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1. Strong and weak notions of erasure are distinguished according to whether the 

single erasure procedure does or does not leave the environment in the same state 

independently of the pre-erasure state. 

2. Purely thermodynamic considerations show that strong erasure cannot be 

dissipationless. 

3. The main source of entropy creation in erasure processes at molecular scales is 

the entropy that must be created to suppress thermal fluctuations (“noise”). 

4. A phase space analysis recovers no minimum entropy cost for weak erasure and a 

positive minimum entropy cost for strong erasure. 

5. An information entropy term has been attributed mistakenly to pre-erasure states 

in the Gibbs formalism through the neglect of an additive constant in the “-k sum p 

log p” Gibbs entropy formula. 

1. Introduc:on 

 In 1929, Leo Szilard (1929) imagined a cylinder containing a gas of a single molecule at 

thermal equilibrium with its environment at temperature T. A partition is inserted and divides it 

into two parts, trapping the molecule on one side. If we conceive of this partitioned cylinder as a 

memory device recording either “left” L or “right” R, we can ask for the dissipation, that is, the 

minimum entropy created in returning it to a reset state, such as L, as shown in Figure 1. 

 

 
1 This paper developed in the course of extensive discussions with Jacob Barandes and Wayne 

Myrvold, whose stimulation is gratefully acknowledged but their agreement is not presumed. 
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Figure 1. Erasure of a Szilard One-Molecule Gas System 

 

 This standard example will be used to illustrate more general results about erasure in systems at 

molecular scales, that is, those in which quantities of heat and energy are of the order Boltzmann’s 

constant k. 

 The entropy cost of erasure has been the locus of a literature that employs notions of 

information and computation. Szilard located an entropy cost in acquiring the information that 

identifies the location of the trapped molecule. Landauer (1961) and Bennett (1987) treated the 

relevant systems as computational devices that process information and located an entropy cost in 

the many-to-one logic of erasure. This focus on information and computation has, I believe, served 

only as an unproductive distraction.2 The many-to-one mappings of erasure can be treated quite 

adequately without considerations of information and computation, as will be shown in the 

simpler, uninformed accounts of earlier Sections 2 to 5 below. Later Sections 6 and 7 will show 

that the identification of information entropy with thermodynamic entropy is mistaken and that 

treatments of erasure that depend upon it produce spurious results. 

2. Condi:ons on Erasure 

 A transformation that takes either of two distinct states, such as L or R, to a reset state, 

such as L, is not by itself an erasure. The existing literature provides two additional conditions: 

Szilard’s condition. The erasure must be a single procedure, specified independently of 

which state is presented for erasure. 

This condition was fundamental to Szilard’s (1929) attempt to use the gas to create a Maxwell’s 

demon, in which he needed to expand the gas reversibly and isothermally. The obstacle was that 

different mechanical couplings were needed, according to whether the molecule was trapped on 

the left or the right side of the partition. Prima facie, two different procedures were needed. 

 
2 It has, as shown in Norton (2018), made it easy to overlook a simple and serviceable exorcism 

of Maxwell’s demon that employs no information or computational notions. 
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Szilard sought to collapse them into a single procedure by including in the procedure the 

detection of the location of the molecule that enabled the appropriate mechanical coupling to be 

deployed. 

Bennett’s condition. The completed erasure procedure must leave the environment in the 

same state, independently of which state was presented for erasure. 

If a many-to-one mapping leaves the environment in a different state according to which of the 

initial states was presented for erasure, then a trace of that original state remains. In 

computational terms, the data has not been erased but merely relocated. This condition is 

associated with Charles Bennett for his introduction of the notion of reversible computation. He 

sought to avoid Landauer’s (1961) conclusion of an inevitable dissipation associated with 

erasure. Bennett’s (1973) proposal was that data in one location could be erased if a copy of the 

data was secreted elsewhere in a reversible process that, in Landauer’s analysis, could be 

effected non-dissipatively. Locally, the data would be erased, but not globally. Reversing the 

process would recover the erased data from its remote storage. 

 The importance of taking the global perspective is central to Bennett’s (1987) exorcism 

of the Maxwell demon implicit in Szilard’s problem. Bennett argued erroneously3 that a 

dissipationless measurement of the position of Szilard’s molecule was possible and that would 

enable a thermodynamically reversible resetting of Szilard’s cylinder. It would be a 

dissipationless erasure. The catch, Bennett argued, was that the device implementing the erasure 

must record the location of the molecule in its memory. Completing the cycle requires erasing 

the memory, which, according to Landauer’s analysis comes, with a cost of k log 2 of entropy. 

Overall, the erasure is not dissipationaless. 

 What I shall call strong erasure satisfies both conditions. Weak erasure satisfies only 

Szilard’s condition. The weak notion, if it can be realized, may be useful in more practical 

applications in which the violation of Bennett’s condition consists of a very slight difference in 

the heating of the environment, according to the pre-erasure state. 

 
3 Bennett’s detection device will be fatally disrupted by fluctuations, as noted in Earman and 

Norton (1999, pp. 13-14). 
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3. No Dissipa:onless, Strong Erasures in Thermodynamics 

 The simplest theoretical analysis of erasure arises when we represent the system within a 

state space with the variables of ordinary thermodynamics: pressure P, volume V, internal energy 

U, entropy S, and so on. The one-molecule gas is represented as a continuous fluid, filling the 

volume accessible to it, conforming with the ideal gas law, PV = kT , where k is Boltzmann’s 

constant. The familiar laws of thermodynamics apply. Within this impoverished representation, 

no process corresponds to Szilard’s insertion of the partition, since that process is indeterministic 

and contrary to the second law in reducing entropy. In phenomenological thermodynamics, 

inserting the partition would merely divide the gas fluid in half. 

