
Vol.:(0123456789)

Axiomathes (2022) 32 (Suppl 1):S1–S6
https://doi.org/10.1007/s10516-021-09556-5

1 3

ORIGINAL PAPER

An Infinite Lottery Paradox

John D. Norton1  · Matthew W. Parker2

Received: 25 March 2021 / Accepted: 19 April 2021 / Published online: 28 April 2021 
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
In a fair, infinite lottery, it is possible to conclude that drawing a number divisible by 
four is strictly less likely than drawing an even number; and, with apparently equal 
cogency, that drawing a number divisible by four is equally as likely as drawing an 
even number.
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1 Introduction

A fair, infinite lottery selects without favor among a countable infinity of possible 
results, numbered 1, 2, 3, …. It is realized in a thought experiment by an imaginary 
machine that can select from an infinity of balls, numbered 1, 2, 3, …, such that none 
is favored. This thought experiment has long had a place in analyses of the founda-
tions of probability. De Finetti (1972, §5.17) used it to argue against the countable 
additivity of probability measures. Benci, Horsten and Wenmackers (2018) used it 
to argue for infinitesimal probabilities.

Subsequently, one of us (Norton forthcoming), has argued that the infinite lottery 
thought experiment requires us to discard not just a countably additive probability 
measure, but even a finitely additive notion of chance. Norton′s analysis depends on 
realizing the condition of selection without favor as the requirement that the likeli-
hood or chance of some outcome depends only on the sizes of the set of balls favora-
ble to it and the set of balls unfavorable to it. Norton′s implementation, the other 
of the present authors (Parker 2020) has objected, presupposes that chances are the 
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values of a function over the outcome space. Parker  has presented an alternative 
analysis, in terms of a comparative chance relation, that restores finite additivity (in 
a comparative form) and also makes every outcome set more likely than any of its 
proper subsets. (For a response, see Norton, forthcoming a, §11.)

This note reviews the arguments for each analysis and leaves the final decision as 
an open question. The two arguments depend on different notions of the comparison 
of sizes of infinite sets. Do we compare them better by cardinality or by set theoretic 
inclusion? Norton′s analysis privileges the first over the second. Parker′s analysis 
privileges the second over the first.

The precise notion of chance1 invoked here will remain incompletely specified. 
The paradox is intended to be a motivation to discover which formal properties of a 
notion of chance allow the paradox to be addressed most satisfactorily.

2  The Paradox

A formal condition, ‘label independence,’ asserts that the chance of an outcome, 
specified as a set of numbers, is unaffected by any relabeling that merely permutes 
the numbers assigned to the balls. This condition expresses the fairness of the draw-
ing since a permutation preserves the sizes of the sets, both favorable and unfavora-
ble to the outcome. Those sizes are, by supposition, all that determines the outcome 
chances. For example, the outcome even is just the drawing of a ball with an even 
number; and odd is the drawing of an odd number. A permutation of the numbering 
merely switches the numbers on the sets of balls associated with the two outcomes 
according to 1 ↔ 2, 3 ↔ 4, 5 ↔ 6, … It now follows that even and odd outcomes must 
have the same chance, since the outcome set originally labeled even has become odd 
under the relabeling, and conversely.

A second condition on the chances is also attractive. The outcome ‘fours’ is just 
the set of multiples of 4: {4, 8, 12, 16, …}. It is a proper subset of even. Thus, when-
ever we have an outcome fours we have an outcome even, but not conversely. Hence 
the chance of fours should be strictly less than that of even. To strengthen this last 
conclusion, consider the outcome ‘fours – 2′: {4–2, 8–2, 12–2, 16–2, …} = {2, 6, 8, 
10, 14, …}. The outcomes fours and fours – 2 are related by a permutation of labels 
and so have equal chances under label independence. The outcome even is parti-
tioned into just these two outcomes, fours and fours – 2. Hence even and fours do 
not differ by an outcome set negligible on chancy scales, but by an outcome whose 
chance equals that of fours.

