produces a different metrical structure according to the radial line of 

constant q along which we approach r = 0.6 The singular character of the metrical structure at r = 

0 resides in its necessary discontinuity with the metrical structure of neighboring events. 

 
5 This formula explains why the lightcones in Figure 2 appear distorted. If we solve for ds2 = 0, 

we find for light cones on the x-axis, where u=0, that du/dx = du/dy = du/dz = ±2. The distortion 

is a coordinate artifact. 
6 These metrics, with different values of q, are isometric, since all are flat. If realize all of them 

at the origin, however, they will assign different norms to the same vector. The vector (1, 0, 0, 0) 

will be assigned the norm cosq [(cos2q)/4], for example. This is an invariant failure to agree. 
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8. Conclusion 

 What do we learn from this example? In my view, we reaffirm a familiar result: that the 

spacetimes of general relativity admit time travel. Whether one finds this example more or less 

illuminating than others is, in the end, decided by what each of us finds more or less natural or 

intuitive. In this regard, I find it appealing since the spacetime is locally everywhere flat 

excepting for the singular surface whose presence makes the difference between an everywhere 

flat Minkowski spacetime without time travel and one with time travel. 

 One possible reaction—heard anecdotally—is that this spacetime is somehow lesser since 

it is “unphysical” or, in a different but related concern, “artificial.” This notion of being 

“physical” is an important part of the pragmatics of practical physics. It is invoked to dismiss 

some particular result from consideration in the particular context at hand. 

 In another application, Norton (2008, §3.2) found four different, precise senses for the 

notion. None apply here in so far as the goal is merely to explore the range of spacetimes 

admitted by general relativity. There is no proposal that this form of time travel is realized in our 

universe; and no assertion that it is not. The situation is analogous to the intrinsic geometry of the 

cone of Figure 10. It may or may not be the geometry of our space. Nonetheless, its analysis lies 

within the scope of geometry and that is underscored by the fact that we can build something 

close to it in a paper model. This example is connected to what is possible in our world by a 

slender thread: it is a model of our current best theory of space and time, general relativity. In 

that, however, it keeps company with many other much stranger models. 
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