
ON THE DOUBLED TETRUS

JASON DEBLOIS

Abstract. The “tetrus” is a member of a family of hyperbolic 3-manifolds

with totally geodesic boundary, described by Paoluzzi–Zimmerman, which also

contains W.P. Thurston’s “tripus.” Each member of this family has a branched
cover to B3 over a certain tangle T . This map on the tripus has degree three,

and on the tetrus degree four. We describe a cover of the double of the tetrus,

itself a double across a closed surface, which fibers over the circle.

This paper describes some features of a fibered cover of a certain 3-manifold,
related to a family of compact hyperbolic 3-manifolds Mn,k with totally geodesic
boundary defined by Paoluzzi-Zimmermann [20]. A well known member of this
family is M3,1, Thurston’s “tripus” [25, Ch. 3]. Here we consider the “tetrus” M4,1

(thanks to Richard Kent for naming suggestions).
If M is an oriented manifold with boundary, let M be a copy of M with orienta-

tion reversed, and define the double of M to be DM = M ∪∂ M, where the gluing
isometry ∂M → ∂M is induced by the identity map.

Theorem 0.1. There is a cover p : DM̃ → DM4,1 of degree 6, where DM̃ is a
double across the closed surface p−1(∂M4,1) of genus 13, and DM̃ fibers over S1

with fiber F̃ , a closed surface of genus 19.

The manifold DM̃ above is the first hyperbolic 3-manifold which we know to be
both fibered and a double across a closed surface. Non-hyperbolic fibered doubles
are easily constructed, for instance by doubling the exterior of a fibered knot across
its boundary torus, but producing a fibered hyperbolic double is a more subtle
problem. In such a manifold the doubling surface — necessarily with genus at least
2 — does not itself admit a fibering and must thus have points of tangency with
any fibering, which in particular cannot be invariant under the doubling involution.

The strategy of proof for Theorem 0.1 is motivated by the fact that the doubled
tetrus branched covers S3, branched over the link L of Figure 1, which is the
Montesinos link L(1/3, 1/2,−1/2,−1/3). Thurston observed that given a branched
cover Mn → M , branched over a link L, virtual fiberings of M transverse to the
preimage of L may be pulled back to virtual fiberings of Mn. This is also used in [4],
which is where we encountered it, and [3]. We record a version of this observation
as Proposition 1.2, and apply it here with Proposition 1.3 to prove Theorem 0.1.

When M ′ = F × S1, where F is a closed surface, and L is a link contained in a
disjoint union of fibers, Proposition 1.3 produces new fiberings of M ′ transverse to
L under certain circumstances. We state and prove Proposition 1.3 in Section 1,
along with Proposition 1.2. In Section 2 we describe the manifolds Mn,k constructed
in [20], and their branched covers to the 3-ball. The branched cover DM4,1 → S3,
which results from doubling, factors through a double branched cover DM2 →
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L Lµ

Figure 1. DMn,k and DµMn,k n–fold cover S3, branched over L
and Lµ.

S3, branched over L. The double branched cover of S3 over a Montesinos link
is well known to have the structure of a Seifert fibered space ([17], cf. [7]). In
Section 3, we describe the Seifert fibered structure on DM2 and construct a cover
p′ : DM ′ → DM2 which satisfies the hypotheses of Proposition 1.3. An application
of Proposition 1.2 completes the proof of Theorem 0.1.

Steven Boyer and Xingru Zhang previously obtained results, eventually pub-
lished in [3], about virtual fiberings of Montesinos links and their branched covers
using a similar strategy. These imply that the doubled tetrus is virtually fibered;
in particular, [3, Theorem 1.7] applies more generally than our independently dis-
covered Proposition 1.3. An advantage of Proposition 1.3, when it applies, is that
it produces an explicit description of a fiber surface, which we use in Theorem 0.1
to obtain the extra information about the genus of F̃ .

Remark. Our methods apply without significant alteration to the manifolds DM2n,1

for each n ≥ 2, in each case producing a sixfold fibered cover which is a double.
See the remarks below Lemma 3.3 and the proof of Theorem 0.1. We have chosen
to focus on the tetrus because of its peculiarity described in Proposition 0.3 below.

It is well known that Mn,k has a minimal–genus Heegaard splitting of genus
n, obtained by attaching a single one–handle to ∂Mn,k. (Ushijima classified such
splittings in [26, Theorem 2.8].) Thus the tetrus M4,1 has a Heegaard splitting with
genus 4, yielding an amalgamated Heegaard splitting of DM4,1 with genus 5. The
preimage in DM̃ gives the following corollary of Theorem 0.1.

