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Einstein identified singularities in spacetimes, such as at the Schwarzschild radius, 

where later relativists only find a coordinate system assigning multiple values to a 

single spacetime event. These differing judgments derive from differences in 

mathematical methods. Later relativists employ geometrical structures to correct 

anomalies in the coordinate systems used in analytic expressions. Einstein took the 

analytic expressions to be primary and the geometrical structures as mere heuristics 

that could be overruled if physical assumptions required it. Einstein’s non-

geometric methods had a firm base in the history of mathematical methods. They 

continued the non-geometric orientation of Christoffel, Ricci and Levi-Civita. 

Einstein’s insistence that singularities must be eliminated marked a departure from 

earlier tolerance of singularities. It was founded upon his long-term project of 

eliminating arbitrariness from fundamental physical theories. However, Einstein 

was willing to theorize with singularities only temporarily if they were the least 

arbitrary approach then available. 

1. Introduction 

 Einstein’s treatment of spacetime singularities in his general theory of relativity has 

presented significant challenges to later commentators. His work elicits both admiration and 

exasperation. The work is admired for creating a new realm of physical theory within which a 

century’s work on gravity and cosmology would unfold. It is exasperating for its treating of 

 
1 My special thanks are owed to Harrison Payne, who read and commented extensively on drafts 

of this text. I thank Diana Kormos Buchwald and Dennis Lehmkuhl for helpful comments and 

Michel Janssen for spirited criticism of Section 4. 
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singularities in ways that later relativists judge to be novice errors. It is all the more exasperating 

since this treatment persisted even after the problems were pointed out to Einstein. John Earman 

and Jean Eisenstaedt’s (1999) survey give the most thorough recounting and appraisal of 

Einstein’s work on singularities. They summarize the tensions as (p. 186): 

… Einstein was forced to fight a number of skirmishes with singularities, and more 

often than not he lost. The losses exhibit a strange asymmetry: he was unreasonably 

disturbed by (what today we would classify as) apparent singularities to the extent 

that he was prevented from embracing some of the most revolutionary 

consequences of his theory; but on the other hand he was not at all concerned about 

(what today we would call) real singularities, and as a result he pursued for over 

twenty years an ill-founded research programme on the problem of motion. 

Their puzzlement persists throughout their narrative (p. 230): 

…his 1935 paper with Rosen may strike the modern reader as bizarre and nearly 

incomprehensible. 

It was not just Einstein. Even David Hilbert, under Einstein’s sway, was apparently unable to 

discern when singularities are merely artefacts of a singular coordinate transformation (p. 193): 

How Hilbert, one of the great mathematical minds of the century, could have failed 

to appreciate this elementary point defies rational explanation. 

Klaas Landsman, in his survey (2021) of the foundations of general relativity, echoes their 

concern (p. 125): 

Even Hilbert and Einstein were initially confused about the meaning of these 

apparent or real singularities, but today it is clear that r = 2m [Schwarzschild radius] 

and r = ρ [mass horizon] are just singularities of the coordinate systems in which 

the Schwarzschild and de Sitter solution are expressed. 

This paper will seek to show that Einstein’s treatment of spacetime singularities conformed with 

a consistent program of research. It may now appear willfully capricious, but only because the 

presumptions of Einstein’s program are no longer ours. His analysis was not an instance of 

baffling mathematical incompetence. Rather, it employed mathematical methods different from 

those we now use and that now appear opaque to us. They were in turn guided by physical 

assumptions that were, in their time, cogent but are now discarded, often for solid empirical 
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reasons. The ultimate failure was not a consequence of arbitrary opportunism, but the reverse: a 

dogged adherence to methods and assumptions that failed. 

 For concreteness, this paper will focus on two apparent anomalies in Einstein’s 

treatments of spacetime singularities: 

1. Einstein’s Apparent Misidentification of Mere Coordinate Singularities. The Wedge. 

If a coordinate system is poorly adapted to the spacetime geometry, quantities expressed as 

functions of the coordinates may become singular. They are not true pathologies of the 

spacetime geometry but merely artefacts of a coordinate system that has “gone bad’ and 

can be remedied by adopting a new coordinate system. Three prominent cases in Einstein’s 

work are his identification of singularities in a uniformly accelerated coordinate system in a 

Minkowski spacetime; at the “r=2m” Schwarzschild radius of a Schwarzschild spacetime; 

and what was then called the “mass horizon” in a de Sitter spacetime. They all have the 

same form: coordinate systems fail since they assign multiple coordinate values to the same 

event in a construction that appears as a wedge-like formation in a spacetime diagram. 

2. Einstein’s Vacillations Over the Formal Admissibility of Spacetime Singularities. 

At times, Einstein portrayed spacetime singularities in calamitous terms. He wrote (in 

Einstein and Rosen, 1935, p. 73) “For a singularity brings so much arbitrariness into the 

theory that it actually nullifies its laws.” He was even willing to modify his celebrated 

gravitational field equations to eliminate them or to argue that physical processes prohibit 

their formation. Yet on other occasions he entertained field singularities as models for light 

quanta; as essential to understanding de Sitter’s solution to his l-augmented gravitational 

field equations; and as a means to derive the equations of motion of a free particle from his 

gravitational field equations. 

 Einstein (1949, p.684) famously described himself as a “type of unscrupulous 

opportunist” when compared to the systematic epistemologist. The temptation is to extend the 

description to his program in physics. The goal of this paper is to argue otherwise. There is, it 

will be argued, a deeper coherence underlying these apparent anomalies. It derives from two 

elements in Einstein’s thinking. One is methodological. The other is an enduring and controlling 

heuristic within his worldview. 
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1. Einstein privileged analytic expressions over synthetic geometry. 

It has long been recognized that Einstein was not a geometrical thinker, after the modern 

manner.2 His privileging of analytic expressions was not a personal aberration. There were, 

in Einstein’s time, two distinct mathematical traditions, which will be described in Section 

6 below. One was a synthetic, geometrical tradition emerging from Gauss and Riemann’s 

theory of curved surfaces. The other was analytic and derived from Christoffel and 

Riemann’s work on the invariants of quadratic differential forms. In formulating his 

general theory of relativity Einstein aligned with the second, analytic tradition. 

While both these traditions contributed to the mathematics of Einstein’s general theory of 

relativity, they differ in which are the primary objects of study. 

• For synthetic geometry in the tradition of Gauss, the primary object of study is the 

geometric surface or space. Quadratic differential forms are a means of describing their 

properties. 

• For the methods in the analytic tradition of Christoffel, the primary objects of study are 

mathematical expressions or formulae, that is, quadratic differential forms defined over 

variables and their transforms. 

That quadratic differential forms could be used in geometry was an incidental application of the 

analytic methods. It was a fact to be acknowledged but not allowed to control the method. 

 These differences were generally unimportant in Einstein’s work on general relativity. 

The pertinent exception came when spacetime singularities arose from a misbehaving coordinate 

system. The synthetic, geometry tradition can escape them. The analytic tradition struggles with 

them. For each “wedge” example above, the pathology in the coordinate system is that, 

geometrically understood, it assigns multiple values to a single event. The new, regular 

coordinate system must assign a single value to each single event. That means that the new 

coordinate system cannot be generated from the pathological coordinate system by a one-to-one 

mapping. This presents no difficulty of principle for the synthetic, geometric tradition. The 

intrinsic geometry of the space guides construction of the new coordinate system. It does not 

need and cannot use a one-to-one mapping from the old coordinate systems.  

 
2 See, for example, Norton (1993, §2). 
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 That a one-to-one mapping cannot be used is, however, troublesome for the analytic 

approach within which Einstein worked. Its basic objects of study are analytic expressions and 

their one-to-one, differentiable transformations. Once an expression has a “wedge” type 

singularity in one set of variables, none of the admissible transformations can eradicate it. The 

analytic expressions are irreparably singular. The difficulty can be escaped in this analytic 

tradition only by weakening this basic conception of the primary objects of study. Einstein was, 

on occasion, willing to make the compromise. We shall see that, in a natural concession to the 

geometry, he allowed that the irregularities at the origin of polar coordinate systems are not 

pathological. However, absent the motivation of an underlying intrinsic geometry, he clearly felt 

no compulsion to make this same concession in other cases. Of course, the geometric picture has 

heuristic value. What would decide whether it was to be used was Einstein’s non-geometric, 

physical interpretation of his equations. Prominent amongst these was an expectation that the 

analytic expressions are static in their time coordinate. These physical interpretations fitted 

better, we shall see, with the singularities. 

 It is surely surprising to modern relativists that Einstein would forgo the geometric 

picture that now proves so fertile. Here Dennis Lehmkuhl’s (2014) study provides an essential 

recalibration. It documents how Einstein was dismissive and even scornful of the now familiar 

idea that general relativity had “geometrized” gravity. In correspondence in 1926, he even 

disparaged geometrical conceptions as an Eselsbrücke [“donkey bridge”], that is, roughly 

speaking an artificial crutch, a convenience for novices. 

 We now turn to the second element in Einstein’s work. 

2. Einstein used the elimination of arbitrariness as guide in theory construction. 

That we recover better theories by eliminating arbitrariness was an enduring heuristic that 

figured prominently in Einstein’s opposition to spacetime singularities. While the 

heuristic had played a part in much of Einstein’s earlier physical theorizing, its presence 

was easy to overlook, perhaps even by Einstein himself, since it found expression in 

many different forms, according to the physical problem addressed. It drove his search 

for the most general relativity of motion. Anything less required us to designate 

arbitrarily which is the ether state of rest or which are the inertial frames of reference. 

Indeterministic quantum mechanics introduced arbitrariness not present in deterministic 

theories. The ultimate physics, Einstein foretold, is one without any arbitrary constants.  
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We are now apprehensive of spacetime singularities since they arise in extreme regimes where 

we expect our present theories to fail. Prior to Einstein’s deprecation of them, their presence in 

physical theories was generally untroubling and required only a brief mention in passing. 

Einstein, however, made their elimination a core requirement of his long-sought unified field 

theory. His aversion to singularities was unlike our modern apprehensions. Rather he likened 

singularities to boundary conditions in field theories. They are elements that can be chosen 

freely. It is a harmful freedom since it expands the set of solutions of a theory’s fundamental 

equations in a way that merely reflects our arbitrary choices. For this reason, in 1917, he rejected 

a cosmology that stipulates that special relativity obtains at spatial infinity. Admitting 

singularities, Einstein feared, allowed similar, unjustified freedoms in theorizing. 

 While finding a final theory without arbitrariness was Einstein’s ultimate goal, his day-

to-day work sought to move towards this goal by reducing arbitrariness wherever feasible, even 

if it could not be eliminated completely. General relativity, as originally formulated, had two 

independent laws: the gravitational field equation for the configuration of the metric field; and 

the geodesic law for the motion of free bodies or, more generally, an independent matter theory. 

To derive the geodesic law from the source-free gravitational field equations would eliminate the 

arbitrariness of two independent laws in favor of the lesser arbitrariness of one law. Such a 

derivation seemed within Einstein’s reach if he represented particles as singularities in a source 

free field. It was a temporary expedient that replaced a greater by a lesser arbitrariness. 

 There are many more facets to Einstein’s engagement with spacetime singularities than 

can be covered here. This paper is limited to reporting just those fragments of the history that 

bear directly on the two elements described above. A fuller accounting of the history may be 

found in the existing literature, such as the synoptic account of Earman and Eisenstaedt (1999) 

and in the editorial notes to Einstein’s correspondence of 1917 and 1918 in Schulmann et al. 

(1998). Lehmkuhl (2017, 2019) provides an illuminating account of Einstein’s earlier treatments 

of the problem of motion. 

 The three sections of Part I below deal directly with the three cases of singularities 

identified by Einstein, the modern reaction to them and an account of how Einstein’s views did 

not cohere with it. The related Appendix B defends with a simple example the viability of 

Einstein’s prioritizing of analytic expressions.  Part II provides an historical perspective on 

Einstein’s mathematical methods. Sections 5 and 6 recount the mathematical tradition upon 
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which Einstein drew. Section 7 recounts how this tradition was incorporated by Einstein and 

Grossmann into their early sketch of the general theory of relativity. Details of their novel use of 

the term “tensor” are in Appendix A. Section 8 reports how Einstein’s suppression of 

geometrical notions appeared in his theorizing in general relativity. Section 9 of Part III recounts 

the presence of singularities in the literature prior to Einstein. Section 10 then reviews how 

Einstein’s goal of eliminating arbitrariness from fundamental theories called for an elimination 

of singularities; and how his temporary use of singularities was a choice of the least arbitrary of 

the avenues available. 

 A final concluding Section 11 summarizes the coherence of Einstein’s program, but notes 

that it has not proven productive. The alternative of giving priority to the geometry is the basis of 

modern advances in both black hole physics and cosmology. These advances show that 

Einstein’s program of research failed. It did not fail, however, because of elementary errors, but 

because Einstein, like the rest of us, cannot foresee what future research may bring. 

PART I. THREE SINGULARITIES 

2. Einstein’s Simplest Spacetime Singularity 

2.1 The Singularity 

 To grasp Einstein’s understanding of spacetime singularities, we can do no better than to 

recount the elementary example that Einstein himself used. It was developed in his collaborative 

work with Rosen (Einstein and Rosen, 1935) specifically for the purpose of explaining his view 

of the role of singularities in his physical theories. The example starts with the familiar line 

element of special relativity: 

ds2 = - dx12 - dx22- dx32 + dx42                                                    (1)  

where x1, x2, x3 are the Cartesian coordinates for space and x4 is the time coordinate, with c=1. 

They introduce a uniformly accelerated coordinate system, adapted to the hyperbolic motion of 

uniform acceleration in the +x1 direction, by the transformation: 

x1 = x1 cosh(ax4)    x2 = x2    x3 = x3    x4 = x1 sinh(ax4)                            (2) 

Under this transformation, the line element (1) becomes: 

ds2 = - dx12 - dx22 - dx32  +  a2x12 dx42                                                (3) 
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Free bodies moving on geodesics have a non-zero coordinate acceleration in the -x1 direction. 

Recalling Einstein’s principle of equivalence, this acceleration is to be interpreted as due to a 

homogeneous gravitational field acting in the -x1 direction. Here is Einstein and Rosen’s 

formulation of this interpretive principle (p. 74): 

… “Principle of Equivalence”: If in a space free from gravitation a reference system 

is uniformly accelerated, the reference system can be treated as being “at rest,” 

provided one interprets the condition of the space with respect to it as a 

homogeneous gravitational field. 

 Einstein and Rosen identify the hyperplane x1= 0 as “a singularity of the field” so that 

Einstein’s source free gravitational field equations, Rkl = 0, for Rkl the Ricci tensor, fail to be 

satisfied. This conclusion is justified by: 

… the fact that the determinant of g of the gµn vanishes for x1= 0. The contravariant 

gµn therefore become infinite and the tensors Riklm and Rkl take on the form 0/0. 

From the standpoint of Eqs.[(3)] the hyperplane x1= 0 then represents a singularity 

of the field. 

They then offer an interpretation of the significance of the singularity. Einstein’s original 

gravitational field equations, with stress-energy sources represented by the tensor Tik, is 

Rik – (1/2) gik R = - Tik                                                                         (4) 

To apply this equation to the line element (3), they consider a modification of the line element: 

ds2 = - dx12 - dx22 - dx32  +  (a2x12 + s) dx42 

Applying the field equations (4), the stress-energy tensor3 can be computed and has non-zero 

terms they write as: 

T22 = T23 = a2/s/(1 + a2x12/s)2 

 
3 It is designated parenthetically as “fictitious.” 
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As s approaches zero, the original line element (3) is approached in the limit. In this limit, the 

non-zero terms of the stress-energy tensor exhibit a singularity at x1= 0. These terms diverge at 

x1= 0, but converge to zero for non-zero x1.4 This divergence is interpreted as: 

… the solution [(3)] contains a singularity which corresponds to an energy or mass 

concentrated in the surface x1= 0. 

2.2 The Modern Reaction 

 It surely understates matters to say that modern readers find this analysis “astonishing,” 

to use Earman and Eisenstaedt’s (1999, p. 215) word. The entirety of the results Einstein and 

Rosen report is due to artefacts of the coordinate system introduced by the transformation (2). A 

mere change of coordinates introduces no singularities in the spacetime geometry. It remains 

everywhere flat with vanishing curvature and Ricci tensor. All this is made transparent by 

plotting the new coordinate system in a spacetime diagram, shown in Figure 1, where 

coordinates x2 and x3 have been suppressed: 

 
4 The order of operations in the expression for T22 as given by Einstein and Rosen is ambiguous. 

To recover the singularity claimed, the expression should be read as 

a2/[s(1 + a2x12/s)2] = a2/[ (Ös + a2x12/Ös)2]. 
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Figure 1. Einstein and Rosen’s Accelerated Coordinate System 

 

The diagram shows that the accelerated coordinate system “goes bad” at x1= 0. That is, for fixed 

x2 = x2 and x3 = x3, the infinitely many events {x1= 0, -∞ <x4 < ∞} are mapped, many-to-one to 

the single event at x1 = x4 = 0. The singularity Einstein and Rosen report is due entirely to this 

pathology of the coordinate system. 

 The diagram also shows the worldlines of two geodesics, AA’ and BB’. Since their 

worldlines have vanishing four-acceleration, that invariant fact remains so even after the we 

adopt a new coordinate system. The “falling” is an illusion arising as a coordinate effect. 

Another coordinate effect is that the falling point would require infinite x4 coordinate time to 

complete its fall through all values of position x1>0; and infinite x4 coordinate time to rise 

through all values of position x1>0. The coordinate surface x1 = 0 seems to represent an 
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unachievable horizon. It is a coordinate effect only, since both motions are completed in finite 

proper time. 

2.3 Why We Must Take Einstein’s Example Seriously 

 This modern appraisal now seems so natural and so at variance with Einstein and Rosen’s 

claims that is easy to suppose that Einstein and Rosen were poorly informed or simply hasty or 

both. Surely even a brief acquaintance with modern views would have elicited a retraction from 

them.5 This supposition must be resisted. There is ample evidence that the view presented was 

Einstein’s well-considered and enduring view. 

 To begin, the example was not hastily chosen. It is the basis of his formulation of the 

principle of equivalence, which was, for Einstein, one of the most enduring foundational 

elements of his general theory of relativity. It initiated his first steps towards the theory in 1907 

and remained unaltered throughout all his writings.6 It was and remained at the core of Einstein’s 

understanding of his theory. 

 Next, Einstein and Rosen’s paper came two decades after the completion of Einstein’s 

theory and after the nature of singularities in his theory has been closely examined by the physics 

community. The sorts of considerations we now consider as modern had been developed and 

understood. They were communicated to Einstein by correspondents. We shall see below that no 

lesser figure than Felix Klein had pointed out to Einstein the pathology of his coordinate system 

in the case of the mass horizon of the de Sitter solution. The considerations had also appeared in 

the physics literature from the pen of a figure known personally to Einstein. We shall see again 

that Lemaitre had shown that the singularity Einstein and Rosen presumed in a Schwarzschild 

solution was, likewise, an artefact of a pathology in the coordinate system. We may infer that 

Einstein chose not to adopt this understanding, but the idea that he did not know of it in 1935 is 

unsustainable. 

 
5 Even if one does not know that the line element (3) was produced by a coordinate 

transformation from a familiar Minkowskian line element, Wald (1984, pp. 149-153) shows how 

efforts to geodesically extend the line element (3) would lead back to the full Minkowski line 

element (1). 
6 For a survey, see Norton (1985). 
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 Further, the notion that a singularity is a surrogate for matter had already been explored 

seriously in the same way in the context of the de Sitter solution, to be discussed below. With 

Einstein’s assent and approval, Hermann Weyl had there sought to justify this interpretation of a 

singularity by the same artifice used by Einstein and Rosen in 1935. That is, he had sought to 

understand a singularity as the singular limit of a regular matter distribution. Einstein and 

Rosen’s artifice was not a hasty, ad hoc expedient, but an application of approach already present 

in the literature. 

 Finally, the physics and geometry of the example is transparently simple. Einstein and 

Rosen acknowledged explicitly that their new coordinate system covers only the two wedges 

shown in Figure 1. They wrote (p. 74): 

It is worth pointing out that this metric field [(1)] does not represent the whole of 

the Minkowski space but only a part of it … only those points for which x12  ³ x42 

correspond to points for which [(1)] is the metric. 

They clearly knew how their accelerated coordinate system is distributed over the Minkowski 

spacetime. They knew that the surfaces of constant x4 intersect at x1 = x4 = 0. There, in those 

coordinates, the Riemann curvature tensor of the Minkowski spacetime vanishes. Einstein had 

emphasized that, if a tensor is a zero tensor in one coordinate system, it remains so for all. In his 

review article of 1916, written upon completion of the general theory, his synopsis of the 

“Mathematical Aids to the Formation of Generally Covariant Equations” included this fact as 

fundamental for the development of the laws of his theory (1916a, p. 121): 

The things hereafter called tensors are further characterized by the fact that the 

equations of the transformation for their components are linear and homogeneous. 

Accordingly, all the components in the new system vanish, if they all vanish in the 

original system. If, therefore, a law of nature is expressed by equating all the 

components of a tensor to zero, it is generally covariant. 

In short, there was no simple error in the illustrative example given by Einstein and Rosen. It 

was transparent, well-informed and quite purposefully chosen. They meant what they said. 

2.4 What Einstein Meant: Analytic Expressions over Geometry 

 The key to discerning what Einstein meant is that his methods were not those of modern 

treatments. There are two elements in the treatments: the geometry intrinsic to a spacetime; and 

the analytic expressions that can be used to describe that geometry. 
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 The modern approach privileges the geometry over the analytic expressions. When there 

is a mismatch, the analytic expressions are to be corrected against the geometry. Einstein and 

Rosen’s accelerated coordinate system produces the line element (3) that fails adequately to 

represent the intrinsic geometry of the Minkowski spacetime at x1= 0. The geometry is upheld 

and the line element is regarded as defective at x1= 0. Its coordinates have “gone bad” there. 

 In Einstein’s approach, the analytic expression (3) itself is primary. The Minkowski 

spacetime played a heuristic role in its construction. Einstein can draw on its geometry to discern 

the properties of the analytic expression. The geometry is pertinent only in so far as it serves that 

purpose. When there is a mismatch, such as at x1= 0, there is no automatic presumption that the 

analytic expression is at fault. Which of the geometry or analytic expression requires a correction 

is a matter to be decided by the intended physical interpretation. 

 The principle of equivalence provided that interpretation: the line element (3) is to be 

associated with a homogeneous gravitational field in which free bodies undergo accelerated fall. 

From this perspective, the singularity identified at x1= 0 proves to be congenial. Einstein and 

Rosen’s analysis interprets it as an energy or mass concentration. It would, presumably, serve as 

a natural source of the homogeneous field. That the singularity should be interpreted in this way 

fits with Einstein’s larger research agenda. As we shall see below, these sorts of singularities 

were routinely interpreted as proxies for the matter distributions that a successful unified field 

theory would put in their place. 

 This alternative is only sustainable as long as Einstein and Rosen do not treat their 

accelerated coordinates as pathological at x1= 0. Rather, for fixed coordinate values x2 and x3, 

they must treat as distinct events all those with x1= 0, but differing x4. To collapse all these 

events to a single event so that the original geometry of the Minkowski spacetime is respected 

would render untenable the identification of energy or mass at x1= 0.   

