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It is natural for scientists to employ a familiar formal tool, the probability 

calculus, to give quantitative expression to relations of partial evidential support. 

However this probabilistic representation is unable to separate cleanly neutral 

support from disfavoring evidence (or ignorance from disbelief). Since this 

separation is essential for the analysis of evidential relations in cosmology in the 

context of multiverse and anthropic reasoning, the use of probabilistic 

representations may introduce spurious results stemming from its expressive 

inadequacy. That such spurious results arise in the Bayesian “doomsday 

argument” is shown by a reanalysis that employs fragments of inductive logic 

able to represent evidential neutrality. Similarly, the mere supposition of a 

multiverse is not yet enough to warrant the introduction of probabilities without 

some analog of a randomizer over the multiverses. The improper introduction of 

such probabilities is illustrated with the “self-sampling assumption.” A 

concluding heretical thought: perhaps the values of some cosmic parameters are 

                                                
1 I am grateful to Jeremy Butterfield and Eric Hatleback for helpful discussion. 
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unexplained by current theory simply because no explanation is possible; they just 

are what they are. 

 

 

1. Introduction2 
A corner of philosophy of science that may prove useful to cosmologists is the study of inductive 

inference. Recent work in cosmology has identified certain observed features of the cosmos as 

surprising and uses this identification to motivate new theories or forms of explanation. The 

judgment that these features are surprising makes essential use of inductive notions as does the 

injunction that the appropriate response is a new theory or new forms of explanations. 

 My purpose in this note is address a specific way in which these inductive notions are 

expressed. It is common both within philosophy of science and outside it to take inductive 

notions just to be probabilistic notions, even though probabilistic notions are, I believe, only a 

special case of inductive notions and cannot always be applied. Of course, these probabilistic 

notions can often be very useful. However, sometimes they are not. They can be quite 

misleading. Their use in connection with surprises in cosmology is such a case. 

 The difficulty is that probabilistic notions cannot separate two cases. There is the case in 

which evidential support is completely neutral over the possibilities; and the case in which 

evidence disfavors particular ones. Probabilistic notions fare poorly at capturing neutrality, but 

are good at capturing disfavor. If one insists that probabilistic notions should be used in cases of 

                                                
2 My thanks go the organizers of this conference for giving me the opportunity to participate. It 

is an appealing thought that philosophers may have something useful to say to cosmologists and 

may aid them in the profound conceptual and theoretical challenges they face. It is an appealing 

thought in the abstract, but it is a daunting one when this particular philosopher is invited to be 

useful. The word “philosopher” has its origins in the Greek, where its root is a “lover of 

wisdom.” There is no assurance that a lover of wisdom has any, just as an anglophile is not 

assured to have an Englishman locked in the basement. For a broader picture of how a 

philosopher of science approaches the philosophical problems of cosmology, see John Earman, 

“Cosmology: A Special Case?” in this conference. 



3 

evidential neutrality, both cases end up being represented by the same low probability values and 

this paucity of expressive power leads to a conflation of neutrality and disfavor. Evidential 

neutrality warrants fewer definite conclusions than does evidential disfavor; so mistakening the 

second for the first can lead to spurious conclusions that are merely an artifact of a poor choice 

of inductive logic. 

 In the following note, I will describe how this confusion has arisen in cosmology. It 

arises in connection with what I call the “Surprising Analysis,” outlined in Section 2 below, 

along with the Bayesian attempt to use probability theory to give a more precise account of it. In 

Section 3, I will argue that the Bayesian reformulation fails since it cannot distinguish neutrality 

of support from disfavor; and I will show how the extreme case of completely neutral support 

must be represented in an inherently a non-probabilistic way. In Section 4, I will sketch how this 

state could be incorporated into alternative inductive logics. Section 5 will illustrate how such 

alternative logics can be used to good effect. There we shall see how the implausible results of 

the Bayesian “doomsday argument” arise as an artifact of the inability of the Bayesian system to 

represent neutral evidential support. A reanalysis in an inductive logic that can express evidential 

neutrality no longer returns the implausible results. Sections 6 will review how probabilistic 

representations can properly be introduced into cosmology. An ensemble provided by a 

multiverse, it is argued, is not enough. Some analog of a randomizer is also needed. The “self-

sampling assumption” illustrates what happens when there is no analog to the randomizer. 

Finally, Section 7 will entertain the idea that the values of cosmic parameters that initiate the 

Surprising Analysis may admit no further explanation after all. 

2. The Surprising Analysis 
 In recent work in cosmology, the following analysis has become common. We find some 

aspect of our cosmos, often a parameter, whose value is left indeterminate by our present 

science. Its value must be found by observation. The observed value is then reported and judged 

to be surprising. It is surprising that our cosmic spatial geometry is so close to flat or that values 

of certain fundamental constants lie within the very narrow boundaries that permit just our form 

of life to develop. We then pass to a demand for an explanation of why the cosmic feature has 

this value. In the cases cited, explanations are located in cosmic inflation and anthropic reasoning 

respectively. 
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 The analysis has three phases: 

Surprising Analysis (informal version) 

1. Establishment that prior theory is neutral with regard to the particular cosmic feature. 

2. The claim that the specific value observed for the feature is surprising and in need of 

explanation. 

3. The provision of the explanation to which we should infer. 

This analysis is, at its heart, an instance of inductive reasoning.3 The cosmic features identified 

in 1. and 2. are taken to provide inductive support for the explanation offered in 3. It is also an 

imprecise analysis in so far as certain central notions—“surprising” and “explanation”—are not 

well understood. As a result, it has proven attractive to recast the analysis in a form that uses the 

probability calculus as a means of representing the otherwise vaguely indicated evidential 

relations. For then the imprecision of the informal version is replaced by a precise computation. 

Sometimes this analysis is given as a full-blown Bayesian analysis. At other times it is merely 

alluded to by allowing fragments of probability talk to slip into the discussion.4 In either case, it 

is clearly comfortable for physicists to replace vaguer inductive notions with a precise 

mathematical instrument, probabilities, that are the standard tool for dealing with uncertainties in 

physics. 

 A generic recasting of the surprising analysis in Bayesian terms can proceed as follows. 