 The result below in thermodynamics precludes a non-dissipative strong erasure. While I 

believe that something like it has long been implicit in discussions of erasure, I hope that it is 

useful to spell it out more fully so that its precise content is visible. The result is relevant to a 

statistical mechanical account of thermal systems. Such an account must either return the 

thermodynamic result in a suitable limit or give reasons for its failure. 

3.1 Deriva+on 

 The two conditions for strong erasure are implemented in a thermodynamic analysis 

concerning a system “Sys,” such as Szilard’s one-molecule gas, and the environment “Env” with 

which it interacts. A procedure “P” includes familiar operations on thermal systems, such as 

heatings and coolings, compressions and expansions. It will evolve the pair from an initial state 1 

to the final state 2. This evolution is written as 

(Sys1, Env1) ®P (Sys2, Env2) 

The properties assumed for these processes are: 

Assumption 1: Determinism. The unique state (Sys2, Env2) to which (Sys1, Env1) evolves is 

fixed by (Sys1, Env1) and P. 

This assumption requires that the specification of the environment be sufficiently expansive as to 

include all parts that may affect the course of the process. What is precluded are indeterministic 

or stochastic evolutions in which an initial state may evolve under P in uncertain ways to 

different final states. A common representation of such a deterministic process is a single curve 

in the thermodynamic state space connecting initial and final states. 
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Assumption 2: Reversibility.4 There are special cases of processes for which there are 

reversed processes that trace out the same time evolution of the system and environment 

states, but in the reversed order. 

In such processes, the thermodynamic entropy of the combined system and environment is 

constant. Since dissipation here just means creation of entropy, they are the least dissipative 

processes. If we represent a possible reversible process as 

(Sys1, Env1) ®P,rev (Sys2, Env2) 

then the assumption assures us of the possibility of a second process: 

(Sys2, Env2) ®P’,rev (Sys1, Env1) 

The reversed procedure P’ is realized by reversing the direction of heat and work transfers of the 

original process P. 

 These assumptions support the following results: 

Result 1. No reversible forks. We cannot have both of the processes with the same 

procedure P: 

(Sys1, Env1) ®P,rev (Sys2, Env2) and (Sys1, Env1) ®P,rev (Sys3, Env3) 

This follows since the evolution is deterministic and, if a reversible process has taken (Sys1, 

Env1) to a later state (Sys2, Env2), this same process cannot also take it to a different state (Sys3, 

Env3). Moreover, this one process cannot take (Sys1, Env1) also to (Sys3, Env2), where we have 

set Env3 = Env2. A second result follows if we apply the condition of reversibility to Result 1. 

Result 2. No reversible many-to-one processes (no strong erasure). We cannot have both of 

the processes with the same procedure P: 

(Sys2, Env2) ®P,rev (Sys1, Env1) and (Sys3, Env2) ®P,rev (Sys1, Env1) 

 
4Norton (2016) has argued that reversible processes cannot be the evolution of a single state 

since the assumption of the perfect equilibrium of driving forces precludes change. Rather, talk 

of a reversible process is an abbreviated reference to a collection of real, dissipative processes 

such that limit operations return the properties associated the reversible process. The 

abbreviation will be employed here without further apology, since the complications of the more 

careful analysis will not alter the outcomes of the analysis. 



 6 

For if we assume otherwise and if we apply the condition of reversibility to these many-to-one 

processes, we recover a forked process prohibited in Result 1. Bennett’s condition is applied in 

requiring that the environmental states are the same after the process is completed. 

 This result does not preclude many-to-one processes such as erasure. Rather it precludes 

strong erasure from being implemented by reversible, that is, non-dissipative, processes. The 

thermodynamic analysis of this section does not preclude implementation of weak erasure by a 

reversible process. 

3.2. Limita+ons and Extent of Applica+on 

 Purely thermodynamic analysis does not, I believe, have the means to assign a positive 

lower bound to the amount of entropy that must be created in strong erasure. This limitation is 

supported by the fact that statistical mechanical results must revert to thermodynamic results in 

the limit of vanishingly small Boltzmann’s constant k. Analyses within statistical mechanics 

derive positive lower bounds on entropy creation that are linear functions of Boltzmann constant 

k, such as the k log 2 commonly cited in Szilard’s problem. If we assume an arbitrarily small k, 

then these lower bounds to entropy creation become correspondingly small and have no non-zero 

lower bound. 

 In spite of these limitations, this thermodynamic result already ensures the failure of 

proposals for dissipationless strong erasure that only employ procedures that can be realized 

within phenomenological thermodynamics. This set is expansive and includes reversible heating 

and cooling, the reversible compression and expansion of the volume degrees of freedom of any 

thermal system, the reversible manipulation of the electric and magnetic properties of continuous 

media and a multiplicity of reversible processes applied to such continuous thermal systems 

undergoing phase transition. No combination of these processes, no matter how ingenious, can 

effect a dissipationless strong erasure, as long as the system is treated like one within 

phenomenological thermodynamics. In the case of Szilard’s problem, this means that the 

processes treat the one-molecule gas as a continuous fluid with the equation of state PV = kT. No 

procedure can implement strong erasure by any combination of reversible heatings or coolings or 

expansions or contractions, isothermal, adiabatic or otherwise. 
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4. The Phase Space Analysis 

 We can accommodate the statistical mechanical character of thermal systems by 

exploring their properties in a phase space analysis. It will be “Boltzmannian” in character in so 

far as the totality of the system and the environment is represented by a single point in the phase 

space; and the evolution in time of the phase point is governed by an unmanipulated5 

Hamiltonian. Szilard’s condition that requires a single procedure to be used entails that the same 

Hamiltonian is used no matter which state is presented for erasure. This requirement plays a 

central role in the literature in establishing the existence of non-trivial lower bounds on 

dissipation. It is important in Myrvold’s (2021) analysis and again in the quantum dynamical 

recovery of lower bounds in Anderson (2022, pp. 5-7, 11). 