The analysis so far involves several individually plausible propositions2:

1 ‘Chance’ here is not intended to imply a notion of objective physical chance like those associated with 
propensity, frequency, or Humean best-systems accounts, nor do we exclude such interpretations by fiat. 
We adopt ‘chance’ as a convenient word distinct from ‘probability,’ for we do not assume the standard 
probability axioms.
2 This is not meant to be a complete analysis of all the implicit background assumptions in the finest 
possible granularity. It is just enough to set up our paradox.
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(1) Label independence. The chances of outcomes in a fair, infinite lottery are 
unchanged under a permutation of outcome labels.

(2) Containment. Outcome fours has strictly less chance than even.
(3) Completeness. It is possible to assign mutually comparable chances to all out-

comes of a fair, infinite lottery.

The paradox is that these propositions are jointly inconsistent. For there is a per-
mutation of the balls that takes those that were numbered even and maps them just 
to those numbered fours. The induced relabelings are:

Read these to say, ‘The ball formerly numbered 4 is now relabeled 2,’ etc. It now fol-
lows from label independence that if fours has chance X, then so does even. For they 
are each realized by the same ball drawings, but now just labeled differently.

The paradox can be escaped by denying at least one of the propositions above. 
The present authors differ, both from each other and from other authors, on which to 
deny.

3  The Probabilists’ Escape

Probabilistic approaches to infinite lotteries escape the paradox by denying Label 
Independence (1). It is well known that if each single outcome {1}, {2}, {3}, … has 
the same chance, then the probability axiom of countable additivity fails. Probabil-
ists have often been willing to reject countable additivity in the case of an infinite 
lottery while still regarding finite additivity as essential to coherence (e.g., de Finetti 
1972; Benci et al. 2018).

In imposing a finitely additive measure, probabilists are changing the problem 
posed. The defining characteristic of this version of the infinite lottery problem is 
that the chance of an outcome depends on the size of the outcome set and its comple-
ment; and only these sizes. A finitely additive measure violates the ‘only’ condition. 
For any set of balls that is both infinite and co-infinite, there is a numbering in which 
that set of balls is the even-numbered set. Once a designation of even is made and 
a specific probability 1/2 is assigned to it, finite additivity implies that most other 
infinite, co-infinite sets cannot have that same probability. Which of all possible infi-
nite co-infinite sets in the outcome space can be even and carry the same probability 
is determined by restricting the numberings to a subset of all possible numberings. 
The requirement of these preferred numberings adds structure to the problem in a 
way that violates the ‘only’ condition. For, both set sizes and preferred numberings 
are now required in order to determine the probabilistic chances of outcomes.

In short, denying Label Independence (1) does not address the problem posed 
here. We are not suggesting that cardinality and co-cardinality determine chances 
in other situations such as a game of darts with a continuous dartboard. But here, 

2 → 4, 4 → 8, 6 → 12, 8 → 16… 1 → 1, 3 → 2, 5 → 3, 7 → 5,…
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denying label independence does not solve the problem; it merely changes the prob-
lem posed.

4  The Cardinality Escape

One of us (Norton) denies Containment (2) in order to preserve Completeness (3). 
We saw above that the distinctive characteristic of a fair, infinite lottery, label inde-
pendence, requires that even and fours have equal chances (if they have chances at 
all). This result is only unwelcome, Norton claims, if one proceeds with intuitions 
tutored by finite sets. Among infinite sets, a set can have the same size (cardinal-
ity) as one of its proper subsets. Cardinalities of sets and their complements alone 
should determine the equality of chances.

What results is a novel account of the chances of outcomes of infinite lottery 
drawings that assigns a chance to all sets of outcomes. Completeness (3) is pre-
served. Finite sets of outcomes are assigned various, very small chances. Infinite 
sets that are co-finite are assigned various very high chances. The intermediate 
case—infinite sets of outcomes that are co-infinite—all have the same intermediate 
chance.

One might conjecture that this escape is untenable since, in repeated drawings, 
the outcome even should, with increasing chances, occur roughly twice as often as 
fours. However, the chance relations arising from label independence do not support 
this difference of frequencies. That is, n outcomes of even among N drawings has 
the same chance as n outcomes of fours among N drawings (for all N and each n, 
0 ≤ n ≤ N). Label independence ensures that the outcome fours has the same chance 
as even in a single draw, so neither is favored. By similar means, label independence 
ensures that repeating the drawings continues equally to favor equal frequencies of 
fours and even. While this outcome is unlike the corresponding result in familiar 
probability theory, it is only an unfamiliar result of an unfamiliar calculus. It is no 
more curious than the original result that fours and even have the same chance. (For 
details, see Norton, forthcoming.)

