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Abstract Einstein located the foundations of general relativity in simple and vivid
physical principles: the principle of equivalence, an extended principle of relativity
and Mach’s principle. While these ideas played an important heuristic role in
Einstein’s thinking, they provide a dubious logical foundation for his final theory.
Einstein was also guided to his final theory, I argue, by a second tier of more
prosaic heuristics. I trace one strand among them. The principle of equivalence
guided Einstein well until it led him to a theory that contradicted the conservation
of momentum. Einstein converted the requirement of conservation of energy and
momentum into a procedure that he used repeatedly for finding gravitational field
equations. That procedure survives in present day developments of general relativity.

1 Introduction

What were the heuristics that guided Einstein to his completed general theory of
relativity of 1915? There can be no simple answer. The completion of the theory
came only after eight years of exhausting labor. In them, Einstein, at the height of
his creative powers, grappled with problems so profound that they nearly defeated
him. Nonetheless, Einstein himself provided an appealing and simple narrative of
his discovery. He was guided, he assured us, by a few simple but powerful physical
principles and thought experiments. These same heuristics then became the basis of
Einstein’s later account of the logical foundations of general relativity.

In narrowing his focus to these few heuristics, Einstein purged his account of
nearly all the complications and false steps that later historical work has revealed.
It obscures the fact that there is a great distance between the lofty generalities of
Einstein’s principles and the messy details of the final theory. These principles could
not by themselves have led Einstein to the final theory. Worse, as will be recounted
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in Sect. 2 below, most of the heuristics of this narrative turn out not to be vindicated
by Einstein’s final theory and may even fail to be sustainable as independent ideas.
They provided at best an unreliable guide and a dubious logical foundation for the
theory.

So we must ask again, what were the heuristics that guided Einstein? Something
more must have helped Einstein arrive at his final success. My contention in this
paper is that beneath this first tier of heuristics lies a second tier of heuristics. They
do not lend themselves to arresting statements of a grand vision. Rather they are the
practical lessons that a theorist like Einstein learns as he returns day after day to
the mundane work of theory building. Whatever else may happen, Einstein’s new
theory must conserve energy and mesh with Newton’s old theory of gravity. Getting
all these details to work is not easy. A theorist can readily be led into blind alleys.
The theorist must learn the tricks that avoid the traps. Once they are learned, it is all
too easy to omit them from the celebratory recollections. However it is the accretion
of these lesser heuristics that proves as important to the final discovery. Without
them, the final result could not be achieved.

This paper traces the fortunes of just one of Einstein’s first tier heuristics, the
principle of equivalence. It did guide Einstein’s thinking. However the principle
was defeasible. We shall see that it was diluted in 1912 and all but discarded in
1913 when a second tier heuristic, the requirement of conservation of energy and
momentum, led to gravitational field equations that contradicted it. This second
tier heuristic was beyond challenge. It persisted and powerfully circumscribed
Einstein’s continuing analysis up to the completion of his theory in 1915.

In the following, Sects. 2, 3, 4, 5, and 6 describe the origin of the principle
in Einstein’s earliest reflections on gravitation and acceleration and traces how it
guided Einstein to a novel theory of static gravitational fields in 1912. Sections 7,
8, 9, 10, and 11 recall how Einstein found that the resulting theory conflicted with
a second tier heuristic, the conservation of momentum. Reluctantly, Einstein was
compelled to modify the theory’s single field equation to one that compromised
his principle of equivalence. The principle could now only hold, as he put it, for
infinitely small fields.

The following year, as recounted in Sect. 12, Einstein and his mathematician
friend Marcel Grossmann devised the “Entwurf” theory. It differed from general
relativity only in employing gravitational field equations of limited covariance.
Conservation of momentum had, in 1912, forced a quite specific field equation on
Einstein. He now turned that experience to his advantage. Einstein went to pains to
explain in elementary terms that the conservation requirement provides a general
method for arriving at unique field equations. He then used it with the conservation
of energy and momentum to identify the gravitational field equations of “Entwurf”
theory. What Einstein did not then acknowledge clearly, as Sect. 13 recalls, was that
his original principle of equivalence now failed completely with this choice of field
equations. Whatever the merits of this first tier heuristic, its role in theory formation
was quite displaced by the second tier heuristic of the conservation of energy and
momentum.



Einstein’s Conflicting Heuristics: The Discovery of General Relativity 19

This second tier heuristic enjoyed a brief moment of prominence when it was
highlighted in Einstein and Grossmann’s (1913) “Entwurf” paper as the foundation
of the method used to derive the theory’s gravitational field equations. Section
14 recounts how the heuristic became less visible but continued to exercise a
controlling role in Einstein’s subsequent theorizing. It governed Einstein’s analysis
of the limited covariance of the “Entwurf” theory and persists in modern accounts of
general relativity in providing the fastest route to Einstein’s celebrated gravitational
field equations of 1915.

Section 15 and the concluding Sect. 16 review the tension between the conception
and application of the heuristics of the two tiers. Einstein’s recounting accords the
first tier heuristic, the principle of equivalence, primary foundational importance.
Yet it was defeasible in his actual theorizing when it conflicted with a second
tier heuristic, the conservation of energy and momentum. Section 15 also reviews
briefly a related episode of heuristics in tension that was explored in some detail by
Janssen and Renn (2007). It concerns Einstein’s November 1915 return to generally
covariant field equations. Two appendices contain background calculations.

2 Einstein’s Principles

Einstein completed his general theory of relativity in November 1915. The triumph
came to an exhausted and exhilarated Einstein after 8 years of labor on the problem
of relativity and gravitation. It was a distinctive achievement, quite unlike so many
other discoveries in physics. In these other cases, novel empirical results were
key. The final theory lay hidden in them in encoded form. Success came when
someone figured out how to read the code. The nineteenth century accumulated a
wealth of empirical results on electricity and magnetism. They were summarized in
the Maxwell–Lorentz electrodynamics that the young Einstein studied so eagerly.
Encoded in them he found the Lorentz transformation and with it the special
theory of relativity of 1905.1 In the same year, Einstein found his revolutionary
light quantum hypothesis. It was encoded, he realized, in the recently measured
thermodynamic properties of heat radiation.2

The discovery of general relativity was quite unlike these. There was some
empirical guidance. Perhaps the most significant empirical result guiding Einstein
was an old one. It was a commonplace since the work of Galileo and Newton in the
seventeenth century that all bodies fall under gravity with the same acceleration,
independently of their masses. Aside from this result, on his own account, the
heuristics that guided Einstein were more ethereal and philosophical in character.
At their center was what Einstein labeled “an epistemological defect” in prior

1See Norton (2004) for an account of Einstein’s investigations.
2See Norton (2006) for an account of this encoding.
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theories of both classical mechanics and special relativity.3 These theories were
defective in positing inertial frames of reference since their disposition was fixed
absolutely without relation to the contents of space and time. The associated,
preferred inertial motions were absolute in a sense Einstein (1923, p. 61) found
objectionable: “independent in its physical properties, having a physical effect,
but not itself influenced by physical conditions.” To eliminate this defect, Einstein
proposed that the principle of relativity had to be extended from the relativity of
inertial motion of his 1905 special theory of relativity to include accelerated motion
as well.

The need for this extension was grounded further in an idea that Einstein
attributed4 to Ernst Mach: that the inertia of bodies is due to an interaction with
the other masses of the universe. This, he labeled “Mach’s principle.” According
to it, the distribution of matter in space determines completely the disposition
of the inertial frames of reference. Finally there was what Einstein called5 the
“happiest thought of [his] life,” the principle of equivalence. It asserted the
equivalence of uniform acceleration in gravitation free space and a homogeneous
gravitational field. This principle, Einstein was already able to boast at the outset in
(Einstein 1907, p. 454), “extends the principle of relativity to uniformly accelerated
translational motion of the reference system.” It was, he felt, a promising first step.

These heuristics are widely celebrated. They are almost as well-known as
the iconic photographs of Einstein, the disheveled genius and iconoclast. Their
popularity is driven by their vividness and simplicity. They lend themselves to
memorable thought experiments. The principle of equivalence is routinely expressed
through the parable of an observer trapped in a box or an elevator. The box is
accelerated in gravitation free space; or, in later variants, the box is in free fall in a
gravitational field. Mach’s principle is routinely related as an answer to Newton’s
own bucket thought experiment. Newton had proposed in his Principia that the
concavity in the surface of the water in a rotating bucket arises from acceleration
with respect to absolute space. Mach’s principle asserts that, instead, the concavity
arose from the water’s acceleration with respect to all the other masses of the
universe.