Surprising Analysis (Bayesian version) 

i. There is some cosmic or physical parameter k whose value is left indeterminate by our 

prior theories, all collected into our background knowledge “B”. We represent that 

                                                
3 Here I construe the notion of inductive inference very broadly. It extends well beyond its older 

meaning of generalization from particulars; it includes all cases in which propositions are judged 

to favor or disfavor other propositions while not deductively establishing or refuting them. 
4 Reviewing the articles collected in Carr (2007), for example, one finds probabilities appearing 

in full-blown Bayesian analyses, in casual mentions and much in between. 
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indeterminateness by a probability distribution p(k|B) which is widely spread over the 

admissible values of k. In particular, the observed value kobs has low probability.5 

ii. Were some theory T to be the case, then the probability of kobs would be much higher; 

that is the likelihood p(kobs|T&B) is large.  

iii. Bayes’ theorem in the form 

! 

p(T | kobs & B)

p(T | B)
=
p(kobs |T & B)

p(kobs | B)
 

  now assures us that the numerical ratio p(T|kobs&B)/p(T|B) is large so that the 

evidence kobs lends strong support to the theory T. For the posterior probability 

p(T|kobs&B) of the theory T given the observation is much greater than its prior 

probability p(T|B), conditioned only on our background knowledge B. 

3. What is Wrong with the Bayesian Version 

3.1 Evidential Neutrality versus Disfavoring 

While we should try to replace of a vaguer analysis with a more precise one, the replacement will 

only be successful if the more precise instrument used is the appropriate one. In many cases, 

inductive relations are well explicated by probabilistic analysis. These are cases in which the 

systems inherently contain probabilities, such as stochastic systems or random sampling 

processes. However there are other cases in which evidential relations are, contrary to Bayesian 

dogma, poorly represented by a probabilistic analysis.6 The Surprising Analysis above is such a 

case. That is already suggested by the discomfort many feel at the talk of the probability of the 

observed parameter kobs given only background knowledge, that is, when there is no 

presumption of whether the theory T or some other theory--who knows which--is true. Equally 

mysterious are other quantities that appear in a full Bayesian analysis such as the likelihood of 

the observed parameter kobs given that the theory T does not obtain, p(kobs|not-T&B). For how 

                                                
5 More exactly, observation will pick out an small interval surrounding kobs to which the 

probability density p(k|B) will assign a small value. 
6 For a survey of these boundaries of Bayesian applicability, see Norton (manuscript). 
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can we reasonably comprehend the expanse of possibilities arising when our favored theory is 

not the case? The idea that assigning these probabilities is an arbitrary and even risky project 

appears often in the multiverse literature.7 However that concern does not seem to stop the use of 

these probabilities or to trigger consideration of alternative ways of representing evidential 

relations. 

 The most serious failing of the Bayesian reformulation of the Surprising Analysis lies in 

the first step (i). In the original analysis, our background theory is neutral in its support of any 

particular value of k. That neutrality is represented by a probability distribution. The difficulty is 

that probability distributions are unable to represent evidential neutrality. The numerical values 

of probability measures span a range from zero to one. High values near one represent strong 

support; low values near zero represent strong disfavoring. This complementary relationship 

between support and disfavoring results directly from the additivity of probability measures.8 For 

a proposition A, we have 

P(A|B) + P(not-A|B) = 1 

So, if we assign a low probability near zero to P(A|B), then we must assign a probability near 

unity to P(not-A|B). That high probability means that the evidence strongly supports not-A, 

which means it must strongly disfavor its contradiction, A, to which we assigned the low 

probability. More generally, if there are n mutually exclusive and exhaustive outcomes A1, …, 

An, additivity requires 

P(A1|B) + P(A2|B) + … + P (An|B) = 1 

or, in other words, that the measure is normalized to unity. This normalization condition means 

that evidence can only favor one outcome or set of outcomes if it disfavors others. 

 The additivity of probabilities is the mathematical expression of the complementary 

relationship of support and disfavoring. It leaves no place in the representation for neutrality. We 

shall see in several cases below of neutral support that additivity, in the form of a requirement 

                                                
7 See for example Aguirre (2007), Page (2007, p. 422), Tegmark (2007, pp. 121-22). 
8 For further discussion, see Norton (2007, Section 4.1). 



7 

that probability measures normalize to unity, is directly responsible for the failure of the 

probabilistic analysis.9 

3.2 Representing Evidential Neutrality 

 The difficult is that the full spectrum of evidential support cannot simply be represented 

by the degrees of a one-dimensional continuum, such as the reals in [0,1]. The full spectrum 

forms a multi-dimensional space with, loosely speaking, disfavoring and neutrality proceeding in 

different directions. I know of no adequate theoretical representation of this space. However we 

can discern what a small portion of it looks like. Let us take the case of complete evidential 

neutrality. The background B, in this case, simply has no evidential bearing in any direction on 

the contingent10 propositions A1, … , An, of some finite Boolean algebra of propositions. Two 

instruments independently give us the same characterization of this state of evidential neutrality. 

3.2.1 Invariance under Negation 

Assume we have a finite Boolean algebra of propositions such that our background knowledge B 

is completely neutral with respect to its contingent propositions, A1, … , An. Let the degree of 

support in this state of complete neutrality be written as “[Ai|B]”. Its value will be unchanged in 

this special, extreme case if we replace Ai by its negation, not-Ai. 

[Ai|B] = [not-Ai|B] 

The point is, I think, quite straightforward. If you are unsure, try this thought experiment. The 

proposition Ai is written on a card in a sealed envelope. You have formed your neutral degree 

                                                
9 Why doesn’t a probability of 1/n represent evidential neutrality when there are n options? The 

deeper problems with all probabilistic representations of neutrality emerge in the following 

section. For a foretaste, note that the “neutral value” of 1/n is now context dependent. If there are 

5 options, 1/5 represents neutrality. But if there are ten, 1/5 represent strong favoring. Compare 

this with strong support. A probability of 0.999 is strong in every context. 
10 Contingent propositions are just all those that are not the always-false contradiction F or the 

always-true tautology T, whose truth values are same no matter how the world may be. 

Contingent proposition may be either true or false according to the state of the world. 



8 

[Ai|B]. You then learn that, in error, the negation not-Ai was written on the card so you must 

now adjust your degree. No change would be needed. 

 Thus, the degrees of support representing evidential neutrality are unchanged if we 

replace contingent propositions by their negations. This invariance condition is very strong. If we 

couple it with a weak condition of “monotonicity” it is easy to show that the only admissible set 

of degrees assigns the same value “I” (for Indifferent or Ignorance) to all contingent 

propositions:11 

Completely neutral support 

[Ai|B] = I    for all contingent propositions  

For n>2, no probability measure can provide this uniform set of values; for it always assigns the 

same value to the disjunction AivAk and each of its disjunctive parts Ai and Ak. 