 The analysis will employ Liouville’s theorem, which asserts that volumes of phase space 

are preserved under Hamiltonian evolution; the result that the entropy S of a state relates to the 

phase volume Vph that represents it by 

S = k log Vph                                                                (1) 

and that, over suitable time scales, the probability P that the system point will be in any given 

volume Vph of the phase space is proportional to its volume: 

P  ~  Vph                                                                  (2) 

 The most important result is that a process only advances with probabilistic assurances 

from an initial to a final state if the phase volume of the final state is significantly larger than that 

of the initial state. This phase space expansion corresponds to an increase in thermodynamic 

entropy and is the principal source of dissipation for all processes, erasure or otherwise, at 

molecular scales. In manifests in more familiar terms as the entropy creation needed to suppress 

the disruptive effects of thermal fluctuations. 

 
5 In a Gibbsian analyses, a process might be represented by a Hamiltonian that varies over time 

as a function of an externally manipulated parameter. This one varied Hamiltonian can represent 

multiple procedures and thus violate Szilard’s condition. If it represents the rightward shift of the 

partition in a Szilard one-molecule gas cylinder, different mechanical couplings are needed 

according to whether the gas is trapped on the left and is expanding or the gas is trapped on the 

right and is compressed. 
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 The near universal practice in the present literature is to consider just the dissipation 

associated specifically with the many-to-one mapping of erasure. It ignores or mistakenly 

discounts these fluctuations as nuisances that can be idealized away without compromising the 

analysis. Because the practice is so wide-spread, the following will treat the dissipation 

specifically arising from the many-to-one mapping of erasure in the present Section 5; and then 

treat fluctuations in Section 5.  

 The idea that changes in phase space volume determine an entropy cost of erasure has 

appeared often in the literature, but commonly only as a suggestive slogan. A more careful 

analysis, such as Oriols and Nikolic (2023, especially Figure 4), shows how coarse-graining must 

be considered if we are to recover the entropy costs of strong erasure. Turgut (2009) gives a 

similar if more complicated analysis. Hemmo and Shenker (2012, especially Ch. 12) investigated 

the same processes at some length from the phase space perspective. They do not arrive at a 

definite entropy cost for strong erasure because of concerns that the coarse-grained macrostate is 

not uniquely defined. 

4.1 Weak Erasure 

 Considerations of many-to-one mappings require no dissipation for the case of weak 

erasure for the simple reason that weak erasure does not require a many-to-one mapping. 

Consider a system initially in one of two distinct states, such as the L and R states of a one-

molecule gas, and a reset state of equal phase volume. In weak erasure, both systems must 

evolve under the Hamiltonian to the same reset state. However, their environmental degrees of 

freedom can remain distinct so that the phase volumes associated with each state can remain the 

same in magnitude. In that case, it follows from (1) that there is no increase in entropy in each of 

the system and environment individually; and thus no heat is transferred from the system to the 

environment.  The process is illustrated in the phase space of Figure 2. System degrees of 

freedom are represented horizontally; and environmental degrees of freedom are represented 

vertically.  
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Figure 2. Weak erasure in phase space 

 

 This weak erasure, by design, does not conform with Bennett’s condition. If we neglect 

the dissipation required to suppress fluctuations, we can display a highly idealized, weak erasure 

procedure for the case of a Szilard one-molecule gas.6 Assume that the horizontal position only 

of the molecule in ordinary space in the divided gas cylinder is taken to be the system. Its 

vertical position is regarded a part of the environmental degrees of freedom. Then a 

thermodynamically reversible erasure procedure conforming with Szilard’s condition simply 

rotates the cylinder by ninety degrees as shown in Figure 3. 

 

 
Figure 3. Weak Erasure of a Szilard One-molecule Gas System 

While this procedure satisfies the formal definition of weak erasure, it does not realize the 

interesting case of erasure of a Szilard one-molecule gas where the trace of the erased state lies 

in a slight differential heating of the environment. I know of no procedure, conforming with 

Szilard’s condition, that does this. 

4.2 Strong Erasure 

 A phase space analysis does show an unavoidable entropy cost in strong erasure, which 

must conform with both Szilard’s and Bennett’s conditions. If we take the initial states L and R to 

be distinct, each state and their associated environments will be represented by disjoint 

 
6 I believe this procedure was suggested to me by someone in informal communications and, if 

could recall who it was, I would credit them. 
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subvolumes of the phase space Vph,L and Vph,R; and the reset state corresponds to another 

subvolume Vph,reset that is not necessarily disjoint from the first two states in the system 

properties.7 For strong erasure, under Hamiltonian evolution, both system and environmental 

degrees of freedom must evolve to the same overall reset state. That is, it must map the points in 

the volumes Vph,L and Vph,R to those in the reset state Vph,reset, as shown in Figure 4. 

 

 
Figure 4. A Failed Many-to-One Mapping 

 

 While this last specification is quite general, it is already enough to assure us that 

dissipationless erasure is impossible. The time evolution must take the two disjoint volumes of 

phase space associated with state L and R and evolve them to a single volume associated with the 

reset state. This many-to-one mapping in the phase space is precluded by the invertibility of the 

time evolution generated by the Hamiltonian. 

 This last conclusion precludes erasure by any means, dissipative or non-dissipative. 

However, it depends on an excessively narrow treatment of thermodynamic systems. 

Thermodynamic analysis in these phase spaces considers coarse-grained volumes. Then, the 

invertibility of the Hamiltonian time evolution allows the phase volumes associated states L and 

R to evolve to disjoint volumes whose union, when coarse grained, represents a single state for 

both the system erased and all auxiliaries, as shown in Figure 5. 