 It is quite incongruous with Einstein’s mode of presentation to draw a spacetime diagram 

for this alternative interpretation. However, we can better picture Einstein and Rosen’s 

interpretation if we see how such a diagram, given in Figure 2, differs from the familiar one of 

Figure 1. 
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Figure 2. Einstein and Rosen’s Homogeneous Gravitational Field 

 

The figure shows the spacetime for x1³ 0, with the singularity at x1 = 0 represented not by a 

point but a line with all possible x4 coordinates. The geodesics x1 = k, for various constants k, of 

Figure 1 are now represented by bell-like curves. It follows from the transformation equations 

(2) that their trajectories in x1, x4 coordinates are 

x1 = k / cosh(ax4) 

A small amount of algebra shows that for small x4 times, each trajectory exhibits, in close 

approximation, the expected parabola of free fall: 

x1 = k (1 – (1/2) (ax4)2) 

For large x4 times, positive and negative, the trajectory approaches asymptotically the horizon at 

x1= 0 that is unattainable in x4 times. This effect is the origin of the gravitational red shift 

Einstein first inferred from the principle of equivalence in 1907. 

 Einstein and Rosen do not mention this horizon. However, since it will return explicitly 

in later examples, we should note that there is no elementary confusion here. It is transparent 
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from the construction of the example that a freely falling body will traverse the wedge x12  ³ x42 

and leave it in finite proper time. It would be a complete novice folly to think otherwise. The 

horizon exists in the different sense that it is the limit of events covered by the accelerated 

coordinate system xi. Motions described by the line element (3) using these coordinates will 

never reach it. 

 Once the independence of the line element (3) from the Minkowski spacetime geometry 

is recognized, it is no longer puzzling that Einstein and Rosen report that tensors Riklm and Rkl 

take on the singular form 0/0. For they are not the tensors of the original line element (1), but of 

the new line element (3) that differs from (1) at x1 = 0. That there is no one-to-one mapping 

between the original xi coordinates and the new xi coordinates is essential for the difference. For 

otherwise, their vanishing in one coordinate system would necessitate their vanishing in the 

other. 

 How can Einstein interpret the line element (3) as associated with a homogeneous 

gravitational field when its spacetime curvature for all x1 > 0 remains flat, just like the Minowski 

spacetime? The question raises issues that cannot be fully addressed here. Briefly, once again it 

is a matter of how the equations are to be interpreted. When this objection was put to him by 

Laue in correspondence of 1950, Einstein replied that7 

… what characterizes the existence of a gravitational field from the empirical 

standpoint is the non-vanishing of the [non-generally covariant coefficients of the 

connection] G lik , not the non-vanishing of the [Riemann curvature tensor] Riklm. 

This the line element (1) with vanishing G lik , is interpreted as gravitation-free, whereas the line 

element (3) with non-vanishing G lik , harbors a gravitational field.  

 What is noticeable here and in all of Einstein’s writings on general relativity is that it is 

not geometrical in its expressions. Where the geometrical approach talks of a “Minkowski 

spacetime” and a “Schwarzschild spacetime,” Einstein’s analytic approach talks of “solutions” to 

 
7 See Norton (1985, §11) and Lehmkuhl (2022, §9.3.6) for details; and for further discussion, 

Section 8.2 below. 
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equations, where the term designates analytic expressions such as (1) and (3). The term 

“solution” appears 40 times in the five pages of Einstein and Rosen’s paper. The term “space-

time” and “space” each appear only once. 

3. Singularity at the Schwarzschild Radius 

 This last example serves Einstein’s and our purpose well. For Einstein’s understanding of 

the more complicated examples is the same, but just harder to see because the physics is less 

transparent. We shall see this in two cases: the singularity in the Schwarzschild solution in this 

section; and the “mass singularity” in the de Sitter solution in the next section. 

3.1 The Radius as a Singularity 

 Einstein and Rosen (1935, p. 75) wrote the Schwarzschild solution in a form that 

Eisenstaedt (1989, p. 216) identified as using “Droste coordinates” after the version of the 

solution given in Droste (1916): 

As is well known, Schwarzschild found the spherically symmetric static solution of 

the gravitational equations 

𝑑𝑠! = − "
"#!"#

𝑑𝑟! − 𝑟!(𝑑𝜃! + 𝑠𝑖𝑛!𝜃𝑑𝜙!) + -1 − !$
%
/ 𝑑𝑡!  ,                           (5) 

(r > 2m, q from 0 to p, f from 0 to 2p); … The vanishing of the determinant of the 

gµn for q = 0 is unimportant, since the corresponding (spatial) direction is not 

preferred. On the other hand, g11 for r = 2m becomes infinite and hence we have 

there a singularity. 

The character of the singularity is elaborated in Einstein’s (1939, p. 922) later paper that argues 

against the physical possibility of gravitational collapse beyond the Schwarzschild radius. He 

employed an isotropic coordinate system to present the Schwarzschild solution: 

If one considers Schwarzschild’s solution of the static gravitational field equations 

of spherical symmetry 

(1)        𝑑𝑠! = −-1 + &
!%
/
'
(𝑑𝑥"! + 𝑑𝑥!! + 𝑑𝑥(!) + 2
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") $
!#
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!

𝑑𝑡! 

it is noted that 



 17 

𝑔''* 5
1 − 𝜇

2𝑟
1 + 𝜇

2𝑟
8

!

 

vanishes for r = µ/2. This means that a clock kept at this place would go at the rate 

zero. Further it is easy to show that both light rays and material particles take an 

infinitely long time (measured in “coördinate time”) in order to reach the point r = 

µ/2 when originating from a point r > µ/2. In this sense the sphere r = µ/2 

constitutes a place where the field is singular. (µ represents the gravitating mass.) 

These remarks from the 1930s reflect what had already become a standard view amongst 

physicists after the completion of Einstein’s theory in 1915 and Schwarzschild’s presentation of 

his solution. There is a singularity at the Schwarzschild radius “r = 2m”. In his influential, two-

part memo, “Foundations of Physics,” Hilbert (1917, p. 70) noted the irregularity in the solution. 

In his Teubner Encyklopädie article, Pauli (1921, p. 728) also mentioned it in passing; as did 

Laue (1921, p. 215) in his relativity textbook. 

3.2 The Modern Reaction 

 This standard view did not persist. Lemaître (1933, p. 52, 82) showed how the 

singularity could be eradicated by a change of the coordinate system and was thus 

“fictive.”8Almost three decades passed before the idea of eliminating the singularity by a mere 

coordinate transformation had attracted enough of a following to enter the mainstream. 

Finkelstein (1958), Szekeres (1959) and Kruskal (1960) showed how a single coordinate system 

could be found that covered the entire Schwarzschild solution such that there is no singularity at 

the Schwarzschild radius.  

 We can plot the Droste coordinates of Einstein’s Schwarzschild’s solution (5) in a 

diagram of the fully extended Schwarzschild spacetime based on Kruskal-Szekeres coordinates, 

as shown in Figure 3 below, with two angle coordinates suppressed. Kruskal (1960) replaced the 

t and r coordinates of (5) with coordinates v and u such that light propagates along the diagonals 

dv/du = ±1. (The trajectories of light are represented by the cross-hatching with diagonal lines in 

Figure 3.) 

 
8 For a recounting of Lemaître’s analysis, see Eisenstaedt (1993). 
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Figure 3. Droste Coordinate Curves in the Fully Extended Schwarzschild Spacetime in Kruskal 

Coordinates 

 

The Droste coordinates cover a wedge in the figure and, as Einstein and Rosen recognized, a 

duplicate set of Droste coordinates cover a second wedge on other side of the figure. There are 

further parts of the fully extended Schwarzschild solution not covered by these two Droste 

coordinate systems. They are the regions inside the Schwarzschild radius. They are bounded 

above and below by a future and a past curvature singularities at v2 – u2 = 1. 

 The modern reaction to Einstein and Rosen’s identification of a singularity at the 

Schwarzschild radius can be read directly from the figure. The Droste coordinates map many 

values of the coordinate t to a single event at the apex of the wedges. There is no singularity at 

that event in the spacetime; there is only a pathology of the coordinate system. That the 

spacetime is regular at this radius is commonly affirmed by noting, as does Kruskal (1960, p. 

1743), that “the curvature invariants of the Schwarzschild metric are perfectly finite and well 

behaved at [r=2m]”. 

 There is a remarkable similarity to the accelerated coordinate system of Einstein and 

Rosen (1935) in a Minkowski spacetime. Both cover only a wedge of the full spacetime; both 

have a special place for hyperbolas, which are invariant figures for hyperbolic rotations; and both 

have a coordinate pathology at the apex of the wedge. There, both coordinate systems map many 

values of the “t” coordinate to a single spacetime event. The analogy between the two cases was 
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explored by Rindler (1977, §8.6) and became an important stimulus to further work on black 

holes and their horizons. For this reason, the wedge is often called a “Rindler wedge” and 

Einstein and Rosen’s accelerated coordinates “Rindler coordinates.” 

3.3 What Einstein Meant 

 The modern view privileges the spacetime geometry over the analytic expressions. From 

this perspective, Einstein’s assertions about the Schwarzschild solution are incomprehensible. He 

has mistaken a pathology of his coordinate system for a true singularity of the spacetime 

geometry. This was not Einstein’s view. He privileged the analytic expression over the geometry. 

There is no one-to-one mapping that takes the quadratic differential form (5) into the 

corresponding quadratic differential form for the Schwarzschild spacetime in Kruskal 

coordinates. One has to abandon such mappings and use the geometry of the fully extended 

Schwarzschild spacetime to correct the Droste coordinates. While that is the modern procedure, 

it was not Einstein’s. He was not willing to compromise the quadratic differential form (5) by 

privileging the geometry and using it to eliminate the singularity. 

 Once we recognize that Einstein’s remarks about the Schwarzschild solution refer 

specifically to this quadratic different form (5), they are not confusions, but quite consistent. 

First, we saw above that Einstein (1939, p. 922) remarked that a clock kept at the Schwarzschild 

radius “would go at a rate zero.” That is read trivially from the vanishing of the “g44” component 

the metric of (5). It also conforms with the spacetime geometry. For a clock, kept at the 

Schwarzschild radius in Droste coordinates, would be kept at a single event in the spacetime, 

where no proper time elapses, even though many different values of the time coordinate t are 

assigned to the event. 

 Second, we have Einstein’s remark (1939, p. 922) “that both light rays and material 

particles take an infinitely long time (measured in “coördinate time”) in order to reach 

[Schwarzschild radius].” This is not a confused assertion that these systems can never reach the 

Schwarzschild radius. Einstein is not confusing an infinite coordinate time with an infinity of 

proper time. There can be no doubt of that since Einstein explicitly specifies “coordinate time.” 

The distinction is foundational in the theory he devised and he is, among all physicists, the least 

likely to confuse the two. Rather, Einstein is pointing out a limitation in the reach of the 

quadratic differential form (5). Its time coordinate t can only cover motions outside the 

Schwarzschild radius. While it is a natural project to ask how the motion might continue past the 
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reach of the coordinate system, it is one that likely did not interest Einstein. His (1939) paper 

argued that no spacetime could form with a bare Schwarzschild radius. Bodies falling towards it 

would first strike source matter. 

 This expectation about the limit of motions physically realizable by the Schwarzschild 

solution was not a novelty of 1939. Einstein had long presumed it. We learn from reporting by 

Charles Nordmann (1922, pp. 154-56) that the presumption had figured prominently in 

discussions about relativity theory when Einstein had made a visit to the Collège de France in 

Paris.9 In discussion on April 5, 1922, Hadamard has asked Einstein what would happen if a 

mass were condensed enough so that its exterior field included the singular Schwarzschild 

radius. Einstein seemed to be taken aback by the suggestion. “It would be,” Nordmann quoted 

Einstein as saying, “an unimaginable misfortune [malheur] for theory...” The quote continued 

with Einstein seeming to suggest that even in this case the Schwarzschild solution would break 

down: “…it is very difficult to say what would happen physically, for then the formula ceases to 

be applicable.” Nordmann continued his report that Einstein light-heartedly called the problem 

the “Hadamard catastrophe.” It seems that Einstein had then simply assumed that a bare 

Schwarzschild radius was impossible, but he had not really worked through the physics needed 

to sustain its impossibility. For he was otherwise unable to give a more cogent response. He 

needed time. That response came in the next meeting of April 7. Einstein argued that a mass, 

sufficiently condensed to bring about the Hadamard catastrophe, was physically impossible. He 

recalled Schwarzschild’s earlier calculation that the pressure inside the mass would become 

infinite at the center, before the Hadamard catastrophe was realized; and also that clocks there 

would halt. 

 Once again, contrary to Einstein’s methods, we can draw a spacetime diagram that 

represents how Einstein conceived the quadratic differential form (5). On the right, Figure 4 

shows the many, distinct events it attributes at the Schwarzschild radius for the differing values 

of the time coordinate t. The left of the figure shows corresponding part of the Schwarzschild 

spacetime in Kruskal coordinates. 

 

 
9 For editorial discussion see Kormos Buchwald et al. (2012, p. xlviii). 
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Figure 4. Falling Light in Kruskal and Droste Coordinates 

 

Both show the worldline of a body that maintains a constant r/2m = 1.75 coordinate position in 

the Droste coordinates of (5). The worldline is vertical in the Droste coordinates shown on the 

right and a hyperbola in Kruskal coordinates shown on the left. The worldlines of light 

propagating towards and away from the r = 2m radius is shown on the right in Droste 

coordinates. They pass through events t=0, r/2m = 1.5, 1.75. Both of the worldlines are 

asymptotic to the Schwarzschild radius r = 2m. The same trajectories are shown on the left in 

Kruskal coordinates as straight, diagonal lines. These fully extended trajectories pass through the 

Schwarzschild radius, shown as dashed diagonal lines, and continue to contact either the past or 

future singularity. 

3.4 Einstein’s Definition of a Singularity 

 Einstein’s remarks in these two papers (1935, 1939) enable us to identify more precisely 

what he meant by a singularity in these contexts. 
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 First, we can say what his conception is not. It is not the modern conception of a failure 

of the intrinsic geometry, such as the divergence of curvature invariants. Is it a zero-valued 

component of the metric tensor? In (5) we have a zero-valued metrical component, g44 = (1-

2m/r) = 0 at r = 2m, the events that Einstein and Rosen identify as singular. However, we shall 

see in Einstein and Rosen’s treatment of their “bridge” that the mere fact of a zero-valued 

component of the metric tensor is insufficient for a singularity. This is not unexpected. A 

vanishing component of the metric tensor may be completely benign, as is commonly the case 

with off-diagonal components. Vanishing diagonal components, however, can be associated with 

a degeneracy of the metrical structure. A degeneracy is not a singular breakdown. The familiar 

example is the spatial metric of a Newtonian spacetime. Using ordinary Cartesian coordinates for 

space and absolute time as the time coordinate, the metric has the form 

ℎ+, = :

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

< 

It assigns ordinary Euclidean lengths to separations in space, but zero length to separations 

between events at one point in space but with different absolute time coordinates. 

 Correspondingly, we shall see that a diverging metrical component is also insufficient for 

there to be a singularity.10 In Einstein and Rosen’s analysis of their “bridge” (below), they show 

that the diverging g11 = - 1/(1-2m/r) = ∞ at r = 2m can be regularized by a one-to-one coordinate 

transformation. 

 What further conditions are needed for Einstein to identify a singularity? Einstein and 

Rosen specified them above in their discussion of the line element (3) in accelerated coordinate 

system: 

… the fact that the determinant of g of the gµn vanishes for x1= 0. The contravariant 

gµn therefore become infinite and the tensors Riklm and Rkl take on the form 0/0. 

 
10 We saw above that Einstein and Rosen (p. 35) found the Schwarzschild solution (5) in Droste 

coordinates to be singular since “g11 for r = 2m becomes infinite and hence we have there a 

singularity.” I read this formulation as tacitly presuming that the infinity produces problems 

elsewhere when it propagates through to other quantities. 
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It is not the vanishing or the divergence of components of the metric tensor, but the fact that their 

extreme values propagate through the theory, generating more infinite quantities or indeterminate 

quantities of the form 0/0 elsewhere. In particular, the quantities used to define the source-free 

field equations, the Riemann tensor Riklm and its contraction Rkl are compromised. 

3.5 Hilbert’s Definition of a Singularity 

 Einstein and Rosen’s formulation appeared roughly two decades after Schwarzschild’s 

solution was found. A similar but not identical characterization was published earlier by Hilbert 

in his 1916 “Foundations of Physics” and an equivalent version was given in his lectures from 

that summer. In the second part of his highly influential December 1916 communication on 

general relativity, Hilbert (1916) affirmed that the Schwarzschild line element (5) is singular at 

both radial coordinate positions, r=0 and r=a, where r=a, corresponds to the Schwarzschild 

radius r=2m of (5). He then gave the applicable definition of regularity, that is, of non-singularity 

(1916, p. 70, his emphasis): 

That is, I call a metric or a gravitational field gµn, at a position, regular, if it is 

possible, through reversible, one-to-one [eindeutig] transformation, to introduce 

such a coordinate system, that, for it, the corresponding functions g’µn, are regular 

at that position, i. e. in it and in its neighborhood [they] are continuous and 

arbitrarily often differentiable and have a determinant g’ different from zero. 

Earlier that year, in lectures given over Göttingen’s summer semester, Hilbert (1916, p. 252) 

gave another version of his characterization: 

We call a gravitational field or a metric “regular”—this definition was still to be 

added—if it is possible to introduce such a coordinate system that the functions gµn 

are regular at every position in the world and have a determinant different from 

zero. We further designate an individual function as regular if it is finite and 

continuous along with all its derivatives. This is, incidentally, always the definition 

of regularity in physics, while in mathematics it is required that a regular function 

be analytic. 

The metric [(5)] has singularities for α > 0 and, correspondingly, α  £ 0, at the 

position r = 0 and r = α, and correspondingly at r = 0. If we consider that these 



 24 

singularities arise in the absence of masses, then it seems also plausible that they 

cannot be eliminated by coordinate transformation. 

 The singularity identified by Hilbert in these characterizations is specifically one arising 

in analytic expressions, such as the Schwarzschild line element (5), when they are understood to 

belong to a set of expressions closed under one-to-one coordinate transformations. The definition 

was not a means of impugning the Droste coordinate system as a preliminary for further analysis 

of the geometry of the spacetime at the Schwarzschild radius. The singular character of the line 

element at the Schwarzschild radius was, for Hilbert, a failure of the physics directly. 

Immediately after presenting the Schwarzschild solution in Droste coordinates and prior to 

giving the above definition of regularity in his 1916 lecture notes, Hilbert (1916, p. 251) had 

declared: 

According to our understanding of the nature of matter, we can consider as 

physically realizable solutions gµn of the [source-free gravitational] differential 

equations Kµn = 0 only those are regular and free from singularities. 

The same sentiment appears after the corresponding definition in his published communication 

(1916a, p.70) “…in my opinion, only regular solutions of the physical fundamental equations 

represent reality immediately…” 

 These formulations are important. First, in the 1910s, when Einstein was completing his 

discovery of general relativity, there was no higher standard of mathematical excellence than 

David Hilbert in Göttingen. We might not now favor the characterization of singularities that he 

advanced. We cannot now dismiss it as a confusion of an Einstein, who, we would suggest, had 

brilliant physical intuitions but was prone to novice errors of mathematics.  

 Second, precisely because of his leading position, Hilbert’s formulation was 

authoritative. When Laue (1921) identified the Schwarzschild radius as singular, it was in 

conformity with Hilbert’s definition. He wrote (p. 215): 

… the singularity of the metric ([5]) at [r = 2m] cannot be eliminated by the 

introduction of other coordinates, but lies entirely in the nature of things. 

3.6 Their Differences 

 Einstein and Hilbert’s definitions of a singularity are similar but not identical. The main 

difference is that Hilbert adds an explicit consideration: “… it is possible, through reversible, 

one-to-one [eindeutig] transformation, to introduce such a coordinate system, that …” This 
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condition fails at r = 0 for an ordinary Euclidean space with radial coordinates r and q and 

Euclidean line element ds2 = dr2 + r2dq 2. It certainly seems perverse now to offer a definition 

that would render the simplest of geometries singular. However, we should not presume that 

Hilbert was guilty of so trivial a mathematical oversight. As long as his criterion is applied to 

mathematical expressions, it may be uncongenial now, but it commits no mathematical blunder. 

It simply asserts the singularity of the expression ds2 = dr2 + r2dq 2 at r = 0, but allows the 

regularity everywhere of the expression ds2 = dx2 + dy2, were x and y are the familiar Cartesian 

coordinates. 

 Einstein, however, was not committed to this level of mathematical purity. Presumably 

Einstein would have agreed with Hilbert’s definition in generic circumstances. However, he was 

willing to make exceptions, uncongenial to a rigorous mathematician, when his physical intuition 

called for it. Hilbert’s definition of regularity fails for the Schwarzschild solution (5) at q = 0.11 

We saw above that Einstein and Rosen (1935, p. 75) dismissed this failure with: 

The vanishing of the determinant of the gµu for q = 0 is unimportant, since the 

corresponding (spatial) direction is not preferred. 

Here they are deferring to the geometry, but without giving a more precise mathematical 

foundation for their reasons. This is an interesting contrast. Hilbert’s mathematical precision 

gives us a result we do not now like. Einstein’s mathematical imprecision gives us the result we 

do now like.  

 We now almost automatically would regularize a line element like ds2 = dr2 + r2dq 2 by 

introducing a new coordinate system, such as (x, y) that it not related by a one-to-one mapping 

with the original coordinate system (r, q). Einstein supposes that this sort of regularization is not 

compelled mathematically, but must be supported by physical considerations. This supposition is 

central to Einstein’s rejection of the geometric regularizations that we might now apply to all 

three examples discussed here. Appendix B offers a simple example to show that the 

regularization of the line element ds2 = dr2 + r2dq 2 is not a mathematical necessity, but requires 

a physical basis. 

 
11 The coefficient of df2, r2sin2q, vanishes at q = 0 and leads to g = 0. 
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 I set aside a complication with Hilbert’s definition for regularity. He does not specify 

whether it is merely a sufficient condition or both necessary and sufficient. If it is merely 

sufficient, then it does not preclude regularity at the origin of radial coordinates in a Euclidean 

space. The natural reading is to include necessity: that systems failing his definition of regularity 

are singular. I will read it that way. 

3.7 Einstein-Rosen Bridges 

 The principal function of Einstein and Rosen’s paper was to offer an account of particles 

that would foreshadow Einstein’s long-standing goal: a theory with a single unified field that 

embraces all atomic forms of matter. The Einstein-Rosen proposal was at best an intermediate on 

the way to this goal. It did not posit a single unified field, but employed two fields: the metric 

field gik of general relativity and the Maxwell four-vector potential ji of electrodynamics. The 

Maxwell field vector was needed to endow the particles with charge. However neutral particles 

could be represented with the metric tensor alone. The proposal was a development of the idea 

that the Schwarzschild radius in the Schwarzschild solution was an unrealizable surrogate for 

matter that would have a regular representation in a successor theory. 