These heuristics promise an easy pathway to understanding a theory that,
reputedly, is so abstruse that few can properly understand it.6 Everyone who has
driven in a car understands viscerally how acceleration produces inertial forces.
These, we are told on Einstein’s authority, are just the same thing as gravitational
forces; and they arise precisely because you are accelerating in relation to all the

3“ein erkenntnistheoretischer Mangel” Einstein (1916, p. 771).
4There is some question over whether Einstein’s attribution to Mach was correct. See Norton
(1995).
5Einstein (1920a, p. 265).
6An anonymous preface to Lorentz (1920, p. 5) Begins “Whether it is true or not that more than
twelve persons in all the world are able to understand Einstein’s Theory, . . . ”
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other masses of the universe. Appreciate that and an understanding the general
relativity of all motion is almost within your grasp. It seems so easy.

Einstein’s autobiographical statements leave no doubt of the importance of these
heuristics in Einstein’s process of discovery. However there is a troubling aspect
to them. They depend heavily on judgments of how physical theories have to
be, independent of experience. Such efforts are rarely successful. Time and again
today’s experience or more careful thought has overturned yesterday’s theoretical
imperatives. So it is with Einstein’s heuristics. Many do not survive scrutiny.7

There is no deeper principle of nature that requires us to eschew something
that has (in Einstein’s words) “a physical effect, but [is] not itself influenced by
physical conditions.” Whether inertial frames of reference are as special relativity
dictates is a matter to be decided empirically and not by a priori stipulation.
Contrary to Einstein’s earlier hopes, the Machian principle turned out not to be
implemented in the final general theory of relativity and he eventually abandoned
the principle. The generalization of the principle of relativity to accelerated motion
was implemented by Einstein as a demand that his new theory be expressible
in arbitrarily chosen space-time coordinate systems. Kretschmann quite correctly
objected in 1917 that this requirement was all but vacuous. It was more a challenge
to the ingenuity of theorists in the way they wrote their equations. Finally Einstein’s
original formulation of the principle of equivalence almost immediately disappeared
from the literature. In its place came a proliferation of variant forms (“weak,”
“strong,” “Einstein”) that differed from Einstein’s in both fundamental conception
and content.

Troubled as these heuristics are, there is no doubt of their importance in
Einstein’s mind while he worked on the problem of relativity and gravitation. If
they were his only guides, then it would be somewhat more than extraordinary that
his deliberations should produce such a remarkable result, the general theory of
relativity. There were, as we shall now see, many more guides. They were buried in
details that did not lend themselves to popular exposition.

The attempt in this paper to understand how Einstein succeeded nonetheless
proceeds in the spirit of Janssen (2014), who addresses the same question. In
his concluding Sect. 6, entitled “Post Mortem: How Einstein’s Physics Kept his
Philosophy in Check,” Janssen attributes Einstein’s success to three factors:

First, Einstein did not just want to eliminate absolute motion, he also wanted to reconcile
some fundamental insights about gravity with the results of special relativity and integrate
them in a new broader framework. Second, when these efforts led him to the introduction
of the metric field, he carefully modeled its theory on the successful theory of the
electromagnetic field of Maxwell and Lorentz. Third, whenever his philosophical agenda
clashed with sound physical principles, Einstein jettisoned parts of the former instead of
compromising the latter.

The analysis of this paper illustrates the third of these factors. Einstein’s principle
of equivalence belongs in what Janssen calls the “philosophical agenda.” It is here

7For a synoptic survey of the problems in Einstein’s heuristics, see Norton (1993).
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a defeasible, first tier heuristic. Conservation of energy and momentum is one of
Janssen’s “sound physical principles.” It belongs in the second tier of heuristics that
cannot be compromised.

3 Einstein’s 1907 Heuristic

The project began in 1907 when Einstein was commissioned to write a review
article on the “principle of relativity,” this being the term that delineates what
we would now call the special theory of relativity. The resulting review article,
Einstein (1907), showed how existing branches of physics could accommodate or be
accommodated to Einstein’s new theory of space and time. Only one area of physics
proved troublesome: gravitation. In Sect. 5, Einstein embarked on a speculative new
approach to gravity that might at the same time afford an extension of the principle
of relativity to accelerated motion.

The heuristic device that guided Einstein was labeled merely as an “assumption”
(Annahme). In what we must presume was the space of Newtonian mechanics, he
considered a reference system !1 uniformly accelerated in a fixed direction and a
second inertial reference system !2 in which there is a homogeneous gravitational
field. He supposed further that the acceleration of !1 matched the acceleration of
fall of free bodies in !2, so that the motions of free bodies would be the same in
both systems. Einstein’s assumption was that this sameness was to be generalized
to all physical processes. We must presume a tacit extension to relativistic contexts.
He wrote (p. 454):

We have therefore in the present state of our experience no basis for the assumption that the
systems !1 and !2 differ from one another in any respect. Hence we want to assume in the
following the complete physical equivalence of a gravitational field and the corresponding
acceleration of the reference system.

This assumption extends the principle of relativity to the case of uniformly accelerated
translational motion of the reference system . . . .

Modern readers will immediately recognize this as Einstein’s first statement of
the principle of equivalence. They may however be puzzled by the restriction of
equivalence to the special case of a homogeneous gravitation field and uniform
acceleration. Standard modern statements of the principle of equivalence are more
general. They commonly assert that a gravitational field can always be transformed
away, at least locally, by adopting an appropriate acceleration of the reference
system.

That this more general version of the principle was not Einstein’s has been
recounted in Norton (1985). We need not rehearse here Einstein’s objections to the
generalized principle. The important point is to recognize that the principle was, for
Einstein in 1907, not yet a permanent axiom of some well-articulated theory. That
may still come. In 1907, the primary interest of the assumption for Einstein was as a
heuristic guide in the generation of a new theory of gravity, whose general outlines
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were only dimly visible to Einstein in 1907. Einstein stated clearly his heuristic
purpose in the continuation of the passage quoted above

. . . The heuristic value of the assumption lies in the fact that a homogeneous gravitational
field may be replaced by a uniformly accelerated reference system. The latter case is
accessible to theoretical treatment to a certain degree.

There was then, in Einstein’s view, an urgent need for such a heuristic. For Einstein
had tried an obvious accommodation of gravity to special relativity, that is, the
construction of simple, Lorentz covariant theories of gravity. Einstein (1933, pp.
286–287) recalled the problem he discovered:

These investigations, however, led to a result which raised my strong suspicions. According
to classical mechanics, the vertical acceleration of a body in the vertical gravitational field
is independent of the horizontal component of its velocity. Hence in such a gravitational
field the vertical acceleration of a mechanical system or of its center of gravity works out
independently of its internal kinetic energy. But in the theory I advanced, the acceleration
of a falling body was not independent of its horizontal velocity or the internal energy of the
system.

This did not fit in with the old experimental fact that all bodies have the same
acceleration in a gravitational field . . .

In short, Einstein had failed to find a relativized theory of gravity in which bodies fall
vertically with equal acceleration, independently of their horizontal motion.8 How
could Einstein proceed? The assumption of 1907—the principle of equivalence—
provided a way. It delivered to Einstein a single instance of a gravitational field with
just the independence property needed. To proceed, all Einstein needed to do was to
catalog the properties of this one special case of a relativized gravitational field and
then judiciously generalize them to recover a full theory.

4 Einstein 1907–1912 Theory of Static Gravitational Fields

This project of generalization became the substance of those parts of the ensuing
five years that Einstein devoted to gravitation. The 1907 review article already
contained some now familiar results. The speed of light and the ticking of clocks
would be slowed in a homogeneous gravitational field. This speed played the role
of a gravitational potential. These results, now generalized to the inhomogeneous
static gravitational field of the sun, yielded a prediction of a slight red shift in light
emitted by the sun. Einstein returned to work on the theory in 1911, when he realized
that another effect in it was open to observational test. According to the theory
(Einstein 1911), a beam of light is bent by a gravitational field. The bending should
be detectible in a displacement of apparent star positions in the sky in the vicinity
of the sun.

8For an attempted reconstruction of Einstein’s explorations, see Norton (1992, §3).



24 J. D. Norton

While this 1911 analysis is widely known through its inclusion in the ubiquitous
Dover reprint The Principle of Relativity, the fullest expression of the project of
generalization came in a lesser-known pair of papers the following year (Einstein
1912a, b). These papers contained a full theory of certain static gravitational fields.
The theory provided equations of motion for bodies in free fall, a field equation for
the variable speed of light and versions of electrodynamics and thermodynamics,
suitably modified to accommodate the novelty of a variable speed of light.