Corollary 0.2. DM̃ has a weakly reducible Heegaard splitting of genus 25 associ-
ated to p−1(∂M4,1), and one of genus 39 associated to F̃ .

It would be interesting to know the minimal genus of a fiber surface for DM̃ ,
for the above discussion shows that if this is greater than twelve, the minimal
genus Heegaard splitting of DM̃ is not associated to a fibering. Such examples are
nongeneric, according to work of Souto [23, Theorem 6.2] and Biringer [6]. See also
[5] for a survey of results about degeneration.

A twisted double DµMn,k is obtained by gluing Mn,k to its mirror image via an
isometry µ of the boundary, the lift to Mn,k of the mutation producing the link Lµ
of Figure 1. Our original motivation for proving Theorem 0.1 was the dichotomy
recorded below.
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Proposition 0.3. The doubled tetrus DM4,1 is non-arithmetic, but DµM4,1 is
arithmetic.

We discuss the twisted doubling construction and sketch a proof of Proposition
0.3 in Section 4. Since the twisting map µ is an isometry, DµM4,1 contains a totally
geodesic surface identical to the totally geodesic boundary of M4,1, hence it follows
from arithmeticity of DµM4,1 that this surface is arithmetic. This can also be
discerned directly from a polyhedral decomposition. [13, Proposition 4.1] asserts:

Proposition (Long-Lubotzky-Reid). Let Γ be a Kleinian group of finite co-volume
that contains an arithmetic Fuchsian subgroup. Then Γ contains a co-final nested
family L = {Ni} of normal subgroups of finite index, such that Γ has Property τ
with respect to L.

The corollary below follows immediately from this and arithmeticity of ∂M4,1.

Corollary 0.4. The doubled tetrus has a nested, cofinal family of regular covers
with respect to which it has property τ .

Work of Abert-Nikolov [1] concerning rank and Heegaard genus has drawn at-
tention to virtually fibered manifolds which satisfy the conclusion of Corollary 0.4.
By Theorem 0.1 and Proposition 0.3, the doubled tetrus is a non-arithmetic ex-
ample of such manifolds. Other examples of this type can be derived from work
of I. Agol [2]. These are commensurable to non-arithmetic right-angled reflection
orbifolds. For example, the quotient of H3 by the group generated by reflections
in the Löbell polyhedron L(7) is non-arithmetic, contains totally geodesic surfaces,
and has finite-degree cover which is a fibered manifold.
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1. Virtually fibering branched covers

We will be concerned in this paper with branched coverings. The standard k-
fold cyclic branched covering of the disk D2 to itself is the quotient map which
identifies each point z ∈ D2 ⊂ C with points of the form ze2πi j

k , 0 ≤ j < k. For
a 3-manifold M , an n-fold branched covering q : Mn → M , branched over a link
L ⊂M , is characterized by the property that L has a closed regular neighborhood
N (L), with exterior E(L) = M −N (L), such that

(1) On En
.= q−1(E(L)), q restricts to a genuine n-fold covering map.

(2) Each component V of q−1(N (L)) has a homeomorphism to D2×S1 so that
q|V is the product of the standard k-fold branched cover with the identity
map S1 → S1, for some k > 1 dividing n.

Remark. It might be more accurate to allow the map in condition 2 to be the
product of the k-fold branched covering of D2 with a nontrivial covering of S1 to
itself. Since we will not encounter examples with this property here, we restrict our
attention to the simpler setting.
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Now suppose p′ : M ′ → M is a genuine g-fold covering space, and let E ′ =
(p′)−1(E(L)) ⊂M ′ be the associated cover of E(L). The group π(L) .= π1(E(L)) has
subgroups Γn, and Γ′, corresponding to the covers of E(L) by En and E ′, respectively.
Below we record an elementary observation about Γ′.

Fact. Let V ∼= D2 × S1 be a component of N (L) and take µ = ∂D2 × {y} ⊂ E(L)
for some y ∈ S1. If [µ] represents the homotopy class of µ in π(L), then [µ] ∈ Γ′.

This holds because p′|E′ extends to a covering map on M ′; hence each component
of the preimage of µ bounds a lift to M ′ of the inclusion map D2 × {y} ↪→M . We
will call meridians curves of the form ∂D2 × {y} ⊂ ∂E(L). Take Γ̃ = Γn ∩ Γ′, and
let p̃ : Ẽ → E be the associated covering space, factoring through the restriction of
q to En and of p′ to E ′. We will say that Ẽ completes the diamond.

Lemma 1.1. Let p′ : M ′ → M be a cover and qn : Mn → M a branched cover,
branched over a link L ⊂ M . Let E(L) be the exterior of L and E ′, En its covers
associated to M ′ and Mn, respectively. The cover p̃ : Ẽ → E(L) that completes the
diamond extends to p̃ : M̃ →M , where M̃ is obtained by filling Ẽ along preimages
of meridians, such that the diagram below commutes.