 The core novelty of the Einstein-Rosen paper was a means of regularizing the singularity at 

the Schwarzschild radius so that the Schwarzschild solution could represent a particle. That 

singularity, it was noted above, did not arise from the vanishing or divergence of the coefficients 

of metric tensor at r = 2m. It arose from the vanishing of the determinant g. For division by its 

zero-value propagated through the formalism, yielding indeterminate quantities of the form 0/0. 

The contravariant metric gik is equal to [gik] /g, where [gik] is the co-factor of the metric tensor 

gik. This contravariant metric would then be used to contract the Riemann tensor to form the 

Ricci tensor, Rik, for the gravitational field equations. Following a remark by W. Mayer, Einstein 

and Rosen realized that they could avoid division by the troublesome determinant g if they 

replaced the source-free field equations, Rik = 0, by Rik* = g2Rik =  0. 

 An appeal of the new field equations was that the Schwarzschild line element (5) remained 

a solution and the line element ceased to be singular at r = 2m. To see its regularity, Einstein and 

Rosen rescaled the r coordinate of (5) by introducing a new coordinate u, where u2 = r – 2m. In 

the new coordinate system, the Schwarzschild solution became 

𝑑𝑠! = −4(𝑢! + 2𝑚)𝑑𝑢! − (𝑢! + 2𝑚)!(𝑑𝜃! + 𝑠𝑖𝑛!𝜃𝑑𝜙!) + - -!

-!)!$
/ 𝑑𝑡!           (6) 
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The troublesome g11 = - 1/(1-2m/r) = ∞ at r = 2m of (5) had been transformed to a benign g11 

=−4(𝑢! + 2𝑚) = -8m at the Schwarzschild radius u = 0. The corresponding zero-valued 

coefficient of (5), g44 = (1-2m/r) = 0 at r = 2m remained zero-valued as g44 = u2/( u2+2m) = 0 at 

u = 0. While this zero value would lead to g = 0, its zero value was no longer troublesome for the 

modified field equations. Einstein and Rosen (1935, p. 75) could declare the solution “free from 

singularities.” 

 In his more popular writing, “Physics and Reality,” Einstein (1936) was more explicit 

about the elimination of the singularity. After reviewing his work with Rosen, he concluded of 

the Schwarzschild solution in the form (6) (p. 321): 

This solution behaves regularly for all values of [u]. The vanishing of the 

coefficient of dt2 (i.e., g44) for [u] = 0 results, it is true, in the consequence that the 

determinant g vanishes for this value; but, with the methods of writing the field 

equations actually adopted, this does not constitute a singularity. 

 For our purposes, what matters is how the regularity of the Schwarzschild solution was 

established. The coordinate transformation u2 = r – 2m is a one-to-one mapping (assuming that 

the positive square root is taken for u). The requirement that coordinate transformations must be 

one-to-one had not been relaxed. Einstein and Rosen were still assigning all values of the t 

coordinate to events with u=0 (and each fixed q and f). That is, they are still representing, as 

infinitely many events, what is treated as a single event in the fully extended Schwarzschild 

spacetime represented in Figure 3. This requirement of one-to-one mapping must be abandoned 

if the Kruskal coordinate system shown in Figure 3 is to be adopted. 

 With this in mind, we can review what Einstein and Rosen have established with their 

bridge. The structure they called a “bridge” arises when the Schwarzschild solution (6) is 

considered for all values of -∞ < u < ∞. It was their representation for a single, uncharged 

particle. Even though they allowed all values of their coordinates in (6), their bridge only 

covered the two wedges of the exterior Schwarzschild spacetime of Figure 3. The interior was 

untouched. While they did not draw any figures, it is now common for us to find, such as in 

Kruskal (1960), that their bridge represented by figures akin to Figure 5. 
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Figure 5. Einstein-Rosen Bridge 

 

This figure shows a spacelike surface within the solution, spanned by the coordinates  -∞ < u < ∞ 

and 0 £ f < 2p. In the fully extended Schwarzschild spacetime, an event with u = 0 (or 

equivalently, r = 2m) at the neck of the bridge corresponds to a single event at the apex of the 

two wedges shown in Figure 3.12 For Einstein and Rosen, however, there were infinitely many 

such events, distinguished by different values of the t coordinate. For them, a better picture 

would be something like Figure 6. It shows a single bridge, as Einstein and Rosen would have 

conceived it, extended according to the development of the t time coordinate: 

 
12 This familiar figure should be read with caution. It represents well the topology of the two-

dimensional, spatial surface spanned by the coordinates r and f. It is poorer at representing 

metrical relations, in so far as we expect them to be induced by embedding in a three-

dimensional Euclidean space. For such an embedding, r might be a Cartesian coordinate in the 

vertical direction and x a Cartesian coordinate in the horizontal direction with an origin at the 

midpoint. A metrical distance ds in the r-x plane must satisfy ds2 = 1/(1-2m/r) dr2 = dr2 + dx2. 

Solving the resulting differential equation for x, we find that the horizontal displacement of the 

surface from the midpoint is 𝑥 = 4𝑚@ %
!$
− 1. That is, the curve of bridge is a parabola. The 

asymptotically flat surfaces on either end are fictitious surfaces at infinite Euclidean distance 

from the midpoint. 
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Figure 6. Einstein-Rosen Bridge with t degrees of freedom 

 

The key difference is how events at the Schwarzschild radius are treated. In the fully extended 

Schwarzschild spacetime, shown at the left, for a given set of angular coordinates, there is a 

single event picked out by the Droste coordinates at r=2m, for all values of t. In Einstein and 

Rosen’s conception, shown at the right, different values of t pick out different events at r=2m. 

That is, the set of events at r=2m for all t, forms a curve in the spacetime, for Einstein and Rosen, 

where it is just a single event in the fully extended Schwarzschild spacetime. 

3.8 The Static Line Element 

 Finally, there is a single word throughout Einstein’s discussions of the Schwarzschild 

solution that may appear innocent, but actually has a controlling influence on his analysis. All 

the forms of the solution Einstein discussed are identified as “spherically symmetric static 

solution of the gravitational equations.” That they must be “static” means that Einstein sought a 

line element in which all the gµn are independent of the x4 time coordinate; and g14 = g24 = g34 = 

0. 

 The physical intuition behind the condition is plausible: the symmetric field surrounding 

an idealized mass like the sun should not change as time advances; and it should be possible to 

foliate the field into distinct moments of time (which would fail for constant time coordinate 
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surfaces, if the g14, g24, g34 were non-zero). Because of its naturalness, this condition was 

assumed automatically from the first moments. It was stated explicitly in Einstein’s celebrated 

communication of November 19, 1915 (Einstein, 1915, p. 833). In it, he gave the first 

approximate solution for the spacetime of the sun in his near complete general relativity and used 

it to explain the anomalous 43 seconds of arc in Mercury’s orbit. Schwarzschild (1916, p. 190), 

in his first derivation of his solution, repeats the conditions, citing Einstein’s 1915 assertion of 

them. Droste (1916, p. 198) began with a stipulation of this static form for his line element. Both 

Weyl (1918, §30) and Laue (1921, §21) in their early texts on general relativity proceeded with 

the assumption of the same static form. 

 The effect of requiring this static condition, however, is severe. It precludes Einstein and 

these later relativists from finding a non-singular representation of the fully-extended 

Schwarzschild spacetime. The coordinate systems that are capable of covering the fully-extended 

spacetime, such as Kruskal’s, violate the condition. 

3.9 In Retrospect 

 What can we say in retrospect concerning Einstein’s treatment of the Schwarzschild 

solution? In a limited sense, it was adequate for the practical issues of solar system astronomy 

that drew only on the Schwarzschild solution outside the r = 2m event horizon. However, as 

research in gravitational physics progressed, Einstein’s algebraic approach to the Schwarzschild 

solution and his insistence on a static line element proved infertile. The geometric approach 

proved productive. The full extension of the Schwarzschild spacetime, past the event horizon at r 

= 2m, has provided some of the most important developments. A black hole with its curvature 

singularity has become the favorite testing ground for theories of quantum gravity. Advances in 

observational astronomy include the detection through gravitational wave astronomy of the 

coalescence of two black holes and the visual imaging of the event horizon of a black hole. In 

this regard, Einstein’s insistence on algebraic methods proved to be his own personal event 

horizon beyond which his gaze could not pass. 

4. The Mass Horizon in a de Sitter Solution 

 Einstein’s work in cosmology of the late 1910s triggered an earlier debate over just what 

counts as a true singularity in general relativity. The debate is especially interesting for present 

concerns since, in its course, Einstein was forcefully presented with the geometric deflation of 
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what he had identified as a singularity; we can be sure that Einstein knew of the extended 

geometry and we can follow how he argued against it. 

 The debate developed before and around Einstein’s celebrated 1917 paper, 

“Cosmological Considerations on the General Theory of Relativity.” Einstein’s goal was to find 

a cosmological solution of his theory that conformed with what he came to call “Mach’s 

principle.” It is the requirement later summarized in his (1918, p. 241, his emphasis) that: “the g-

field is determined by the masses of bodies without residue.” The principle has the consequence 

(p. 243) that “according to the gravitational field equations, no G-field is possible without 

matter.” 

 Einstein’s gravitational field equations of 1915 admit the spacetime of special relativity 

as a matter-free solution, an impossibility according to Mach’s principle.13 Einstein’s 1917 paper 

introduced a new cosmological solution that depicts a static, spherical space with a uniform 

matter distribution. Einstein found that he had to add a cosmological term l to his gravitational 

field equations so that they would admit the new solution. Mach’s principle was upheld in the 

sense that the modified field equations no longer admitted the matter-free solution of special 

relativity. 

 Einstein’s proposal ran into grave difficulties. Almost immediately, De Sitter found a 

matter-free solution of the l-augmented gravitational field equations. One of the great debates of 

modern physics erupted. At its core was the question of whether certain singular expressions 

identified by Einstein could be surrogates for source masses; and whether they were singularities 

at all. 

 The details of this episode and the resulting debate have been recounted elsewhere is 

greater detail and with greater insight than is possible here. A thorough recounting is found in 

editorial apparatus of the Collected Papers, Schulmann (1998), in the headnote “The Einstein-de 

Sitter-Weyl-Klein Debate” (pp. 351-57) and numerous footnotes elsewhere; in Janssen (2014, 

pp. 198–208); in Smeenk (2014); and in Earman and Eisenstaedt (1999, §3). Below I will focus 

just on the specific aspects of the debate concerning the singularities pertinent to present 

concerns. 

 
13 This is given as a motivation for modifying his gravitational field equations in Einstein (1918, 

p. 243). 
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4.1 Einstein on the Singularity in the de Sitter Solution 

 Einstein provided a synopsis of his then stable view of the de Sitter solution in a short 

note (1918a), “Critical Comment on a Solution of the Gravitational Field Equations Given by Hr. 

De Sitter,” communicated to the Prussian Academy on March 7, 1918. He formulated the 

solution to his source free, l-augmented gravitational field equations in a coordinate system (r, 

y, q, t) as: 

ds2 = - dr2 - R2sin2(r/R) [dy2 + sin2y dq2] + cos2(r/R) c2dt2                      (7) 

where R is the constant radius of curvature of a t = constant space. De Sitter had presented this 

line element in exactly matching notation as one version of his solution in de Sitter (1917a, p. 7, 

eqn. 8B). Einstein had selected this version of de Sitter’s solution because it has the key property 

of being static. That is, g44 = cos2(r/R) is independent of t, which means that (in geometrical 

language)14 the constant t hypersurfaces all have the same spatial geometry, which Einstein 

presumed on astronomical evidence to be the case for our universe. 

 Einstein proceeded to specify with considerable care why he judged there to be a 

singularity at the value r = pR/2 of the r coordinate for which g44 = cos2(r/R) c2 vanishes. He 

first laid out the conditions required for non-singularity (p. 270):15 

… it is a requirement of the theory that the [l-augmented gravitation field] 

equations hold for all finite points. This can then only be the case if both the gµn as 

well as the associated contravariant gµn (together with their first derivatives) are 

continuous and differentiable; therefore in particular the determinant g = | gµn | 

must disappear nowhere in the finite. 

This plausible condition, however, faced the same problem as the Schwarzschild solution in 

Droste coordinates: according to it, the de Sitter solution is singular at the origin r = 0 of the 

spherical coordinates. It is, presumably, with this difficulty in mind, that Einstein introduced a 

clarification (p. 271): 

 
14 And g14 = g24 = g34 = 0. 

15 Einstein’s concern with the finitude of the points derives from his disagreement with an 

assertion by de Sitter in a letter to Einstein of April 1, 2017 (Schulmann et al., 1998, Doc. 321) 

that the singular points are at infinity. 
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Further, the continuity condition for the gµn and gµn is not to be understood as 

requiring that there must be a choice of coordinates in which it [the continuity 

condition] is satisfied in the whole space. Obviously it must only be required that 

there is a choice of coordinates for the neighborhood of each point for which the 

condition of continuity is satisfied in this neighborhood; this restriction on the 

requirement of continuity arises naturally out of the general covariance of the [l-

augmented gravitation field equations]. 

Einstein then used this weakened condition to eliminate the apparent singularity at the origin: 

For the de Sitter solution now, according to [(7)] 

g = – R4 sin4(r/R) sin2y cos2(r/R) 

Thus to begin with, g vanishes for r = 0 and for y = 0. This relation, however, 

implies only an apparent violation of the condition of continuity, as can easily be 

shown through an appropriate change in the choice of coordinates. 

While Felix Klein would soon conclude that the singularity at r = pR/2 should be treated 

similarly, Einstein insisted otherwise. He continued: 

However g vanishes also for r = pR/2, and indeed here is a discontinuity that cannot 

be eliminated through any choice of coordinates. … Until proven otherwise, it is 

therefore to be assumed that the de Sitter solution has a real singularity in the 

surface located at r = pR/2, that is does not conform with the [l-augmented 

gravitational] field equations for any choice of coordinates. 

While Einstein took the analytic formula of line element (7) as the subject of analysis, for 

comparison purposes again, we can give a geometric picture of Einstein’s understanding. For 

constant t, the line element (7) reduces to a three-dimensional spherically curved space with 

radius of curvature R, divided in half by a singular surface at r = pR/2. Suppressing the q angle 

variable, one half of this space is shown in Figure 7 as a hemisphere with the singularity at its 

equator. The space is static, so that the hemisphere evolves forward, unchanged in time, as 

shown by the vertical t axis, and carries the singularity with it through time. 
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Figure 7. Einstein’s Conception of the de Sitter Solution 

 

De Sitter sent Einstein a summary of his new, proposed solution in a letter of March 20, 1917 

(Schulmann et al, 1998 Doc 313). Einstein responded four days later on March 24. De Sitter’s 

new solution was inadmissible as a serious candidate for cosmology for physical reasons: the 

singularity itself was problematic, as well as the solution’s matter-free character. Einstein 

summarized his concerns (Doc 317, Einstein’s emphasis): 

 Therefore it seems to me that your solution does not correspond to a physical 

possibility. The gµn  and gµn (together with their first derivatives) must be 

continuous everywhere. 

 In my opinion, it would be unsatisfactory if a world without matter were 

conceivable. Rather, the gµn-field should be fully determined by matter and not be 

able to exist without the matter. This is the core of what I mean by the requirement 

of the relativity of inertia. 

The “relativity of inertia” would shortly be given the more familiar title “Mach’s principle.” 

 Einstein’s objections to de Sitter’s solution continued in their correspondence. Einstein 

objected, for example, that at the singularity r = pR/2, since g44 = 0, the velocity of light drops to 

zero, the energy of a mass point would be zero and masses would have minimal gravitational 

potential, so they would accumulate there. (Einstein to de Sitter, July 22, 1917, Doc. 363, 
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Schulmann et al. 1998). Such a singularity is “in my opinion to be excluded as physically not 

coming into consideration.” For these reasons, Einstein remained recalcitrant. In a letter to de 

Sitter of July 31, 1917 (Doc. 366, Schulmann et al. 1998), he wrote that he could not “grant your 

solution any physical possibility” and:16 

For r = pR/2, the mass point has no energy; it does not exist there any more at all, 

but has eaten itself up completely on the way there. The admission of such cases 

appears to me to be absurd [sinnwidrig]. This will naturally always be true, 

regardless of how we may choose the variables. 

4.2 The Mass Horizon 

 Einstein’s opposition to de Sitter’s solution soon softened, but did not disappear. He 

found a way to accommodate de Sitter’s solution to Mach’s principle. The idea was to identify 

the singularity as a concentration of matter at the singular surface. It was a “mass horizon,” as it 

soon came to be called17, and responsible for the spatiotemporal properties of the world, in 

accordance with Mach’s principle. The proposal concluded Einstein’s March 7, 1918, critical 

comment on the de Sitter solution. He wrote (Einstein, 1918a, p. 272): 

In fact, de Sitter’s system [(71)] solves the [l-augmented gravitational field 

equations] everywhere, only not in the surface r = pR/2. There—as in the 

immediate vicinity of a gravitating mass point—the component g44 of the 

gravitational potential becomes zero. The de Sitter solution must in no way [be seen 

as] the case of a matter-free world, but much more as corresponding to the case of a 

world whose matter is all concentrated in the surface r = pR/2: this could indeed be 

demonstrated through a limiting process from a spatial to a surface-like distribution 

of matter. 

In foreshadowing this proposal in a letter to de Sitter of August 8, 1917, (Doc. 370, Schulmann 

et al. 1998), Einstein explained more fully that “… the falling of the g44 (to zero) in the approach 

 
16 Einstein use of the term “variables” and not “coordinates” conforms with his focus on analytic 

expressions formulated with variables as opposed to geometries with coordinates. 
17 The term “mass horizon” appears, for example in Weyl (1918, p. 226, 1919, p. 34) as 

Massenhorizont. 
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to r = pR/2 is to be thought of as caused through matter, just like the falling of g44 in the 

approach, f.[or] e.[xample] to the sun.” 

 Einstein’s proposal included a supposition that the mass horizon could be produced by a 

limiting process. Einstein reported with obvious satisfaction to de Sitter in a letter of April 15, 

1918 (Doc 506. Schulmann, 1998) that Hermann Weyl, in his new relativity text Raum-Zeit-

Materie, had done just the requisite calculation.18 Einstein, however, soon found he was not 

satisfied with the details of Weyl’s calculation and the two exchanged letters and proposals in 

April to June 1918 until Weyl’s corrections were acceptable to both.19 

 Hermann Weyl was a mathematician of the first rank. He was a student of Hilbert and 

Hilbert’s successor in Göttingen. His active engagement provided a mathematical ratification to 

Einstein’s assessment of the singular character of de Sitter’s solution. 

4.3 The Geometer’s Reaction 

 It took several decades before concerted opposition arose to Einstein and Hilbert’s 

judgment of the singular nature of the Schwarzschild radius. In the case of the de Sitter solution, 

that repudiation arose more quickly. Einstein and de Sitter’s proposals in cosmology attracted the 

attention of Felix Klein, a colleague of Hilbert’s at Göttingen, and perhaps the foremost 

geometer of his era. His 1872 “Erlangen program” sought to unify many disparate geometries in 

one system. Its leading idea was that each geometry could be characterized by a group. His 

approach fared poorly with the Riemannian spacetimes of variable curvature of Einstein’s 

general theory of relativity since the groups with which Klein worked were there, in general, 

trivial.20 The exceptions were the geometrically more symmetric Minkowski spacetime of 

special relativity and the two cosmologies of Einstein and de Sitter. They were homogenous 

enough to admit a non-trivial group structure. Hence it was not surprising that Klein took an 

interest in them. He repeatedly and clearly presented the geometer’s objection that Einstein’s 

singularity was a mere artefact of his choice of coordinate system. 

 
18 See Weyl (1918, §33) and a subsequent clarification in Weyl (1919). 
19 See Docs. 511, 513, 525, 535, 544, 551 in Schulmann et al, 1998. 
20 For discussion of the contrast, see Norton (1999). 
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 Klein reported his geometric analysis of Einstein’s and de Sitter’s cosmological solutions 

in lectures in Göttingen of May 7 and June 11, 1918. Their content was summarized in Klein 

(1918) and he subsequently published more expansive versions with the same essential content. 

Klein (1919) reported a version communicated to the Amsterdam Academy of Science in a 

meeting of September 29, 1918. Klein (1918a) reported a still more elaborate version 

communicated in Göttingen on December 6, 1918. 

 Klein’s analysis was set in a five-dimensional extension of the familiar four-dimensional 

Minkowski spacetime. Its line element was21 

ds2 = dx2 + dh2 + dz2 – dn2 + dw2                                              (8) 

The coordinates x, h, z and w are spatial and the coordinate n is temporal. Within this five-

dimensional space, he introduced an hyperboloid with radius of curvature R/c whose four-

dimensional surface is the space of the de Sitter solution: 

x2 + h2 + z2 – n2 + w2  = R2/c2                                                       (9) 

Klein then sought to recover the de Sitter solution in the form (7) employed at times by de Sitter 

and by Einstein in his communication of Einstein (1918a). To this end he introduced four 

spacetime coordinates, r, y, q and t, through the relations22 

x = R sin (r/R) cos y                                                         (10) *** (4.4) 

h = R sin (r/R) sin y cos q 

z = R sin (r/R) sin y sin q 

n = R cos (r/R) sinh ct/R 

w = R cos (r/R) cosh ct/R 

Transformation (10) replaces Klein’s original five coordinates by four. It follows that 

transformation (10) induces a relation among the new coordinates. Forming the sum of squares 

 
21 Klein included considerably more geometry in his full discussion than is relevant to the 

treatment of the singularity. He made contact with his work in projective geometry and 

suggested that, spatially, the solution should not employ spherical geometry, but elliptical 

geometry in which antipodal points are identified. 
22 For continuity with Einstein’s notation of (7), I have relabeled Klein’s variables according to 

q à r/R, j à y and y à q. 
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x2 + h2 + z2 – n2 + w2 using (10) affirms that the formula for the hyperboloid (9) holds as an 

identity among the four new coordinates. That is, these coordinates are restricted by their 

definitions to the surface of the hyperboloid. 

 This new coordinate system fails to cover the entire hyperboloid. To see this, form the 

ratio of the expressions for n  and w in (10) and recover 

n = tanh(ct/R)w                                                                             (11) 

For a fixed value of the coordinate t, relation (11) identifies a plane in the five-dimensional 

space: n = constant w . Each of these planes intersects the hyperboloid in a three-dimensional 

geometrically spherical space of constant t. As t varies from -∞ to +∞, the factor tanh(ct/R) 

varies from -1 to +1. It follows that these constant t spaces all lie between the two planesn = +w 

and n = -w, to which the hyperboloid is asymptotic. These planes are shown in Figure 8, in 

which two of the five dimensions have been suppressed. The new coordinates will cover the part 

of the hyperboloid lying within by the two-sided wedge formed by the planes n = +w and n = -w: 

 
Figure 8. Two-sided Wedge in the de Sitter Hyperboloid 

 It now follows that the new coordinates introduced in (10) become singular at antipodal 

points n = w = 0, where the two asymptotic planes intersect. The surfaces of constant t and their 

intersection are shown in Figure 9. The circles of constant t in the figure are, more fully, three-
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dimensional spherical spaces whose two angle coordinates, y and q, not shown. The intersection 

of all surfaces of constant t appear as two antipodal points on each of these circles. These two 

points are the projection onto the circles of a two-dimensional spherical surface within the full 

three-dimensional spherical space spanned by the coordinates r, y and q. 