The starting point of the paper is a transformation from the familiar reference
system Σ of Einstein’s 1905 special theory of relativity, represented by coordinates
of space and time (ξ , η, ζ , τ ), to a unidirectionally, uniformly accelerated frame of
reference K, represented by the coordinates of space and time (x, y, z, t). Einstein’s
analysis is cumbersome. He does not develop the full transformation equations,
although (as we are about to see), they are quite simple. In a labored development
proceeding over many pages, he recovers only an approximation of the general
transformation equations for small t. Einstein’s generalizations proceed from them.

Here I will not recapitulate these details. They would provide no special
illumination for the issues to be raised. Instead I will summarize them using
a more perspicacious formalism that Einstein himself shortly recognized. In a
last minute correction to the proofs of Einstein (1912b, p. 458), Einstein found
his equations of motion is recovered most simply from an action principle. The
following year Einstein and Grossmann (1913, p. 7) revealed that this action
principle is the equation of geodesic motion in a spacetime whose structure is no
longer Minkowskian.

5 The Gravitational Field of Uniform Acceleration

The equations relating the unaccelerated and uniformly accelerated frame Σ and K
were given later in many places, including Einstein and Rosen (1935, p. 74):9

τ = (c0/a + x) sinh(at)

(ξ + c0/a) = (x + c0/a) cosh(at) η = y ζ = z
(1)

The acceleration is uniform translational acceleration in the ξ , x direction; a is a
constant acceleration parameter; and c0 a constant. While the original coordinates
of Σ cover the whole of the spacetime, those of K cover only a wedge delimited by
null surfaces τ = (ξ + c0/a) andτ = −(ξ + c0/a). The x coordinate can only take
values greater than −c0/a, for the coordinates are singular at x = −c0/a, where all

9The notation is adapted to Einstein’s (1912a) usage. The Einstein and Rosen version was the
slightly simpler case in which c0=0.
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the hypersurfaces of constant t intersect.10 When t is small, the hyperbolic functions
in (1) are well-approximated as sinh(at) ≈ at and cosh(at) ≈ 1 + a2t2/2. Then the
exact transformation equations (1) are well-approximated by the small t expressions
Einstein derived in Einstein 1912a, p. 359):

τ = (c0 + ax) t ξ = x + (c0 + ax) at2/2 η = y ζ = z (2)

Under the transformation (1), using the perspectives Einstein would develop the
following year, the Minkowskian expression for the invariant line element11

ds2 = dτ 2 − dξ2 − dη2–dζ 2 (3)

becomes

ds2 = (c0 + ax)2dt2 − dx2 − dy2 − dz2 (4)

While the transition from expression (3) to (4) has merely redistributed the
coordinates assigned to events, Einstein used the principle of equivalence to
conclude that a homogeneous gravitational field now manifests in the new frame
of reference K(x, y, z, t). We can read directly from the line element (4) the same
properties that Einstein inferred for this field, but with greater effort on his part.

Einstein defined the speed of light c in terms of the new coordinates as

c2 = (dx/dt)2 + (dy/dt)2 + (dz/dt)2 (5)

where (x(t), y(t), z(t)) is the trajectory of a light pulse. We read immediately from
(4) that this speed of light c varies linearly with x in the direction of the gravitational
field12

c (x, y, z) = c0 + ax (6)

Hence it can represent the gravitational potential.
We also read from (4) that the hypersurfaces of constant t are ordinary Euclidean

spaces and that their coordinates (x, y, z) are Cartesian coordinates with the familiar
metrical significance. The same is no longer true of the time coordinate t. It can no
longer be measured directly by clocks. Rather times elapsed on a clock at rest in the

10In 1912, since he worked only with a small t approximation (2), Einstein may not have realized
that the coordinates (x, y, z, t) he introduced have a singularity at x = -c0/a. Einstein and Rosen
(1935) later suggest that one can conceive the “field-producing mass” as located at this singularity,
although they seek to eliminate the singularity. In (1912a, p. 356, footnote), however, Einstein
wrote: “The masses that produce this field should be conceived as at infinity.”
11The notation is adapted to Einstein’s (1912a) usage. The Einstein and Rosen version was the
slightly simpler case in which c0=0.
12The other case of c(x, y, z) = -(c0 + ax) is not mentioned by Einstein.
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frame must be rescaled by a position dependent factor (c0 + ax) if the corresponding
time coordinate t differences are sought.

The equations of motion of bodies in free fall in this homogenous field are
recovered by seeking the geodesics of the spacetime, that is, those trajectories for
which

∫
ds is extremal. A short and standard calculation of the Euler–Lagrange

equations yields

d

dt



 ẋ/ (c0 + ax)
√
1 − q2/(c0 + ax)2



 = −a
√
1 − q2/(c0 + ax)2

d

dt



 ẏ/ (c0 + ax)
√
1 − q2/(c0 + ax)2



 = d

dt



 ż/ (c0 + ax)
√
1 − q2/(c0 + ax)2



 = 0 (7)

where q2 = ẋ2 + ẏ2 + ż2 and the overhead dot denotes differentiation with respect
to t, ẋ = dx/dt , etc.

6 Einstein Generalizes Naturally

With these results in hand for the special case of a homogeneous gravitational field,
Einstein could now proceed with his project of generalization. The generalizations
he introduced were obvious and natural.13

First, the line element (4) is replaced by the more general

ds2 = c2 (x, y, z) dt2 − dx2 − dy2 − dz2 (8)

where c can now vary more generally as a function of the spatial coordinates. This
variable speed of light c still serves as the single gravitational potential and the
spatial hypersurfaces of constant time coordinate t remain Euclidean. This new
structure represents a more general case of time independent gravitational fields.
Einstein recognized explicitly (1912a, p. 356), however, that it was not the most
general case. He noted that the field produced by a rotation of the reference frame
would yield a non-Euclidean geometry. For the Lorentz contraction would act
differentially on rods oriented parallel or transverse to the direction of rotation. That

13This project may seem familiar since it is the first instance of what becomes the gauge argument
routinely used to introduce interacting fields in particle physics. One starts with a flat connection,
the case of no interaction. It is re-coordinatized (or its gauge changed) so that the new description
mimics an interaction, while none is actually present. The new description is generalized to return
equations governing a non-trivial interaction.
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meant that the ratio of the circumference of a suitably placed circle to its diameter
would no longer be the Euclidean value of π , when both are measured by rods at
rest in the rotating reference frame.

In the generalization, the gravitational field strength is the negative gradient of
the speed of light, (-∂c/∂x, -∂c/∂y, -∂c/∂z). The equations of motion of a body in
free fall in a homogeneous gravitational field (7) are naturally generalized to

d

dt

(
ẋ/c

√
1 − q2/c2

)

= −∂c/∂x
√
1 − q2/c2

d

dt

(
ẏ/c

√
1 − q2/c2

)

= −∂c/∂y
√
1 − q2/c2

d

dt

(
ż/c

√
1 − q2/c2

)

= −∂c/∂z
√
1 − q2/c2

(9)

These equations coincide with the geodesics of the line element (8). They can
also be recovered directly by solving the Euler–Lagrange equations using this more
general line element (8).

Finally, Einstein sought a more general equation governing the speed of light c.
The linear dependence of c on x in (6) is easily seen to be a solution of the Laplace
equation for c:

)c =
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
c = 0 (10)

In turn, it is naturally generalized to:

)c =
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
c = kcσ (11)

for k a constant and σ the matter density. This field equation is the obvious analog
of Poisson’s equation for the Newtonian gravitational potential ϕ

)ϕ =
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
ϕ = 4πkρ (12)

for mass density ρ (in the form given in Einstein and Grossmann 1913, p. 11).
The principal difference in form between (11) and (12) is that the first has a

source term kcσ that is linear in the potential c, whereas the source term of the
second, 4πkρ, has no corresponding term in ϕ. This difference reflects a difference
in gauge freedoms in the two quantities c and ϕ. The speed of light c is undetermined
up to a multiplicative factorM, reflecting our freedom to choose measuring units for
distances and times. Thus, if c is a solution of (11) for some σ , then so is c’ = cM.
The Newtonian potential ϕ, however, is undetermined up to an additive factor A.
Thus, if ϕ is a solution of Eq. (12) for some ρ, then so is ϕ’ = ϕ + A.
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This difference in gauge freedoms in the two cases may now seem innocuous. It
will shortly prove to be a cause of considerable trouble.