 

 
7 Resist the temptation to identify the pre-erasure state with the union of phase space volumes 

Vph,L and Vph,R, so that is becomes the thermalized state “L+R.” They differ in their dynamic 

properties. If the phase point is momentarily in L for the thermalized state, it may later be found 

in R, whereas this is impossible for pre-erasure state. 
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Figure 5. A Coarse-grained Many-to-One Mapping 

 

In the Figure, the states L, R and reset have the same phase volume in the system subspace. Total 

phase volume is preserved, as the Liouville theorem requires, by the coarse-grained volume 

expanding into the environmental degrees of freedom. While the states L, R and reset have the 

same entropy, the entropy of the environment increases; and the environment gains a 

corresponding amount of heat. 

 These last conclusions can be given simple quantitative expressions. The coarse-grained 

volume of the reset state must equal or exceed the sum of the individual volumes that evolve 

from states L and R. For the phase volume of the totality—system plus auxiliaries—we have 

Vph,reset ³ Vph,L + Vph,R                                                       (3) 

Applying (1) to (3) we recover the minimum entropy cost of erasing each of the states L and R 

individually. That is 

DSL = Sreset – SL = k log (Vph,reset/ Vph,L) ³ k log ((Vph,L+ Vph,R)/Vph,L)                     (4) 

and similarly 

DSR ³ k log ((Vph,L+ Vph,R)/ Vph,R)                                          (5) 

For the case of a Szilard one-molecule gas initially divided into equal cylinder volumes, (4) and 

(5) entail an entropy cost of erasure of 

DSL = DSR ³ k log 2          Qenv  ³ kT log 2                                        (6) 

The environmental heating Qenv follows when we assume that the environment is a heat bath at 

temperature T and that the reset state is one half the cylinder volume. These results are distinctive 

in specifying the entropy cost of erasure for each state presented individually.8 

 
8 Norton (2013, p. 4445) noted that erasure does not require dissipation, in so far as it only 

involves the relocation equal volumes of phase space. This note applies only to weak erasure. 
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 No procedure can realize these minima since any such procedure must create further 

entropy to suppress fluctuations. However, if we neglect fluctuations, the following procedure, 

shown in Figure 6, realizes the minima (6) for the Szilard one-molecule gas: 

1. Remove the partition. 

2. Reversibly compress the gas to the reset state. 

 

 
Figure 6. Strong Erasure of a Szilard One-Molecule Gas System 

 

The irreversible Step 1. only creates entropy in the amount indicated by equality in relations (4), 

(5) and (6). This procedure conforms with Szilard’s condition, since each step can be carried out 

independently of the physical state to be erased. It also conforms with Bennett’s condition. The 

reversible compression of Step 2 passes the same quantity of heat to environment, independently 

of the physical state to be erased. If we assume, with (6), that reset state is one half the cylinder 

volume, the heat passed is Qenv = kT log 2. 

 For more general cases of erasure, without some further specification of the systems 

involved, we can only conjecture that Szilard’s condition can be made to hold. Bennett’s condition 

will hold since the coarse-grained state of the reset system and auxiliaries is the same for each state 

erased. 

5. The Entropy Cost of Suppressing Fluctua:ons 

 The inequalities of (4), (5) and (6) specify the minimum entropy cost of erasure. It is easy 

to see that the dynamical character of thermal systems prevents these lower bounds from being 

realized or even approached. This follows from the fact that thermal processes only advance 

because they are entropically favored, without their completion being absolutely assured. The 

absolute completion of the process discussed in Section 4 is an aspiration that cannot be fully 
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achieved. An ideal gas expands since the expanded state has greater entropy. But a very rare, 

random fluctuation can still spontaneously recompress it back to the lower entropy state. A 

particle that has fallen into a deep energy well can still escape if it momentarily and improbably 

gains enough energy from a heat bath. Completion at molecular scales is always only 

probabilistic. 

 The general result governing this behavior is given by (3): the evolution in time of the 

phase point in the total phase space is such that that probability of being in a given region of 

phase space is proportional to the phase volume of the region, as shown in Figure 7. 

 

 
Figure 7. Occupation Times are Proportional to Phase Volume 

 

 Thus, if a process is to advance from some initial state “init” to a final state “fin,” the phase 

volume of the final state must be significantly larger than that of initial state. Only then can 

completion of the process be assured and even then only probabilistically. There will always be 

some small probability that its migration takes the phase point back to the initial state. This 

expansion of the phase volume of the final state corresponds to the creation of entropy. The 

greater the entropy created, the more dissipative is the process, but the more probable is its 

completion. 

 The connection between phase volume and probability (3), combined with (1) above, 

yields what Einstein called “Boltzmann’s principle” or “S = k log W.” It connects the entropy S of 

a system with its probability, P. Applied to the above process, Boltzmann’s principle asserts 

DS = Sfin – Sinit = k log  (Pfin / Pinit)     or    Pfin / Pinit = exp(DS/k)                        (7) 
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This principle forces us to trade-off entropy creation against the probability of completion in 

processes on molecular scales, where entropies of a few k are significant. Take, for example, a 

process driven by an entropy increase 

DS = Sfin – Sinit = k log 2 

such as is common in Szilard’s problem. If this is the only entropy increase in the erasure 

process, then its completion is compromised. That is, we have from (7) that 

Pfin / Pinit = exp(DS/k) = exp(log 2) = 2 

At any moment, the probability that erasure has been successfully completed is only twice the 

probability that the system is in the original, unerased state.  

 We need processes that are substantially more dissipative if we are to secure probabilistic 

completion of processes on molecular scales. That requires a coarse-grained reset state of 

substantially larger phase volume than the sum of Vph,L and Vph,R, as shown in Figure 8. 