5  The Containment Escape

The other of us (Parker) defends the alternative of denying Completeness (3). Perhaps 
we are not justified in supposing that all outcome sets can be mapped into one linearly 
ordered set of things called chances. Instead, we can define a partial relation of ‘is at 
most as likely as’ between outcome sets, a relation that satisfies label independence and 
yet makes fours less likely than even, so that both Label Independence (1) and Contain-
ment (2) hold.3 On this view, chances are still determined by the sizes of the favorable 

3 (1) and (2) are mutually consistent in this relational context, for here we cannot assert that the chance 
of fours is some specific value X and then infer by label independence that the chance of even is also X. 
For a specific chance relation, and proof that it satisfies (1) and (2), see  Parker, 2020.
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and unfavorable sets, but with two provisos: (i) ‘Size’ is understood in a sense that favors 
the Euclidean axiom, that the whole is greater than the part, over Cantor’s criterion of 
1–1 correspondence (cf. Mancosu 2009,  Parker 2009), and (ii) chance is a partial two-
place relation on events, rather than a total one-place function. Then chance relations 
are determined by size when the events are comparable, which is not always the case. 
Disjoint, countably infinite sets like even and odd, for example, remain incomparable. 
We could even adopt a partial, relational notion of size, so that relative size (and incom-
parability thereof) always determines relative chance (and incomparability thereof).

The value of making fours less likely than even (Parker claims) is not merely to pre-
serve intuitions tutored by finite sets. In one respect, it makes chance a better guide 
to decision making. Suppose you are offered a chance to make one of two bets at the 
same cost: that the outcome of our drawing will be in even or that it will be in fours. If 
in fact the outcome is in fours, it is also in even, so you win on either bet. If, however, 
the outcome is in even, it might not be in fours. In fact, there are infinitely many such 
outcomes, forming the set fours – 2, which, on either view, is non-negligibly likely to 
occur. Hence it would be irrational to bet on fours when one could more safely bet on 
even for the same price. If fours and even are assigned equal chances, those chances do 
not tell us which bet to choose, whereas if fours is taken to be less likely than even, the 
chances capture the asymmetry of such betting scenarios and related decisions.

It is important that this notion of chance is not only partial, leaving some out-
come sets incomparable, but also purely comparative. It will not do to have instead 
a monadic chance function over some proper subclass of the events. For then, label 
independence would force a poor outcome: either fours and even have the same 
chance, or no infinite, co-infinite set is assigned a chance at all. If even one such set is 
assigned a chance, then by label independence, they all are, and they are all assigned 
the same chance. A function that instead assigns chances only to finite and co-finite 
sets would fail to capture the feature that the infinite, co-infinite sets are intermedi-
ate in chance between the finite and co-finite ones. As well, it would not give even 
greater chance than fours. Therefore, a partial, comparative chance relation is here far 
preferable to a partial, monadic chance function, for it expresses much more.

To this one might reply, following Easwaran 2014, that a chance function need 
not express all the relative chances between proper subsets and supersets, for those 
are captured instead by the subset relations themselves. But that is just to admit that 
the chance function does not tell the whole story, nor, in this case, hardly any of 
it. It is only a superfluous representation of a small portion of the relative chances 
implied by the setup. Or so says  Parker.

6  Conclusion

How are we to choose between Containment (2) and Completeness (3)? We are at an 
impasse. The difference between our two views corresponds to two different ways of 
comparing the sizes of outcome sets and thus the chances these sizes dictate.4 Do we 

4 The paradox is thus related to Galileo’s Paradox (Parker, 2009) but suggests further that one’s concep-
tion of set size bears on what one should expect in this chance experiment.



S6 Axiomathes (2022) 32 (Suppl 1):S1–S6

1 3

compare them by cardinalities and suffer the consequence that fours is as likely as 
even? Or do we compare them by the Euclidean axiom and suffer the consequence 
that the chances of many outcomes, such as even and odd, are incomparable?
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