7 A Hidden Peril

The generalizations of the last section are small and modest. They would be, it
seems, just a small and secure step towards the most general theory. However as
Einstein would shortly discover, these generalizations were far from innocent. The
danger lay precisely in their apparent modesty, so that one would not readily think
to challenge them.

Buried in the generalizations were two, specific problems. The first was the idea
that space would remain Euclidean in the case of more general static gravitational
fields. This proves almost never to be the case. Take one of the simplest cases: the
Schwarzschild spacetime, the exterior gravitational field of a rotationally symmetric,
uncharged, non-rotating body of mass m. Its line element is

ds2 =
(
1 − 2Gm

r

)
dt2 − dr2(

1 − 2Gm
r

) − r2
(
dθ2 + sin2θdφ2

)
(13)

The constant G is the Newtonian universal constant of gravitation and (r, θ ,
φ) are spherical coordinates of space. The failure of Euclidean geometry for the
spatial hypersurfaces of constant t arises through the division of dr2 by the factor
(1−2Gm/r). For, without it, the spatial line element is the Euclidean dr2 + r2 (dθ2

+ sin2θ dφ2).
The trouble with Einstein’s 1912 assumption of spatial flatness is that it is

incompatible with his final field equations of November 1915. As Stachel (1989)
first pointed out, as long as Einstein expected fields like (8) to satisfy his field equa-
tions, he is precluding the source free field equations of the vanishing of the Ricci
tensor, Rµν = 0.14 When Einstein adopted the mathematical framework of general
relativity with his joint work with Grossmann (Einstein and Grossman, 1913),
notoriously, Einstein considered and rejected generally covariant gravitational field
equations employing the Ricci tensor. This misstep marked the beginning of years
of painful drifting, while Einstein sought to reconcile himself with a misshapen
theory. Those years brought Einstein’s formulation of his “hole argument.” It
sought to establish that generally covariant gravitational field equations would not
be physically interesting. The assumption of spatial flatness supported his earlier
prediction of only a “half deflection” in a beam of starlight grazing the sun. Einstein
(1915b) found this error only at the last moment in November 1915, when his

14The precise result is shown below in Appendix 1. If the metric tensor is restricted to the form
(36), then the vanishing of the Ricci tensor permits the g00 = c2(x, y, z) to vary at most linearly
with the coordinates x, y, and z as in (42).
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celebrated computation of Mercury’s anomalous motion depended on the failure
of Euclidean geometry in the vicinity of the sun.

This one mistaken assumption was not the sole source of these years of misery for
Einstein. However it was their starting point. I need only here reaffirm the profound
and extended misery this assumption visited upon Einstein. For this episode has
been the subject of very extensive historical investigations elsewhere, to which the
reader is now directed. See Stachel (1989); Norton (1984), and for a synoptic work
by Michel Janssen, John D. Norton, Jürgen Renn, Tilman Sauer, and John Stachel
that significantly develops these earlier papers, see Renn (2007).

8 A Second Hidden Peril Identified

While this last peril lingered on unnoticed for several years, there was a second peril
that Einstein identified almost immediately. Einstein’s first paper of 1912 (Einstein
1912a) had been submitted to Annalen der Physik on February 26, 2012. Before its
printing was finalized, Einstein found to his dismay that the natural and obvious field
Eqs. (10) and (11) could not be exactly correct. He managed to append a footnote
(p. 360) to them that alerted readers to the problem:

In a work to follow shortly, it will be shown that the Eqs. (10) and (11) still cannot be
exactly correct. They will be used provisionally in this work.

The work promised, Einstein (1912b), was submitted on March 23, 2012, to
the journal, just under a month after the first paper was submitted. It dealt first
with routine matters required by the new theory of gravity. Einstein showed how
the theory required small adjustments to electrodynamics and thermodynamics.
Section 4 of the paper then revealed the concern with the field equation.

Einstein considered a distribution of matter, momentarily at rest, where the
gravitational potential c produced by the matter approaches a constant potential at
spatial infinity. The different parts of the matter distribution act gravitationally on
one another. Gravitational collapse is prevented by attaching the masses to a rigid,
massless frame. It follows from the equations of motion (9) that the force density fi
acting on a matter distribution σ momentarily at rest is

fi = −σ ∂c
∂xi

(14)

where i = 1, 2, 3 so that x1, x2, x3 is x, y, z. The total force acting on the frame at
this initial instant is computed by integrating this force density over all space. If we
substitute for the matter density σ using the field Eq. (11), we recover

∫
fidV = −

∫
σ
∂c

∂xi
dV = −

∫
)c

c

∂c

∂xi
dV #= 0 (15)
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where the integral extends over all of three-space. This integral does not, in general,
vanish, Einstein noted. Thus there is a net force acting on the mass-frame system
that seeks to set it into motion.

This, Einstein observed, violates the “principle of equality of action and reac-
tion.” Alternatively, we might observe that it violates both energy and momentum
conservation, since the mass-frame system spontaneously acquires both. Einstein
could not disguise his alarm. He wrote (p. 453):

We have recovered a very questionable result. It is quite enough to arouse doubt over the
admissibility of the entire theory developed here. This result certainly indicates a lacuna
that lies deeply in the foundation of both our investigations. For it can hardly work out that
another equation other than Eq. (10) can be brought into consideration from the expression
(c0 + ax) found for c for a uniformly accelerated system. This [equation] in turn entails Eq.
(11) necessarily.

9 Seeking an Escape

Einstein’s remarks foreshadow that he will have to give up his pair of field Eqs.
(10) and (11). However he was not prepared to take this step without resistance. He
sought first to preserve them by modifying other parts of his theory.

The first approach was to consider the fact that the massless frame holding the
masses is stressed as it prevents the gravitational collapse of the masses it carries.
Earlier work in special relativity had shown that stressed bodies can have unexpected
energetic properties. For example, if a stressed body is set in motion, there will
be an energy associated with the stress that only appears when the body is in
motion.15 Might there be a gravitational mass associated with the stresses in the
frame that somehow preserves the equality of action and reaction? Einstein explored
the possibility by considering a mirrored box that contains radiation; and another
box containing an ideal gas. In both cases, the walls of the boxes would become
stressed in virtue of the pressures exerted on them by the radiation and the gas.
However, Einstein concluded, one could not attribute a gravitational mass to the
stressed walls. The gravitational mass of the entire systemmust be determined solely
by its total energy. For only then is the equality of inertial and gravitational mass
retained. This equality would be violated if an additional gravitational mass were
attributed to the stresses in the box walls.16

15For a survey of these results, see Norton (1992, §9).
16Einstein soon returned to the possibility of associating a gravitational mass with stresses in
Einstein and Grossmann (1913, §I.7) through the use of the trace T of the stress-energy tensor
as the source density in a scalar field equation. Implementing this choice in Nordström’s Lorentz
covariant gravitation theory led Einstein to a version of the theory that was only conformally flat.
It was, as reported in Einstein and Fokker (1914), governed by a field equation R = κ T where R
is the curvature scalar and κ a constant. For further details, see Norton (1992). Giulini (2008) has
reconstructed Einstein’s argument against Nordström’s Lorentz covariant scalar theory of gravity
and finds it flawed.
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In the second approach, Einstein considered modifying the theory’s expressions
for the momentum of a moving mass and for the gravitational force by multiplying
each by some power in c, the first by cα and the second by cβ . Einstein briefly re-
counts his explorations that showed that these modifications precluded a serviceable
dynamics.

10 Modifying the Gravitational Field Equation

Einstein now bowed to the inevitable. The equality of action and reaction could only
be preserved, he concluded (p. 455), if his field Eqs. (10) and (11) were modified.We
can understand the modification Einstein introduced by reflecting on how ordinary
Newtonian gravitation theory and Coulomb electrostatics avoid the problem.