 

 
Figure 8. Expanded Reset State is Probabilistically Favored 

 

In erasure, the phase volumes of states L and R are conserved, but their volumes are stretched 

into thin tendrils spread over the whole reset space. As a phase point initially in L explores the 

tendrils, it spends much more time in the large phase volume associated with the reset state than 
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in the smaller volume of the initial, unerased state L (and similarly for phase points initially in 

R).  

 A modest probability ratio of only Pfin / Pinit = 20 requires a twenty-fold increase in 

phase volume and an entropy creation of k log 20 = 3k. Since the ratio of probabilities increases 

exponentially with entropy difference, the ratio rapidly grows large with modest increases in 

entropy creation and ceases to be a problem, outside the realm of molecular scale processes. 

 These probabilistic disturbance to processes may seem abstruse. They are, however, 

familiar effects in thermal systems and are otherwise known as thermal fluctuations or, in 

electrical engineering, noise or static. They cannot be idealized away since they are intrinsic to 

the dynamical character of thermal properties. Two systems are in thermal equilibrium only 

when they are exchanging energy dynamically. Fluctuations—momentary imbalances—are an 

ineliminable feature of those exchanges. Norton (2011, 2013, 2017) has computed many 

examples of fluctuations and the entropic cost of their suppression. 

6. The Informa:on-Theore:c Analysis 

 While the phase space analysis above gives a compact and serviceable analysis of the 

entropic costs of erasure, by far the more common analysis uses information-theoretic ideas.9 

That is, if we have a system that may be in either of two mutually exclusive states, L or R, but we 

know not which, an additional thermodynamic entropy (13) below is assigned to the system as a 

result of our lack of information. Erasure eliminates this lack of information and the thermal cost 

of erasure is determined from the ensuing decrease in the system’s thermodynamic entropy.  

6.1 Introducing Informa+on Entropy 

 States L and R occupy disjoint phase spaces GL and GR and their union “L+R” occupies 

phase space GL+R = GL  È GR. Their phase points are canonically distributed as: 

rL(x) = exp(–E(x)/kT) / ZL   for x Î GL                                                                              (8) 

rR(x) = exp(–E(x)/kT) / ZR   for x Î GR 

rL+R (x) = exp(–E(x)/kT) / ZL+R   for x Î GL+R 

 
9 For historical surveys of the earlier years, see Earman and Norton (1998, 1999) and Leff and 

Rex (2003) 
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where E(x) is the energy at phase point x and the normalizing partition functions are 

𝑍! = ∫ exp '– "($)
&'
)𝑑𝑥(!

     𝑍) = ∫ exp '– "($)
&'
) 𝑑𝑥("

   𝑍!*) = ∫ exp '– "($)
&'
) 𝑑𝑥(!#"

           (9) 

Prior to erasure, the system is in one of states L or R. This compounded state is represented by a 

weighted sum of the distributions: 

rcomp (x) = prL(x) + (1-p)rR(x)                                                             (10) 

where 0 < p < 1 is a weight that may be an epistemic probability or a reflection of the rate of 

occurrence of the states.  

 The Gibbs entropy formula 

𝑆(𝜌) = −𝑘 ∫ 𝜌 log 𝜌 𝑑𝑥	(                                                                   (11) 

is applied to (10) to recover the entropy of the compound state 

𝑆+,-. = −𝑘6 𝜌+,-. log 𝜌+,-. 𝑑𝑥	
(!#"

 

= −𝑝	𝑘6 𝜌! log 𝜌! 𝑑𝑥 − (1 − 𝑝)𝑘6 𝜌) log 𝜌) 𝑑𝑥 − 𝑘(𝑝 log 𝑝 + (1 − 𝑝) log(1 − 𝑝)
("

)	
(!

 

= 𝑝𝑆! + (1 − 𝑝)𝑆) − 𝑘(𝑝 log 𝑝 + (1 − 𝑝) log(1 − 𝑝))                                               (12) 

The third term in (12) an “information entropy” term, reminiscent of Shannon’s information 

theory. 

𝑆/01, = −𝑘(𝑝 log 𝑝 + (1 − 𝑝) log(1 − 𝑝))                                              (13) 

The simplest cases arises when entropies of the states L, R and reset are equal, so that 

SL = SR = Sreset 

This is, for example, the case of Szilard one-molecule gas divided into equal volumes and then 

erased to L. In this case, the entropy change in the system upon erasure is 

DSsys = SL – Scomp = –Sinfo < 0                                                 (14) 

Since total entropy Stot cannot decrease, it follows that the entropy of the environment increases 

by at least Sinfo. When the environment is represented by a heat bath at temperature T, this 

entropy increase corresponds to an environmental heat gain Qenv of at least TSinfo. In sum, the 

dissipation associated with the erasure of the compound state is 

DStot ³ 0      DSenv  ³ Sinfo      Qenv ³ TSinfo = –kT (p log p + (1-p) log (1-p) )            (15) 

For p = 1/2, Sinfo takes its maximum value of k log 2 and Qenv ³ kT log 2. 
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6.2. Its Problems 

 There are significant problems with these results. The most significant is that the lower 

bounds of (15) are unattainable. The information-theoretic analysis has neglected the dissipation 

arising from the need to suppress fluctuations. 

 If we set aside fluctuations and consider only the dissipation associated with many-to-one 

mappings, these results are still inconsistent with the phase space analysis of erasure. Perhaps the 

most striking difference is that erasure in this information-theoretic analysis is not dissipative in 

the familiar sense of creating thermodynamic entropy. Rather, dissipation arises only in the sense 

that entropy is moved in a thermodynamically reversible process from the system to the 

environment, which results in a heating of the environment. 

 While this may seem unremarkable, it renders the information-theoretic approach 

incompatible with a simple formulation of what is called the “The Thermodynamics of 

Computing.” That simple formulation depends on an equation: logically reversible computations 

are implemented by thermodynamically reversible processes; and logically irreversible 

computations such as erasure, are implemented by thermodynamically irreversible processes. 