 
Figure 9. Einstein’s Static Coordinate System for the de Sitter Solution 

 This sphere of intersection of all spaces of constant t is the singularity identified by 

Einstein that becomes the mass horizon. It is evident that, if the full spacetime is the 

geometrically homogeneous hyperboloid (9), then the singularity is simply an artifact of the new 

coordinate system introduced in (10). Indeed, if we take the hyperboloid to underlie de Sitter’s 

solution, then any judgement of special, singular regions contradicts the homogeneity of the 

hyperboloid. From this perspective, Einstein’s claim of a singularity must be mistaken. 

 In each of his presentations, Klein made this point of the spurious character of the 

singularity. He did not emphasize it, but was sure to make it. In his first reported publication, he 

concluded (Klein, 1918, p. 44): 

Thereby, the criticism which Einstein recently leveled against the de Sitter ds2 

(Berlin Academy of March 7 1918) is reduced to its true value. The singularity, 

which the de Sitter ds2 has at w = 0 and n = 0 depends only the arbitrariness with 

which the t is introduced. 
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In Klein (1919, p. 615), he remarked that at w = 0 and n = 0, “t becomes undetermined.” A 

footnote remarks: “However this is only a singularity of the coordinate t, not of the underlying 

manifold [(8), (9)].” Klein (1918a, p. 421) characterized the singularity at this point in the 

surface in a slightly different manner: “… it appears as something singular, that is, as the 

location of a world point for which t adopts the value 0/0.” Here Klein presumably drew on the 

inverse of relation (11), which Klein had written (1918a, p. 420) as23 

t = R/c log [(w +n) / (w -n)] 

When w  = n  = 0, the argument of the log function takes the indeterminate form 0/0. Klein’s 

(1918a, p. 418) was perhaps most dismissive: 

For the general analytic conception, one has thereby no singularity present other 

than that of the polar angle j at the origin of a common (polar-) coordinate system. 

Einstein’s assertion of a singularity is here compared to a simple error in understanding how 

polar coordinates work at the origin of a polar coordinate system. The polar angle coordinate 

does take on all values or an indeterminate value at the origin without impugning the geometry 

of the surface to which it is applied. Only a geometrical novice, we might suppose, would 

confuse this with a singularity. 

4.4 Assessing The Geometer’s Reaction 

 Modern commentators have celebrated Klein’s intervention as introducing the decisive 

insight into how singularities are to be treated in general relativity. Earman and Eisenstaedt 

(1999, p. 195) assess it as: 

The importance of Klein's contribution can hardly be overemphasised: for the first 

time in the history of GTR, what had been taken to be a real singularity had been 

shown to be merely apparent; and as well Klein had provided a paradigm for 

demonstrating the fictitious character of a singularity by getting rid of it by 

extending the spacetime; and his paradigm contained the realisation that the 

extension may have to be done by means of a non-regular coordinate transformation 

to non-static coordinates. 

 
23 Klein’s formula omits a factor of 1/2 found in standard expressions for the inverse of the 

function tanh(x). The factor was added silently in the reprinting of the paper in Klein’s collected 

papers, (1921, p. 609). 
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That Klein was an accomplished geometer intervening on a novice is suggested by Klein’s 

closing remarks in his letter of May 31, 1918. There, he emphasized the geometrical foundation 

of his understanding of the de Sitter solution (Schulmann, 1998, Doc. 552): 

With this, I would like to close today. My entire letter is intended to be only a 

precisification of my earlier, related communication. If I now give definite formulae 

in the place of geometrical considerations, that is done since with their help clearer 

expression is possible. However, geometrical considerations remain still the source 

of the whole train of thought. 

 While this may now be the modern assessment, it was not shared then widely by 

mathematicians of the first tier who worked on de Sitter’s solution. They fully understood 

Klein’s analysis and merely treated it as an alternative to Einstein’s. If anything, they favored 

Einstein’s view. For example, in his discussion of “de Sitter’s world,” Lanczos (1921, p. 540) 

reported Klein’s view: 

Now, since all points of this pseudosphere are equivalent and regular, any 

singularity of the line element can only derive from the coordinate system used. 

 However, he immediately retreated from Klein’s position by recalling Weyl’s supposition of a 

layer of matter around the singularity. 

It is a completely independent assertion and involves a singularity that cannot be 

removed by a transformation. 

The primary burden of Lanczos’ note was a close analysis of Weyl’s proposal. 

 Similarly, Weyl’s (1921) treatment of cosmology in his 4th expanded edition of Raum-

Zeit-Materie elaborated his own proposal for a mass horizon in the de Sitter solution. It then only 

briefly sketched Klein’s alternative in the closing pages (p. 256) of the section, without naming 

Klein. The alternative was introduced with a neutral “One recovers a metrically homogeneous 

world if …” Weyl left open the decision between the two systems. It is to be decided by their 

differing physical properties. 

The question arises whether it is the first or the second co-ordinate system that 

serves to represent the whole world in a regular manner. In the first case, the world 

would not be static as a whole, and it is consistent with the laws of nature that it is 

empty of mass: de Sitter proceeds with this assumption. In the second case, we have 
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a static world that is not possible without a mass-horizon; this assumption, which 

we have discussed more fully here, is preferred by Einstein. 

4.5 Einstein’s topological response 

 We can be sure that Einstein was well-informed of Klein’s geometrical analysis from the 

outset. Klein informed him of his work in letters of May 31 and June 16, 1918, roughly 

coincident with Klein’s (1918) presentations of May 7 and June 11 in Göttingen on de Sitter’s 

solution.24 (Schulmann, 1998, Docs. 552, 566). In the second, Klein gave a compact summary of 

the main analysis, comparable to the content of his communication (Klein, 1919) of September 

26 to the Amsterdam Academy. There was sufficient of the formulae for a reader of the letter to 

reconstruct the full analysis. Reporting on his recent communication in Göttingen, Klein 

introduced the analysis with a simple summary: 

I arrived at the result that the singularity you have noted in fact can be simply 

transformed away. 

Einstein’s reply came four days later in a letter to Klein of June 20, 1918 (Schulmann et al., 

1998, Doc. 567). His tone was conciliatory and unruffled. His letter began: 

You are quite right. De Sitter’s world is, in itself, free of singularities and its world 

points are all equivalent. A singularity only comes about through the substitution 

that affords the transition to the static form of the line element. This substitution 

alters the analysis-situs relations. That is, two hypersurfaces 

t = t1 

and t = t2 

intersect in the original representation, while they do not intersect in the static 

[representation]. This is related to the fact that one must have masses for the static 

conception, but not in contrast in the first [one]. 

Einstein’s direct reply to Klein’s assertion is illustrated in the difference between Figures 7 and 9 

above. Einstein made a point in topology, a field whose older name was “analysis situs.” In the 

static de Sitter solution of (7) depicted in Figure 7, the singularity consists of many two-

 
24 In the versions of (8) and (9) in the June 16 letter, in a minor aberration in his notation, Klein 

assigned the minus sign to w and not n. 



 43 

dimensional spheres, each distinguished by a different t coordinate. In the hyperboloid of Figure 

9 recounted by Klein, the singularity consists of a single two-dimensional sphere. All the t 

coordinates of (7) are assigned to this one sphere, since the hypersurfaces of each value of t 

intersect in the one sphere. It follows that the two singularities differ in their topology: Einstein’s 

is three-dimensional and Klein’ is two-dimensional. They cannot be related by a one-one 

coordinate transformation. Klein’s full hyperboloid, Einstein argued here, is distinct from the de 

Sitter solution of (7). 

 Einstein’s response to Klein was brief given what later assessments judged to be 

devastating criticism. However, it was brief since Einstein needed only to add the topological 

consideration. In an earlier letter to Klein, sometime before June 3, he had already explained in 

greater detail why he dismissed de Sitter’s solution. He summarized his dismissal in that earlier 

letter as (Schulmann, 1998, Doc. 556): 

From a physical point of view, I believe that I can assert quite definitively that this 

mathematically more elegant, four-dimensionally unified conception of the world 

does not correspond to reality. That is, the world seems to be constituted such that 

its finely distributed matter can remain at rest in a suitably choice of the coordinate 

system. 

He then gave the details. De Sitter’s line element (7) at least gave a static spacetime. However its 

matter must be located in the mass horizon that Weyl had analyzed. In contrast, Einstein’s own 

cosmology of 1917 had the requisite uniform matter distribution. Einstein was eager to be 

understood. He drew small pictures illustrating the matter distributions in space in his 1917 

cosmology and in the mass horizon of de Sitter’s solution. 

 To later commentators who interpret Klein’s letter as the intervention of an expert in 

geometry pointing out the error of a novice in geometry, Einstein’s response is fragile and 

unconvincing. Einstein’s patient tone indicates that he did not see it that way. He had no need to 

see it that way. Einstein regarded the primary element of his theorizing to be analytic 

expressions, such as (7). That the expression can be generated as a solution to his field equations 

by means of the hyperboloid is merely an artefact of its construction. It does not establish that the 

full hyperboloid is the physically applicable solution of Einstein’s gravitational field equations. 

Which that is, whether expression (7) or not, is a matter of physics. As we shall see below, the 

physics, in Einstein’s view, directed the selection of (7). 
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 Klein accepted Einstein’s response. The full hyperboloid was unobjectionable 

mathematically as a solution to Einstein’s gravitational field equations. However, its physical 

applicability to our universe was to be decided by physical considerations. Klein deferred to 

Einstein’s assertion that these considerations spoke against the full hyperboloid. Klein reported 

this assessment at the end of his December 6 communication in Göttingen. He noted that his 

analysis contradicted Weyl’s proposal of a mass horizon and continued (Klein, 1918a, p. 423): 

I have not checked the correctness of Weyl’s calculations. However, I am happy to 

adopt the understanding that Einstein has expressed in correspondence that the 

difference in our mutual results must be based on the difference in the coordinates 

used. What I designate as a single point of intersection with the application of the 

[coordinates] x, h, z , n and w, is a simply extended region with the use of the 

[coordinates]25 q, j, y , t (because of the undetermined, remaining values of t). It 

should not be hard to arrive at a full elucidation here. 

Having accepted Einstein’s narrow topological argument, Klein then gave his final assessment: 

My concluding vote on de Sitter’s claims, however, is that mathematically—up to 

that one still not fully clarified point—everything is in order. However, one is led to 

physical consequences that contradict our familiar way of thinking and, in any case, 

the agenda pursued by Einstein with the introduction of the spatially closed world. 

If Einstein had committed some novice blunder, Klein did not see it. Indeed, Klein’s criticism 

seems hasty. His barb was that Einstein’s singularity is no different from that at the origin of 

polar coordinates suggests a negligence on Einstein’s part. The barb is incompatible with 

Einstein’s earlier writing. For, as we saw above, Einstein (1918a) had addressed just this 

problem in his critical comment on de Sitter’s solution. He had noted the presence of just this 

sort of apparent singularity at the origin of the coordinates of the line element (7) and had 

explained why he found it to be eliminable in a way that the singularity at r = pR/2 was not 

eliminable. 

 
25 [JDN] Corresponding to r/R, y, q, t in (7). 
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 Einstein’s topological argument was a minor consideration in his thinking. In the next 

two subsections, we shall see that he was well acquainted with the issues Klein had raised and 

had well developed means to address them. 

4.6 Einstein and the Hyperboloid 

 It is perhaps tempting to imagine that, with his fixation on analytic expressions like (7), 

Einstein was unaware that de Sitter’s solution was represented most simply by the hyperboloid. 

The view is unsustainable. That de Sitter’s solution derives from the hyperboloid had been 

present, prominently, from the start. The hyperboloid is the second most simple relativistic 

spacetime and the simplest solution of Einstein’s augmented gravitational field equations. 

 To see its simplicity, it is helpful to consider the analogous case of an ordinary three-

dimensional space. The simplest case is just a flat, Euclidean space of vanishing curvature. The 

next simplest case is of a homogeneous, spherical space with the same positive curvature 

elsewhere. This second case can be constructed by the artifice of considering a four-dimensional 

Euclidean space with Cartesian coordinates x1, x2, x3 and x4 and the line element 

ds2 = dx12 + dx22 + dx32 + dx42                                          (12) 

This line element induces a constant, positive metrical curvature on a spherical, three-

dimensional hypersurface defined by 

R2 = x12 + x22 + x32 + x42                                             (13) 

An explicit expression for the metric on this hypersurface is recovered by using (13) to 

eliminate26 x4 from the line element (12) and to arrive at the line element and metric of the 

hypersurface27 

ds2 = gik dxi dxk     gik = dik + xixk / (R2 - r2)                                    (14) 

 
26 By substituting x4dx4 = - x1dx1 - x2dx2 - x2dx2 and x42 = R2 - r2 from (13). 

27 No single coordinate system can be mapped one-one to the surface of sphere, so there must be 

some anomalies. Writing (13) as x42 = R2 – x12 + x22 + x32, we find that each set of values of  

x1, x2 and x3 corresponds to two points on the sphere, according to whether positive or negative 

root of x42 is taken. The metric expression (14) is singular at the equatorial sphere where x4 = 0 

and R2 = x12 + x22 + x32, so that R2 - r2 = 0. 



 46 

where i, k = 1, 2, 3 and r2 = x12 + x22 + x32. 

 This construction, if promoted to a five-dimensional Minkowski spacetime, is the 

construction Klein employed for the de Sitter hyperboloid. Line element (13) and hypersphere 

(14) are the direct analogs of Klein’s line element (8) and hyperboloid (9). The main difference, 

aside from dimensionality, is that an hyperbola in a Minkowski spacetime is the curve of 

constant curvature analogous to the circle of constant curvature in a Euclidean space. Moving to 

higher dimensions, the hypersphere is a three-dimensional homogenous surface in a four-

dimensional Euclidean space. Its analog is the de Sitter hyperboloid, which is a four-

dimensional, homogenous hypersurface of constant curvature in a five-dimensional Minkowski 

spacetime. 

 We can have no doubt that Einstein was fully aware of the construction of the spherical 

space through (12), (13) and (14). These are the equations Einstein used in his 1917 cosmology 

paper (pp. 149-150) to introduce the spherical space of his 1917 cosmology. It is not possible 

that Einstein could have overlooked the analogy between his work of 1917 and the construction 

of the de Sitter hyperboloid. For de Sitter (1917) motivated his original derivation of his solution 

precisely by means of this analogy. Lest his readers could have any doubt of his use of the 

analogy, de Sitter employed the presentation (p. 1219), typographically taxing in the era of hot 

metal typesetting, of displaying the two derivations side by side, as shown in Figure 10. 

 
Figure 10. De Sitter’s Case A and Case B 

Case A is the three-dimensional space of Einstein’s 1917 cosmology. The closely analogous case 

B is de Sitter’s first presentation of his new solution to Einstein’s augmented gravitational field 

equations. Klein’s analysis employed a Minkowskian line element (8) with an indefinite 
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signature. To bring the two cases even closer together, de Sitter employed the then familiar 

device of an imaginary time coordinate x4 = ict so that his line element and metric were positive 

definite and his hypersurface was a hypersphere. De Sitter recognized that the artifice of an 

imaginary time coordinate was dispensable and did not alter the results. His footnote at the word 

“symmetry” is “We can also take x4 = ct. Then the four-dimensional world is hyperbolical—

instead of spherical, but the results remain the same.” 

 Finally, we can be sure that Einstein was fully informed of the analogy used by de Sitter. 

De Sitter’s results were communicated to the Amsterdam Academy on March 31, 1917. Days 

earlier, on March 20, de Sitter had already communicated his results to Einstein in a letter 

(Schulmann, 1998, Doc. 313). The letter employed the same side-by-side presentation of 

Einstein’s case A and de Sitter’s case B and reported the presentation of the hyperboloid in two 

further coordinate systems. This letter and de Sitter’s (1917) paper marked the start of an 

energetic correspondence between Einstein and de Sitter on the physical cogency of the new 

solution; and de Sitter followed up with several more publications elaborating on the solution. 

 For our purposes, what matters is that Klein, in 1918, had little new to tell Einstein. For 

Einstein was already well aware that the de Sitter solution was generated by means of a fully 

homogeneous hyperboloid whose geometry was everywhere regular. It is not credible that 

Einstein had somehow overlooked the fact that the singularity of the mass horizon arose as an 

artefact of the way the coordinates were applied to the hyperboloid. Einstein’s (1918a) earlier 

published critique of de Sitter’s solution has already compared the coordinate singularity at the 

origin r=0 with that at r = pR/2 and decided that they had a different character. That decision 

suggests that Einstein already had in hand his topological rejoinder to Klein. In any case, the 

whole issue was incidental to Einstein for his interest was the line element (7), independently of 

how it related to the hyperboloid.  

 The modern diagnosis of a geometrically sophisticated Klein correcting a geometrically 

naïve Einstein would appear to have the history inverted. In its place, we have Klein the 

geometer, whose vision is restricted to purely mathematical matters of geometry, corrected by an 

Einstein, who was willing to see beyond pure matters of geometry to a larger class of solutions of 

his gravitational field equations in the service of his physics. 



 48 

4.7 Einstein’s Physical Objections to the Full Hyperboloid 

 In Einstein’s view, at best, de Sitter’s analysis was an exercise in mathematics that 

uncovered new solutions of Einstein’s augmented gravitational field equations. What mattered to 

Einstein was not just the abstract mathematics, but which solutions satisfy physical conditions 

appropriate to our universe. To this end, Einstein provided two physical conditions that 

precluded de Sitter’s solution in all their forms. These two conditions controlled his analysis and 

he insisted repeatedly on them. 

 The first was the Machian intuition that had underpinned Einstein’s investigations into 

general relativity from the start and had figured prominently in his cosmological paper of 1917: 

the metric field is determined completely by the masses of bodies, without which no spacetime is 

possible. He gave the condition the name Mach’s principle in his Einstein (1918), where he 

reaffirmed forcefully his commitment to it (p. 242): 

… the necessity of retaining it is in no way supported by all colleagues. However, I 

myself view its satisfaction as unconditionally necessary. 

That commitment immediately ruled out de Sitter’s (1917) proposal of the full hyperboloid since 

it is a matter-free spacetime. 

 Einstein recalled his commitment to Mach’s principle in many places. We saw above 

that, only four days after de Sitter had informed Einstein of his new solution, on March 24 

Einstein give it as a reason for rejecting the physical admissibility of de Sitter’s solution 

(Schulmann, 1998, Doc 317, Einstein’s emphasis): 

 In my opinion, it would be unsatisfactory if a world without matter were 

conceivable. Rather, the gµn-field should be fully determined by matter and not be 

able to exist without the matter. This is the core of what I mean by the requirement 

of the relativity of inertia. 

De Sitter (1917) found Einstein’s remark so significant that he included it in a postscript to his 

1917 presentation (p. 1225). Only two days later, in a letter of March 26, Einstein repeated the 

point to Klein, this time most likely in the context of Einstein’s 1917 cosmology (Schulmann et 

al, 1998, Doc. 319): 

Whoever is not disturbed if the existence of a gµn field without field producing 

matter is possible according to the theory, and if a single mass (conceived as alone 
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in the world) can possess inertia—that is someone not to be convinced of the 

necessity of the new step. 

Einstein’s commitment to Mach’s principle remained firm after all the deliberations concerning 

the de Sitter solution had been settled. He reaffirmed it in his 1921 Princeton lectures, published 

as Einstein (1923). Over several pages, he repeated his Machian-inspired cosmological analysis 

at length (pp. 110-119). It included his formulation of Mach’s principle (p. 113, his emphasis): 

If we think these ideas consistently through to the end we must expect the whole 

inertia, that is, the whole gµn-field, to be determined by the matter of the universe, 

and not mainly by the boundary conditions at infinity. 

 The second physical condition was that an admissible cosmology must have a static line 

element in which, in particular, g44 is constant. This condition had been carefully deduced in his 

1917 cosmology paper from what he took to be the most basic of astronomical observations. He 

gave its starting point as (Einstein, 1917a, p. 184): 

The most important fact that we draw from experience as to the distribution of 

matter is that the relative velocities of the stars are very small as compared with the 

velocity of light. 

Proceeding step by step from this observational foundation, Einstein deduced that, to close 

approximation, the metric for spacetime on a cosmic scale must be static, that is, in some 

coordinate systems, satisfy 

g44 = 1     and    g14 = g24 = g34 = 0. 

The added condition of the constancy of g44 follows since, in the first approximation, it is the 

variability of g44 alone that controls the acceleration of free bodies.28 A constant g44 in the first 

approximation precludes any significant accelerations for the stars. The vanishing of the 

remaining metrical coefficient is not explained beyond “as always with static problems.” 

Presumably the intent is to preclude rotating coordinate systems in which Coriolis forces would 

appear. 

 This second condition completed the case for the rejection of the de Sitter hyperboloid as 

a viable cosmology. With the singularity of (7) reinterpreted as a mass concentration, this form 

 
28 As shown for example in Einstein (1923, p. 89). 
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of the de Sitter solution was compatible with Mach’s principle. The line element (7) was static in 

the sense that the metrical coefficients were independent of the time coordinate x4 and 

conformed with g14 = g24 = g34 = 0. However, its g44 = cos2(r/R) c2 was not constant and 

dropped to zero as the mass horizon was approached. The outcome was that free masses, such as 

stars, would be accelerated towards the cosmic masses at the mass horizon, just as we would 

expect from Newtonian intuitions. 

 This second condition was repeatedly stressed by Einstein as precluding the de Sitter line 

element of (7) as a viable cosmology. He wrote to de Sitter on June 14, 1917 (Schulmann, 1998, 

Doc. 351): 

It seems to me that a reasonable interpretation of the world before us necessarily 

requires the approximate spatial constancy of the g44, on account of the fact of the 

small relative motion of the stars. 

Einstein gave the same argument against the de Sitter line element (7) and in favor of his original 

1917 cosmology in his letter of early June 1918 to Klein (Schulmann et al, 1998, Doc. 556):29 

If the world were really so [as (7) depicts], then the fixed stars must have 

tremendous speeds, so that their statistical distribution could be maintained [sich 

erhalten], on account of the colossal differences of gravitational potential which 

must be present between the different points of such a world. The non-existence of 

great star speeds compels us to believe that matter in the large is not distributed 

unduly non-uniformly over the world. 

Einstein did not waver from this second condition. A careful recapitulation of it forms the second 

part of the case Einstein made for his cosmology in his 1921 Princeton lectures (Einstein, 1923, 

pp. 113-119). 

 The combination of these two conditions finally elucidates a puzzle in Einstein’s (1918) 

discussion of March 6 of Mach’s principle and his l-augmented gravitation field equations. He 

there expressed his expectation that (p. 243): 

 
29 It is unclear to me how Einstein imagines that a rapid motion could maintain the observed 

uniform distribution, 
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A singularity-free space-time-continuum with everywhere vanishing energy tensor 

of matter appears not to exist according to [l-augmented gravitational field 

equations]. 

This is a curious remark for Einstein to make a year after de Sitter had shown that just such a 

solution exists in the full hyperboloid. We might charitably guess that Einstein was tacitly 

including a further condition that the solution sought must be static, for then the full de Sitter 

hyperboloid would be excluded. 