M̃

p

��

q //

p̃

!!CC
CC

CC
CC

M ′

p′

��
Mn

qn // M

Above, p is a covering map and q is a branched cover with the property that on each
component Ṽ of p̃−1(N (L)), deg q|eV = deg qn|p(eV ).

Proof. Since Ẽ corresponds to the subgroup Γ̃ = Γn∩Γ′ < π(L), there are coverings
p : Ẽ → En and q : Ẽ → E ′ such that p̃ = qn ◦ p = p′ ◦ q.

Let V ∼= D2 × S1 be a component of N (L), let λ = {x} × S1 for some x ∈ ∂D2,
and let µ = ∂D2 × {1} ⊂ E(L) be a meridian. Let V ′ be a component of the
preimage of V in M ′, covering V g-to-1. The disk in V bounded by µ lifts to a
disk in V ′ bounded by a component µ′ of the preimage of µ under p′, with the
property that a component λ′ of the preimage of λ intersects it once. Choosing a
homeomorphism of V ′ with D2×S1 so that µ′ = ∂D2×{1} and λ′ = {x}×S1, we
find that p′ is modeled on V ′ by the product of the identity map with the g-fold
cover S1 → S1 given by w 7→ wg.

On the other hand, since Mn → M is a branched cover, qn restricts on each
component of the preimage of V to the product of the k-fold branched cover D2 →
D2 with the identity map on S1. In particular, qn restricts to a homeomorphism
on each component of the preimage of λ.

Now let T = ∂V ⊂ ∂E , and let T̃ ⊂ ∂Ẽ be a component of the preimage of
T . Let µ̃ be a component on T̃ of the preimage of µ. Using brackets to denote
fundamental group elements, we find that [µ̃] is conjugate to [µ]k in π(L), where
k = deg qn|p( eT ), since [µ] ∈ Γ′ by the above. If λ̃ is a component of the preimage of

λ, then by the above [λ̃] is conjugate to [λ]g in π(L), where g = deg p′|q( eT ).

Let Ẽ(µ̃) be obtained from Ẽ by Dehn filling along µ̃. More precisely, Ẽ(µ̃) is the
quotient of Ẽ t Ṽ , where Ṽ ∼= D2×S1, by a homeomorphism ∂D2×S1 → T̃ taking
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∂D2 × {1} to µ̃ and {x} × S1 to λ̃. Then the map Ṽ → V which is the product of
the k-fold branched covering D2 → D2 with the g-fold covering S1 → S1 extends
p̃ to a map Ẽ(µ̃) → E ∪ V . The extension of p̃ factors on Ṽ as the composition of
qn with a g-fold cover extending p or the composition of p′ with a k-fold branched
cover extending q.

Extending p̃ across each component of ∂Ẽ in the manner prescribed above pro-
duces a map p̃ : M̃ → M so that the diagram of the lemma commutes, with
p a covering and q a branched covering. Furthermore, it follows from the ex-
plicit description above that on each component Ṽ of the preimage of N (L),
deg q|eV = deg qn|p(eV ). �

Thurston used a version of Proposition 1.2 below to show the reflection orbifold
in a right–angled dodecahedron is virtually fibered (cf. [24]); this fact is also used
by Boyer-Zhang [3, Cor 1.4]. Our version explicitly describes a fibered cover.

Proposition 1.2. Suppose p′ : M ′ → M is a g-fold cover and qn : Mn → M an
n-fold branched cover, branched over a link L ⊂M . If M ′ fibers over S1 with fibers
transverse to (p′)−1(L), then the manifold M̃ supplied by Lemma 1.1 fibers over S1

in such a way that q : M̃ →M ′ is fiber-preserving.

Proof. Since p−1(L) is transverse to the fibering of M , for each component V of
N (L), a homeomorphism to D2 × S1 may be chosen so that after an ambient
isotopy of the fibering, for any component Ṽ of (p′)−1(V ), each fiber intersects Ṽ
in a collection of disjoint disks of the form D2 × {y} for y ∈ S1. Then E ′ inherits
a fibering from M ′ with the property that each fiber intersects the boundary in a
collection of meridians.