The force density fi on a charge distribution ρ due to the Coulomb potential ϕ is
given by

fi = −ρ ∂ϕ
∂xi

(16)

The potential is governed by Poisson’s equation

)ϕ =
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
ϕ =

3∑

i=1

∂2ϕ

∂x2i
= −kρ (17)

Proceeding as before, we express the force density fi solely in terms of the
potential ϕ by substituting Poisson’s Eq. (17) into (16):

fi = −ρ ∂ϕ
∂xi

= 1
k

( 3∑

m=1

∂2ϕ

∂x2m

)
∂ϕ

∂xi

= 1
k

3∑

m=1

∂

∂xm

(
∂ϕ

∂xm

∂ϕ

∂xi
− 1

2
δim

( 3∑

n=1

∂ϕ

∂xn

∂ϕ

∂xn

))

= 1
k

3∑

m=1

∂tim

∂xm

(18)

What will prove the most important step in this computation is the third equality.
It is merely the computation of an identity in ϕ:

( 3∑

m=1

∂2ϕ

∂x2m

)
∂ϕ

∂xi
=

3∑

m=1

∂

∂xm

(
∂ϕ

∂xm

∂ϕ

∂xi
− 1

2
δim

( 3∑

n=1

∂ϕ

∂xn

∂ϕ

∂xn

))

(19)

The last term in the scope of the divergence operator is the Maxwell stress tensor
for the Coulomb field, which is defined as
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tim = ∂ϕ

∂xm

∂ϕ

∂xi
− 1

2
δim

( 3∑

n=1

∂ϕ

∂xn

∂ϕ

∂xn

)

(20)

Equation (18) shows that the force density fi equals the divergence of the stress
tensor tim. This fact, we can see, preserves the equality of action and reaction in
systems of the type Einstein considered. Take a finite system of charges attached
to a rigid frame in a field ϕ whose spatial derivatives ∂φ/∂xi approach zero as we
approach spatial infinity. Using a standard computation routinely employed in field
theories, Gauss’ theorem allows us to compute the ith component of the net force
on system of charges Fi through

Fi =
∫

V

3∑

k=1

∂tik

∂xk
dv =

∫

A

3∑

k=1

tiknkda (21)

The first volume integral extends over a volume of space V sufficiently large for
it to contain all the charges and such that the first derivatives of the field ∂ϕ/∂xi are
brought arbitrarily close to zero on its surface A. The second surface integral extends
over the surface A only. The quantity ni is a unit vector normal to the surface. Since
the first derivatives of ϕ can be brought arbitrarily close zero by making V suitably
large, the stress tensor tik can be made arbitrarily small and so also17 the net force Fi.
This force vanishes if we now take the limit as the volume of integration V exhausts
all space. Thus the system of charges and rigid frame experiences no net force. The
equality of action and reaction is preserved.

Einstein’s gravitational field Eq. (11) seems so close in form to the Poisson
equation for Newtonian gravity (12) and for Coulomb electrostatics (17) that we
can easily imagine that some similar computation is possible that would preserve
the equality of action and reaction. Einstein’s (11) differs only in the addition of
field potential term c in the field equation’s source term kcσ . Yet that additional term
is enough to overturn the whole calculation. To see why, we merely need to repeat
the electrostatic calculation of (18) in Einstein’s gravitation theory. Substituting the
field Eq. (11) into the expression (14) for the force on a static mass distribution, we
recover:

fi = −σ ∂c∂xi = − 1
kc

(
3∑

m=1

∂2c
∂x2m

)
∂c
∂xi

=
3∑

m=1

∂
∂xm

(

− 1
kc

(
∂c
∂xm

∂c
∂xi

− 1
2δim

(
3∑

n=1

∂c
∂xn

∂c
∂xn

)))

− 1
2kc2

(
3∑

m=1

∂c
∂xm

∂c
∂xm

)
∂c
∂xi

(22)

17A tacit presumption is that tik approaches zero faster than the area A grows infinite.
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where the last equality is an identity. The calculation can almost proceed as before.
The force density fi is equal to a divergence, the divergence of a term quadratic in the
derivatives of c, and a second term. The quantity within the scope of the divergence

operator
3∑

m=1

∂
∂xm

(· ) can be provisionally identified as the gravitational field stress

tensor: 18

tim = − 1
kc

(
∂c

∂xm

∂c

∂xi
− 1

2
δim

( 3∑

n=1

∂c

∂xn

∂c

∂xn

))

(23)

We are very close to the goal of writing the force density fi as a divergence:

fi = −σ ∂c
∂xi

=
3∑

m=1

∂tim

∂xm
(24)

However the second superfluous term of the expression in Eq. (22) remains

− 1

2kc2

( 3∑

m=1

∂c

∂xm

∂c

∂xm

)
∂c

∂xi

It precludes us writing the force density as a divergence. Its presence leads to the
non-vanishing force Einstein reported in Eq. (15) above.

A short calculation shows that this second, troublesome term can be eliminated
if it is absorbed into the gravitational field Eq. (11). This absorption yields the
modified gravitational field equation of the second theory of 1912:

)c =
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
c = k

(

cσ + 1
2kc

3∑

m=1

∂c

∂xm

∂c

∂xm

)

(25)

This modified field equation solves the dynamical problem. Using it, the force
density fi can be written as the divergence of a tensor, tim of Eq. (23). An argument
analogous to that of the electrostatic case shows the equality of action and reaction
is preserved. A bonus, possibly unexpected, is that Einstein could show that the
additional term in the modified field equation

1
2kc

3∑

m=1

∂c

∂xm

∂c

∂xm

18Einstein’s expression for this stress tensor in (1912a, p. 456) omits the leading minus sign. I
believe this is a typographical error in Einstein’s paper.
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is equal to the energy density of the gravitational field. Einstein now had the
appealing result that ordinary matter density σ and the gravitational field energy
contribute equally, in arithmetic summation, as the source of the gravitational field:

)c = k (ordinary matter density+ energy density of the gravitational field)
(26)

With this modification, Einstein’s theorizing now moved to non-linear field
equations, which would be an enduring feature of his development of general
relativity and his subsequent unified field theory.

Einstein identified the peril to his theory quite rapidly, sometime between the
writing of the first paper (Einstein 1912a) and the second (Einstein 1912b). How
did he find it so quickly? Its presence is obvious once one tries the calculation of
Eq. (22) above. Why would Einstein try such a calculation? A striking juxtaposition
may answer this last question. The first two sections of Einstein (1912b) tackle a
mundane exercise required by the new theory. Einstein asks how electrodynamics
must be modified to remain compatible with the new theory of gravity. Einstein
shows that all that is required is the addition of factors of c in several places. He
then proceeds to check that the resulting modified theory retains the conservation
of energy and the conservation of momentum. The first computation involves
recovering an expression for the electromagnetic field energy density. The second
computation leads Einstein to write a modified expression for the Maxwell stress
tensor and to show that the modified expression allows retention of the conservation
of momentum. The corresponding computation for the gravitational stress tensor of
his new theory is the failure that Einstein proceeds to report and that leads to the
need for a modification of his gravitational field equation from Eqs. (11) to (25).

11 Conflicting Heuristics

This modification was not just an ad hoc expedient. As we shall see shortly, it
embodies a procedure that Einstein could and would use again. It proved to be
an invaluable heuristic. The difficulty for Einstein, however, was that this heuristic
contradicted the primary heuristic that had played a dominant role in Einstein’s
thinking on gravity since 1907: the principle of equivalence.

To see the conflict, take what Einstein (1912b, p. 456) correctly gave as an
equivalent form of the modified field Eq. (25):

)
(√

c
)
= k

2

√
c σ (27)

For the source free (σ=0) case of a unidirectional field such as might be produced
by unidirectional acceleration, in analogy with Eq. (6), we recover
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√
c = √

c0 + ax (28)

The difficulty is that uniform acceleration in special relativity produces (6) and
not (28). That is, the gravitational field of the principle of equivalence, produced by
uniform acceleration, is not a gravitational field admitted by the modified field Eq.
(25)/(27).

One might wonder if there is some scope for modifying the transformation Eq.
(1) used to produce the field represented by (6). Using later ideas, we can see
that this is not possible, unless Einstein is prepared to make much more sweeping
changes to this theory. If we assume that the spacetime geometry is given by the line
element (8), then the function c(x, y, z) in Eq. (8) can vary at most linearly with the
spatial coordinates x, y, and z. This linearity is shown in Appendix 1 by the analysis
leading to Eq. (42).

Einstein (1912b, pp. 455–56) reported his reluctance to adopt the modified field
equation:

Therefore I decided with difficulty to take this step, since with it the foundation of the
unconditional principle of equivalence is lost. It appears that the latter can only be retained
for infinitely small fields.

Presumably the restriction is to infinitely small intervals of space in the direction of
the x coordinate. For then the non-linear dependency of c on x in Eq. (28) can be
approximated in the infinitely small interval by the linear dependency of Eq. (6).

All was not lost entirely, Einstein continued. For his derivation of the equations
of motion (9) and the modification to the equations of electrodynamics from the
principle required only that his transformation Eq. (2) can be applied to infinitely
small spaces. He suggested that the transformation Eq. (2) be replaced by the more
general equations:

τ = ct ξ = x + 1
2
c
∂c

∂x
t2 η = y ζ = z (29)

where c is an arbitrary function of x.
While the outcome was clearly painful for Einstein, there is an unmistakable

conclusion concerning Einstein’s heuristics. Einstein’s first tier and most visible
heuristic of the principle of equivalence conflicted with the less visible, second tier
heuristic of momentum conservation. The second tier heuristic wins. It is, in the
end, a more powerful guide that cannot be overruled.