 The condition of monotonicity invoked above requires that we have a comparative 

relation on degrees of support such that, when A deductively entails C, the degree [A|B] is not 

greater than the degree [C|A].  This merely requires that the deductive consequences of a 

proposition are at least as well supported as the proposition. (For a full elaboration of the 

derivation see Norton, 2008, Section 6.2-6.3.) 

3.2.2 Invariance under Disjunctive Refinement 

A second way of arriving at this distribution of neutral support is afforded by a fixture in many 

accounts of probability theory, the so-called “paradoxes” of the principle of indifference. Here’s 

a rendering of them. Assume that there are two coins lying on a table. Our background has no 

information about how they came to be there; it does not tell us they were tossed. So our 

background in quite neutral to how many heads are showing: zero, one or two. That is, 

[0H | B] = [1H | B] = [2H | B] 

                                                
11 What of the standard Bayesian device of seeking to represent complete neutrality as a convex 

set of probability measures? It has problems, such as a failure to assign any single degree of 

support locally. The deepest problem is that the convex set is still not invariant under negation. 

Rather, under negation, the set becomes a set of what I have elsewhere called “dual additive 

measures.” See Norton (2007a). 
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The evidence is also neutral over the four possibilities arising if we distinguish the coins, so that 

the outcome 1H has two mutually exclusive disjunctive parts HT, the first coin shows the head, 

or TH, the second coin shows the head. 

[HH | B] = [HT | B] = [TH | B] = [TT | B] 

We can combine these last two sets of equalities with the relations 0H = HH  and 1H = HT v TH 

to recover 

[HT v TH | B] = [HT | B] = [TH | B] 

That is, the proposition HT v TH has the same degree of support as each of its mutually 

exclusive, disjunctive parts, HT and TH. 

 In the literature on probability theory, this outcome is taken to be paradoxical since it can 

be satisfied non-trivially by no probability measure. It should now be clear that there is no 

paradox. The paradox is generated by the presumption that a probability measure can represent 

evidential neutrality in the first place. The better response is that this analysis returns a general 

property of a state of completely neutral support: For any two mutually exclusion contingent 

proposition Ai and Ak (such that their disjunction Ai v Ak is still contingent), we have 

[Ai v Ak | B] = [Ai | B] = [Ak | B] 

It is easy to see that applying this condition to all contingent propositions in the algebra rapidly 

returns the above distribution of completely neutral support. (For details and an entry into the 

massive literature on the principle of indifference and its paradoxes, see Norton, 2008.) 

3.3 Neutrality and Disfavor versus ignorance and disbelief. 

Those familiar with the literature will find the last discussion non-standard. It is everywhere 

expressed in terms of evidential support. The now dominant subjective Bayesians have replaced 

all such talk with talk of “degrees of belief.” Neutrality becomes ignorance; disfavoring becomes 

disbelief. 

 This transformation has merged two notions that should be kept distinct. One is the 

degree to which this body of propositions inductively supports that proposition. These degrees 

are objective matters, independent of our thoughts and opinions. The second is the degrees of 

belief that you or I may decide to assign to various bodies of propositions. Once we add our 

thoughts and opinions, these degrees will likely vary from person to person according to our 

individual prejudices. 
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 For those of us interested only in inductive inference, the transformation has been 

retrograde. The evidential relations that interest us are obscured by a fog of personal opinion. 

This concern has led to a revival of so-called “objective Bayesianism,” which seeks to limit the 

analysis to objective relations. (For discussion, see Williamson, 2009.) A persistent problem 

facing this objective approach is that a probability measure cannot supply an initial neutral state 

of support, for the reasons just elaborated above. As result, objective Bayesians cannot realize 

the goal of a full account of learning from evidence that takes us by Bayesian conditionalization 

from an initial neutral state to our final state. Since any initial state must be some probability 

distribution, it always expresses more relations of support and disfavoring that we are entitled to 

in an initial state. 

 Subjective Bayesians seek to escape the problem by declaring these relations in the initial 

state as mere, ungrounded opinion that may vary from person to person. The hope is that, in the 

long run, continued conditionalization will wash away this unfounded opinion from the mix, 

leaving behind the nuggets of evidential warrant. While limit theorems purport to illustrate the 

process, it has long been recognized that the mix remains in the short term of real practice. It will 

be helpful for the further discussion to illustrate the problem. 

3.4 Pure Opinion Masquerading as Knowledge 

  Let us assume that some cosmic parameter can take a countably infinite set of values 

k=k1, k=k3, k=k3,… We have no idea of which is the correct value, so we assign a prior 

probability arbitrarily. Its variations encode no knowledge, but just the arbitrary choices made in 

ignorance. Since there are infinitely many possibilities, our probability assignments must 

eventually decrease without limit, else the total probability will not sum to unity. Let us say that, 

with the decrease needed, we assign the following two prior probabilities 

P(k135|B) = 0.00095         P(k136|B) = 0.00005 

We now learn that one of these two values of k is the correct one. That is, we acquire evidence E 

= k135 v k136. Bayes theorem in the ratio form assures us that 

! 

P(k135 | E& B)

P(k136 | E& B)
=
P(k135 | B)

P(k136 | B)
=
0.00095

0.00005
 

Since the two posterior probabilities must sum to unity, it now follows that 

P(k135|E&B) = 0.95         P(k136|E&B) = 0.05 
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We have become close to certain of k135 and strongly doubt k136. Yet it is clear that our strong 

preference for k135 is entirely an artifact of the pure opinion encoded in our priors. 

 In sum, the Bayesian reformulation of the Surprising Analysis fails in its first step when it 

attempts to use a probability distribution to represent neutrality of support. If this Bayesian 

reformulation fails, how can we respond? In the following, I will pursue three distinct 

approaches. In the first (Sections 4-5), I will investigate the use of an alternative inductive logic 

that can tolerate the neutrality of support just outlines. In the second ( Section 6), I will 

investigate what would be needed to bring back a probabilistic analysis. Finally, in the third 

(Section 7), I will ask if the problem is inductive at all. 

4. Inductive Logics that Tolerate Neutrality of Support 
We have no good characterization of the multidimensional space of degrees that accommodates 

both disfavoring and neutrality of evidence. As a result we have no complete inductive logic that 

accommodates both.12 However it is possible to discern how such a logic might deal with 

conditionalization that proceeds from the initial state of completely neutral support. 