By definition, each curve on ∂Ẽ which bounds a disk in M̃ is a component of
the preimage of a meridian of E . Hence the fibering which Ẽ inherits from E ′ by
pulling back using q extends to a fibering of M̃ , which q maps to that of M ′ by
construction. �

We will encounter the following situation: M ′ is the trivial F -bundle over S1

for some closed surface F , homeomorphic to F × I/((x, 1) ∼ (x, 0)), and (p′)−1(L)
consists of simple closed curves in disjoint copies of F . Here I = [0, 1]. Let π : M ′ →
F be projection to the first factor. The second main result of this section describes
a property of the collection π((p′)−1(L)) which allows a fibering of M ′ to be found
satisfying the hypotheses of Proposition 1.2.

Proposition 1.3. Let M = F × I/(x, 0) ∼ (x, 1), and suppose L = {λ1, . . . λm}
is a link in M such that for each j there exists tj ∈ I with λj ⊂ F × {tj}, and
tj 6= tj′ for j 6= j′. Suppose there is a collection of disjoint simple closed curves
{γ1, . . . , γn} on F , each transverse to π(λj) for all j, with the following properties.
For each j, there is an i such that π(λj) intersects γi, and a choice of orientation
of the γi and all curves of L may be fixed so that for any i and j, γi and π(λj)
have equal algebraic and geometric intersection numbers. Then M has a fibering
transverse to L.

The other fiberings needed to prove this theorem may be found by spinning
annular neighborhoods of the γi in the fiber direction. We first saw this technique
in [12].
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Definition. Let M = F × I/(x, 0) ∼ (x, 1) be the trivial bundle, and let γ be a
simple closed curve in F . Let A be a small annular neighborhood of γ, and fix
a marking homeomorphism φ : S1 × I → A. We define the fibration obtained by
spinning A in the fiber direction to be

FA(t) = ((F −A)× {t})
⋃

Φt(S1 × I),

where Φt(x, s) = (φ(x, s), ρ(s) + t), for t between 0 and 1. Here we take ρ : I → I
to be a smooth, nondecreasing function taking 0 to 0 and 1 to 1, which is constant
on small neighborhoods of 0 and 1 and has derivative at least 1 on [1/4, 3/4].

Given a collection of disjoint simple closed curves γ1, . . . , γn, one analogously
produces a new fibration FA1,...,An

(t) by spinning an annular neighborhood of each
in the fiber direction.

Suppose λ is a simple closed curve in F which has identical geometric and al-
gebraic intersection numbers with the core of each annulus Ai in such a collection;
that is, an orientation of λ is chosen so that each oriented intersection with the core
of each Ai has positive sign.

Lemma 1.4. Let λ be such a curve, embedded in M by its inclusion into F ×{t0},
t0 ∈ (0, 1). There is an ambient isotopy which moves λ to be transverse to the
fibration FA1,...,An(t), and which may be taken to be supported in an arbitrarily
small neighborhood of F × {t0}.

Proof. λ may be isotoped in F so that its intersection with the Ai is of the form
({x1} × I) t . . . t ({xk} × I) for some collection {x1, . . . , xk} of points in their
cores. For reference fix a Riemannian metric on F in which the Ai are isometri-
cally embedded with their natural product metric, and choose a smooth unit–speed
parametrization λ(t) (t ∈ I) so that λ([1/4, 3/4]) = {x1} × [1/4, 3/4]. For fixed
small ε > 0, we embed λ in M with the aid of a map hε : I → I, defined as fol-
lows. Let h′ε be a smooth bump function which takes the value −ε on [0, 1/4] and
[3/4, 1], is increasing on [1/4, 3/8] and decreasing on [5/8, 3/4], takes the value 2ε
on [3/8, 5/8], and has integral equal to 0. Then define hε by

hε(s) = t0 +
∫ s

0

h′ε,

and let λε(s) = (λ(s), hε(s)).
At any point of M , the parametrization of M as F × I/(x, 1) ∼ (x, 0), gives a

natural decomposition of the tangent space. We call horizontal the tangent planes
to F , and let t denote the vertical vector pointing upward. In the complement of
the vertical tori determined by the Ai × I, the new fiber surface FA1,...,An(t) has
horizontal tangent planes, for each t. Since the intersection of λε with this region is
contained in λε([0, 1/4]∪ [3/4, 1]), its tangent vector in this region has t–component
−ε. Hence intersections in this region between λε and copies of the fiber surface
FA1,...,An

are transverse.
For points in Ai, consider the vertical plane spanned by t and the tangent vector

to the I–factor of Ai. Tangent vectors to λε at points which lie in Ai × I lie in
this plane with slope between −ε and 2ε, possibly greater than −ε only between
1/4 and 3/4. On the other hand, the intersection of the tangent plane to FA1,...,An

intersects the vertical plane in a line with slope greater than or equal to 0, and
greater than or equal to 1 on [1/4, 3/4]. Thus as long as 2ε < 1, any intersection
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Figure 2. Suzuki’s Brunnian graph θ4 and an axis of fourfold symmetry.