While Bennett’s (1982) is a standard presentation, the simple formulation is not endorsed by him. 

See Bennett (2003, p. 502).10  

 The information-theoretic conception of erasure is one of strong erasure in so far as it 

satisfies Bennett’s condition in passing the same quantities of heat (15) to environment, 

independently of the state erased. However, one reading of (15) is weak erasure. In it, these 

quantities are averages over many cases, so that differential heating of the environment may 

leave a trace of the state erased. Below, the information-theoretic analysis is compared with the 

 
10 Erasure of data is thermodynamically reversible or irreversible, Bennett (2003) asserts,  

according to whether the data is “unknown” or “known” respectively. In the first case of 

unknown data, thermodynamic reversibility is possible, since erasure is conceived as the 

conveyance of entropy—presumably the information entropy—from the system to the 

environment. In the second case, since there is no information entropy, erasure is conceived as 

thermodynamically irreversible, although it can be made reversible by the strategy of recording a 

trace of the data elsewhere. 
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phase space analysis for both weak and strong conceptions in Tables 1 and 2. There are 

mismatches in both cases. 

 

Phase space analysis Information-theoretic analysis 

Minimum total entropy change is zero. Minimum total entropy change is zero. 

Minimum entropy change for system and 

environment individually is zero. 

Minimum entropy change for system is –Sinfo 

and for the environment is Sinfo. 

Minimum heat passed to the environment is 

zero. 

Minimum heat passed to the environment is 

T Sinfo = –kT(p log p + (1-p) log (1-p) ) and 

varies from 0 to kT log 2 depending on the 

value of p. 

Results are independent of parameter p Results depend on parameter p 

 Table 1.  Comparison for Weak Erasure 

 

Phase space analysis Information-theoretic analysis 

Minimum total entropy change is k log 2. Minimum total entropy change is zero. 

Minimum total entropy change k log 2 applies 

to erasure of each state L and R individually. 

Minimum entropy change for the system is 

– Sinfo and for the environment is  Sinfo. 

Minimum heat passed to the environment is 

kT log 2. 

Minimum heat passed to the environment is 

TSinfo = –kT (p log p + (1-p) log (1-p) ) and 

varies from 0 to kT log 2 depending on the 

value of p. 

Results are independent of parameter p. Results depend on parameter p. 

 Table 2.  Comparison for Strong Erasure 

 

 To adjudicate the difference, we ask after the commonly discussed but fictional sorts of 

procedures applied to the Szilard one-molecule gas. Are there any that can realize these minima 

in the quantity observable through its heating effect, that is, through the heats passed to the 

environment? There is, as far as I know, no procedure that realizes the smaller minima (15), 
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when p differs from 1/2. To get a sense of the difficulty of finding a such a procedure, consider a 

simple candidate for the case of p > 1/2, shown in Figure 9: 

1. Reversibly move the partition rightwards from its position at half the volume to the 

larger pth fraction. 

2. Remove the partition.  

3. Reversibly compress the gas to the reset state of half the cylinder volume. 

 

 
Figure 9. Erasure of Szilard One-Molecule Gas System for Parameter p 

 

This procedure is not a candidate for strong erasure, but only for weak erasure, since it violates 

Bennett’s condition. Different quantities of heat are passed to the environment according to 

which state is erased. It passes a net heat -kT log p if L is erased and a net heat of -kT log (1-p) if 

R is erased.11 If these two quantities are weighted with factors p and (1-p) and summed, we 

recover TSinfo, which is the minimum heat transfer to the environment of (15). The more serious 

problem is that Step 1. violates Szilard’s condition. Different apparatus are needed according to 

whether the gas is in L and Step 1. expands the gas, or the gas is in R and Step 1. compresses it. 

We may conjecture that a more elaborate procedure can conform with Szilard’s condition and 

perhaps even Bennett’s condition. If, however, the phase space analysis is correct for strong 

 
11 Step 1. passes heat -kT log 2p to the environment, if L is erased; and -kT log 2(1-p) if R is 

erased. The net heats transferred are recovered by adding the heat kT log 2 passed to the 

environment in Step 3.  
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erasure, no such elaboration can succeed for strong erasure and the minimum environmental 

heating is just kT log 2. 

 If this last problem cannot be resolved, the entire rationale of the information-theoretic 

approach is undercut. The rationale is that erasure is thermodynamically costly because of our 

lack of information. The worse informed we are, supposedly the greater the cost. The extent of 

our lack of information is measured by the information entropy term (13), which also fixes the 

amount of thermal dissipation. The worst case is p = 1/2, in which we are maximally unsure of 

which state it to be erased and (13) takes its maximum value. As p approaches 0 or 1, we become 

better informed as to which of L or R is to be erased. Now better informed, we should be able to 

erase with less dissipation, since the information entropy term (13) decreases to zero as p 

approaches these limits. However there seems to be no way to realize this lesser dissipation in 

strong erasure for more favorable values of p. 

 If the phase space analysis is correct, the parameter p has no place in the analysis at all, 

either as an epistemic probability or as a frequency of occurrence of states. The amount of 

dissipation derives only from the requirement that a single procedure must work equally on 

either of the two states presented for erasure in the one case at hand.  

7. Informa:on Entropy is not Gibbs Thermodynamic Entropy: the 

Fallacy 

 The most serious problem facing the information-theoretic analysis is that the above 

introduction of the information-theoretic entropy term (13) is fallacious. The application of the 

Gibbs entropy formula (11) to the compound state (10) in the computation (12) is a 

misapplication of the Gibbs formalism. The full Gibbs entropy formula contains an additive 

constant whose evaluation leads to the elimination of the information entropy term in (12). 