 To see how such a logic might proceed, it is helpful to note that the Bayesian system can 

be decomposed into parts, as I have done in detail in Norton (2007). It turns out that the 

additivity of the system is independent of the components that give the system its characteristic 

dynamics under conditionalization. Those dynamics rests on a procedure that I have called 

“refute and rescale.” To conditionalize a theory T on evidence E, we first preserve just that part 

of T logically compatible with E, that is, T&E (“refute”). We then rescale the probabilities of 

everything that survives in proportion to its prior probability. This two-part process is captured 

by the simple theorem 

! 

P(T1 | E& B)

P(T2 | E& B)
=
P(T1 & E | B)

P(T2 & E | B)
=
P(T1 | B)

P(T2 | B)
 

where the second equality holds only in the special case in which each of T1 and T2 entail the 

evidence E. 

                                                
12 I have tried to survey the terrain of possible logics in Norton (manuscript a). It includes a 

sample “partial ignorance logic.” 
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 It follows immediately for this special case that if the priors P(T1|B) = P(T2|B), then the 

equality persists for the posteriors P(T1|E&B) = P(T2|E&B). This last result can be imported as a 

postulate into an inductive logic that tolerates complete neutrality of support: 

Conditionalizing from complete neutrality of support 

If our background knowledge B is completely neutral with respect to two theories T1 and 

T2, so that [T1|B] = [T2|B] = I, and both theories entail the evidence E, then [T1|E&B] = 

[T2|E&B]. 

The virtue of this rule is that it immediately solves the subjective Bayesian problem of “Pure 

Opinion Masquerading at Knowledge.” All we do is to replace the probabilistic prior by a neutral 

prior and conditionalize according to the last rule. We then have for our priors 

[k135|B] = [k136|B] = I 

Since each of k135 and k136 entails the evidence E = k135 v k136, we can apply the above rule of 

conditionalization to get the result we should have arrived at before 

[k135|E&B] = [k136|E&B] 

Our background support did not treat k135 and k136 differently; the evidence E did not treat them 

differently; so the combined support of background and evidence should not treat them 

differently. 

 There are other techniques that implement notions of neutrality of support. They include 

invariances under parameter transformation and will be illustrated in the next section. 

Unfortunately, I am not confident that any of them can be used to supply an alternative, more 

precise version of the Surprizing Analysis. 

5. The Doomsday Argument 
A further illustration of these alternative logics can be found in a re-analysis of the doomsday 

argument. This argument has been connected with the notion of multiverses by Bostrom (2007). 

See also Bostrom (2002, Ch. 6-7) for an introduction to the literature on the argument. 

 In its Bayesian form, the argument purports to give remarkable results on a foundation 

that seems too slender. Re-analysis that employs a more careful representation of neutrality of 

support can no longer reproduce these results, revealing that the strong results are merely an 

artifact of the defective probabilistic representation of neutral support. 
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5.1 The Bayesian Analysis 

Consider a process, such as our universe, that may have a life of T years, where T can have any 

value. What do we learn about T from our learning that the process has already persisted for t 

years? We begin by assigning a prior probability distribution p(T|B) to T. We assign a likelihood 

to our learning that the process has persisted t years: 

p(t|T&B) = 1/T 

The rationale is that we, the observer, have no reason to expect that we will be realized in one 

portion of the T year span than in any other. We now apply Bayes’ theorem in the ratio form for 

two different values of T, both greater than t: 

! 

p(T1 | t& B)

p(T2 | t& B)
=
p(t |T1 & B)

p(t |T2 & B)
"
p(T1 | B)

p(T2 | B)
=
T2

T1
"
p(T1 | B)

p(T2 | B)
 

If T1 < T2, it now follows that conditionalizing on our evidence shifts support to T1 by 

increasing the ratio of probabilities in T1’s favor by a factor of T2/T1. That is, the evidence of t 

shifts support differentially to all times T closer t. More compactly, we have 

! 

p(T | t& B)"1/T  

 If T is the time of the end of the world, we are to believe it is coming sooner rather than later. 

 There is, of course, some room to tinker. A notable candidate is the likelihood p(t|T&B) = 

1/T. It amounts to saying we are equally likely to be realized in any year in the process. Since 

there are more people alive later in the universe’s history, a better analysis might scale the 

likelihood according to how many people are alive. This merely amounts to using a different 

clock. Instead of the familiar clock time of physics, we rescale to a people clock 

T’ = n(T)      t’ = n(t) 

where the function n(.) gives the number of people alive at the time indicated. The new analysis 

uses a likelihood 

p(t’|T’&B) = 1/T’ 

It will proceed exactly as before and arrive at the same conclusion. Support shifts to a sooner 

end. 

 One surely cannot help but feel a sense that this is something for nothing. We have 

supplied essentially no information to the analysis. We know there is a process; we have no idea 

how long it will last; we know it has lasted t years. On this meager basis, we somehow are 

supposed to believe that it will end sooner. 
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 It is also clear that the favoring of earlier times is an artifact of the additivity of the 

probability measures used. For the analysis depends essentially on the likelihood p(t|T&B)=1/T, 

which varies according to T. The idea that likelihood was trying to express was merely that, even 

with a T chosen, no value of t in the admissible range t=0 to t=T is preferred. That uniformity 

could be expressed by merely setting p(t|T&B) to a constant. The additivity of probabilities, 

however, requires that all probabilities sum to unity. As a result that constant must vary with 

different values of T as 1/T so that 

! 

p(t |T & B)dt = constant dt
t=0

T
" = constant.T =1

t=0

T
" . 

So it is additivity that forces the result. Yet this additivity is just the formal property of 

probability measures that precludes them properly representing the evidential neutrality 

appropriate to this case. 

5.2 The Barest Re-analysis 

 This illusion that we get something for nothing starts to evaporate once we re-analyse the 

problem in a way that eschews the troublesome additivity of the probability measures and more 

adequately incorporates neutrality of support. Here is a very bare version. We will start will 

completely neutral support 

[T1|B] = [T2|B] = I 

Let us take the evidence of t merely to reside in the logically weaker assertion that we know T>t. 

Call this E. It now follows that the hypothesis of any T greater than t entails the evidence. Hence 

we can use the rule of conditionalization of Section 4 and infer that 

[T1|E&B] = [T2|E&B] = I 

That is, knowing that the end, T, must come after t, gives us no basis for discriminating among 

different end times T1 and T2. 