 That this was the case is indicated by the correction to this remark that Einstein made to 

Klein in his letter of June 20, 1918 (Schulmann et al., 1998, Doc. 567). We saw above his 

concession in that letter that “de Sitter’s world is, in itself, free of singularities.” That concession 

was immediately followed by recalling the condition that imposes a singularity onto the solution: 

“A singularity only comes about through the substitution that affords the transition to the static 

form of the line element.” A few lines later, Einstein elaborated: 

My critical remark about the de Sitter solution requires a correction; there is in fact 

a singularity-free solution of the gravitational equations without matter. However, 

this world may in no way come into consideration as a physical possibility. For 

there can be no time t specified so that the three-dimensional slices t = const. do not 

intersect, and so that these slices are equal (metrically) to one another. 

4.8 In Retrospect 

 For all his certainty, Einstein’s position proved fragile. The astronomical affirmation of 

the expansion of the nebulae came within a decade by the end of the 1920s. It is fitting that 

Einstein and de Sitter (1932) co-authored a note in which the requirement of a static line element 

and the added l term in the gravitational field equations were both retracted. They posited a non-

static, expanding Einstein-de Sitter spacetime, distinct from the 1917 de Sitter solution. 

Einstein’s defense of Mach’s principle collapsed by the time of the writing of his 

Autobiographical Notes. He dismissed Mach’s analysis (1949, p. 29) as inappropriate for a 

consistent field theory. Einstein’s l outlived him. More recent work in cosmology has found that 

it is needed to accommodate our astronomical observations. Our current lCDM model of 

cosmology indicates that, in the distant future, a l driven expansion of the universe will bring 

our cosmos ever closer to a rapidly expanding, de Sitter spacetime with asymptotically depleted 

matter. Einstein would surely not be pleased. 
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PART II. THE HISTORICAL CONTEXT 

 To examine Einstein’s treatment of these three singularities in isolation gives an 

incomplete picture of Einstein’s understanding of them. His work, as we shall see in this Part II, 

cohered with an analytic tradition in mathematics that has long fallen from favor in modern work 

in relativity; and we shall see in the next Part III that his treatment of singularities conformed 

with one of the most enduring themes of Einstein’s work in physics, his sustained efforts to 

eliminate arbitrariness from physical theories. 

5. Analytic and Synthetic Geometry 

 Einstein’s privileging of the analytic approach was not a capricious partition of a 

homogeneous body of mathematics in distinct parts. For centuries, two traditions—the analytic 

and the synthetic—had cohabited in geometrical writings in a fertile synergy. The existence of 

the two traditions was a commonplace of mathematics when Einstein began his work on general 

relativity. The leading geometer of his time, Felix Klein, wrote a series of volumes intended for 

mathematics teachers in the high schools. The second volume on geometry derived from lectures 

Klein gave in the summer semester of 1908. In them, he wrote (1909, pp. 110-12, emphasis in 

original):30 

 However, I should like to add to this account an explanation of the difference 

between analytic and synthetic geometry, which always plays a part in such 

discussions. According to their original meaning, synthesis and analysis are 

different methods of presentation. Synthesis begins with details, and builds up from 

them more general, and finally the most general, notions. Analysis, on the contrary, 

starts with the most general, and separates out more and more the details. It is 

precisely this difference in meaning which finds its expression in the designations 

synthetic and analytic chemistry. Likewise, in school geometry, we speak of the 

analysis of geometric constructions: we assume there that the desired triangle has 

been found, and we then dissect the given problem into separate partial problems. 

 
30 The English translation here from the third edition (1939, p. 55) matches the German of the 

first 1909 edition in this passage. 
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 In higher mathematics, however, these words have, curiously, taken on an entirely 

different meaning. Synthetic geometry is that which studies figures as such, without 

recourse to formulas, whereas analytic geometry consistently makes use of such 

formulas as can be written down after the adoption of an appropriate system of 

coordinates. Rightly understood, there exists only a difference of gradation between 

these two kinds of geometry, according as one gives more prominence to the figures 

or to the formulas. Analytic geometry which dispenses entirely with geometric 

representation can hardly be called geometry; synthetic geometry does not get very 

far unless it makes use of a suitable language of formulas to give precise expression 

to its results. Our procedure, in this course, has been to recognize this, for we used 

formulas from the start and we then inquired into their geometric meaning. 

The difference sketched here by Klein is the age-old difference between Euclid’s and Descartes’ 

geometries. It is so important to the present paper that we give a banal example to illustrate it and 

to show how it can become problematic. 

 In Euclidean geometry, we might consider all the straight lines that can be drawn through 

some nominated point. In the absence of any other geometric figures, we have no way of 

distinguishing one direction from that point from any other direction. In this sense, the possible 

disposition of the lines is isotropic. 

 We recover the same result in Cartesian geometry by means of the two variables x and y 

and a linear relation over them: 

Ax + By = 0                                                                  (15) 

for real constants A and B. If the variables x and y are understood to be the coordinates of a 

Euclidean two-dimensional surface, this is the equation of a straight line through the origin (0,0). 

The isotropy of the possible dispositions of such lines is recovered from the leading idea of 

Klein’s “Erlangen Program”: each geometry is defined by the invariants of its characteristic 

group. The group of affine transformations: 

x’ = ax + by        y’ = cx + dy                                                        (16) 

for real constants a, b, c and d, is sufficient to characterize the isotropy of the disposition of these 

lines. Under the action of this group, the line represented by (15) it mapped to every other 

possible straight line passing through the origin. The totality of the lines is an invariant structure 

that is mapped to itself by the affine transformations (16). That fact is expressed most compactly 
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as a formal property of a symbolic equation: the covariance of the equation (15) under the affine 

transformations of the variables (16). 

 We can see how easily the compatibility of the two approaches can be disturbed. Assume 

that, instead of representing straight lines by the linear relations (15), we had proposed a 

functional dependence of the variable y on x: 

y = Cx                                                                  (17) 

for a real constant C. In this representation, the line along the y-axis corresponding to x=0 

becomes anomalous. It corresponds to something like the constant C taking an infinite value, or, 

perhaps, more carefully, all possible values of y must correspond to the single value of the 

variable x=0. The condition that (17) is a function is violated. The anomaly persists, even 

allowing for the covariance of (17) under affine transformations, in so far as an affine 

transformation would need to contradict the functional property of (17) to eradicate the anomaly. 

There is, of course, no corresponding anomaly in the Euclidean representation. 

 For definiteness, we summarize the key ideas of the two approaches. They share the same 

elements: the notion of a geometric space or surface; and algebraic equations in variables 

adapted to the surfaces. The key different is which takes priority: 

Synthetic approach: The geometric surfaces or spaces are the primary subject of 

investigation. The equations serve as an analytic means of describing them and anomalies 

in the equations may be neglected if they do not correspond to anomalies in the spaces. 

Analytic approach: The equations and their transformations are the primary subject of 

investigation. The geometric surfaces and spaces are supplementary and sometimes 

merely have an heuristic role in aiding in the construction of suitable equations. 

The two approaches are complementary. It would be difficult to pursue modern work in 

spacetime theories without employing both.  However different theorists will differ in the 

emphasis placed on each. In the most extreme example of the analytic approach, the geometric 

connections are all but completely suppressed. This happens so routinely that we now scarcely 

notice it. The volume V and temperature T of an ideal gas are related linearly, with the constant 

of proportionality fixed by the mass of the gas sample. Geometrically, each of these linear 

relations are represented by a straight line in VT space. This geometric fact is relegated to 

elementary didactics, if it is noticed at all. We would dismiss tensions between the geometry and 

analysis as anomalies of the geometry. The straight line along the T-axis where V = 0 does not 
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represent a sample of gas of zero mass that retains its zero volume at all temperatures. Rather it 

represents no gas at all. 

 Einstein, we have seen, favored the analytic approach heavily and gave its equations 

priority over the geometrical surfaces investigated in the synthetic approach. 

6. Two Traditions in Einstein’s Time 

 In the early twentieth century, when Einstein was developing his general theory of 

relativity, he drew on two manifestations of the analytic and the synthetic approaches. Synthetic 

geometry contributed to his theory through Gauss’ theory of surfaces; and the analytic approach 

contributed through Christoffel’s theory of the invariants of quadratic differential forms. While 

the connections between them were obvious, the two had developed as independent 

mathematical traditions.  

6.1 Gauss’ Theory of Surfaces 

 Gauss’ theory of surfaces provided the geometrical component of the foundations upon 

which general relativity is built. It was developed by Gauss in several documents in Latin in the 

1820s. They are collected and translated into English as Gauss (1902). The theory considered a 

two-dimensional surface of varying curvature with coordinates p and q, embedded in a three-

dimensional Euclidean space, with coordinates x, y and z. The distance between neighboring 

points in the Euclidean space was given by the linear element Ö(dx2 +  dy2 + dz2) and the 

corresponding linear element in the curved surface was given by (e.g pp. 20, 47): 

Ö(Edp2 +  2Fdpdq + Gdq2)                                                          (18) 

for E, F and G suitable functions of p and q. Gauss then computed the curvature at each point of 

the surface from the radii of curvature of sections by normal planes (pp. 15, 97) and also the 

curves of shortest distance (e.g. p. 97). 

 The extension of Gauss’ theory to higher dimensional spaces was undertaken at Gauss’ 

instigation in Riemann’s (1854) celebrated Habilitationsvortrag, “On the Hypotheses which lie 

at the Foundations of Geometry.” Gauss had embedded his two-dimensional curved surfaces in a 

higher dimensional Euclidean space. Riemann sought to extend Gauss’ analysis without using 

the artifice of an embedding space. Lacking a serviceable notion in then existing mathematics, 

Riemann struggled awkwardly to introduce the key concept: an n dimensional manifold of points 
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(n fach ausgedehnten Mannigfaltigkeit = n-fold extended manifold). He would then turn to the 

metrical relations defined on these manifolds. 

 When Einstein was developing general relativity, Gauss’ theory had developed into what 

had then come to be called “differential geometry.” The authoritative work was “Bianchi-Lukat.” 

(Lukat, 1910) It is Max Lukat’s authorized German translation of the second expanded edition of 

Luigi Bianchi’s Lezioni di geometria differenziale. While it introduces now familiar analytic 

mathematics associated with quadratic differential forms, it is a work of synthetic geometry. The 

analytic methods are secondary to its primary focus, the geometry of spaces and surfaces. What 

are their metrical properties? What are their curvature and geodetic properties? Which coordinate 

systems are usefully adapted to them? Which are the conformal transformations of the 

coordinates? It is an expansive work that continues in this vein for 24 chapters and over 700 

pages. 

6.2 Theory of Quadratic Differential Forms 

 Through Gauss’ introduction of the line element (18), quadratic differential forms 

became the foundational analytic structure of the geometry of spaces of variable curvature.  The 

mathematics of these differential forms could, however, be investigated independently of their 

application in geometry. Such investigation provided the analytic component that figured 

prominently in the mathematics used by Einstein in his general theory of relativity. 

 A foundational work historically in these investigations is Christoffel’s (1869) “On the 

transformations of homogeneous differential expressions of the second order.” The project of the 

paper is laid out in its first paragraphs. 

 In the differential expression 

F = S wi,k ∂xi∂xk;      i,k = 1, 2, …n, 

the coefficients w are arbitrary functions of the variables x1, x2, … xn that are 

independent of one another. If, instead of the latter, one introduces a system of 

functions of the new variables x’1, x’2, … x’n that are [also] independent of one 

another, then F goes over into a new differential expression 

F’ = S w’i,k ∂x’i∂x’k 

that is equal to the original by virtue of the substitution carried out. 

 Conversely if the differential expressions F and F’ are given, then one can pose 
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the question of which conditions are necessary, such that the one could be 

transformed into the other, and in case this is possible, which substitutions bring 

about the required transformation. 

What is notable is what is present and what is not present in this opening statement. 

 The project is formulated fully within analysis in terms of formulae for F and F’, 

expressed as functions of the variables x1, … xn,  It is to find substitutions of the variables under 

which the quantities F and F’ are equal, so that F is invariant; and to determine conditions 

necessary for the existence of the substitutions. 

 The project is not formulated as one in geometry. The variables are not coordinates of a 

geometric surface; the invariant F is not the metrical line element of such a surface; and the 

associate coefficients wi,k are not coefficients of a metric tensor. They are simply functions of the 

variables indicated and the project is to ascertain their behavior under substitutions of the 

variables. 

 The analysis continues without any explicit connection to geometry. What we now know 

as the “Christoffel symbols” are introduced. What we now call the “Riemann-Christoffel 

curvature tensor” is introduced without any special fanfare or name. It is simply a quantity, 

denoted by four indices “(gkhi)” (p. 54) that has a role in determining which transformations 

leave F unchanged. It is only in the last paragraph of the last page that a connection to geometry 

is made. Christoffel mentions that his quantity F is also known as the “square of the line element 

belonging to the space of three dimensions” and he directs his readers for details to Riemann’s 

celebrated, posthumously published Habilitationsvortrag of 1854. 

 This attribution marked the beginning of the now long-standing tradition of associating 

the origin of this four-index symbol “(gkhi)” with Riemann’s efforts to extend Gauss’ theory of 

curved surfaces in his address of 1854. As readers of Riemann’s Habilitationsvortrag know, this 

poses an historical puzzle. The quantity does not appear in the Habilitationsvortrag. For a work 

of such importance in geometry, it is striking for having few analytic expressions. Readers who 

persist in the quest for Riemann’s formulation of this quantity are directed to a later work in 

thermal physics, Riemann’s (1861) Commentatio. The quantity that comes to be known as the 

“Riemann-Christoffel curvature tensor” appears on p.95, in an equation that is labeled “(I).” The 
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vanishing of the quantity in (I) is the condition under which a general quadratic differential form, 

written as Sbi,i’ dsidsi’, can be transformed into a simplified form, written as S (dxi’)2. 

 While later literature commonly presents this equation (I) as a direct development of the 

geometric ideas of Riemann’s Habilitationsvortrag, a study of this literature by Farwell and 

Knee (1990) finds no sound basis for this interpretation. Rather, they find that the equation is 

developed independently of the geometry. They locate it in the development of what they call 

“tensor analysis” and conclude (p. 237):  

Riemann did not consider the equivalence of forms in relation to geometry, but 

rather in the context of heat conduction. Riemann’s mathematical derivations in the 

second part of the “Commentatio” contain no reference to heat conduction, but 

equally they contain no reference to geometry. The one allusion to geometry is an 

illustration, which is not linked to heat conduction and does not obviously therefore 

serve as a “useful addition.” 

No doubt Riemann recognized the importance of his equation (I) in differential geometry. 

However, his development of it proceeded independently of the geometry and belongs within the 

tradition of the analysis of quadratic differential forms. 

 Ricci and Levi-Civita’s (1900) “Methods of the Absolute Differential Calculus and their 

Applications” continues in the analytic tradition of Christoffel. Its purpose is to present what it 

calls the “absolute differential calculus” as a method with many applications. Einstein’s use of 

the calculus in general relativity has led to it coming to be known as “tensor calculus” and for it 

to be connected almost inseparably with Einstein’s theory. Hermann’s (1975) English 

translation, for example (p. ix), renders Ricci and Levi-Civita’s “systèmes covariants et 

contrevariants” as “Covariant and Contravariant Tensors” and their “Quadrique fondamentale” 

[fundamental quadratic differential form] as “Riemannian-Metrics.” (See Appendix: Einstein and 

Grossmann Generalize the Term “Tensor.”) 

 Ricci and Levi-Civita did not conceive their calculus as a theory of differential geometry. 

It was conceived as a general, analytic tool, one of whose applications lay in geometry. Modern 

readers, expecting a work in differential geometry, should pause at the opening sentence: 

Let us denote by T a completely general transformation of variables 

(1)           xi = xi (y1, y2, …, yn) 
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that is bijective and regular in the domain we will consider;… 

The analysis concerns variables. These x’s and y’s are not, in general, coordinates. They are only 

identified as such when later sections apply the methods to geometry. Much of the article 

reviews applications outside geometry. Chapter III considers applications in analysis. Chapter V 

treats applications in mechanics, which we would now identify as Lagrangian and Hamiltonian 

mechanics. Chapter VI is labeled as applications in physics. It investigates various field 

equations, such a Laplace’s equation for a potential, vector formulations involving the 

divergence and curl and the differential equations of electrodynamics and heat conduction. 

 The article does make many connections to geometry. Chapter II “Intrinsic geometry as 

an instrument of the calculus,” seeks to re-express the concepts of the calculus in geometric 

terms. It starts by identifying the quadratic differential form, expressed in terms of variables, 

with the line element of a geometry, expressed in terms of coordinates. A connection to Gauss’ 

theory of surfaces, however, is not made until Chapter IV “Geometric Applications.” Gauss’ 

theory is treated as something independent of the calculus. Ricci and Levi-Civita lament that the 

expositions of Gauss’ theory lack a unified method. Their goal is to apply their calculus to 

provide one (p. 165): 

The absolute differential calculus, on the contrary, leads to [a unified method] 

without any effort, by giving the theory as simple a form as possible. 

 We find a similar separation of the mathematics of quadratic differential forms in 

Wright’s (1908) treatise on quadratic differential forms. Its first “historical” chapter introduced 

the notion of a quadratic differential form through the line element of Gauss’ theory of surfaces. 

The chapter concludes by separating the general theory from this one application (p. 4): 

Thus far it is suggested that the invariants [of quadratic differential forms] are 

essentially connected with differential geometry. This is by no means the case. 

They are connected with a certain form, and any interpretation of this form leads to 

a corresponding interpretation for the invariants. 

To illustrate other interpretations, Wright notes that kinetic energy in Lagrangian mechanics is 

expressed by a quadradic differential form in the mechanics generalized coordinates. 

 Decades later, after Einstein’s general theory of relativity had become the most 

prominent application of Ricci and Levi-Civita’s calculus, Levi-Civita still presented the 

absolute differential calculus as a method, distinct from differential geometry, which was one of 
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its principal applications. Levi-Civita’s (1926) Absolute Different Calculus was given the 

parenthetic subtitle “(Calculus of Tensors).” This separation is marked by its care in 

distinguishing the variables of the calculus from the coordinates of a space. Chapter IV is 

devoted to problems in analysis. It opens with (p. 61): 

This chapter is devoted to the study of the effect on some analytical entities of a 

change of variables.  

It continues with the specification of the notion of a transformation of variables: 

Consider n independent variables x1 , x2, ... xn, which we shall as usual denote 

collectively by x, and suppose a transformation applied to them which leads to 

another set of n independent variables �̅�;… 

That this notion is in principle more general that the purely geometric notion, Levi-Civita then 

explained (Levi-Civita’s emphasis): 

The geometrical name for this operation is of course change of co-ordinates;… 

7. Einstein and Grossmann Adopt the Absolute Differential Calculus 

 We learn from later autobiographical recollections how Einstein came to the 

mathematical methods used in his general theory of relativity. He had by 1912 an already well-

developed program of research that sought a generalization of the principle of relativity and a 

theory of gravitation. In it, extending coordinate transformations beyond the Lorentz 

transformation would figure centrally.31 After Einstein’s return to Zurich in August 1912, he 

approached a friend from his university days, the mathematician Marcel Grossmann, for 

assistance. Einstein’s description (1956, p. 16) of the problem posed to Grossmann is likely 

somewhat anachronistic: how could he find generally covariant equations that would govern the 

metric tensor gik of spacetime. Grossmann searched the literature and found the work of 

Riemann, Ricci and Levi-Civita, that, Einstein recalled, extended Gauss’ theory of curved 

surfaces. Most important was what Grossmann soon called the “Riemann differential tensor” 

(Einstein and Grossmann, 1913, p. 35) and, in slightly variant form, the “Christoffel four-index-

symbol of the first kind” (p. 36). 

 
31 See Norton (2020) for details. 
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 Einstein and Grossmann’s collaboration resulted in the first sketch of the general theory 

of relativity, the “Entwurf…” or “Sketch…” paper, Einstein and Grossmann (1913). It contained 

the first published exposition of the mathematical methods to be used in the developing theory. 

Einstein delegated the exposition of these methods to Grossmann’s “Mathematical Part.” 

Grossmann made quite clear at the outset that his exposition would be analytic in its orientation, 

reflecting Ricci and Levi-Civita’s approach. He began his exposition by acknowledging his 

primary sources, Christoffel’s (1869) and Ricci and Levi-Civita’s (1900) paper (p. 23): 

The mathematical aids for the development of the vector analysis of a gravitational 

field, which is characterized by the invariance of the line element 

𝑑𝑠! = ∑ 𝑑𝑔&.𝑑𝑥&𝑑𝑥.&. , 

goes back to the fundamental paper by Christoffel [(1869)] on the transformation of 

quadratic differential forms. Proceeding from Christoffel’s results, Ricci and Levi-

Civita [(1900)] have developed their methods of the absolute differential calculus, 

i.e. [absolute in the sense] of independent of the coordinate system. It enables the 

differential equations of mathematical physics to be given an invariant form. 

The exposition that follows focused on analytic expressions and how they transform under 

coordinate transformations. The topics covered are standard and familiar to modern readers: the 

transformation rules for covariant and contravariant tensors, the conversions among covariant 

and contravariant tensors, the formation of new covariant quantities by covariant differentiation 

and eventually the Riemann tensor.  

 Once one looks for it, it is striking that there is essentially no explicit mention of any 

geometrical ideas. The focus is narrowly on the transformation properties of various analytic 

expressions. The omission was no oversight as Grossmann made clear, in an admission that 

modern readers might find startling (p. 24): 

… I have deliberately set aside geometrical aids, since, in my opinion, they 

contribute little to the intuitive understanding [Veranschaulichung] of the formation 

of concepts of the vector analysis. 

This treatment by Grossmann became the template used by Einstein in his subsequent 

developments of the mathematical methods needed by his new general theory of relativity. It is 

used in Einstein’s (1914) review of the still incomplete general theory of relativity; his 

triumphant (1916) review of the completed theory; and his text-book like exposition (1923). 



 62 

 These expositions followed Grossmann’s approach of focusing on the transformation 

properties of analytic expressions and shared its aversion to geometrical aids. Presumably, this 

reflected Einstein’s comfort with the analytic approach. It conforms with the question within the 

analytic approach that Einstein put to Grossmann at the outset in 1912. He asked after an 

equation and its transformation behavior (Einstein, 1956, p. 15): 

Is there a differential equation for the gik that is invariant under non-linear 

coordinate transformations. 

He did not ask the synthetic question of what spacetime geometry might generalize the principle 

of relativity and accommodate gravity. 

 There was an eclectic character to Grossmann’s exposition. He sought to use the methods 

of Ricci and Levi-Civita to subsume an existing literature of the vector analysis of four 

dimensional spacetimes. This vector analysis originated with Minkowski and was developed by 

Sommerfeld and Laue. One trace of this subsumption is the idiosyncratic use of the term “tensor” 

from vector analysis in the “Entwurf…” paper. Its use subsequently became standard in both 

physics and mathematics. (For details, see Appendix: Einstein and Grossmann Generalize the 

Term “Tensor.”) In his introductory remarks, Grossmann sought to reassure his readers of the 

success of the subsumption (p. 23) 

… the greater generality of the concepts formed in [the new general vector analysis] 

gives it a clarity that the special cases often lack. 