7.1 Deriving Gibbs Entropy 

 The Gibbs formalism, as developed in Gibbs (1914) and Einstein (1903), applies 

specifically to a canonically distributed system, such as in (8). It seeks to identify quantities that 

play the role of temperature, entropy and the like in the statistical analysis by matching them 

with analogous terms in the thermodynamic analysis. A correlate of the Clausius entropy should 

match in two properties: 
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• changes in expectation in this quantity correspond in reversible processes to the systems’ 

incremental gain in heat, divided by temperature; and 

• irreversible processes, driven by imbalanced generalized forces, correspond to those that 

increase the totality of this quantity. 

 Following the summary given in Norton (2005, §2.2), the change in the system’s mean 

energy 𝐸; is determined under slow changes of the temperature T(t) and the Hamiltonian 

E(x,l(t)), where the changes are tracked by a path parameter t that affects the Hamiltonian 

through a parameter l(t). The rate of change of the mean energy is given by: 

𝑑𝐸;
𝑑𝑡 =

𝑑
𝑑𝑡 6 𝐸(𝑥, 𝜆)𝜌(𝑥, 𝑡)𝑑𝑥 = 6

𝑑𝐸(𝑥, 𝜆)
𝑑𝑡 𝜌(𝑥, 𝑡)𝑑𝑥 +6 𝐸(𝑥, 𝜆)	

𝑑𝜌(𝑥, 𝑡)
𝑑𝑡 𝑑𝑥

(((
 

The first term in the sum is identified as the rate at which work is done on the system. 

Comparing this expression with the thermodynamic equality 

change in internal energy = work done on system + heat gained by system, 

the second term is identified as the mean rate at which the system gains heat Q. 
23
24
= ∫ 𝐸(𝑥, 𝜆)	25($,4)

24
𝑑𝑥(  

Since this is a reversible process, we can use Clausius’ definition of entropy, dS = dQrev/T, to 

introduce the thermodynamic entropy in terms of the mean heat gain Qrev as: 

𝑑𝑆
𝑑𝑡 =

1
𝑇
𝑑𝑄789
𝑑𝑡 =

1
𝑇6 𝐸(𝑥, 𝜆)	

𝑑𝜌(𝑥, 𝑡)
𝑑𝑡 𝑑𝑥 =

𝑑
𝑑𝑡(
A
𝐸;
𝑇 + 𝑘 log 𝑍(𝑡)B 

The last equality is recovered only after considerable manipulation. Integrating, we recover the 

expression for the canonical entropy: 

𝑆 = 	
𝐸;
𝑇 + 𝑘 log 𝑍 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	 

where the constant is independent of the variables altered in the reversible process with path 

parameter t. 

 This canonical expression is the one derived by Gibbs (1914, p. 44) and Einstein (1903, 

p. 182) and in subsequent developments of their work, such as Tolman (1927, pp. 302-303). 

Recalling that the mean energy 𝐸; and the partition function Z derive from the canonical 

distribution (8), this canonical entropy is equivalent to 

𝑆 = −𝑘 ∫ 𝜌 log 𝜌 𝑑𝑥 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(                                               (16) 
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Expressions like these appear in Gibbs’ analysis (e.g. p. 136) and in the Ehrenfests’ (1911, pp. 

51, 54, 61) comparison of Boltzmann’s and Gibbs’ developments. The unqualified identification 

of this expression as the “Gibbs entropy” comes much later in the history and may even be as 

late as Jaynes (1965). 

7.2 Gibbs Entropy of a Compound State 

 The derivation of the Gibbs entropy formula (16) assumes throughout that the probability 

distribution is canonical, that is, has the form exp(–E(x)/kT)/Z. In general, a compound 

probability distribution such as (10) does not have this form. It will only do so when the 

parameter p is adapted to the states L and R by 

p = ZL / (ZL + ZR)   and   (1-p) = ZR / (ZL + ZR)                                    (17) 

for then 

rcomp (x) = prL (x) + (1-p)rR (x) = :!
:!*:"

∙
;<=>? $

%&@

:!
I
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+ :"
:!*:"

∙
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With p adapted to the states L and R, the Gibbs entropy formula (16) can be applied to a 

compound state (10) and, using computations analogous to (12), gives:12 

𝑆+,-. = −𝑘6 𝜌+,-. log 𝜌+,-. 𝑑𝑥 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	
(!#"

 

= 𝑝𝑆! + (1 − 𝑝)𝑆) − 𝑘(𝑝 log 𝑝! + (1 − 𝑝) log(1 − 𝑝)) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                  (18) 

7.3 Compa+bility of Zero States for Entropies of Simple and Compound Systems 

 The presence of the constant in the canonical entropy and Gibbs entropy formulae is not 

generally noted. In familiar, simple states, such as a gas confined to a chamber, it is easily seen 

that it plays no role in the physics. It can be set to zero, which is the setting assumed for the 

following.  

 
12 This last consideration does not preclude application of the Gibbs entropy formula to other 

distributions. However, if the entropy recovered is to relate to the Clausius entropy dS = dQrev/T, 

then a new justification beyond those of Gibbs and Einstein is needed. That such a justification is 

possible is suggested by the fact that a process that alters the entropies of states L and R in (18) 

by DSL and DSR leads to a new entropy Scomp = p (SL+DSL)  + (1-p) (SR+DSR), which still has the 

form (20) below, even though p may not be adapted to the new states L and R by (17). 
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 Matters become more delicate when we compare the entropies of different types of 

systems, such as a simple state and a compound state. While, overall, we can always set an 

arbitrary zero point for entropies, we must ensure that the entropies of simple and compound 

states are set with compatible zero points. Otherwise, we risk spurious terms confounding the 

comparison of the entropies of simple and compound states. To preclude this error, we continue 

the Einstein-Gibbs method of matching statistical quantities with analogous quantities in 

thermodynamics. 