 What should we do if we do want to incorporate the further information that some fixed t 

is more or less likely if different T are the case? A return to the Bayesian analysis will show us a 

way to proceed. 
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5.3 The Bayesian Analysis Again 

The Bayesian analysis of Section 5.1 is only a fragment of a fuller Bayesian analysis. When we 

explore that fuller analysis, we find the Bayesian analysis fails. Where it founders is on a 

requirement that the analysis should be insensitive to the units used to measure time. 

 To see how this comes about, consider the posterior probability, as delivered by Bayes’ 

theorem: 

! 

p(T | t& B) = p(t |T & B) "
p(T | B)

p(t | B)
=
1

T
"
p(T | B)

p(t | B)
 

 for T>t. What seems unknowable is the ratio of priors p(T|B)/p(t|B). It turns out, however, that 

that the ratio must be a constant, independent of T (but not necessarily independent of t). This 

follows from the requirement that the analysis proceeds the same way no matter what system of 

units we use—whether we measure time in days or years. To assume otherwise would not be 

unreasonable. If, for example, the process is the life span of an oak tree, we know that its average 

life span is 400-500 years. With this time scale information in hand, we should expect a very 

different analysis of the time to death if our datum is that the oak is 100 days old or 100 years 

old. However that is a different problem; the doomsday problem as posed provides no 

information on the time scale and no grounds to analyze differently according to the unit used to 

measure time. 

 To proceed, we assume that there is a single probability density p(.|.) appropriate to the 

analysis, so that the problem is soluble at all; and, to capture the condition of independence from 

units of time, we assume that the same probability density p(.|.) is used whichever unit is used to 

measure time. This entails that the probability density p(.|.) is invariant under a linear rescaling 

of the times t and T (that, for example, corresponds to changing measurements in years to 

measurements in days): 

t’ = At         T’ = AT 

This is a familiar condition applied standardly to prior probabilities that are functions of some 

dimensioned quantity T. Such a probability distribution, it turns out, must be the “Jeffreys prior,” 

which is:13 
                                                
13 See, for example, Jaynes (2003, p. 382). The probability assigned to the small interval dT 

must be unchanged when we change units. That is: p(T|t&B)dT = p(T’|t’&B)dT’. Since T’=AT, 
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p(T|t&B) = C(t)/T        for T>t 

where C(t) is a constant, independent of T. 

 The difficulty with this probability density in T is that it cannot be normalized to unity. 

The summed probability over all time T diverges:14 

! 

p(T | t)dT =
T=t

"
# (C(t) /T )dT =

T=t

"
# " 

The Bayesian literature has learned to accommodate such improper behavior in prior probability 

distributions. The key requirement is that, on conditionalization, the improper prior probability 

distribution must return a normalizable posterior probability distribution. Here, however, the 

improper distribution is already the posterior distribution. So the failure is not merely a familiar 

failure of the Bayesian analysis to provide a suitable prior probability; it is its failure to be able to 

express a distribution of support over different times independent of units of measure. 

 The failure of normalization of probability is not easily accommodated. It immediately 

breaks connections with frequencies. While we may posit that ratios of the finite-valued 

probabilities are approximated by ratios of frequencies of the corresponding outcomes in the 

usual way, there is no comparable accommodation for outcomes with infinite probability. Their 

ratios are ill-defined. 

 We may wish to proceed nonetheless, interpreting the unnormalized probabilities just as 

degrees of support in some variant inductive logic. The result is curious. Consider the degree of 

support assigned to the set of end times T in any finite interval T1 to T2: 

! 

P(T1 <T <T2 ) = p(T | t& B)dT = C(
T1

T2"
T1

T2" t) /T #dT = finite 

The degree assigned to the set of end times greater than some nominated T2 

! 

P(T >T2 ) = p(T | t& B)dT = C(
T2

"
#

T2

"
# t) /T $dT ="  

                                                                                                                                                       

we have dT’/dT = A = T’/T, so that p(T|t&B).T = p(T’|t’&B).T’, from which the Jeffreys prior 

follows immediately. 
14 We could restore normalizability by positing an upper cut-off to the time T. That would be ad 

hoc and would contradict the formulation of the problem by introducing extra information: doom 

must come before the cutoff. Is such an artifice really preferable to admitting that the 

probabilistic representation is just poorly matched to the problem? 
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As a result, finite degree is assigned to any finite interval of times; and, no matter how big a 

finite interval we take, an infinite degree is always assigned to the set of times that comes after. 

Since support must follow the infinite degree, all support is accrued by arbitrarily late times. No 

matter how large we take T2 to be, all support must be located on the proposition that the end 

time T comes after it. The standard doomsday argument assures us that, on a pairwise 

comparison, more support is accrued by the earlier time for doom. This extended analysis agrees 

with that. It adds, however, that, when we consider the support accrued by intervals of times, 

maximum possible support shifts to the latest possible times. 

5.4 A Richer Analysis 

 The analysis of the last section shows two things: the unsustainability of the Bayesian 

analysis and the power of invariance requirements. Here is a way that invariance requirements 

can be brought to bear on the problem. We seek the degree of support [T1, T2|t] for an end time 

in the interval T1 to T2 given by the observation that the process has progressed to time t. We 

assume both T1 to T2 are greater than t. 

 The Bayesian analysis of Section 5.1 required that we know which of all possible clocks 

is the correct one in the sense that the likelihood of our observation is uniformly distributed over 

its time scale. Of course it is virtually impossible to know which is the right one. We somehow 

need to judge how the cosmos is distributing our moments of consciousnesses as observers. Are 

they distributed uniformly in time? Are they distributed uniformly over the volumes of 

expanding space? Are they distributed uniformly over all people; or weighted according to how 

long each person lives? Are they distributed uniformly over all people or all people and primates 

with advanced cognitive functions? Or is the distribution weighted to favor beings according to 

the degree of advancement of their cognitive functions? 

 Let us presume that there is such a preferred clock in this analysis as well. In addition, we 

assume that we have no idea from out background knowledge which is the correct clock. As a 

result, we must treat all clocks the same. This condition is an invariance condition. The degrees 

of support assigned to various intervals of time must be unchanged as we rescale the clocks used 
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to label the times. A consequence of this invariance is that the degrees of support assigned to all 

finite intervals must be the same; that is, for any T2>T1>t and any other T4>T3>t, we will have15 

[T1, T2|t] =  [T3, T4|t] = I 

This will still be the case if either interval in a proper subinterval of the other. In this regard, after 

conditionalization on t, we have a distribution with the properties of completely neutral support. 

For this reason, I give the single universal value the symbol “I”, as before. 