12 A Method Reused: The Derivation of the “Entwurf” Field
Equations

The procedure Einstein used in 1912 to correct his gravitational field equation was
not something merely to be used once. It could be reused in different contexts. That
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is, for Einstein, it was a method. We know this because he goes to some pains to tell
us. The word “method” is his, as we shall see below.

In their “Entwurf” paper of 1913, Einstein and his collaborator, his mathe-
matician friend Marcel Grossmann, published an almost complete version of the
general theory of relativity (Einstein and Grossmann 1913). What was missing were
the now celebrated Einstein gravitational field equations.19 In their place, Einstein
offered field equations of limited covariance. In his physical part of their joint paper,
Einstein addressed the problem of identifying these equations. Following a now
familiar approach, he posited that these gravitational field equations would have the
form

3µν = kT µν (30)

where Tµν is the stress-energy tensor for ordinary matter and k is a constant. The
gravitation tensor, Γ µν , is a quantity constructed from the metric tensor gµν and
its first and second coordinate derivatives. Unlike his later theory, this tensor was
permitted only limited covariance. In the case of a spacetime whose metric differed
only in small quantities from that of a Minkowski spacetime, Einstein specified (pp.
13–15) that the gravitation tensor would have the form (in more modern notation):

3µν = ∂

∂xα

(
gαβ
∂gµν

∂xβ

)
+ further terms that vanish in the

formation of the first approximation
(31)

How could these further terms be found?
Einstein saw that his situation was quite similar to that of 1912. One could

conceive his first gravitational field Eq. (11) merely as an approximation to the
correct equation, merely lacking the higher order terms introduced in the second
gravitational field Eq. (25). Einstein had found these higher order terms by requiring
that substitution of the force density Eq. (16) into the field equation must produce
an identity from which the conservation of momentum could be recovered. Without
mentioning the embarrassing retraction of 1912, Einstein now sought to employ the
same method in his new “Entwurf” theory. He was concerned to convey clearly
to the reader the method that would be used. To do so, he recapitulated the analysis
given above in Sect. 10 for the familiar case of electrostatics.20 I quote him at length
(p. 14):

The momentum energy law will serve us in the discovery of these terms. So that the method
used is clearly delineated, I now want to apply it to a generally known example.

19The story of their rejection of generally covariant field equations has been told in abundance
elsewhere. See Stachel (1989), Norton (1984), and Renn (2007).
20A curious omission is that Einstein never states the key point explicitly: that conservation of
momentum is assured by the existence of the Maxwell stress tensor. Perhaps he assumed it would
be obvious to the reader?
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In electrostatics, − ∂ϕ
∂xν
ρ is the vth component of the momentum per unit volume

imparted to matter, in case ϕ signifies the electrostatic potential, ρ the electric [charge]
density. A differential equation is sought for ϕ of such a kind that the momentum law is
always satisfied. It is well-known that the equation

∑

ν

∂2ϕ

∂x2ν
= ρ

solves the exercise. That the momentum law is satisfied follows from the identity

∑

µ

∂

∂xµ

(
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∂xµ

)
− ∂
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1
2

∑

µ

(
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∂xµ

)2
)
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∂xν

∑

µ

∂2ϕ

∂x2µ

(
= − ∂ϕ

∂xν
· ρ

)

Therefore if the momentum law is satisfied, for each ν an identical equation of the
following construction must exist: on the right hand side is − ∂ϕ

∂xν
multiplied by the left hand

side of the differential equation. On the left hand side of the identity is a sum of differential
quotients.

If the differential equation for ϕ were not yet known, then the problem of its discovery
may be reduced to that of the discovery of this identical equation. What is essential for us
now is the knowledge that this identity may be derived if one of the terms appearing in it is
known. [Einstein’s emphasis] One has nothing more to do than to apply repeatedly the rule
for differentiation of a product in the form

∂

∂xν
(uv) = ∂u

∂xν
v + ∂v

∂xν
u

and

u
∂v

∂xν
= ∂
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(uv) − ∂u
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v

and finally to place terms that are differential quotients on the left hand side and the
remaining [terms] on the right hand side. If one proceeds, f[or] e[xample] from the first
term of the above identity, one obtains the sequence
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from which the above identity follows through rearrangement.

Einstein now proceeded to use this method to derive the gravitational field equations
of his “Entwurf” theory. The derivation was essentially just the derivation of
the second gravitational field equation of 1912, but now promoted to the more
complicated context of the “Entwurf” theory. In place of the single gravitational
potential c was the multi-component metric tensor gµν . In place of momentum
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conservation and the Maxwell stress tensor was the requirement of conservation
of energy-momentum and the stress-energy tensor of the gravitational field.

The resulting gravitation tensor Γ µν is given in Appendix 2 below as Eq. (43).
The promoted computations are considerably more complicated than those of the
1912 theory. Grossmann’s (1913, pp. 37–38) part contains the derivation of the
essential identity, which covers two journal pages. The details of these formulae are
unilluminating for our present interests and I will spare the reader parading them.

13 Conflicting Heuristics Again

While the promotion of the method of 1912 had now provided Einstein with
a unique set of gravitational field equations for his new “Entwurf” theory, the
conflict of heuristics present in 1912 remained and in a more damaging form. The
principle of equivalence had assured Einstein that uniform acceleration produces
a homogeneous gravitational field. We saw above that Einstein’s modified field
equation of 1912 no longer identified this acceleration field in its totality as a
gravitational field. The best Einstein could say was that infinitely small parts of the
field were identified individually as a gravitational field. In the “Entwurf” theory,
this last slender thread to the principle was broken. For the only static spacetimes
with the line element (8) allowed by the source free “Entwurf” gravitational field
equations were those with c = constant. (See Appendix 2 Eq. (46).) That is merely
the spacetime of special relativity, Minkowski spacetime.

The immediate problem was that Einstein could not present the “Entwurf” theory
as realizing the idea implicit in the principle of equivalence. For in this new theory,
uniform acceleration did not produce a gravitational field that was recognized by
the theory’s gravitational field equations. Hence, as noted already in Norton (1985,
§4.3), during the time of the “Entwurf” theory, Einstein tended to avoid detailed
discussion of the principle of equivalence.

In his part of Einstein and Grossmann (1913), the principle (“Äquivalenz-
Hypothese”) is introduced (p. 3) with the restriction to homogeneous gravitational
fields of infinitely small extension. It is recalled subsequently (§1) only as the basis
of the 1912 theory, which is summarized briefly. In his later Einstein (1913, pp.
1254–1255), the principle is presented as a vividly developed thought experiment
concerning physicists who awaken from a drugged sleep in a closed, accelerating
box. Einstein does not, however, develop the specific results such as the line element
(4) above. Soon after, Einstein and Grossmann (1914, p. 216) reaffirm

The whole theory proceeds from the conviction that all physical processes in a gravitational
field play out in exactly the same way as the corresponding processes play out without
a gravitational field, in case one relates them to an appropriately accelerated (three
dimensional) coordinate system. (“Äquivalenzhypothese”)

It is notable that Einstein and Grossman leave open just what form the “appropriate”
acceleration can take. They fail to specify the uniform acceleration and homoge-
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neous gravitational fields of Einstein’s earlier formulations and those of his writings
after 1915. In November 1914, Einstein (1914) published a definitive review article
on the latest form of his theory. The principle of equivalence is now absent in name
from the introductory discussion. Instead, Einstein reflects on rotational motion and
urges (p. 1032) that the centrifugal field appearing in a rotating frame of reference
should be conceived as a gravitational field.21

After November 1915, when Einstein had finally secured a generally covariant
theory, he could once again conceive of the field of uniform acceleration as
gravitational. The principle of equivalence was restored in its original form to
its original prominence in Einstein’s accounts of his theory. It appears in the
introductory discussion (§2) of his new review article (Einstein 1916); and in Ch.XX
of Einstein’s (1920b) popular book on relativity, whose preface is dated December
1916.