That the subsumption was successful may well be correct from Grossmann and Einstein’s 

perspectives. However, it had all but eradicated the synthetic-geometric perspective that 

Minkowski himself had advanced. In his celebrated popular lecture, “Space and Time,” 

Minkowski sought to suppress the analytic, that is, the emphasis on the transformation properties 

of the equations. He favored an elevation of the synthetic geometry in the concept of his four-

dimensional world of spacetime. He wrote (1908, p. 83, his emphasis): 

… the word relativity-postulate for the requirement of an invariance with the 

[Lorentz] group Gc seems to me very feeble. Since the postulate comes to mean that 

only the four-dimensional world in space and time is given by phenomena, but that 

the projection in space and in time may still be undertaken with a certain degree of 

freedom, I prefer to call it the postulate of the absolute world (or briefly, the world-

postulate). 
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Einstein made clear that he eschewed Minkowski’s geometric conception of special relativity in 

the introduction to his 1916 review article on his general theory. He characterized the advance 

made by Minkowski as (Einstein, 1916, p. 769):32 

The generalization of the theory of relativity was facilitated greatly through the 

conception the special theory of relativity was given by Minkowski. This 

mathematician first recognized clearly the formal equivalence of the spatial 

coordinates and the time coordinate and made it usable for the construction of the 

theory. 

What is notable in Einstein’s characterization of the advance is Einstein’s omissions of the idea 

of spacetime and its geometry. He has reduced Minkowski’s contribution to one that is 

expressible in the analytic language of “formal equivalence” of coordinates. 

8. Einstein Privileges the Analytic 

 The methods Einstein and Grossmann introduced were an eclectic mix of ideas: 

geometrical ideas from Gauss’ theory of surfaces; analytic ideas from Christoffel’s treatment of 

the invariants of quadratic differential forms; and vectorial ideas from the mathematics used in 

electrodynamics and special relativity. All are present in one form or another. However, when 

Einstein had to choose among the ideas, he favored the analytic. In addition to the cases noted 

above, here are just a few more examples of this favoring that permeates Einstein’s treatments of 

general relativity. 

8.1 Variables or Coordinates? 

 We noted above that Ricci and Levi-Civita called their x’s and y’s “variables” when they 

were part of a general analysis of expressions. It was almost only when they applied their 

methods to geometry that these variables were relabeled as “coordinates” (coordonnées). 

Einstein’s x’s and y’s were almost always called “coordinates” (Koordinaten). On one occasion 

of critical importance in the physical interpretation of the general relativity, he slipped back into 

the language of variables. In his review article, Einstein (1916, pp. 776-77) offered his “point-

coincidence” argument for the physical basis of a requirement of general covariance. We need 

 
32 This passage is from the first page of Einstein’s review article. This page was omitted from 

Einstein (1916a) in the later collection widely read The Principle of Relativity. 
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not rehearse the content of the argument,33 but only note how he represented his x’s (1916a, pp. 

117-18, my emphasis) 

… We allot to the universe four space-time variables x1, x2, x3, x4, in such a way 

that for every point-event there is a corresponding system of values of the variables 

x1 … x4. To two coincident point-events there corresponds one system of values of 

the variables x1 … x4, i.e. coincidence is characterized by the identity of the co-

ordinates. If, in place of the variables x1 … x4, we introduce functions of them, x’1, 

x’2, x’3, x’4, as a new system of co-ordinates, … 

Correspondingly, the variables are not “transformed” as coordinates usually are said to be. The 

new variables are introduced as functions of the old variables. We find a similar reversion to 

variable language when Einstein formulates his requirement of general covariance. He wrote in 

emphasized text (1916a, p. 117): 

The general laws of nature are to be expressed by equations which hold good for all 

systems of co-ordinates, this is, are co-variant with respect to any substitutions 

whatever (generally covariant). 

The term “substitutions” connotes the analytic operation of replacing one variable in an equation 

by another functionally dependent on it. 

8.2 The Principle of Equivalence 

 Einstein’s principle of equivalence played a central role both in Einstein’s discovery of 

his general theory of relativity and in his interpretation of the physical content of the theory. The 

principle, however, has proven quite recalcitrant to univocal interpretation. There is an expansive 

literature on the principle both struggling to understand its content and offering alternative 

versions of it.34 Here is the principle in Einstein’s (1916a, p. 120) review article: 

For, if we now assume the special theory of relativity to apply to a certain four-

dimensional region with the co-ordinates properly chosen, then the gst have the 

values given in (4) [diagonal form]. A free material point then moves, relatively to 

 
33 For details, see Giovanelli (2013). 
34 See Norton (1985) and Lehmkuhl (2020) for a variety of attempts to provide a cogent reading 

of Einstein’s formulations. 



 65 

this system, with uniform motion in a straight line. Then if we introduce new space-

time co-ordinates x1, x2, x3, x4, by means of any substitution we choose, the gst  in 

this new system will no longer be constants, but functions of space and time. At the 

same time the motion of the free material point will present itself in the new co-

ordinates as a curvilinear non-uniform motion, and the law of this motion will be 

independent of the nature of the moving particle. We shall therefore interpret this 

motion as a motion under the influence of a gravitational field. We thus find the 

occurrence of a gravitational field connected with a space-time variability of the 

gst. 

This formulation asserts that a Minkowski spacetime in one set of coordinates has no 

gravitational field, but in another set of coordinates it does. This understanding has proven 

unintelligible to many later commentators. Synge’s (1960, p. ix) lament is now classic. He 

described his role: 

It is to support Minkowski’s way of looking at relativity that I find myself pursuing 

the hard path of the missionary. 

Einstein’s principle of equivalence was singled out for exasperated disdain: 

… I have never been able to understand this Principle. … In Einstein's theory, either 

there is a gravitational field or there is none, according as the Riemann tensor does 

not or does vanish. This is an absolute property; it has nothing to do with any 

observer's world-line. Space-time is either flat or curved, … 

Synge’s lament gives pithy expression to the understanding of a synthetic geometer who takes 

the geometry of the spacetime to be primary: there is just one spacetime. Changing the 

coordinate system does not alter it physically. 

 Einstein’s account becomes intelligible if we allow that his was not the synthetic 

approach. What mattered to him were the analytic expressions. In one coordinate system, the 

analytic expressions represent the motion as a linear relation among the coordinates. In the other 

coordinate system, the analytic expressions represents the same motion as a non-linear relation 

among the coordinates. Since he was not proceeding in the synthetic approach, the spacetime 

geometry has merely a supplementary role and does not control the physical interpretation of the 

analytic expressions. Thus Einstein can assign a different physical interpretation to each of the 
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these differing analytic expressions. And he does. One corresponds to a gravitation-free case; the 

other to the presence of a gravitational field. 

 That analytic expressions related by a simple coordinate transformation can represent 

different physical situations will surely seem untenable if one takes the geometry of the 

spacetime as primary. A manuscript on special and general relativity by Einstein (1920), written 

but not published in 1920, shows how Einstein conceived the separation physically of the two 

expressions. After a lengthy discussion of special relativity, he turned to general relativity. His 

introduction of “The Basic Idea of the Theory of General Relativity in Its Original Form” in Part 

II, Section 15, took an unexpected turn. He recalled the thought experiment of the magnet and 

conductor from his discovery of special relativity. In an inertial frame in which a magnet is at 

rest, the magnet is surrounded by a pure magnetic field. If one transforms to an inertial frame 

moving with respect to the magnet, a new entity, an electric field, is produced by the time 

varying magnetic field in the new inertial frame.35 He concluded (his emphasis): 

… the existence of the electric field was therefore a relative one, depending on the 

state of motion of the coordinate system used; and only the electric and magnetic 

fields combined could be granted a kind of objective reality, aside from the state of 

motion of the observer or, corr[espondingly], the coordinate system. 

Einstein then recalled the “happiest thought of [his] life” that, in 1907, inspired the principle of 

equivalence and set him on the pathway to general relativity: 

The gravitational field only has a relative existence, in a way similar to the electric 

field produced by magneto-electric induction. 

That is, the gravitational field of the accelerating coordinate system should be treated in the same 

way as the induced electric field. It has a relative existence depending on the coordinate system 

chosen, even if only the perspectives of both coordinate systems combined should be accorded 

objective reality. 

 We need not labor too hard to convince ourselves of the cogency of these attributions of 

reality. All that matters here is that Einstein was convinced of their cogency. He was quite 

 
35 For discussion of the importance of this thought experiment in Einstein’s discovery of special 

relativity, see Norton (2004). 
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comfortable relating attributions of reality to observers’ states of motion. In his Einstein (1911) 

defense of the reality of the Lorentz length contraction, he summarized its status as: 

… it [Lorentz contraction] is not “real” in so far as it does not exist for a co-moving 

observer; however, it is “real” for a non-co-moving observer, i.e. [it is real] in that it 

can be demonstrated in such a way by physical means. 

8.3 The Riemann-Christoffel Tensor 

 Einstein’s treatment of the Riemann-Christoffel tensor again illustrates his privileging of 

the analytic expressions and their transformations over the geometry of the spaces. He wrote in 

his 1916 review article (1916a, p. 141, his emphasis): 

The mathematical importance of this tensor is as follows: If the continuum is of 

such a nature that there is a co-ordinate system with reference to which the gµn are 

constants, then all the [components of the Riemann-Christoffel tensor] Brµst 

vanish. If we choose any new system of co-ordinates in place of the original ones, 

the gµn referred thereto will not be constants, but in consequence of its tensor 

nature, the transformed components of Brµst will still vanish in the new system. 

Thus the vanishing of the Riemann tensor is a necessary condition that, by an 

appropriate choice of the system of reference, the gµn  may be constants. In our 

problem this corresponds to the case in which,*[36] with a suitable choice of the 

system of reference, the special theory of relativity holds good for a finite region of 

the continuum. 

Here, Einstein’s interpretation follows closely the analytic understanding of Christoffel and 

Riemann in his analytic mode. The quantity provided necessary and sufficient conditions for one 

analytic expression—a quadratic differential form—to be transformed into another. 

 It also reaffirms Einstein’s interpretation of the principle of equivalence. Special 

relativity is recovered only after a coordinate system is adopted in which the metric is 

diagonalized. In other coordinate systems, such as are adapted to acceleration, a real gravitational 

field is present and we have left special relativity. 

 
36 Einstein’s footnote, his emphasis: “The mathematicians have proved that this is also a 

sufficient condition.” 
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 What matters for our purposes is this privileging of the analytic expressions. What 

matters also is what is missing: there is no mention of the geometry of spaces. Gauss’ treatment 

of the same result, in the case of a two-dimensional, positive definite geometry, directly 

expresses it in terms of the geometry of surfaces. It is his “remarkable theorem” (theorem 

egregium) Gauss wrote (1828, pp. 24-25, his emphasis):37 

THEOREM. If a curved surface can be developed onto any other surface, the 

measure of curvature at every point remains unchanged. 

 It is also evident that any finite part of a curved surface, after developing on 

another surface, will retain the same curvature. 

 A special case, to which geometers have hitherto restricted their investigations, is 

that of surfaces developable onto a plane. Our theory automatically teaches that the 

measure of curvature of such surfaces at any point is = 0. 

Here, the older expression to be “developed” means to be mapped in a way that preserves 

metrical properties. A cylinder, for example, can be mapped onto a flat plane by unrolling the 

cylinder. 

 Gauss’ theorem egregium can be promoted to the spacetimes of special and general 

relativity. A version of it expresses the significance of the vanishing of the Riemann-Christoffel 

tensor for those who privilege the geometry. An example arises in Eddington’s (1923) relativity 

text in Chapter 3, Section 36 (Eddington’s emphasis): 

Hence the vanishing of the Riemann-Christoffel tensor is a necessary condition for 

flat space-time. This condition is also sufficient—if the Riemann-Christoffel tensor 

vanishes space-time must be flat. 

Others gave essentially similar formulations at this time, such as in Tolman (1934, p. 186). 

8.4 Einstein on Minkowski 

 That Einstein’s understanding of the Riemann-Christoffel tensor so avoids geometrical 

conceptions is no aberration of the one example. We saw it already in Einstein’s (1916, p. 769) 

assessment of the advance brought by Minkowski’s reformulation of Einstein’s 1905 special 

theory of relativity as a theory of spacetime.  This striking assessment was repeated elsewhere. 

 
37 My translation corrects the English translation of (Gauss, 1902, p. 47) which combines 

sentences and drops some text from the original Latin. 
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 We would now say that Minkowski’s contribution fundamentally reconfigured what we 

take the theory to be. In Einstein’s original formulation, it was a theory of the Lorentz 

transformation of physical quantities. Minkowski’s formulation introduced a new concept, 

spacetime, and special relativity became the theory of its geometry. That theory introduced 

geometric structures that were not present in Einstein’s formulation. They include the light cones 

that divide spacetime displacements into timelike, spacelike and lightlike; a notion of four-

dimensional distance in the spacetime, the interval; that moving bodies trace out four-

dimensional, timelike worldlines; that hyperbolas are the geometric figures analogous to circles 

in Euclidean geometry; and so on. 

 In his popular Relativity, Einstein reported these geometric conceptions in a brief 17th 

chapter, after 16 chapters that recount the theory without them. When that already brief chapter 

came to report what was important in Minkowski’s reformulation of his theory, it identifies 

nothing geometrical in conception. Rather, it identified how Minkowski’s work enabled a 

clarification of the formal expressions used in the theory (Einstein, 1921, pp.38-39): 

But the discovery of Minkowski, which was of importance for the formal 

development of the theory of relativity, does not lie here. It is to be found rather in 

the fact of his recognition that the four-dimensional space-time continuum of the 

theory of relativity, in its most essential formal properties, shows a pronounced 

relationship to the three-dimensional continuum of Euclidean geometrical space. … 

In order to give due prominence to this relationship, however, we must replace the 

usual time co-ordinate t by an imaginary magnitude Ö-1ct proportional to it. Under 

these conditions, the natural laws satisfying the demands of the (special) theory of 

relativity assume mathematical forms, in which the time co-ordinate plays exactly 

the same ro1e as the three space coordinates. Formally, these four co-ordinates 

correspond exactly to the three space co-ordinates in Euclidean geometry. It must 

be clear even to the non-mathematician that, as a consequence of this purely formal 

addition to our knowledge, the theory perforce gained clearness in no mean 

measure. 

8.5 Einstein Against Geometrization 

 It needs only a cursory review of Einstein’s writings on general relativity to see that he 

privileged analytic expressions over geometric conceptions. Geometric curvature is rarely 
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mentioned. The transformations of analytic expression get thorough attention. Thus, it is the 

“Riemann-Christoffel tensor,” whose significance lies in its control over which analytic 

expressions can be transformed into which others. It is not, as it soon came to be called,38 the 

“Riemann-Christoffel curvature tensor” that measures the geometric curvature of space or 

spacetime. 

 It was plausible that this emphasis in Einstein’s writing merely reflected a disinterest in 

geometric conceptions. Lehmkuhl (2014) has shown that this is not so. In several writings, 

Einstein took issue with the idea that general relativity had in some sense “geometrized” gravity. 

For example, Einstein wrote a review of Émile Meyerson’s La deduction relativiste. In it, 

Einstein rebuked Meyerson for seeing in relativity a program of “the reduction [Zurückführung] 

of all concepts of the theory to spatial, or rather geometrical, concepts.”39 On the contrary, 

Einstein found that the idea of physics tracing back [“führe…zurück”] to geometry has no clear 

meaning. He concluded: 

The fact that the metric tensor is denoted as “geometrical” is simply connected to 

the fact that this formal structure first appeared in the area of study denoted as 

“geometry”. However, this is by no means a justification for denoting as 

“geometry” every area of study in which this formal structure plays a role, not even 

if for the sake of illustration one makes use of notions which one knows from 

geometry. Using a similar reasoning Maxwell and Hertz could have denoted the 

electromagnetic equations of the vacuum as “geometrical” because the geometrical 

concept of a vector occurs in these equations. 

Einstein offered an alternative conception. The goal of his relativistic work is unification, such as 

the unification of gravity and electricity then attempted by Weyl and Eddington (and of course 

Einstein’s own efforts at a unified field theory). Lehmkuhl illustrated how general relativity itself 

was regarded by Einstein as unifying earlier ideas of gravity and inertia. 

 
38 For example in Bergmann (1942. Part II, Ch. XI). 
39 The French text for these passages is in Einstein and Metz (1928, p. 164-65). Lehmkuhl 

(2014, p. 318) has located Einstein’s original German text that was translated into French by 

Metz. My extracts are from Lehmkuhl’s translation of this German text. 
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 Einstein’s treatment of the same issue a year earlier shows his impatience with the idea of 

geometrization. Hans Reichenbach had been working on Hermann Weyl’s efforts to extend 

general relativity to electromagnetism.40 In a letter to Einstein of April 24, 1926 (Kormos et al., 

1918, p. 412), Reichenbach had argued that the “geometrical representation of electricity” is 

“nothing more than a graphical representation and amounts, therefore, to nothing physical at all.” 

Einstein agreed and reinforced Reichenbach’s deflation in a letter to him of April 8, 1926 

(Kormos et. al, 2018, p. 424): 

You are completely right. It is preposterous to belief that “geometrization” means 

something essential. It is for me a kind of novice aid [Eselbrücke] for the discovery 

of numerical laws. Whether one attaches a “geometrical” conception to a theory is 

an inessential private matter. The essential thing with Weyl is that he subjects the 

formulas to a new condition (“gauge invariance”) as well as invariance with respect 

to [spacetime] transformations. 

Einstein’s reaction, once again, suppresses the geometry in favor of privileging the 

transformational behavior of formulae. 

 Einstein’s description of geometrization as an “Eselsbrücke” requires some reflection. It 

is literally “donkey bridge” and its meaning in Einstein’s time and now is an artificial aid, such 

as (presently) a mnemonic. It has a geometric connection that may be important. It is the German 

translation of the Latin pons asinorum. The term designates Theorem 5 in Book 1 of Euclid’s 

Elements. It owes its name to the bridge-like form of the figure and its reputation as the theorem 

whose understanding would first defeat someone without good geometrical abilities. A 

geometrical donkey could not pass over the bridge to the rest of Book 1. To reflect all these 

considerations, the term is translated here as “novice aid.” 

 The sense in which Einstein took geometrical considerations to be such a novice aid 

might be well captured by his use in his 1917 cosmology paper, described above, of a fictional 

four-dimensional space to introduce the line element of the spherically curved three-dimensional 

space of his new cosmology. It is an artifice that speeds us to the result, but is no basis for 

 
40 For further details of Reichenbach’s negative views about geometrization, see Giovanelli 

(2022; 2023, §2) and Lehmkuhl (2014). 
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concluding that there is factually a higher dimensional space into which the three-dimensional 

space curves. He wrote of it (1917, p. 149): 

The four-dimensional Euclidean space from which we started serves only to define 

conveniently [zur bequemen Definition] our hypersurface. 

The same point is made again of this construction in Einstein’s Princeton lectures (1923, p. 115, 

fn): 

The aid of a fourth dimension has naturally no significance except that of a 

mathematical artifice. 

 The notion of geometrization assailed in these exchanges with Meyerson and 

Reichenbach by Einstein may well be stronger than that of the synthetic conception outlined in 

this paper. If Einstein’s “reduction” [Zurückführung] has the same meaning as “reduction” in the 

more recent literature in philosophy of physics, then the reduction of gravitation to geometry 

would be akin to Maxwell’s reduction of light to electromagnetic radiation. If that notion is what 

Einstein intended, then he was well within his rights to reject it. 

 The modern, synthetic conception of geometrization is weaker. It is just that the interval s 

and the metric tensor gik are properties of an independently existing structure. It is called 

“geometrical” since it generalizes the structure that is the subject of Euclidean geometry. 

Einstein may well be right that a careful examination would find this terminology to be 

meaningless. But that does not dismiss the idea of the structure itself and that it is the primary 

object of investigation in general relativity. His exchanges with Meyerson and Reichenbach gave 

Einstein the opportunity to recognize the structure and endorse the corresponding synthetic 

viewpoint. He did not. Instead, he recalled analytic expressions and their transformations. 

Part III. Einstein, Singularities and Arbitrariness 

9. Singularities in Mathematics and Physics 

 The term “singularity” has powerful connotations today. We believe that the entirety of 

our universe sprang explosively from a singular big bang. The greatest menace offered by our 

physics is the voracious singularity at the heart of big hole. At both, we expect physical 

conditions so extreme as to outstrip all imagination. The term has proliferated in the popular 

conscience. “The singularity” is foretold as the moment when self-reinforcing technological 
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change transforms human civilization in unforeseeable ways. The idea is yet another touched by 

the great John von Neumann. According to Stanislaw Ulam (1958, p.7), he contemplated “…the 

ever accelerating progress of technology and changes in the mode of human life, which gives the 

appearance of approaching some essential singularity in the history of the race beyond which 

human affairs, as we know them, could not continue.” 

 The apocalyptic or perhaps just radical aura surrounding the notion of a singularity was 

not present in the mathematics and physics of Einstein’s time. In technical contexts,41 the notion 

figured primarily in mathematical work. There was no sense of a catastrophic threat or ominous 

breakdown. Rather a division into singular and non-singular behavior was part of the routine 

taxonomy of mathematical structures. To be non-singular was merely a frequent antecedent 

condition in useful theorems. 

 A result now familiar was also familiar then. As reported in Bocher (1907, p. 66),42 in 

linear algebra, a linear transformation of variables is many-to-one and has no inverse if the 

determinant of the matrix of transformation coefficients is zero. Then, the transformation and the 

matrix are both said to be “singular.” Of relevance to metrical geometry is a result shown later in 

Bocher (1907, Ch. X). A quadratic form of rank r, ∑ 𝑎+/0
" 𝑥+𝑥/, can always be reduced to a sum of 

squares by a non-singular transformation of the variables. 

 In this benign vein, talk of singularities was pervasive in the literature in differential 

geometry in the first decades of the twentieth century. Fowler (1920, p. 80) gave a general 

characterization of them in curves in which the usually applicable, general treatments break 

down (his emphasis): 

These cases of exception correspond to exceptional points on the curve, usually 

such that there are only a finite number in any finite region, at which the curve has 

some peculiar property such as a stationary tangent, a point of inflexion, 

 
41 The most common use of the term, however, was in non-technical discourse where it just 

designated a form of uniqueness. For example, Taylor’s (1813, p. 261) inventory of synonyms 

records it in the context of human personality types as: “The word singularity is applied by a 

natural hyperbole to any rare form of behaviour; to any unusual degree of peculiarity.” 
42 The condition that matrices be non-singular is so important that the term “non-singular” 

appears 472 times in the text; and the term “singular” appears 142 times. 
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exceptionally high order contact with its circle of curvature or its envelope, etc. All 

such points at which the curve possesses peculiar properties may be considered to 

be singular points on the curve… 

He continued to note that it is usual to restrict the term to cases in which certain first derivatives 

vanish. 

 One index of the ubiquity of the notion in geometry is provided by Volume 3, Part 3, of 

the authoritative Teubner Encyclopedia, Meyer and Mohrmann, (1902-1927) that is devoted to 

differential geometry. The terms “singular” and “singularity” (singulär, singularität) appear 162 

times in a volume of over 800 pages.43 They are used to describe singular points and their higher 

dimensional analogs, singular lines and surfaces. 

 Discussion of singularities was almost entirely restricted to the mathematical literature. 