 We can arrive at a compatible zero point for the entropies of simple and compound 

systems if we consider a process that connects them. It is the removal of the partition in the case 

of a Szilard one-molecule gas (and its analog for more general systems). That process precludes 

a zero value for the constant in (18) for compound states. For if we set the constant to zero, then 

the entropy of the compound system (10) is equal to the entropy of the thermalized system, that 

is, of the system “L+R” of (8) prior to insertion of the partition. 

Scomp = SL+R 

This follows immediately from the Gibbs entropy formula, since the distribution (10) for the 

compound system adapted to the states by (17) is the same as that for the thermalized system in 

(8), so that rcomp(x) = rL+R(x). 

 Consider thermodynamically the process that ensues after removal of the partition in 

Szilard’s one-molecule gas. We momentarily have a one-molecule gas confined to one or other 

side of the chamber. It will expand irreversibly to fill the chamber. Such expansion is an 

elementary example of an irreversible process in thermodynamics. If we have set the constant in 

(18) to zero for the compound state, then the momentarily compressed state and the thermalized 

state have the same entropy. In the absence of an entropic driving force, the two states are at 

equilibrium and we should not expect that one will evolve into the other. 

 This equality of entropies violates the fundamental notion of thermal dynamics, that 

changes are driven by entropy differences. If we are to preserve this notion, we must choose a 

different value for the constant in (18). The natural choice is  

constant = +k(p log p + (1-p) log (1-p))                                             (19) 

With this choice, the entropy assigned to the compound system is merely 

Scomp = p SL + (1-p) SR                                                        (20) 
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It is the natural value for the entropy. For, if we treat entropy like other extensive magnitudes in 

thermodynamics such as internal energy, we would expect the compounded value simply to be 

the weighted sum of the component magnitudes. The entropy of the thermalized state becomes 

𝑆4A87- = 𝑝𝑆! + (1 − 𝑝)𝑆) − 𝑘(𝑝 log 𝑝! + (1 − 𝑝) log(1 − 𝑝)) > 	𝑆+,-. 

Thus, the entropy of the thermalized state now exceeds that of the compound state by  

–k (p log p + (1-p) log (1-p)) and this entropy difference drives the irreversible process that takes 

the compound state to the thermalized state.  

7.4 The Compound State is a Flawed Concep+on 

 These last considerations render unsustainable the information entropy term (13) in the 

expression (12) for the entropy of a compound state. However, they only make it “natural” to 

choose the specific value (19) for the constant that leads to the weighted sum of entropies (20).  

A simpler consideration indicates that (20) is the uniquely correct expression. It arises at the 

starting point of the information-theoretic analysis. Our goal at the outset is to find a way to 

represent our uncertainty over which of states L or R are present, using the parameter p. 

 If our concern is the entropy or energy or any other extensive magnitude among the states 

present, there is no other choice beyond a p weighted sum of the form (20). If p is read as a 

frequency of occurrence of the various states, then the p weighted sum of (20) simply is the 

average value of the entropy over many cases. If p is an epistemic probability, then (20) is the 

expectation value of the entropy. This is where the analysis should have started. 

 To start with the compounded distribution (10) as representing our uncertainty is an 

invitation for fallacy and confusion. For the compounding merges probabilities of different types. 

The probabilities of the canonical distributions rL(x) and rR(x) of (8) are dynamical and track the 

changes over time of the state of each system. They are the bearers of thermodynamic properties. 

The parameter p, introduced as a probability measure over the two canonical distributions rL(x) 

and rR(x), is static. It is set at the outset externally by us and should not be presumed 

automatically to bear thermodynamic properties. Once the two are merged, we have a dangerous, 

blended measure that is neither a purely epistemic probability nor a purely thermodynamic 

probability. That does preclude further computations with this hybrid structure. But it does mean 

that all such computations must proceed with the most extreme caution if a fallacy is to be 

avoided. The greatest danger is that thermodynamic properties are attributed incorrectly to the 
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static probability p. The analysis of this section shows that the literature has not proceeded with 

the requisite caution and has committed precisely this fallacy. 

 There is, to my mind, something already dubious in the introduction of the parameter p. It 

is an additional term not present in the thermodynamics of the systems to be erased. Our 

circumstance is merely that we do not know which state is present. The phase space analysis 

shows that we can have a simple and serviceable analysis of erasure on that basis alone without 

any appearance of a “p.” We may hope that the introduction of the parameter p would be a 

benign detour whose influence can be eliminated. The accretion of problems for the information-

theoretic analysis indicates otherwise.  

8. Conclusion 

 On molecular scales, the dominant source of dissipation lies in the entropy creation 

needed to suppress thermal fluctuations and assure probabilistic completion of all processes of 

any type. In the case of erasure, there is a second, lesser source of dissipation that derives from 

the character of erasure itself as a many-to-one mapping. A major concern of this paper has been 

to determine the magnitude of this dissipation and to find its origin.  

 We have seen two, competing analyses. The information-theoretic analysis locates this 

origin in the pre-erasure state itself. It attributes an additional thermodynamic entropy to this 

state that arises merely from our ignorance over which state is present for erasure. Dissipation 

consists merely in the passage of this extra entropy to the environment in what may otherwise be 

a thermodynamically reversible process. 

 The analysis fails in several ways. It indicates minima of dissipation in erasure that varies 

according to the extent of our ignorance, even though most of the minima appear unachievable in 

the case of strong erasure. More seriously, the attribution of this additional entropy is derived 

fallaciously from a misapplication of the Gibbs formalism that leads to a mistaken identification 

of information entropy and thermodynamic entropy. 

 The phase space analysis does not assign any increase in the entropy of the pre-erasure 

states from our uncertainty over which is present. Instead, the entropy cost of erasure arises from 

the core restriction that a single procedure must be employed in erasure, independently of the 

states presented for erasure what we may know of them. 
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