The hiatus in discussion of the principle of equivalence coincides with the time
of the “Entwurf” theory. Thus is it natural to suppose that Einstein knew that
the original principle failed completely in his theory. Unfortunately Einstein never
explicitly acknowledged the failure. What complicates the problem is that some of
Einstein’s narratives (cited above) still include it. What deepens the problem is that
Einstein repeatedly employed a spacetime with a line element (8) to represent the
gravitational field outside a spherically symmetric body, such as was assumed for
the sun. The difficulty is that this field must conform with the source free gravitation
field equations and, as shown in Appendix 2, these equations admit nothing but a
flat Minkowski spacetime for a spacetime with this line element.

While Einstein’s silence makes it impossible for us to be certain, I think it most
plausible that Einstein knew of the problem but found it expedient to remain silent
about it. For once a successful theory has been achieved, what could be gained
by announcing incompatibilities between the theory and the specifics of the ideas
that led to it? If uniform acceleration does not produce a gravitational field in
the theory, then other accelerations might; and Einstein mistakenly believed this
to be the case for rotation. As to the applicability of the line element (8) to the
spacetime surrounding the sun, it is notable that Einstein’s derivations all employ
approximations.22 Thus the negative result of Appendix 2 below could be avoided
if the line element of these spacetimes had the form (8) only approximately, that is,
to the order of the approximation of his calculations. I find it most plausible that this
was Einstein’s view.

There is evidence that Einstein knew that static gravitational fields, such as
that of the sun, admitted deviations from spatial flatness that were non-zero in the

21At this time, as Janssen (1999) recounts in some detail, through a calculation error, Einstein
had convinced himself that this centrifugal field is a solution of the “Entwurf” gravitational field
equations.
22See for example Einstein (1913, §8) and Einstein (1914, §17). In a letter of March 19, 1915
(Schulmann et al. 1998, Doc. 63.), Einstein sought to reassure Erwin Freundlich that the spacetime
surrounding the sun has the metric associated with (8)/(36). Einstein presented a short proof that
demonstrates the result only in low order approximation.
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second order of smallness. The most direct evidence comes in a draft manuscript of
calculations co-authored by Einstein and his friend Michele Besso, mostly in mid-
1913 (Klein et al., 1995, Doc. 14). They compute the gravitational field of the sun
to second order in the “Entwurf “ theory and, on a page in Einstein’s hand, non-zero
second order deviations are recovered.23

What is regrettable is that Einstein does not directly affirm these deviations in
his publications from the time. Einstein and Grossmann (1913, p. 7) present the
line element (8) (in the equivalent form of the tensor (36)) as applying to static
gravitational fields “of the previously considered type.” This presumably refers to
those of the earlier 1912 theory. If Einstein intended the remark not to apply to the
present “Entwurf” theory as well, only the most perspicacious of readers could have
realized it.

In November 1915, after Einstein had returned to generally covariant grav-
itational field equations, the error was discovered in the context of Einstein’s
successful explanation of the anomalous motion of Mercury. He then remarked
(Einstein 1915b, p. 834) on the surprising24 appearance of non-constant components
like g11, g22, and g33 in the metric field of the sun: “the [non-constancies of the]
components g11 to g33 differ from zero already in magnitudes of the first order. [my
emphasis]” This emphasized phrase might not be needed, unless Einstein already
had expected such deviations only to be of higher order.

14 The Method Lives On

After the “Entwurf” paper, the essential ideas behind the method of generating
field equations did not disappear, but merely receded. They were absorbed into
Einstein’s analyses and, while no longer explicitly delineated, continued to exercise
a controlling influence on his theorizing.

The gravitational field equations of the “Entwurf” theory were not generally
covariant. The pressing problem for Einstein in 1913 and 1914 was to determine
the extent of his new theory’s covariance. The ideas behind the method of 1912
and 1913 now became the vehicle for determining this extent. To this end, Einstein
and Grossmann (1914, p. 217) wrote the “Entwurf” field equations (in modernized
notation) as:

∂

∂xα

(√−ggαβgσµ
∂gµν

∂xβ

)
= κ√−g

(
T νσ + tνσ

)
(32)

23See Equations 40 and 42 in Klein et al. (1995, p. 370) and the associated editorial discussion on
p. 349.
24The word surprise is Einstein’s from a letter to Michele Besso of December 10, 1915: “You will
be surprised by the appearance of the g11 . . . g33.” (Schulmann et al. 1998, Doc. 162, p. 218).
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where tσ ν is an expression quadratic in first derivatives of the metric tensor and
identified as the stress-energy tensor of the gravitational field. The conservation of
energy and momentum was written as

∂

∂xν

(√−g
(
T νσ + tνσ

))
= 0 (33)

Following the earlier method, we should expect that substituting (32) into (33)
yields an identity in the metric tensor gµν . The resulting identity in gµν is

Bσ = ∂2

∂xν∂xα

(√−ggαβgσµ
∂gµν

∂xβ

)
= 0 (34)

This identity took on a new significance. It could only be expected to hold in
coordinate systems in which the original Eqs. (32) and (33) held. Einstein and
Grossmann could now use the identity as the condition that picks out just those
coordinate systems in which the “Entwurf” theory held.

This “adapted coordinate condition,” as they called it, became a central feature
of the development of the “Entwurf” theory. Einstein and Grossmann (1914) and
Einstein (1914) developed a variational formalism for the “Entwurf” theory. Amajor
goal of the formalism was to demonstrate that this adapted coordinate condition
did characterize precisely the extent of covariance of the theory and that it was
the maximum covariance permitted by Einstein’s original interpretation of the hole
argument.

When Einstein returned to general covariance and formulated the now familiar
generally covariant gravitational equations, the ideas behind this repurposed method
and the variational formalism persisted. The major difference was that the identity
replacing (34) no longer picked out just those few coordinate systems in which the
theory held. For under general covariance, the final theory held in all coordinate
systems. Thus the replacement identity must hold in all coordinate systems. It was
recognized later to be none other that the contracted Bianchi identity:

(
Rµν − 1

2
gµνR

)

;ν
= 0 (35)

where Rµν is the Ricci tensor.
Einstein’s original method of 1912 and 1913 now survives as the most familiar

means of arriving at the gravitational field equations of general relativity. It proceeds
by arguing, as did Einstein (1923, pp. 92–93), that the gravitational field equations
have the form

Gµν = kT µν

The generally covariant gravitation tensor Gµν is formed from the metric tensor
and its first and second derivatives; and it is linear in the second derivatives. It
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follows that Gµν must be a linear combination of Rµν and gµνR. If conservation
of energy momentum

T
µν
; = 0ν

is to be maintained, this linear combination must have a vanishing covariant
divergence. We read from (35) that the gravitation tensor is what is now called the
Einstein tensor:

Gµν = Rµν − 1
2
gµνR

15 Einstein’s Two Tier Heuristics

To return to our starting point, how are we to think of the heuristics that guided
Einstein to his general theory of relativity? His starting point in 1907 was the
principle of equivalence. There can be no doubt that Einstein held firmly to the
idea that this principle was the foundation from which he proceeded, even as the
principle delivered results in contradiction with his evolving theory. Here is how
Einstein recalled the situation in a letter of September 12, 1950, to Laue. At issue
was the fact that the Riemann curvature tensor vanishes in the rotating coordinate
system adapted to a rotating disk in Minkowski spacetime. Einstein replied25

It is true that in that case the Riklmvanish, so that one could say: “there is no gravitational
field present.” However, what characterizes the existence of a gravitational field from the
empirical standpoint is the non-vanishing of the Γ ik

l [coefficents of the affine connection],
not the non-vanishing of the Riklm. If one does not think intuitively in such a way, one cannot
grasp why something like curvature should have anything at all to do with gravitation. In
any case, no reasonable person would have hit upon such a thing. The key for understanding
of the equality of inertial and gravitational mass is missing.

In retrospect, we can see the most important idea that the principle of equivalence
delivered to Einstein. It was, as is argued in Norton (1985, §12), that the Minkowski
spacetime of special relativity was not to be conceived as a gravitation free
spacetime. Rather gravitation was already present in it as a special case. That gave
Einstein the crucial clue that a gravitation theory could be constructed, not by adding
a gravitational field to that spacetime, but generalizing the structures already present
in Minkowski spacetime.

The difficulty was that the principle of equivalence gave Einstein more than
this vital clue. It also delivered gravitational fields to Einstein that contradicted his
evolving theories of 1912 and 1913. If the principle of equivalence was inviolable,
Einstein would have had to abandon these theories. He did not; the principle proved

25As quoted in Norton (1985, §11).
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dispensable. Rather he first reduced the principle of equivalence in 1912 to a weak
version that obtained only in the infinitely small and then in 1913 and 1914 to
a vaguer guide with an imprecisely circumscribed expression. The principle may
have taken pride of place in his overarching conceptions, but it enjoyed no such
prominence in the practicalities of his theorizing.