 That is, contrary to Bayesian analysis, learning that t has passed does not invest us with 

miraculous, oracular powers of prognostication. On that evidence, we have no reason to prefer 

any finite time interval in the future over any other.16  

6. Bringing Back Probabilities 

6.1 A Mere Ensemble is Not Enough 

When one recognizes the difficulty of using inductive logics other than the Bayesian system, one 

might yearn to bring back the probabilistic analysis. In some cases that is appropriate. How are 

we to know when a particular inductive logic is applicable? The “material theory of induction” 

(Norton, 2003, 2005) was developed to answer precisely this question. Its essential idea is that 

the warrant for an inductive inference is not a universal formal template; it is a locally obtaining 

matter of fact. Imagine, for example, that we are given a Uranium atom randomly sampled from 

                                                
15 To see this, consider any monotonic rescaling f of the clock with the properties: t’=f(t)=t; T1’ 

= f(T1) = T3; and T2’ = f(T2) = T4. Since we have only relabeled the times, the degrees of 

support must be unchanged so that [T1, T2|t] = [T1’, T2’|t’]’ = [T3, T4|t]’. The prime on [.,.|.]’ 

indicates that we are using the rule for computing degrees of support pertinent to the rescaled 

clock. The invariance, however tells us that both original and rescaled systems use the same rule, 

so that the two function [.,.|.]and [.,.|.]’ are the same. Hence [T1, T2|t] = [T3, T4|t] as claimed. 

16 This result does not automatically extend to intervals open to infinity. However it is clear that 

a minor alteration of the analysis will return [T1, ∞|t] =  [T2, ∞|t] = I* for any T1>t and T2>t. It is 

plausible that some further condition will give us the stronger [T1, ∞|t] =  [T1, T2|t], so that I*=I. 

However I do not think invariance conditions are able to force it. 
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natural Uranium ore and asked to form beliefs over whether it will decay radioactively over the 

next year. We will draw on the facts of the distribution of different isotopes of Uranium, that the 

sampling was random and on the probabilistic law of radioactive decay to compute a probability 

of decay over the next year. That probability is a serviceable degree of support accorded by the 

information at hand to decay over the next year.17 

 There are many such circumstances in which a probabilistic logic is warranted. A case 

relevant to cosmology arises when we have an ensemble and, in addition, some scheme that 

lends evidential support to its members in the complementary fashion discussed in Section 3.1 

above. That is, a set A of ensemble members is favored by the scheme just to the extent that the 

complementary set is disfavored. The simplest example of such a scheme is a randomizer. It 

assigns a high or low physical chance to the set A just to the extent that it assigns a reversed low 

or high chance to the complement. The point is a familiar one. We do not have a probability of 

1/52 of the ace of hearts when we merely have a deck of cards. We must in addition shuffle it 

well and deal a card before we have the probability. Without this randomizer, merely having 

neutral evidential support for all cards is insufficient to induce the probabilities. 

 A prosaic case of such an ensemble and randomizer arose for young residents of English 

port towns in centuries past. Then press gangs roamed the streets, kidnapping drunken victims, 

who would then awaken below decks on the high seas. That awakening would give the 

unfortunates good (anthropic!) reason to believe that they were one of the unlucky victims of the 

press gangs and decry their bad fortune in realizing an outcome of lower probability. The facts 

needed to warrant the probabilistic analysis are in place. There is an ensemble, the community of 

young, tavern-frequenting men in a port town; and a randomizer, the process of roaming press 

gangs selecting their victims.18 
                                                
17 The facts that warrant a probabilistic analysis need not be facts about physical probabilities. 

Imagine that one is at a racetrack placing bets with a “Dutch bookie” and that the constellation of 

assumptions surrounding the Dutch book arguments obtain. (See Howson and Urbach, 2006, Ch. 

3.) These facts warrant one conforming one’s inductive reasoning with the probability calculus—

but only as long as these facts obtain. 
18 The reasoning is anthropic. However the illustration also reflects the puzzling and even 

dubious nature of anthropic explanation. The awakening on the ship does not explain how the 
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 In the cosmology literature, there are efforts to use the physical facts of the cosmology to 

ground the assigning of probabilities to the components of a multiverse.19 This is the right way 

to proceed, although there is always scope for the facts invoked to fall short of what is needed. 

One such way arises when the proposal supplies an ensemble but no analog of the randomizer. 

The proposal developed in Gibbons et al. (1987), Hawking and Page (1988) and Gibbons and 

Turok (2008) employs a Hamiltonian formulation of the cosmological theories and derives its 

probabilities from the naturally occurring canonical measures in them. 

 At first this seems promising since it is reminiscent of the natural measure of the 

Hamiltonian formulation of ordinary statistical physics. In this latter case, the association of a 

probability measure with the canonical phase space volume is underwritten by some expectation 

of a dynamics that is, in some sense, ergodic.20 That means we expect the dynamical evolution 

to be such that the system will spend roughly equal times in equal volumes of phase space, as it 

explores the full extent of the phase space. This behavior functions as a randomizer. It allows us 

to connect frequencies of occupation of a portion of the phase space with its phase volume, so 

that the familiar connection between frequencies and probabilities is recoverable. In the Gibbons 

et al. proposal, however, it is not clear that such ergodic-like behavior is expected. It is not clear 

that we should expect that, over time, a single model will explore a fuller part of the model 

space. Rather, the proposal is justified by the remark (p. 736):  

Giving the models equal weight corresponds to adopting Laplace’s ‘principle of 

indifference’, which claims that in the absence of any further information, all 

outcomes are equally likely. 
                                                                                                                                                       

victim came to be there in any of the usual modes of explanation. It is not a causal explanation: 

the cause was the kidnapping by the press gang. It is not the factor that raises the probability of 

going to sea, as is required in statistical relevance explanation. That probability raiser is the 

victim’s visiting and drinking in portside taverns. The awakening at sea does not explain why the 

victim was kidnapped. Rather it provides evidence that the victim was kidnapped, which is an 

assurance that an otherwise a lower probability occurrence has happened. 
19 For other examples of such efforts, see Tegmark et al. (2006) and Weinberg (2000). 
20 It is merely an expectation but not an assurance, since a formal demonstration of the sort of 

behavior expected remains elusive. 
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If that truly is the basis of the proposal, then its basis does not warrant the assigning of 

probabilities. We have seen in Section 3.2.2 above that application of the principle of 

indifference leads to the non-probabilistic representation of completely neutral support. 

 Where this proposal would be falling short is that its multiverses are providing an 

ensemble but there is no analog to the randomizer needed to induce probabilities over the 

ensemble.  