of λε with a copy of FA1,...,An in these regions is transverse as well. The original
embedding of λ may clearly be moved to λε by a small ambient isotopy, and since
λε is transverse to each FA1,...,An

(t), this proves the lemma. �

Proof of Proposition 1.3. Let {γ1, . . . , γn} be a collection satisfying the hypotheses,
and let {Ai} be a collection of disjoint annular regular neighborhoods of the γi in
F . By the lemma above, each member λj of L may be moved by an ambient
isotopy to be transverse to the fibration obtained by spinning each Ai in the fiber
direction. Since the components of L lie in disjoint fibers of the original fibration,
these isotopies may be taken to have disjoint supports. Then the inverse of their
composition, applied to the fibration obtained by spinning A in the fiber direction,
produces a new fibration which is transverse to L. �

2. Introducing the tetrus

In this section and the next, we will frequently encounter branched coverings of
the form q : Mn → M , where Mn and M are manifolds with nonempty boundary.
In this case, the branch locus may have components which are properly embedded
arcs in M . If T is the branch locus, we require that the regular neighborhood
N (T ) have the property that on a component V of q−1(N (T )) projecting to a
neighborhood of an arc component of T , there is a homeomorphism V → D2 × I
such that q is modeled by the product of the k-fold branched cover D2 → D2 with
the identity map on I. With the same requirement on circle components of T , and
E(T ) defined as before, we remark that Lemma 1.1 holds verbatim in this context.

Thurston constructed a hyperbolic manifold with totally geodesic boundary,
which he called the “tripus,” from two hyperbolic truncated tetrahedra in Chapter
3 of his notes [25]. A description of the tripus as the complement of a genus two
handlebody embedded in S3 may be found there. In [20], Paoluzzi-Zimmermann
generalized this construction, constructing for each n ≥ 3 and k between 0 and
n − 1 with (2 − k, n) = 1 a hyperbolic manifold Mn,k with geodesic boundary, for
which the tripus is M3,1. Ushijima extended Thurston’s description of the tripus as
a handlebody complement in S3 to show that each Mn,1, n ≥ 3, is homeomorphic
to the exterior — that is, the complement of a regular neighborhood — of Suzuki’s
Brunnian graph θn [26]. In particular, the tetrus M4,1 is the exterior of the graph
θ4 pictured in Figure 2.
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There is an order–4 automorphism of the tetrus visible in the figure as a rotation
through the dotted axis, which intersects θ4 only in its two vertices. The quotient
of M4,1 by the group that this automorphism generates yields a branched cover
q4,1 : M4,1 → B3, branched over the tangle T pictured in Figure 3. In fact Paoluzzi–
Zimmermann describe, for each n ≥ 3 and k with 0 ≤ k < n and (2− k, n) = 1, an
n-fold branched cover qn,k : Mn,k → B3, branched over T (see [20, Figures 4 & 5]).
The quotient map qn,k may be realized by a local isometry to an orbifold On with
geodesic boundary, with underlying topological space B3 and singular locus T with
strings of cone angle 2π/n. We summarize Paoluzzi–Zimmermann’s description of
the orbifold fundamental group of On and its relationship with the fundamental
groups of the Mn,k in the theorem below; this collects various results in [20].

Theorem 2.1 (Paoluzzi–Zimmermann). For each n ≥ 3, the orbifold fundamental
group of On is presented as

En ∼= 〈Xn, Hn | Hn
n = (HnXnHnX

−2
n )n = 1 〉.

Each elliptic element of En is conjugate to exactly one of Hn or HnXnHnX
−2
n .

For (2 − k, n) = 1, the fundamental group Gn,k := π1(Mn,k) is the kernel of the
projection πk : En � Zn = 〈hn〉 given by πk(Xn) = hkn and πk(Hn) = hn.

Here we have departed from the notation of Paoluzzi–Zimmermann in distin-
guishing between presentations of the orbifold fundamental group of On for dif-
ferent n, so that Paoluzzi-Zimmermann’s “x” is replaced above by our “Xn” and
similarly for “h” in their presentation for En in [20, p. 120]. Also, we have renamed
the generator of Zn to hn.

hxhx−2

h

Figure 3. A tangle T in the ball B3, with two arcs labeled by the
corresponding elements of π1(B3 − T )

In view of Proposition 1.2, it is important that we have a description of the
fundamental group of the exterior of T in B3. Let N (T ) be a regular neighborhood
of T in B3. Then N (T ) has two components, each homeomorphic to D2×I in such
a way that its intersection with T is sent to {(0, 0)} × I and its intersection with
∂B3 to D2 × {0, 1}. Then take E(T ) = B3 −N (T ), the exterior of T in B3, and
let π(T ) = π1(E(T )). We refer by a meridian of T to a curve on ∂N (T ) ∩ E(T ) of
the form ∂D2 ×{y}, for y ∈ I. Below we summarize some facts about π(T ), which
may be found for instance in joint work with Eric Chesebro [8, §2].