Instead Einstein could proceed with quite definite theories because a second tier
of heuristics were still guiding him. In the account above, one has been singled out
as having special importance.26 It is the idea that the gravitational field equations
must conform with energy and momentum conservation. Unlike the principle of
equivalence, that demand was inviolable. It provided a method that guided Einstein
to quite specific field equations in 1912 and in 1913 and persists in modern
presentations of general relativity.

Is this example of a two-tiered structure of heuristics in Einstein’s work
exceptional? A second, related example has been explored in some detail by Janssen
and Renn (2006). In November 1915, Einstein (1915a) reported to the Prussian
Academy that he had abandoned his “Entwurf” theory. He presented in its place a
new theory of near general covariance that would shortly be extended to full general
covariance. Einstein made clear that, once he had lost faith in his earlier theory,
considerations of covariance were his primary guide: (p. 778)

Thus I came back[27] to the demand of a more general covariance of the field equations,
from which I had departed three years ago, when I worked together with my friend
Grossmann, only with a heavy heart.

His reflections devolved into a poetic tribute to the mathematical methods associated
with general covariance (p. 779)

Hardly anyone who has truly understood it can resist the charm of this theory; it signifies a
real triumph of the method of the general differential calculus, founded by Gauss, Riemann,
Christoffel, Ricci and Levi-Civita.

Janssen and Renn, however, have pointed out that the theory then presented by
Einstein could be produced by making a small adjustment to the variational
formulation of the “Entwurf” theory. A derivative of the metric tensor would be
replaced by a Christoffel symbol, otherwise leaving the formalism unchanged. The
cogency of the ensuing theory was assured by the results of the earlier formulation.
In particular, the modified theory would be assured to conform with the conservation
of energy and momentum.

There is no reason to doubt that Einstein conveyed accurately his perception of
the overriding importance of covariance considerations. That would be a natural way
for him to recall his recognition that the modified theory was the same as one of near
general covariance, recoverable from the Riemann tensor. However it obscures how
powerfully his further demands constrained his choices.

26Another essential requirement was that his new gravitation theory revert to Newtonian gravitation
theory in the case of weak, static gravitational fields.
27“So gelangte ich . . . zurück . . . ”
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We see in this example a similar double tiered structure of heuristics. Covariance
considerations loomed large in Einstein’s thinking as the first tier. However they
were quite dispensable. Einstein had abandoned them in 1913 with the formulation
of the “Entwurf” theory, whose covariance properties were then unclear. Considera-
tions such as the energy momentum conservation and the Newtonian limit, however,
were inviolable and formed the second tier that continued to guide and circumscribe
his theorizing. In November 1915, Einstein could return to more general covariance
precisely because he had in hand a formalism that preserved the demands of this
second tier.

16 Conclusion

It is tempting to say that Einstein did not really need the principle of equivalence
to guide him to general relativity. The crucial clue that Minkowski spacetime is
already gravitational could have been gleaned from a widely known fact, itself
brought to prominence by Einstein’s work. It is the remarkable equality of inertial
and gravitational mass in Newtonian theory. This equality leads to the result that
trajectories of bodies in free fall are independent of their mass. They are, in
retrospect, tracing out for us the geometry of a curved spacetime associated with
gravity. Might that have been enough to guide Einstein or another theorist to general
relativity?

Of course, when our concern is the discovery of a theory as exceptional in relation
to what went before as general relativity, it is foolhardy to try to imagine how things
could have been otherwise. I will not persist. We saw above that Einstein insisted
that without the principle of equivalence “no reasonable person” could have found
general relativity. However, just as I cannot really know how it would have been if
things were otherwise, is not the same true for Einstein?

Acknowledgment I thank Michel Janssen for helpful discussion in general and especially relating
to Section 13; and Dennis Lehmkuhl and Tilman Sauer for comments and corrections on an earlier
draft.

Appendix 1: Computing Spacetime Curvature in Einstein’s
1912 Theory

Einstein’s 1912 theory of static gravitational fields attributed properties to space
and time equivalent to spacetimes of his later general theory of relativity with a
spacetime metric:
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gµν =





−1
−1

−1
c2 (x, y, z)



 gµν =





−1
−1

−1
1/c2 (x, y, z)





(36)

where the spacetime coordinates are (x, y, z, t)= (x1, x2, x3, x4) and Greek indices µ,
ν take values 1, 2, 3, and 4. In (36), c is a function of x, y, and z, but not t. Following
the notational conventions of Einstein (1923, p. 79), we write the coefficients of the
connection as

3αµν =
1
2
gσα

(
∂gµα

∂xν
+ ∂gνα
∂xµ

− ∂gµν

∂xα

)
(37)

where summation over repeated indices is implied. Substituting Eq. (36) in Eq. (37),
the only non-zero terms are

3i
44 = c

∂c

∂xi
34
i4 = 34

4i =
1
c

∂c

∂xi
(38)

where a Latin index i = 1, 2, 3, is used to identify the spatial coordinates (x, y, z) =
(x1, x2, x3). The Ricci tensor, as given by Einstein (1923, p. 85), is

Rµν = −
∂3αµν

∂xα
+
∂3αµα

∂xν
+ 3αµβ3βνα − 3αµν3βαβ (39)

Using the values of (38), after some calculations, the Ricci tensor reduces to28

R44 = −c)c = −c

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
c

Rik =
1
c

∂2c

∂xi∂xk
, so that R11 =

1
c

∂2c

∂x2
, R12 =

1
c

∂2c

∂x∂y
, etc.

Ri4 = R4i = 0 (40)

Finally, the Riemann curvature scalar is

R = gµνRµν =
1
c2

R44 − R11 − R22 − R33 = −2
c
)c (41)

28These formulae are accurate to all orders. They differ from Stachel’s (1989, p. 67) formulae,
which are computed only, in Stachel’s expression, in “linearized approximation.”
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Einstein’s source free gravitational field equations of 1915, Rµν = 0, lead to
highly restricted results. The spatial part, Rik = 0, alone is sufficient to ensure that c
depends at most linearly on the spatial coordinates x, y, and z. That is

c (x, y, z) = A+ Bx + Cy +Dz (42)

where A, B, C, and D are constants. Equation (42) also applies to the special case
of flat spacetime, when the Riemann curvature tensor vanishes. For in that case, its
first contraction must also vanish, Rµν = 0.

Had Einstein set his source density in his field Eq. (11), ∆c = kcσ , equal to the
trace of the stress-energy tensor of ordinary matter, that is, σ = T, then it follows
from (41) that the field Eq. (11) would be equivalent to

−R = (2/c))c = 2kσ = 2kT

Appendix 2: Computing the Gravitation Tensor
of the Einstein–Grossmann Theory for a Static Gravitational
Field

The gravitation tensor of limited covariance of Einstein and Grossmann (1913,
p. 15) is given in more modern notation as:

3µν = 1√−g
∂
∂xα

(√−ggαβ ∂g
µν

∂xβ

)
− gαβgτσ

∂gµτ

∂xα
∂gνρ

∂xβ

+ 1
2g
αµgβν

∂gτρ
∂xα

∂gτρ

∂xβ
− 1

4g
µνgαβ

∂gτρ
∂xα

∂gτρ

∂xβ

(43)

Evaluating this tensor for the static spacetimes (36), as conceived in the Einstein
and Grossmann theory, we find the only non-zero derivatives of the metric tensor
are:

∂g44

∂xi
= 2c

∂c

∂xi
∂g44

∂xi
= − 2

c3
∂c

∂xi
(44)

where i = 1, 2, 3. After some straightforward computations, we recover

344 = 2
c3

3∑

i=1

∂2c

∂
(
xi
)2 − 1

c4

3∑

i=1

(
∂c

∂xi

)2

3ii = − 2
c2

(
∂c

∂xi

)2

+ 1
c2

3∑

i=1

(
∂c

∂xi

)2

3ik
(i #=k) = − 2

c2
∂c

∂xi
∂c

∂xk
3i4 = 34i = 0 (45)
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where all summations are explicit. No summations are implied. For the source free
case, the gravitational field equations of the theory are 3µν = 0. The component
equation 344 = 0 corresponds to the source free form of the second field Eq. (25)
of Einstein’s second theory of 1912. The remaining component equations, however,
have terms in the first derivatives ∂c/∂xi only. The three equations 3ii = 0, for i =
1, 2, 3, are sufficient to force ∂c/∂xi = 0 for i = 1, 2, 3. That is, we must have

c (x, y, z) = constant (46)
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