6.2 The Self-Sampling Assumption 

A similar failing arises in connection with the “self-sampling assumption” of Bostrom (2002, Ch. 

4, 5 and 9; 2002a; 2007). The analysis calls on the “Level I” of the multiverse hierarchy 

(Tegmark, 2007), in which a very large or spatially infinite universe realizes, to arbitrary 

closeness, a duplicate of any experiment we may undertake on earth; and does it very often and 

even infinitely often. When we perform an experiment, we might ask which of these many 

duplications is ours. Our background knowledge is quite neutral on the matter. So the appropriate 

representation is that of completely neutral evidence, as described in Section 3.2 above. That 

representation provides no basis for a probabilistic analysis. 

 One can force a probabilistic analysis onto the problem by stipulation. That is the effect 

of the self-sampling assumption. It enjoins us as follows (2007, p. 433): 

One should reason as if one were a random sample from the set of all observers in 

one’s reference class. 

Since the analysis is probabilistic, we assign equal probability to the outcome that each of the 

many replicas of the experiment is ours, a conclusion already suggested by the talk of a “random 

sample.” Bostrom (2002a, p. 618) regards the assumption as “as kind of restricted indifference 

principle,” which, I have already argued provides no basis for assigning probabilities. The 

assumption imposes a stronger probabilistic representation onto the problem than the weaker one 

warranted by the neutrality of the evidence, thereby risking again that conclusions are artifacts of 

a poorly chosen logic. One such artifact arises through the great difficulties probability measures 

face in spreading support uniformly over a countable infinity of outcomes. 

 The severity of the problem becomes clear if we work through an example that also 

shows that the analysis resulting from the self-sampling assumption is at best unnecessary and at 

worst unsuccessful. Take the proposition: 
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E: Penzias and Wilson measure a 3oK cosmic background radiation. 

We are interested in its probability conditioned on the unfavorable theory that: 

T: The cosmic background radiation has a true temperature of 100oK. 

This particular probability is troubled by none of the above concerns with evidential neutrality; it 

is a physical chance that can be computed within a physical theory. If the cosmic background 

were 100oK, then there would be some unimaginably small but non-zero probability “q” that, 

through a theoretically computable random fluctuation, Penzias and Wilson could measure 3oK. 

That physical chance is expressed in the likelihood 

(L)      P(3oK measured in specific experiment | true background 1000K) = q 

The direct approach is simply to apply L to E, since E reports a specific experiment of the 

relevant type. That is, we recover directly 

P(E|T) = q 

 Bostrom’s analysis proceeds by assuming that this direct analysis cannot be applied. The 

worry of Bostrom (2002, Section 1) seems to be that an unlikely occurrence, such as measuring a 

3oK background in a universe with a true background of 100oK, is virtually certain to happen 

somewhere if there are enough Penzias and Wilson clones performing the experiment. That is, 

the probability of an E-like event somewhere given the truth of T is close to one. The obvious 

point is that this reasoning conflates an E-like event with E. Nonetheless a probabilistic analysis 

is possible that allows for the possibility of many trials each able to produce an E-like event and 

then factors in that each is unlikely to be our trial. It is an indirect analysis conducted on a 

proposition logically equivalent to E: 

F: There is a measurement of 3oK cosmic background radiation somewhere in the universe 

AND it is our Penzias and Wilson’s. 

While the E and F are logically equivalent, a probabilistic analysis of them need not be 

equivalent. In the best case, the analysis of F yields the same conditional probability, but only by 

introducing dubious sampling probabilities. In the worst case, these extra probabilities incur 

sufficient problems to defeat the analysis entirely. In either case, there is no clear gain in 

replacing the analysis of E by that of F, for the second analysis still requires use of the likelihood 

(L) that can be applied directly to E to get the result without any further fuss. 
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 We recover the same result analyzing E and F in the simpler case in which there are only 

a finite number n of replicas of the experiment in the multiverse.21 We now apply the self-

sampling assumption, on the basis that our Penzias and Wilson experiment is done in our world. 

We conclude that the probability that our Penzias and Wilson experiment is any one of the n 

available replicas is just 1/n. We compute the probability that our Penzias and Wilson do 

measure 3oK by summing the probabilities of these n, mutually exclusive cases. That is, we 

compute 

P(F|L)  =  q.(1/n) + q.(1/n) + … + q.(1/n)  =  q 

This is the same result as given by the direct analysis of P(E|L). However its generation is much 

less satisfactory. For the analysis of P(E|L) employed only the physical chances supplied by a 

physical theory. The analysis of P(F|L) arrived at the same result, but mixed the physical chance 

q with the dubious self-sampling probabilities 1/n. Indeed this last sum shows that something 

less than the self-sampling assumption is all that is needed. We could instead assume any set of 

probabilities p1, p2, …, pn for the n trials. Since these n probabilities sum to unity, the above sum 

is replaced by 

P(F|L)  =  q. p1 + q. p2 + … + q. pn  =  q 

Thus, the indirect approach asks us to introduce an unnecessary assumption to generate dubious 

probabilities to conduct an unnecessary calculation to get the same result as was recovered 

directly without computation. 

 Or at least we have the same result in the case of a finite universe. If the universe is 

spatially infinite, so that there are infinitely many replicas of Penzias and Wilson, then the 

analysis fails. The self-sampling assumption entails that the probability that each particular 

replica is theirs is zero. It must be zero since each outcome of random sampling must have the 

same probability and any non-zero probability would lead to an infinite total probability. This 

                                                
21 While the analysis of the finite case does not require it, Bostrom assumes in cases like this that 

n is very large so that the probability that measurement of 3oK occurs in at least one of the 

replicas is 1-(1-q)n, which can be brought arbitrarily close to one by sufficiently large n. 
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zero is a disaster for Bayesian analysis since all the probabilities produced by summing of the 

individual cases will themselves be zero. For example, P(F|L) is now given by22 

P(F|L)  =  q. 0 + q. 0 + … 0  =  0 

which is the wrong result. Indeed the probability that any of the measurements is Penzias and 

Wilson’s is a sum of infinitely many zeroes, which is just zero. 

 This last failure is simply the manifestation all over again of the inability of a 

probabilistic analysis to capture neutral support. That failure depends essentially on the additivity 

of probability measures. In the case of a countable infinity of mutually exclusive outcomes all of 

which are equally supported by the background, additivity requires that we assign a zero 

probability to each, on pain of violating normalization to unity. 