Lemma 2.1. The group π(T ) is free on generators x and h. In π(T ), the meridians
of T are represented by h and hxhx−2, and the four-holed sphere ∂B3 ∩ E(T ) is
represented by Λ = 〈h, hxhx−2, (xhx)h−1(xhx)−1〉 in π(T ).
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Using Lemma 2.1, we reinterpret the Theorem of Paoluzzi-Zimmermann below
in a way that matches our treatment of branched covers in Section 1.

Lemma 2.2. For each n ≥ 3 and k with (2−k, n) = 1, let Γn,k be the kernel of the
map πn,k : π(T ) � Zn = 〈hn〉 given by x 7→ hkn, h 7→ hn, and let qn,k : En,k → E(T )
be the cover corresponding to Γn,k. Then qn,k extends to the branched covering
qn,k : Mn,k → B3 described by Paoluzzi-Zimmermann, where Mn,k is obtained from
En,k by filling each component of the preimage of ∂N (T )∩E(T ) with a copy of D2×I.

Proof. The homomorphism πn,k described in the lemma takes the elements h and
hxhx−2 to hn and (hn)2−k, respectively, each of which generates Zn when 2 − k
is relatively prime to n. Since the meridians of E(T ) are represented by h and
hxhx−2, it follows that each meridian has connected preimage in En,k, represented
in Γn,k by hn and (hxhx−2)n, respectively.

If U is a component of ∂N (T )∩ E(T ), then it is homeomorphic to ∂D2 × I, and
by the paragraph above (qn,k)−1(U) is a connected n-fold cover of U , modeled by
the product of the n-fold cover ∂D2 → ∂D2 with the identity map I → I. Thus
after filling each component of ∂N (T ) ∩ E(T ) and its preimage under qn,k with a
cylinder D2 × I, qn,k extends to a branched cover modeled on the cylinders by the
product of the standard n-fold branched cover D2 → D2 with the identity map
I → I.

By our descriptions ofN (T ) and E(T ), the image of this branched cover is homeo-
morphic to B3, with branching locus T . We claim that the domain is homeomorphic
to Mn,k. There is a map from π(T ) onto the orbifold group En given by sending x
and h to Xn and Hn, respectively. Then πn,k factors as this projection followed by
the map πk defined by Paoluzzi-Zimmermann. The description of En thus implies
that Gn,k is the quotient of Γn,k by the normal closure of {hn, (hxhx−2)n}, and the
claim follows. �

The double branched cover M2 → B3, branched over T , was not addressed in
[20] since it does not admit the structure of a hyperbolic manifold with totally
geodesic boundary. In fact, it is homeomorphic to the trefoil knot exterior, and we
will describe its Seifert fibered structure and the preimage of T in detail in Section
3. Below we give a description consistent with that of Lemma 2.2.

Lemma 2.3. Let Γ2 be the kernel of the map π2 : π(T ) � Z2 = {0, 1} given by
x 7→ 1, h 7→ 1, and let q2 : E2 → E(T ) be the cover corresponding to Γ2. Then q2

extends to the unique twofold branched cover q2 : M2 → B3, after filling components
of the preimage of ∂N (T ) ∩ E(T ) with copies of D2 × I.

Remark. The uniqueness property above is a standard feature of double branched
covers. We find it useful in the next section, where we describe M2 by other means.

Proof. Let q : M → B3 be a twofold branched cover with branch locus T . The
associated cover q : E → E(T ) corresponds to a subgroup Γ < π(T ) which is of
index 2 and hence normal. Each element of π(T ) representing a meridian of T
must map nontrivially under the quotient π(T )→ π(T )/Γ2 ' Z2, since q branches
nontrivially over each component of T . By the description in Lemma 2.1, it follows
that h and h2x−1 map nontrivially, hence that each of h and x map to the generator.
Thus the only twofold branched cover of B3, branched over T , is q2 : M2 → B3 as
described in the lemma. �



10 JASON DEBLOIS

Figure 4. Two views of θ2, and a Seifert surface for the trefoil exterior.

The corollary below is the reason is the reason that evenfold branched covers are
particularly amenable to the techniques of this paper.