While they arose also in physical applications in field theories, their presence commonly 

produced little if any comment. When they were recognized, there were not found to be so 

troublesome as to require any remedial action. Chapter IX on Spherical Harmonics of Maxwell’s 

Treatise begins with a lengthy section “On Singular Points at which the Potential becomes 

Infinite.” In the simplest case, Maxwell (1873, p.157) considered the potential V at a place r 

distant from electricity e condensed to a point with spatial coordinates (a, b, c). The potential V is 

given by his equation “(1)” and is V = e/r.  Maxwell reported the singular behavior: 

At the point (a, b, c) the potential and all its derivatives become infinite, but at 

every other point they are finite and continuous, and the second derivatives of V 

satisfy Laplace’s equation. 

He then reflected on the troublesome character physically of this result: 

Hence, the value of V, as given by equation (1), may be the actual value of the 

potential in the space outside a closed surface surrounding the point (a, b, c), but we 

cannot, except for purely mathematical purposes, suppose this form of the function 

to hold up to and at the point (a, b, c) itself. For the resultant force close to the point 

would be infinite, a condition which would necessitate a discharge through the 

 
43 The volume consists of article spanning two decades. They are dated 1902, 1902, 1903, 1903, 

1903, 1914, 1920, 1921 and 1923. 
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dielectric surrounding the point, and besides this it would require an infinite 

expenditure of work to charge a point with a finite quantity of electricity. 

Maxwell’s solution was, in effect, to ignore any oddity at the infinite point itself and confine 

consideration to the region surrounding it and approaching arbitrarily closely to it (Maxwell’s 

emphasis): 

We shall call a point of this kind an infinite point of degree zero. The potential and 

all its derivatives at such a point are infinite, but the product of the potential and the 

distance from the from the point is ultimately a finite quantity when e when the 

distance is diminished without limit. This quantity e is call the charge of the infinite 

point. 

 Maxwell’s tame treatment of singularities seems, however, to be the exception. They 

were otherwise largely ignored in the German electrodynamics literature. “Abraham-Foeppl” 

(1918) was the standard German language textbook on Maxwell’s electrodynamics in Einstein’s 

time. It made no mention of singular points in its fields. In its treatment of point sources 

(Quellpunkte) in Chapter 14, it noted that the radially-directed, vector force due to a point source 

of charge e diminishes with distance r from the source as e/r2. The text remarks that this quantity 

“becomes infinite, if one enters the source point,” but says nothing more. There is no suggestion 

that this infinity might be troublesome. Sommerfeld (1904-1922) is the volume of the Teubner 

Encyclopedia that treats electrodynamics. Articles from 1902 to 1906 occupy the first five 

hundred pages.44 The term “singular” appears just twice in incidental roles. 

 I have found one exception from Einstein’s time. Mie (1912/13) developed a theory of 

matter based on a modification of Maxwell’s electrodynamics. A major goal was to find a 

solution of the theory’s equations for the static, spherically symmetric field for an electron. The 

bulk of the second part of Mie’s paper is devoted to examining the singularities that appear in the 

static spherically symmetric solutions, especially at radial coordinate r = 0 and r = ∞. His goal, 

according to Pauli (1958, p. 192) was an everywhere regular solution, which he failed to recover. 

 
44 The next article is Pauli’s review of relativity theory of 1920 and then, finally, a 1921 article 

on the electron theory of metals. 
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 Einstein surely knew of this work of Mie, a prominent physicist whose work was taken 

up by David Hilbert. Einstein entered into a correspondence with him in 1917 and 1918.45 Mie’s 

work is discussed briefly in Einstein’s (1919, p. 349) early attempt to use gravitation theory in a 

theory of elementary particles and again in Einstein and Grommer (1927, p.3). Einstein judged 

Mie’s theory as unsatisfactory. I have found no evidence that Mie’s treatment of singularities 

played any role in Einstein’s thought. In any case, Einstein had no need of Mie’s theory to 

suggest to him the idea of representing particles as singularities. Einstein (1909, pp. 824-25) had 

already speculated that light quanta could be incorporated into electromagnetic theory if the 

quanta were themselves to singularities in the field. 

10. Einstein Against and For Spacetime Singularities 

 Einstein’s treatments of singularities poses two puzzles. The first—“against”—arises  

from the discussion of the last section. Until Einstein’s work on general relativity, singularities 

had little presence in physical theorizing. They were certainly not the theoretical anathema 

portrayed by Einstein. Why did Einstein choose to vilify them? 

 The second puzzle—“for”—is why, in spite of his vilification of singularities, they made 

several appearances in his theorizing. This second puzzle attracted comment from Earman and 

Eisenstaedt (1999, p. 194) 

… it should be emphasised how flexible and adaptable, how much of an opportunist 

Einstein was with respect to singularities. At first singularities were to be regarded 

with such horror that the presence of a singularity in the De Sitter solution was 

sufficient to disqualify it from serious consideration. But shortly thereafter 

singularities that correspond to mass concentrations are to be welcomed (at least on 

a provisional basis), for then De Sitter's solution can be accommodated without 

compromising the precious Mach principle. 

Elsewhere (p. 186) they describe Einstein’s use of singularities in his collaborative treatment of 

the problem of motion in Einstein, Infeld and Hoffmann (1938). Einstein is, they report, “always 

an opportunist” and the result is an unsuccessful “pact with the devil.” 

 
45 Schulmann et al. 1998, Docs. 346, 348, 407, 410, 416, 421, 456, 460, 465, 470, 488, 493, 532. 
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 This section will offer solutions to both puzzles. To the first, Einstein’s antipathy to 

singularities derived from an enduring and deep-seated presumption, fundamental to all his work 

in relativity. It is the requirement that arbitrariness must be eliminated from physical theory. To 

the second, we recall that general relativity was, for Einstein, only an intermediate theory on the 

way to his unified field theory. General relativity, by itself, did not represent matter adequately. 

Its singularities can mark where general relativity fails and the unified field would be needed to 

represent matter. Until that unified field theory was secured, the singularities could serve as a 

surrogate for that matter. Even then, Einstein’s decision to admit singularities provisionally was 

made within the confines of the ultimate goal of eliminating arbitrariness. We shall see that the 

limited use of singularities was, in Einstein’s estimation, the least arbitrary of the options 

available. 

 These issues are developed mostly within Einstein’s search for his unified field theory. 

For helpful survey’s of Einstein work on his unified field theory, see Sauer (2014) and van 

Dongen (2010). 

10.1 Against Singularities 

 Einstein did not initially harbor an aversion to singularities. Rather, his attitude agreed 

with the generally untroubled acceptance noted above in his contemporary literature that radially 

symmetric fields have a singularity at the source point. Such acceptance was implicit in 

Einstein’s (1909, pp. 824-25) speculation that light quanta may themselves be singularities of the 

field. Einstein himself made the connection to this earlier literature in a letter to Henrik Lorentz 

of May 23, 1909 (Klein et al., 1993, Doc 163): “ 

Rather I believe that light is grouped around singular point in a way similar to how 

we are used to assuming for electrostatic fields. 

 He glossed the supposition to Jakob Laub in a letter of May 19, 1909 (Klein et al., 1993, Doc 

161) as “Linear differential equations with singularities.” The supposition of linearity is 

important. Einstein’s light quantum hypothesis was that, thermodynamically, in the high 

frequency Wien regime, light quanta are mutually independent. This independence is directly 
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recoverable if the field equations are linear, since multiple solutions can be superposed by simple 

addition.46 

 A change in Einstein’s attitude coincided with the completion of his general theory of 

relativity and the move towards a unified field theory. It changed in time to ground Einstein’s 

criticism of de Sitter’s solution to his l-augmented gravitational field equations. Prior to the 

singularity’s recharacterization as a “mass-horizon,” its presence was sufficient grounds for 

Einstein to dismiss the solution. His letter to de Sitter of July 31, 1917 (Doc. 366, Schulmann et 

al. 1998) began: 

However I may conceive it, I cannot ascribe any physical possibility to your 

solution. The difficulty has to do with the fact that in the (naturally measured) finite  

the gµn assume singular values. 

We saw above that, in 1922 in response to a query from Hadamard, Einstein characterized the 

realization of the singular Schwarzschild radius as “an unimaginable misfortune [malheur] for 

theory...” In their joint paper, Einstein and Rosen (1935, p. 73) deplored singularities as 

nullifying the laws of a theory. (Their formulation is quoted in Subsection 10.3 below.) The 

search for singularity-free solutions was a prominent, stable feature of Einstein’s attempts at a 

unified field theory. He wrote in Einstein (1930, p.23): 

The most important question related to the (strict) field equations is that of the 

existence of singularity-free solutions, which could represent electrons and protons. 

Similarly, Einstein and Mayer (1932, p. 130) wrote: 

According to our conviction, a satisfactory field theory must manage with a 

singularity-free description of the total field, therefore also of the field inside 

corpuscles. 

In his popular, “Physics and Reality,” Einstein (1936, pp.306-307) expressed it this way: 

What appears certain to me, however, is that, in the foundations of any consistent 

field theory, the particle concept must not appear in addition to the field concept. 

 
46 As Einstein and Infeld (1949, p. 210) note, the failure of linearity becomes important in 

Einstein’s later attempts to represent particles by singularities, for otherwise interactions between 

particles would be impossible.  
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The whole theory must be based solely on partial differential equations and their 

singularity-free solutions. 

We can gauge the importance to Einstein of these singularity-free solutions by his choice of the 

question that closes the final page of his Autobiographical Notes. (Einstein, 1949, p. 94)47 

Die Frage ist: Was für im ganzen Raume singularitatsfreie Losungen dieser 

Gleichungen gibt es? --- 

The question is: what sort of singularity-free solutions are there of these 

equations.--- 

It is a poignant question since it is written with the understanding that his decades of work 

towards his unified field theory were incomplete. 

10.2 Einstein’s Against Arbitrariness 

 That Einstein opposed singularities in field theories is clear. What remains to be 

answered is the question of why he opposed them. The answer comes from an enduring 

supposition in Einstein’s thought. We should be striving for physical theories free of 

arbitrariness, he held. Einstein’s aversion to singularities is simply part of that project. 

 This supposition may seem less important compared to the more visible demands 

Einstein made on physical theories: the principles of relativity, Mach’s principle and 

determinism in quantum systems. However, a closer look at all of these more visible demands 

shows that they share a common aversion to arbitrariness. This commonality is not emphasized 

in Einstein’s earlier writings and it is quite plausible that he did not recognize its importance or 

even its presence. It emerges explicitly in Einstein’s later writings. Presumably it did so since it 

served his needs in addressing the physical issues of his later theorizing. The abandoning of 

Mach’s principle in his later years also made it possible for the aversion to arbitrariness that lay 

behind it to become a more explicit concern. 

 This aspect of Einstein’s thought has attracted less attention from historians. An 

exception is Don Howard’s (1992) study of the Eindeutigkeit [uniqueness] principle in 

philosophical work contemporary with Einstein. This demand for uniqueness, Howard argued, 

 
47 The series of dashes is an older German convention to mark the end of a section. I include the 

German here since the standard translation in the Schilpp volume is weak. It is: “The question is: 

What are the everywhere regular solutions of these equations? ---”  
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underlies Einstein’s insistence that we not admit a violation of determinism in general relativity 

in the context of the “hole argument.” A failure of uniqueness, we might note, amounts to the 

introduction of arbitrariness into our physical theorizing. 

 Perhaps the most explicit formulations came in his “Autobiographical Notes.” Einstein 

listed two conditions for the evaluation of physical theories. The first was compatibility with 

empirical facts. The second he found much harder to articulate. We favor “naturalness” and 

“logical simplicity,” where he used quotation marks for both terms in deference to the difficulty 

of precisely defining them. The related “inner perfection” of a theory, Einstein (1949, p. 23) 

noted, is enhanced if the theory is not chosen arbitrarily: 

The following I reckon as also belonging to the “inner perfection” of a theory: We 

prize a theory more highly if, from the logical standpoint, it is not the result of an 

arbitrary choice among theories which, among themselves, are of equal value and 

analogously constructed. 

A later version revealed that Einstein’s discomfort with arbitrariness was so deeply rooted that he 

could provide no deeper foundation for it. We have come to deepest of his convictions 

(p. 63, Einstein’s emphasis): 

… I would like to state a theorem which at present can not be based upon anything 

more than upon a faith in the simplicity, i.e., intelligibility, of nature: there are no 

arbitrary constants of this kind; that is to say, nature is so constituted that it is 

possible logically to lay down such strongly determined laws that within these laws 

only rationally completely determined constants occur (not constants, therefore, 

whose numerical value could be changed without destroying the theory).--- 

Once we know to look for it, we find the elimination of arbitrariness figuring in many places in 

Einstein’s thought. Here are some examples, that retrospectively can be seen to share the 

commonality, although we cannot assume that this was explicitly recognized by Einstein at the 

time. 

 Einstein used the elimination of arbitrariness in characterizing the motivation for the 

1905 special theory of relativity.  Its key innovation was the recognition of the relativity of 
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simultaneity; and that was possible, Einstein (1949, p. 53)48 recalled, only after an arbitrariness 

in earlier theories were identified:  

… all attempts to clarify this paradox [of the chasing of light] satisfactorily were 

condemned to failure as long as the axiom of the absolute character of time, viz., of 

simultaneity, unrecognizedly was anchored in the unconscious. Clearly to recognize 

this axiom and its arbitrary character really implies already the solution of the 

problem. 

 What became Mach’s principle was, for Einstein, a way of eliminating the idea of inertial 

systems of reference or inertial spaces as primitive posits in physical theories prior to general 

relativity. They were, as Einstein (1916, p. 771, his emphasis) put it, "bloss fingierte Ursache”—

"purely fictitious causes.” Earlier, Einstein (1913, p. 1260) explained his concern as:  

What is unsatisfactory is that it remains unexplained how inertial systems could be 

distinguished from all other systems. 

That is, their designation is an arbitrary element in these prior theories. In a letter to Lorentz of 

January 15, 1915, he was forceful in his insistence on the elimination of this arbitrariness 

(Schulmann et al, 1998, Doc. 47)” 

Of two things K1 and K2 that are equally justified in their definitions, one is 

distinguished without a physical basis (that is in principle accessible to 

observation)—My confidence in the logical consistency of natural events bristles 

against this most strongly [sträubt sich … aufs kräftig[st]e]. In my view, a world 

picture that does without this sort of arbitrariness is preferable. 

This form of unacceptable arbitrariness arose in Einstein’s cosmological reflections through the 

possibility of stipulating boundary conditions for the metric field at spatial infinity. It is worth 

examining his concerns here in more detail since he will elsewhere treat the arbitrariness of 

singularities as being of the same type. 

 In his cosmology paper (Einstein, 1917), he considered the case in which the metric field 

might be stipulated to adopt special relativistic limiting values as spatial infinite is approached. 

 
48 Complaints about the arbitrariness of theories appear elsewhere in Einstein’s (1949) 

recollections, such as pp. 31, 37 (arbitrariness of older field theories) and p. 55 (arbitrariness in 

assumption of existence of rigid bodies). 
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This might be the case, for example, if the cosmology consisted of a central collection of masses 

in an otherwise empty space. Such boundary conditions, Einstein (1917, p. 147) continued, 

would violate the principle of relativity, in so far as they introduce a preferred reference system; 

and it would be unstable according to statistical physics. The objection that attracted most 

discussion, however, was that it would violate what he would soon call Mach’s principle (1917a, 

p. 183, Einstein’s emphasis): 

… we fail to comply with the requirement of the relativity of inertia. For the inertia 

of a material point of mass m (in natural measure) depends upon the gµn; but these 

differ but little from their postulated values, as given above, for spatial infinity. 

Thus inertia would indeed be influenced, but would not be conditioned by matter 

(present in finite space). If only one single point of mass were present, according to 

this view, it would possess inertia, and in fact an inertia almost as great as when it is 

surrounded by the other masses of the actual universe. 

In his Princeton lectures, Einstein (1923, p. 110) had put a quantitative measure on how much 

arbitrariness is introduced by stipulating these boundary conditions: 

The hypothesis that the universe is infinite and Euclidean at infinity, is, from the 

relativistic point of view, a complicated hypothesis. In the language of the general 

theory of relativity it demands that the Riemann tensor of the fourth rank Riklm shall 

vanish at infinity, which furnishes twenty independent conditions, while only ten 

curvature components Rµn, enter into the laws of the gravitational field. It is 

certainly unsatisfactory to postulate such a far-reaching limitation without any 

physical basis for it. 

Einstein then (1923, p. 114, his emphasis) gave a terser formulation: 

If we think these ideas consistently through to the end we must expect the whole 

inertia, that is, the whole gµn -field, to be determined by the matter of the universe, 

and not mainly by the boundary conditions at infinity. 
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10.3 Against the Arbitrariness of Singularities 

 Why did Einstein so oppose singularities in his theories? Einstein and Rosen (1936, p. 

73) gave the answer. After recalling the presence of singularities in present theories, they wrote 

in a revealing passage:49 

… writers have occasionally noted the possibility that material particles might be 

considered as singularities of the field. This point of view, however, we cannot 

accept at all. For a singularity brings so much arbitrariness into the theory that it 

actually nullifies its laws. … Every field theory, in our opinion, must therefore 

adhere to the fundamental principle that singularities of the field are to be excluded. 

Thus, elsewhere in his popular “Physics and Reality,” after discussion the prospects of matter-

free theories, Einstein continued (1936, p. 312): 

How are we to proceed from this point in order to obtain a complete theory of 

atomically constituted matter? In such a theory, singularities must certainly be 

excluded, since without such exclusion the differential equations do not completely 

determine the total field. 

Several pages later (p. 320, his emphasis), he asserted the positive result: 

As a matter of fact, up to now we have never succeeded in a field-theoretical 

description of corpuscles free of singularities, and we can, a priori, say nothing 

about the behavior of such entities. One thing, however, is certain: if a field theory 

results in a representation of corpuscles free of singularities, then the behavior of 

 
49 The ellipses contain an embarrassing oversight. Einstein and Rosen justify their conclusion by 

recalling a solution of the gravitational field equations with two singularities at relative rest and 

thus not able to represent particles that attract. It was an embarrassing oversight since Einstein 

had earlier determined that the solution’s singularity filled an axis connecting the points. For 

details see Lehmkuhl (2019, §5, fn. 61). This oversight may have strengthened Einstein and 

Rosen’s resolve in choosing the strong verbiage of “nullify.” However, the aversion to 

singularities did not weaken in later work, after Einstein presumably had the occasion to 

recognize the oversight. 
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these corpuscles in time is determined solely by the differential equations of the 

field. 

If we reflect on familiar examples of singularities in spacetime theories, Einstein’s point is 

straightforward. Most simply, singular solutions are associated with parameters that must be set 

externally. In modern cosmology, for example, to recover a specific matter content of the 

universe, we need to augment a big bang cosmology by fixing the early density of matter 

emerging from the initial singularity.50 That fixing is done empirically by projecting backwards 

from present conditions.  

 While singularities may introduce some arbitrariness,51 uncontrolled by the theory’s 

differential equations, how did Einstein and Rosen come to conclude the far stronger claim that 

they nullify the laws of a theory? The answer is that Einstein equated the introduction of 

singularities into a theory with the arbitrary stipulation of boundary conditions. The connection 

was made explicitly by Einstein in a later appendix on the theory of the non-symmetric field, 

added to his Princeton lectures, Meaning of Relativity. The appendix is poignant, since it 

concludes with a recognition by Einstein in his final years, that then present mathematical 

methods were simply not adequate to developing his long-sought goal: a theory of particles 

whose exact solutions are free from singularities. In the midst of this concession, Einstein 

equated singularities with boundary conditions, which he regarded as then ineliminable (1956a, 

p. 164): 

A field theory is not yet completely determined by the system of field equations. 

Should one admit the appearance of singularities? Should one postulate boundary 

 
50 Einstein, as we might expect, took a dim view of the singularity (1956a, p. 124): “The 

introduction of a such a new singularity seems problematical in itself.” 
51 Perhaps Einstein also drew on the result that, in general, including singularities in a field 

greatly increases the size of the solution space of its governing differential equation and thus the 

extent of stipulations needed to identify the solution sought. The simplest example is that 

Laplace’s equation Ñ2j  = 0, for a potential j, has a unique solution j = 0 if we assume j 

vanishes at spatial infinity. Non-trivial solutions are only possible if we introduce singularities 

that play the role of charges. Einstein certainly knew this elementary result and used it in his 

solving of his weak field gravitational field equations in Einstein (1913, p. 1259). 
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conditions? As to the first question, it is my opinion that singularities must be 

excluded. It does not seem reasonable to me to introduce into a continuum theory 

points (or lines, etc.) for which the field equations do not hold. Moreover, the 

introduction of singularities is equivalent to postulating boundary conditions (which 

are arbitrary from the point of view of the field equations) on ‘surfaces’ which 

closely surround the singularities. Without such a postulate the theory is much too 

vague. In my opinion the answer to the second question is that the postulation of 

boundary conditions is indispensable. 

First, we can see how this equation can be sustained. Consider the Schwarzschild line element 

above 

𝑑𝑠! = − "
"#!"#

𝑑𝑟! − 𝑟!(𝑑𝜃! + 𝑠𝑖𝑛!𝜃𝑑𝜙!) + -1 − !$
%
/ 𝑑𝑡!  ,                           (5) 

It represents a one-parameter family of line elements satisfying the usual set of symmetry 

conditions and boundary conditions. If the parameter m is set to zero, we recover the line element 

of special relativity. Some other stipulation is needed to designate a different solution. We would 

now just specify a non-zero value for m. We could alternatively proceed as Einstein indicated. 

We could stipulate as another boundary condition that the sphere at radius r+e for all t, e > 0, has 

the metrical component gtt = (1–2m/(r+e)). 

 Another way to see the similarity that Einstein does not give is merely to replace the 

radial coordinate r by an impact coordinate u = 1/r. Then the Schwarzschild line element 

becomes52 

𝑑𝑠! = − "
-%("#!$-)

𝑑𝑢! − "
-!
(𝑑𝜃! + 𝑠𝑖𝑛!𝜃𝑑𝜙!) + (1 − 2𝑚𝑢)𝑑𝑡!  ,  

The usual boundary condition is that as r ® ∞, gtt ® 1 and grr ® -1. This same boundary 

condition is now relocated to the origin at u = 0, where is reappears as a singularity in which guu 

® -∞. 

 If Einstein treated the introduction of a singularity in the same way as the boundary 

conditions at infinity in cosmology, we can see why the introduction of such singularities might 

nullify the laws. For that nullification occurred in the cosmology. If we posit special relativistic 

 
52 Using dr = -(1/u2) du 
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boundary conditions at infinity, in Einstein’s example, that arbitrary boundary condition all but 

completely determines the inertial properties of bodies in the spacetime. 

10.4 For Singularities: Singularities as Surrogates for Matter 

 Given Einstein’s view of the corrupting role of singularities, we must ask why, in some 

contexts, he seemed quite comfortable with singularities. Einstein’s tolerance for these 

singularities is explained by two factors. First—to be discussed in this subsection—they were not 

to be taken seriously, physically, but merely marked where the source-free theory of spacetime 

failed and an unarticulated matter theory would take over. Second—to be discussed in the next 

subsection—Einstein tolerated singularities temporarily as the less arbitrary on the way to his 

long-term goal, a singularity free, unified field theory. 

 The use of singularities as surrogates for matter is a repeated device in Einstein’s work. 