 At best, the indirect analysis that incorporates the self-sampling assumption must 

presume everything in the easy, direct analysis, and merely gives the same result. At worst, the 

indirect analysis fails and it does so because of the inability of a probability measure to represent 

neutral support. 

7. When the Problem is Not Inductive 
The material theory of induction asserts that the warrant for an inductive inference resides in 

locally obtaining facts. There is an inverse assertion. If there are no warranting facts, then there 

is no inductive inference warranted, even though the case may look eminently suited to inductive 

inference. Such a case is supplied by the problem of extendability in spacetime. Take any 

classical spacetime. One can always excise a piece as a purely mathematical construction to 

arrive at a new spacetime, observationally identical to the first. While a piece has been cut out, 

                                                
22 Should we compute P(F|L) by first computing P(F|L) for the finite case to recover q and then 

“take the limit as n goes to infinity.” That procedure presumes that summing over all cases and 

taking the limit to infinity are operations that commute. In finite cases they do. In this infinite 

case they do not. A more promising approach is to explore the use of “improper” prior 

probabilities in which each of the countable infinity of outcomes is assigned the same, small non-

zero probability. It is not clear that these improper probability distributions can be made to work 

in this case. If they can be, however, it will be at the expense of the self-sampling assumption. 

For no regime of random sampling allows probabilities whose sum is infinite. 
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there will be no observational trace of the excision. Everything in the surrounding spacetime will 

remain just as if the piece were still there. Even if our world tubes as observers were to pass 

through the hole, we would not notice anything unusual. We just cease to exist at the hole’s past 

edge and we would be reconstituted at the future edge, complete with spurious memories of the 

non-existent, excised part, in exactly the state of someone who experienced everything in the 

excised hole. 

 It is natural to expect that some inductive inference grounded in our observations could 

somehow still force the conclusion that our spacetime is hole free. However (Norton, manuscript 

b) I have been unable to find any facts that warrant the relevant induction. We might call upon a 

common postulate in spacetime theories that the spacetime is inextendible. However that 

postulate is anomalous in being independent from a physical perspective from the other 

postulates. It is includes as much for mathematical convenience. The other justifications I have 

seen tend to the esthetic or oddly metaphysical. Somehow we must assume a Leibnizian 

principle of plenitude, so that the universe contains as much as is possible and no less. We are 

now descending into a fruitless battle of metaphysics. For this Leibnizian principle contradicts 

the metaphysics of parsimony encouraged by Ockham’s razor. That tells us that we should 

presume the least possible. This degeneration surely tells us that we are no longer dealing with a 

problem that is properly understood as inductive in the first place. 

 Now return to the Surprising Analysis. I have challenged the Bayesian attempt to make it 

precise but not yet queried whether there is a good inductive inference in it at the informal level. 

It is now time to make that query. We judge the disposition of cosmic parameters to be 

surprising; we judge this or that theory not just to accommodate them but to explain them; so we 

infer to the theory. Yet we are unable to give a clear explication of why the values are surprising 

and just what it takes to be a good explanation. 

 Might we have to take these difficulties as an indication that no deeper explication is to 

be had? In expecting otherwise, are we being misled by other cases? We cannot fail to be 

impressed when we learn that a deeper theory forces some apparently arbitrary parameter to the 

value it has. Light, we learned from direct measurements, travels at 300,000 km/sec in a vacuum. 

We then found that, given the values of the basic constants in the theory of electricity and 

magnetism, it has to have that speed. Are we concluding too hastily that every parameter in our 

theories must have some similar, deeper accounting? While we may dream, as did Einstein, of a 
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theory with no arbitrary parameters, that would not exhaust the arbitrariness of our theories. 

Why, for example, would our spacetime have as many dimensions as it has? Why might its 

spacetime metric be Lorentz signature and not (Newtonian) degenerate? Why should the 

structures in it be scalars or spinors or vectors or second rank tensors? Why should our spacetime 

or the inner spaces the quantum states of matter host just the symmetries they do? Why should 

quantum states evolve according to the Schroedinger equation? Why should gravity and 

spacetime curvature be connected? 

 If we demand a deeper explanation of everything, we trigger an unsatisfiable infinite 

regress. Perhaps some things in the cosmos are just as they are and no further accounting is 

possible. Perhaps the cosmic parameters of the Surprising Analysis just are what they are and no 

further explanation should be sought. Perhaps they are not the inductive springboards to 

multiverses and other exotic structures from which we imagine our world to be sampled. Perhaps 

they just are the way they are. 

8. Conclusion 
The attempt to use Bayesian analysis to supply a more precise reformulation of the Surprising 

Analysis fails. It founders on the inability of a probability measure to represent adequately the 

evidential neutrality with which the analysis begins. Once one grounds an analysis in a 

representation that conflates neutrality and disfavor, we should not readily accept its judgments 

of what is favored. The case of the doomsday argument shows how readily a faulty 

representation can return incorrect results. It assures us, on impossibly slender evidence, that we 

should believe the end of the universe is coming sooner. When we excise the probabilistic 

representation and replace it with a better representation of completely neutral support, the strong 

results evaporate. We have no grounds to expect the end sooner or later on its slender evidence. 

 These concerns do not always preclude a probabilistic analysis. It can be employed if 

there is a sufficient factual basis to warrant the probabilities. The mere supposition of a 

multiverse, however, is not sufficient. It does not provide probabilities until we add an analog of 

a randomizer, just as a deck of cards or die provide no probabilities until we introduce the 

randomizer of shuffling or throwing. The mere fact of evidential neutrality or ignorance over the 

members of the multiverse is insufficient grounds for the introduction of probabilities. 
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 Inductive inference can give us new knowledge that extends beyond our evidence. But it 

can only do so by taking an inductive risk. The risk taken and the fragility of the results increase 

the more slender the evidence. In the extreme case of completely neutral evidence, we should no 

longer expect an inductive logic to wrestle new knowledge from nothing. This miraculous feat is 

what probabilistic analysis purports to do. Inductive logics that incorporate neutrality of support, 

when analyzing the same problems, return nothing. That is what we should expect. 

Nihil ex nihil fit.23 

 Finally, the Surprizing Analysis is grounded in the idea that certain cosmic parameter 

values require a deeper explanation. While a call for explanation may initially seem natural, are 

we risking an unsatisfiable infinite regress if we continue call for further explanations of the 

contingent features of each explanation? The explanatory regress must terminate in some brute 

facts. Might we already have arrived at this terminus in certain aspects of our present 

cosmology? Might these cosmic parameters just be what they are with no further explanation 

possible? 
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