Corollary 2.2. For each n ≥ 2 and k with (2−k, 2n) = 1, the map π2 of Lemma 2.3
factors as ρn ◦ π2n,k, where π2n,k is as described in Lemma 2.2 and ρn : Z2n � Z2.
Hence Γ2n,k < Γ2, and the resulting covering map E2n,k → E2 extends to a branched
covering M2n,k → M2 after filling components of the preimage of ∂N (T ) ∩ E(T )
with copies of D2 × I.

3. Virtually fibering the doubled tetrus

In this section we construct a fibered cover for DM4,1 using the methods of
Section 1. We motivate the strategy by an appeal to Figure 4, by which one may
easily identify M2. The quotient of the pair (S3, θ4) by 180-degree rotation in the
dotted axis of Figure 2 is (S3, θ2), pictured on the left-hand side of Figure 4. A small
isotopy of θ2 yields the graph on the right-hand side of Figure 4, whose exterior is
clearly that of the trefoil knot.

The dotted axis is the fixed locus of the unique strong involution of the trefoil,
induced by a further 180-degree rotation, with quotient a single arc in S3. The
exterior of this arc is thus homeomorphic to B3, and an ambient isotopy taking
this arc to a “standard” position moves the dotted axis to the tangle T of Figure
3. (For a depiction of this we refer the reader to [18, Figure 3(c)].) It follows
from uniqueness of the double branched cover that the sequence of induced maps
E(θ4)→ E(θ2)→ B3 is the sequence M4,1 →M2 → B3 described in Corollary 2.2.

The trefoil knot exterior is well known to fiber over the circle, with fiber the
shaded one-holed torus of Figure 4, and monodromy map of order 6 (see eg. [21,
Ch. 10.I]). The branch locus for q2, the intersection of the dotted axis of the figure
with the exterior of θ2, has one component visibly contained in the pictured fiber
surface. In fact, the other component is isotopic into a different fiber. This follows
from the fact that a fibered knot exterior has a unique fibering up to isotopy (see
[7, Proposition 5.10] and the remarks below it), so that after an isotopy the strong
involution takes fibers to fibers. Hence there is a sixfold cover p′ : M ′ →M2 which
is trivially fibered over the circle in such a way that the preimage of the dotted axis
is contained in a disjoint union of fibers.
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Our strategy is thus to apply Lemma 1.1 to find a map p̃ : M̃ → M which
completes the diamond of maps M4,1 → M2 and M ′ → M2 described above. This
is the subject of Lemma 3.3. Doubling across boundaries yields a corresponding
diamond, such that the double DM ′ of M ′ is trivially fibered over the circle and the
preimage of the branch locus for DM4,1 → DM2 consists of simple closed curves
in disjoint fibers. The proof of Theorem 0.1 then reduces to an application of
Propositions 1.3 and 1.2.

Our main goal at the beginning of this section is to give a description of M2 and
its fibering in such a way that Proposition 1.3 can be easily applied to DM ′. To
this end, Lemma 3.2 and the material leading up to it describe the fiber surface
F for M2 as a horizontal surface in a Seifert fibering of M2 over a disk with two
exceptional fibers. Our construction is an ad hoc version of one due to Montesinos
[17], which describes a Seifert fibered structure on the double branched cover of a
link built as a sum of rational tangles, introduced by Conway [9]. T is represented
as 3 0 + 2 0 in Conway’s notation (see [9, Fig. 1,2,3]), where 3 0 and 2 0 associate
to the rational numbers 1/3 and 1/2, respectively.

Let V = D2 × S1 be the solid torus, embedded in C2 as the cartesian product
of the unit disk in C with its boundary, and oriented as a product of the standard
orientation on D2 with the boundary orientation S1 inherits as ∂D2. Define the
complex conjugation-induced involution of V by (z, w) 7→ (z̄, w̄). The fixed set is
S = {(r,±1) | r ∈ [−1, 1] }, a disjoint union of two arcs properly embedded in V .
The quotient map q : V → V/((z, w) ∼ (z̄, w̄)) ∼= B3 is a twofold branched covering
with branching locus S. Each meridian disk D2 × {±1} of V is mapped by q to a
disk in B3 which determines an isotopy rel endpoints between an arc of q(S) and
an arc on ∂B3. That is, q(S) is the trivial two–string tangle B3.