Einstein and Rosen (1936) identified the singularity in a uniformly accelerated coordinate system 

as representing matter. Einstein reconciled himself to the singularity in the de Sitter solution by 

identifying it as a matter concentration. Elsewhere, Einstein sought to recover the equations of 

motion of free, massive particles without positing the geodesic equation by investigating the 

motions associated with singularities according to his source-free gravitational field equations. 

An earlier attempt was in his collaboration with Jakob Grommer (Einstein and Grommer, 1927; 

Einstein, 1927). A later attempt came in his collaboration with Leopold Infeld and Banesh 

Hoffmann (Einstein, Infeld and Hoffmann, 1938). 

 The justification for treating singularities as a surrogate for matter was simple: as long as 

the matter was spatially concentrated in a small volume, then the space outside this matter filled 

volume would be governed by Einstein’s source-free gravitational field equations. The plausible 

supposition was that collapsing an already concentrated matter distribution into a singular point 

would not greatly alter the surrounding spacetime. Thus, the spacetime surrounding a singularity 

could be used as a serviceable approximation for the spacetime surrounding a concentrated 

matter distribution. 

 This justification was given by Hilbert in his lectures from the summer semester of 1916. 

He wrote (Hilbert, 1916, p. 253, his emphasis): 

These mathematical difficulties [of solving the gravitational field equations] impede 

us, already f[or] e[example] in the construction of a single, neutral point mass. If we 

could construct such a neutral mass and if we could know the course of the <gμν> in 
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the neighborhood of this position, and if we let the neutral mass degenerate ever 

more towards a point mass, then the gμν would turn out to be a singularity at this 

point. We would have to regard such [a thing] as allowed in the sense that the gμν 

outside the immediate vicinity of the singularity correctly returns the process truly 

realized in nature. Now we must have before us such a singularity in [line element 

(5)]. Furthermore, we can say that the construction of a neutral point mass, even if it 

becomes possible later, will turn out to be so complicated that, for the applications 

in which one does not consider the immediate vicinity of the point mass suffering 

from a singularity, it has become possible already now to calculate with sufficient 

accuracy the approximately correct gravitational potentials. 

Hilbert included a similar, briefer assessment in his influential 1916 “Foundations of Physics” 

(Hilbert, 1916a, pp. 70-71): 

Although, according to my understanding, only regular solutions represent 

immediately the reality of the physical, fundamental equations, solutions with non-

regular points are still directly an important mathematical means for approximating 

characteristically regular solutions. In this sense, according to the processes of 

Einstein and Schwarzschild, the non-regular measure [line element (5)] at r = 0 and 

r = [2m] is to be seen as the expression for the gravitation of a centrally 

symmetrically distributed mass in the vicinity of the null point. … In the same 

sense, a point mass is also to be conceived as the boundary case of a certain 

distribution of electricity around a point. Indeed, I foresee in this place deriving the 

equations of motion of them from my physical fundamental equations. 

In keeping with Hilbert’s view, it became standard in early expositions of general relativity to 

treat the singularity at the Schwarzschild radius as sufficiently problematic physically as to be 

physically impossible. The routine response was that real masses must always have a size larger 

than this radius. For example, after announcing that the singularity at the Schwarzschild radius 

cannot be eliminated by a coordinate transformation, Laue (1921, p.215) continued: 

One must indeed conclude from this that each mass m, if of spherical form, 

necessarily has a radius greater than that corresponding to the value r = 2Cmc2 

[Schwarschild radius]. And in fact we so far know of no contradictory case, also not 

with atomic nuclei. 
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Eddington’s (1923) text drew a similar conclusion (p. 186): 

There is a singularity at r = 2m, so that the particle must have a finite perimeter not 

less than 4pm. 

 Einstein’s attempts in his collaboration with Grommer and with Infeld and Hoffmann 

clearly depend on this orientation.53 That is, they suppose that a singularity will behave 

sufficiently like a free mass to enable the recovery of the equations of motion of the free mass. 

Lehmkuhl (2017, 2019) has given an extensive analysis of Einstein and Grommer’s collaborative 

work and of further issues surrounding it. He concluded (2017, p. 212): 

… the singularity should be interpreted to signify a placeholder or a blind spot of 

the theoretical treatment, rather than something that should be interpreted literally, 

as referring and approximately true. 

Einstein, Infeld and Hoffmann (1938) proceeded explicitly with the same understanding. They 

recognized that the surrogacy of singularities for masses is an empirical assumption that may fail 

(p. 66): 

It is of significance that our equations of motion do not restrict the motion of the 

singularities more strongly than the Newtonian equations, but this may be due to 

our simplifying assumption that matter is represented by singularities, and it is 

possible that it would not be the case if we could represent matter in terms of a field 

theory from which singularities were excluded. 

They identified the security of their results in the security of the theory in the surrounding 

matter- and singularity-free regions (p. 80): 

For, although the equations of the field are undefined at the singularities, their 

validity in the regular region is sufficient to determine the motion of these 

singularities. 

 
53 The cogency of Einstein’s approach has been debated. Tamir (2012) has elaborated the 

critique that it is nonsensical to talk of the motion of a singularity, since a singularity is not a 

locus of events in the spacetime. Lehmkuhl (2017) has sought to vindicate Einstein’s approach 

by arguing that the motions traced in Einstein’s constructions do not need to be that of a true 

singularity but only a highly concentrated matter distribution. 
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We see the same attitude elsewhere in Einstein’s reaction to what became known as the “big 

bang” singularity in expanding universe cosmologies. Einstein and de Sitter (1932) had 

presented a simple expanding universe cosmology. In it, the scale factor increases with cosmic 

time t as t2/3, so that there is a curvature and matter density singularity at t=0. In their paper, 

Einstein and de Sitter made no mention of this time dependence or of this initial singularity. 

Presumably it did not attract their serious attention. The time dependency is only given later by 

Einstein in a little-known, 1933 article on cosmology, reported by O’Raifeartaigh et al. (2015). 

There Einstein presumed that a breakdown in the assumption of the uniform distribution of 

matter would mean that their equations no longer apply close to the initial time t = 0. 

 In an appendix to the 1937 second edition of his Princeton lectures, Einstein now 

included a more reflective assessment: the present general theory of relativity would likely break 

down in the early universe so that a singularity is not assured (Einstein, 1956a, p. 129):54 

The theoretical doubts are based on the fact that for the time of the beginning of the 

expansion the metric becomes singular and the density, ρ, becomes infinite. In this 

connexion the following should be noted: The present theory of relativity is based 

on a division of physical reality into a metric field (gravitation) on the one hand, 

and into an electromagnetic field and matter on the other hand. In reality space will 

probably be of a uniform character and the present theory be valid only as a limiting 

case. For large densities of field and of matter, the field equations and even the field 

variables which enter into them will have no real significance. One may not 

therefore assume the validity of the equations for very high density of field and of 

matter, and one may not conclude that the ‘beginning of the expansion’ must mean 

a singularity in the mathematical sense. All we have to realize is that the equations 

may not be continued over such regions. 

10.5 Singularities as the Lesser Arbitrariness 

 In using singularities as surrogates for matter, Einstein had not abandoned his enduring 

goal of eliminating arbitrariness from his physical theorizing. His goal remained a unified field 

 
54 A footnote a few pages earlier gave a terser assessment (Einstein, 1956a, p. 124): “It may be 

plausible that the theory is for this reason inadequate for very high density of matter. It may well 

be the case that for a unified theory there would arise no singularity.” 
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theory of matter in which particles were represented within regular solutions, free from the 

arbitrariness of singularities. We saw above through the 1936 proposal of Einstein-Rosen bridges 

that Einstein was even willing, at least temporarily, to alter his source-free gravitational field 

equations, if it would lead to a singularity-free account of particles. 

 The enduring difficulty for Einstein was that this prized unified field remained tantalizing 

beyond his reach. If he could not realize a theory free of arbitrariness, then, as a practical matter, 

he could seek to reduce the arbitrariness in his theories. His treatment of singularities conformed 

with this practice. 

 Einstein’s assimilation of the singularity in de Sitter’s cosmological solution as a mass 

horizon lay loosely within this conception. It was not a problem he had sought. De Sitter had 

pressed it on him. The singularity arose, we saw, through Einstein seeking a static gravitational 

field within de Sitter’s solution. Then, through the concept of the mass horizon, Einstein could 

conform the singularity with Mach’s principle and thereby to his goal of limiting arbitrariness, 

even if the de Sitter solution itself was not Einstein’s choice for a cosmology. 

 The project of a more sustained investigation of singularities that was chosen by Einstein 

concerned the use of singularities to recover the motion of free bodies. There is some evidence 

that Einstein came to this use of singularities as surrogates for matter after an early reluctance. In 

the text of his Princeton lectures of 1921, he reflected on the failure of then present theories to 

produce a serviceable theory of the inner structure of charged particles. A footnote abjured the 

use of singularities to represent the charged particles (1923, p. 55): 

It has been attempted to remedy this lack of knowledge by considering the charged 

particles as proper singularities. But in my opinion this means giving up a real 

understanding of the structure of matter. It seems to me much better to give in to 

our present inability rather than to be satisfied by a solution that is only apparent. 

These hesitations were gone by the time of his collaboration with Grommer.55 Their joint paper, 

Einstein and Grommer (1927, p. 3) described the state of electrodynamics and other field 

theories as disturbing (“störend”) and blemished (“Schönheitsfehler”) in having two foundational 

laws. A partial differential equation governs the fields and a total differential equation governs 

 
55 Lehmkuhl (2019, §4) attributes a leading role in the transition to Einstein’s correspondence 

with the physicist, Yur Rainich.   
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the motions of particles. While arbitrariness is not mentioned explicitly, the goal is to reduce the 

arbitrariness by eliminating one of the foundational laws. 

 Einstein and Grommer then consider whether the same “duality,” as they call it, is to be 

found in general relativity. They describe three approaches. The first is just to duplicate the 

duality by positing, as an independent law, that material points move on geodesics. The second is 

to introduce an energy tensor for matter. It follows from the gravitational field equations that 

such a tensor must obey a conservation law in the form of its vanishing divergence. They 

abandoned this approach, they reported, since it has been unable to account for elementary 

particles using continuous fields; and for other unspecified reasons. The third approach is to 

conceive of elementary particles as singularities. In his review of them, Lehmkuhl (2017, p. 

1204) called the second and third the “T approach” and the “vacuum approach.” 

 This third approach is the one Einstein and Grommer pursued. They summarized their 

project in emphasized text (Einstein and Grommer, 1927, p. 4): 

However, it has turned out that the law of motion of the singularities is completely 

determined by the field equations and by the character of the singularities, without 

needing supplementary assumptions. To show this is the goal of the present 

investigation. 

If Einstein and Grommer succeed in this goal, they have reduced the arbitrariness in the duality 

of fundamental laws. 

 A little over a decade later, Einstein’s collaborative efforts with Infeld and Hoffmann 

proceeded on the same basis. This time, they rejected Lehmkuhl’s “T approach” because of the 

uncontrolled arbitrariness it introduces. The paper states this in its first sentences (Einstein, 

Infeld, Hoffmann, 1938, p. 65): 

 In this paper we investigate the fundamentally simple question of the extent to 

which the relativistic equations of gravitation determine the motion of ponderable 

bodies. 

 Previous attacks on this problem … have been based upon gravitational equations 

in which some specific energy-momentum tensor for matter has been assumed. 

Such energy-momentum tensors, however, must be regarded as purely temporary 

and more or less phenomenological devices for representing the structure of matter, 

and their entry into the equations makes it impossible to determine how far the 
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results obtained are independent of the particular assumption made concerning the 

constitution of matter. 

That is, choosing a specific stress-energy tensor means that the final results are not general, but 

depend on the particular form of matter represented; and these particulars may in turn not be 

fundamental, but merely reflect the superficial appearance of the matter at hand 

(“phenomenological”). This hesitation over the T approach had already been reported by Einstein 

in his 1936 “Physics and Reality.” There he expressed it in the form of a celebrated metaphor 

(1936, p. 311) 

It [general relativity with a stress energy tensor T] is sufficient-as far as we know-

for the representation of the observed facts of celestial mechanics. But it is similar 

to a building, one wing of which is made of fine marble (left [geometric] part of the 

equation), but the other wing of which is built of low-grade wood (right [matter] 

side of equation). The phenomenological representation of matter is, in fact, only a 

crude substitute for a representation which would do justice to all known properties 

of matter. 

In his “Autobiographical Notes,” Einstein later summarized how the project had eliminated an 

arbitrariness from general relativity that had to be removed (Einstein, 1949, p. 79) 

In the relativistic theory of gravitation, it is true, the law of motion (geodetic line) 

was originally postulated independently in addition to the field-law equations. 

Afterwards, however, it became apparent that the law of motion need not (and must 

not) be assumed independently, but that it is already implicitly contained within the 

law of the gravitational field. 

Einstein both sought to eliminate singularities from his theorizing and, at the same time, found 

them useful in theorizing. We may well wonder if Einstein recognized that this could give his 

theorizing a capricious appearance. He did recognize the problem and we have his answer, again 

in his “Autobiographical Notes” (1949, p. 81, Einstein’s emphasis): 

Now it would of course be possible to object: If singularities are permitted at the 

positions of the material points, what justification is there for forbidding the 

occurrence of singularities in the rest of space? This objection would be justified if 

the equations of gravitation were to be considered as equations of the total field. 

[Since this is not the case], however, one will have to say that the field of a material 
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particle may the less be viewed as a pure gravitational field the closer one comes to 

the position of the particle. If one had the field-equation of the total field, one would 

be compelled to demand that the particles themselves would everywhere be 

describable as singularity-free solutions of the completed field-equations. Only then 

would the general theory of relativity be a complete theory. 

Lehmkuhl’s (2019, p. 189) concluding remarks give a quite serviceable recounting of Einstein’s 

answer, drawing on Einstein’s earlier work: 

Finally, we now understand how Einstein could have allowed for singularities to 

account for matter in GR, yet be adamant that no singularities were allowed to 

occur in the sought-after unified field theory. It was the hybrid character of GR that 

allowed for this double standard: it was exactly because it was not supposed to be 

an adequate theory of matter that it was acceptable to allow for singularities as 

place-holders of matter. But it was not acceptable to allow for singularities in the 

domain about which GR was supposed to be fundamental, correct: regions of 

spacetime with only gravitational fields, free of matter. Accordingly, a unified field 

theory of gravity and matter would have to live up to these latter, stricter standards: 

no singularities anywhere. 

11. Conclusion 

 In their synoptic analysis of Einstein’s treatments of spacetime singularities, Earman and 

Eisenstaedt (1999, p. 193), in a moment of exasperation, prescribe the challenge taken up in this 

paper: “But as we will see, much of the early work on spacetime singularities seemingly defies 

explanation.” What I hope this analysis has demonstrated is that Einstein’s treatment of 

singularities was not capricious and ill-informed. Rather, it was part of a well thought out 

research program that did not turn out to be productive.  

 Einstein followed an established tradition in mathematics that took analytic expressions 

to be the primary subjects of analysis; geometric notions play only an heuristic role. A geometric 

structure could suggest corrections to the analytic expressions, but those corrections need only to 

be accepted if they conformed with other physical facts. In both cases of the singularities 

Einstein identified at the Schwarzschild radius and in the de Sitter solution, the geometry 

suggested a correction in which events distinct in the analytic expressions were to be identified. 
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From the geometric perspective, the coordinate systems used has “gone bad.” However, both 

corrections required Einstein to give up something he believed was required by physical facts of 

the two cases, the static character of his line elements. The analytic expressions prevailed and the 

singularities remained. 

 In retrospect, the more productive approach would have been to accept the geometric 

correction and discard the static requirement as Einstein had formulated it. That this approach 

would prove to be more productive could not be known a priori. It is only with the later advances 

in physics and astrophysics that its superiority becomes apparent. Contrary to Einstein’s 

supposition, there is no pathology in a Schwarzschild spacetime at the Schwarzschild radius. 

Rather that radius merely marks an event horizon. The physics within it has attracted 

considerable attention. Similarly, de Sitter’s solution turns out not to represent a static spacetime. 

The full de Sitter hyperboloid recovered from the geometry is the simplest case of an expanding 

universe, whose expansion is driven by the cosmological constant l. In present cosmologies, it 

may prove to be the ultimate fate of our universe in the distant future. 

 Puzzlement over how Einstein could neglect these geometrical directives has obscured 

what may well be the more interesting question historically: how did singularities play a role in 

Einstein’s research? There was little concern prior to Einstein about singularities in physical 

theories. It was Einstein who identified them as troublesome and developed a program of 

research that demanded their elimination. His goal was distinctively and even idiosyncratically 

Einstein: an elimination of arbitrariness from physical theory. His fiercely defended and then 

abandoned Mach’s principle was just one instrument serving this larger goal. Singularities, 

Einstein argued, introduced unacceptable arbitrariness into physical theories, comparable to that 

introduced by arbitrary boundary conditions. They had to go. 

 While never abandoning the hope for a unified field theory, free of singularities, Einstein 

sought to minimize the arbitrariness in his physical theories as an intermediate towards that final 

theory. This minimization underwrote Einstein’s use of singularities to represent point masses in 

his attempts to identify the equations of motion that governed them. While these singularities 

would be unacceptable in his final, unified field theory, Einstein judged them to introduce less 

arbitrariness into the analysis than the available alternatives: simply positing the geodesic law as 

an independent law; or seeking an energy tensor to represent matter separately from the metric 

field. 
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Appendix A: Einstein and Grossmann Generalize the Term “Tensor.” 

 Where Ricci and Levi-Civita (1900) had used the terms “covariant and contravariant 

systems” (systèmes covariants et contrevariants), Einstein and Grossmann (1913, p. 25) used the 

term “tensor” as a generic replacement for “system” and applied it in the now familiar way to all 

systems transforming linearly under first derivatives of the coordinates. That this was a novel use 

of the term “tensor” was noted in contemporary literature, such as Budde (1914, p. 246) and later 

by Veblen (1927, p. 28). How Einstein and Grossmann chose this idiosyncratic substitution 

remains an open question. The term tensor was used by Hamilton in his work on quaternions as a 

measure of the unsigned magnitude of quantities. It was chosen by Hamilton (1853, pp. 56-58) to 

reflect the idea that a length in space is extended if a tension is applied. This seems to have been 

the common use of the term in mathematics in the nineteenth century. Föppl’s (1894, p.6) 

introduction to Maxwell’s electrodynamics followed Hamilton’s usage. “Tensor” designated the 

scalar magnitude of vectors. Since this scalar magnitude is of great importance in Maxwell’s 

theory, it is not surprising that the term appears 72 times in Föppl’s volume. Given the youthful 

Einstein’s early fascination with Maxwell’s theory, it is quite likely that he had contacted the 

volume. It was the premier German language exposition of Maxwell’s theory during Einstein’s 

youth.56 This prolific use of the term “tensor” did not survive long in treatises on 

electrodynamics. In Abraham’s (1904) “completely reworked” (vollständig umgearbeitet) 

second edition of Föppl’s (1894) volume, this use of tensor is replaced by the more familiar 

“scalar” (Skalar) (p. 4-6). The term “tensor” played only a minor role in the new exposition 

through the notion of a “tensor triple” (Tensortripel), which corresponds to the modern notion of 

a 3x3 Cartesian tensor. It figured in rotational mechanics (§14) and fluid flow (§17). This novel 

use of the term “tensor” had been introduced explicitly by Voigt (1898) in his work on the 

mechanics of crystals. He recognized (p. vi, 20) the prior use of the term in the theory of 

quaternions but felt that the extension to the multi-component quantity was admissible since this 

quantity would be used to represent stresses and strains in materials three-dimensional materials. 

 
56 Frank’s (1979, p. 38) biography asserts positively that Einstein did read the Föppl volume. 

 



 96 

Appendix B: A Fanciful Field Theory 

 The line element  

ds2 = dr2 + r2 dq2                                                               (B1) 

with 0 £ r < ∞ and 0 £ q < 2p where we assume the expression cyclic in q, such that, for each r, 

q and q + 2p designate the same point. It is one of the simplest cases in which we routinely judge 

that a coordinate system has “gone bad.” For, when this line element represents the metrical 

geometry of a Euclidean surface, the one point at the origin at r = 0 is assigned all the angular 

coordinates 0 £ q < 2p. Correspondingly we have singular behaviour in the coefficients of the 

metric tensor. While gqq  = 0, we have the more troublesome gqq  = ∞. The singularity is 

dismissed as a mere coordinate artefact. 

 Are we compelled to this dismissal? Might r = 0 identify an infinity of distinct points, 

according to the different values of 0 £ q < 2p? The example of the Euclidean surface is so 

familiar that it is easy to assume that such an identification is simply a novice blunder in 

mathematics whenever the analytic expression (B1) appears. Familiarity is not the same as 

mathematical necessity. That the coordinate system in an analytic expression of the form (B1) 

has “gone bad” at r = 0 is not a mathematical necessity. Whether it has gone bad depends on how 

the variables are interpreted physically and, in this case, the physical assumption that a Euclidean 

surface is represented. 

 To see that the physical interpretation of the variables really does control whether r = 0 is 

a singularity in expression (B1), we merely need to concoct a physical scenario in which r = 0 

does represent a singularity in the physics. The following fanciful physical theory is not intended 

as a serious physical theory but merely to demonstrate that, under some interpretations, r = 0 in 

(B1) is singular. 

 The theory is set in a two-dimensional space that is topologically ℝ34 × 𝕊, that is, a 

truncated cylinder shown in Figure 11. No presumption is made about the spatial metric for the 

space. It will not be needed. What matters is that each coordinate pair (r, q) identifies a unique 

point in the space, including when r = 0. There are point charges in the space that interact 

through retarded potentials. That is, the action of one charge upon another is delayed by a time 

that is a function of the distance between the charges. In such theories, the retardation time is 

commonly isotropic in distance and is given by (distance)/c. 
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 In this fanciful theory, the retardation times are defined in terms of coordinate differences 

and are anisotropic. In the r coordinate direction, the retardation time dt for a coordinate 

differential dr, with dq = 0, is just dt = dr. In the q coordinate direction, the retardation time dt 

for a coordinate differential dq, with dr = 0, is just dt = r dq. We stipulate that the general case is 

governed by the line element of the same form as (B1)57 

dt2 = dr2 + r2 dq2                                                       (B2) 

This line element specifies a temporal distance between points in the space that mimics a spatial, 

metrical distance. 

 As r approaches 0, the retardation times exhibit extreme behavior. That is, if we pick two 

points separated by Dq > 0, with Dr = 0, the retardation time decreases with r as 

Dt = r Dq 

as shown in Figure 11 for Dq = 1. 

 
57 This formula is not the same as assuming that the velocity components of the retarded action 

sum by the Pythagorean formula. 



 98 

 
Figure 11. Retardation Times in a Fanciful Field Theory 

 

At r = 0, the retardation time is Dt = 0. The line element (B2) has become singular. As before, 

the associated metrical coefficients are gqq  = 0 and gqq  = ∞. However we cannot escape the 

singularity by declaring that the coordinates (r, q) have “gone bad” at r = 0. By stipulation, they 

have not. Indeed, the singularity is an essential part of the physics. For, while is it 

mathematically inconvenient, the singularity has a natural physical interpretation: at r = 0 the 

interaction has become an instantaneous action at a distance with zero retardation time. 
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