A rational number p/q in lowest terms determines a Seifert fibering of V , with
an exceptional fiber parametrized by γ0(t) = (0, e2πit), t ∈ I, and regular fibers
parametrized by

γz(t) =
(
z e2πi·pt, e2πi·qt) , t ∈ I,(1)

for z ∈ D2 − {0}. Then z and w in D2 determine the same fiber if and only if
w = ze2πik/q for some k ∈ Z. Hence for any w ∈ S1, the quotient map sending
each fiber to a point restricts on D2×{w} to a q-fold branched covering, branched
at the origin. We let Vp/q denote V equipped with this fibering, and divide ∂Vp/q
into annuli Ap/q and Bp/q, parametrized as follows. Define a model annulus A =
I × I/(x, 0) ∼ (x, 1), inheriting a “vertical” fibering by circles from arcs {x} × I,
a “horizontal” fibering from arcs of the form I × {y}, and an orientation from the
standard orientation on I × I. Define φp/q : A→ ∂Vp/q by

φp/q(x, y) =
(
e2πi( 1−2x

4q )e2πi·py, e2πi·qy
)
.

Choose a and b such that ap+ bq = 1, and define ψp/q : A→ ∂Vp/q by

ψp/q(x, y) =
(
e2πi( 2x+1

4q )e2πi·p(y− a
2q ), e2πi·q(y− a

2q )
)
.

Then φp/q and ψp/q have the following properties.
(1) Taking Ap/q

.= φp/q(A) and Bp/q
.= ψp/q(A), we have Ap/q ∪Bp/q = ∂Vp/q,

and Ap/q ∩Bp/q = φp/q(∂A) = ψp/q(∂A).
(2) Each of φp/q and ψp/q takes a vertical fiber of A to a Seifert fiber of Vp/q

and a horizontal fiber to a closed arc in ∂D2 × {y} for some y ∈ S1.
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q

Figure 5. The double branched cover of the rational tangle 1/2.

(3) Giving Ap/q and Bp/q the boundary orientations from Vp/q, φp/q reverses
and ψp/q preserves orientation.

(4) The complex conjugation-induced involution on Vp/q commutes with the
map (x, y) 7→ (1−x, 1−y) under each of φp/q and ψp/q. In particular, each
of Ap/q and Bp/q contains two points of S ∩ ∂Vp/q, and (1, 1) ∈ Ap/q.

The map q determines a double branched cover of V1/2 to the ball, branched over
the rational tangle 1/2, as illustrated in Figure 5. In the figure, the two parallel
simple closed curves comprising A1/2 ∩ B1/2 are drawn on ∂V1/2, projecting to
the boundary of the indicated disk on B3. A similar picture holds for the double
branched cover of V1/3 to the 1/3 rational tangle. An appeal to Property 4 of the
parametrizations above thus yields the following lemma.

Lemma 3.1. Define M2 = V1/3 ∪φ2ψ
−1
3
V1/2. There is a branched cover q2 : M2 →

B3, branched over T , which restricts on each Vi to q.

Property 2 of the parametrizations ψ3 and φ2 implies that M2 inherits the struc-
ture of a Seifert fibered space from V1/3 and V1/2. The lemma below describes a
foliation of M2 by surfaces, each meeting each Seifert fiber transversely.

Lemma 3.2. Let Hm = D2 × {e2πim−1
2 } ⊂ V1/3, m = 0, 1, and Sn = D2 ×

{e2πin
3 } ⊂ V1/2, n = 0, 1, 2. Then F = (

⋃
Hm) ∪ (

⋃
Sn) is a connected surface

homeomorphic to a one-holed torus, which is a fiber in the fibration of M2 that
restricts on V1/3 or V1/2 to the foliation by disks D2 × {y}. A map σ : F → F
is determined by the following combinatorial data: σ(Hm) = H1−m for m = 0, 1,
and σ(Dn) = Dn+1 for n = 0, 1, 2 (take n + 1 modulo three), so that M ∼= F ×
[0, 1]/((x, 0) ∼ (σ(x), 1)).

Proof. By Property 2 of φ1/2 and ψ1/3, for each y ∈ S1, the gluing map φ1/2ψ
−1
1/3

takes components of ∂D2×{y}∩B1/3 ⊂ V1/3 to components of ∂D2×{y′}∩A1/2 ⊂
V1/2, for y′ determined by y. It follows that the foliations of V1/3 and V1/2 by disks
of the form D2×{y} join in M2 to yield a foliation by surfaces. We take F to be the
surface in this foliation containing D2×{1} in V1/3, and illustrate its combinatorics
in Figure 6.

We depict the disks Hm as hexagons, since each intersects each of A1/3 and B1/3

in three arcs of its boundary. Applying ψ−1
1/3 to a component of Hm ∩ B1/3 yields
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Figure 6. The surface F in M2.

an arc of the form I × {h} for some h ∈ I; in the figure, we have labeled each arc
of Hm ∩ B1/3 by the corresponding h. Each “square” Sn intersects A1/2 in two
arcs of its boundary, labeled in Figure 6 by the height of their images under φ−1

1/2.
We assign each Hm or Sn the standard orientation from D2, and picture them in
Figure 6 with the orientation inherited from the page. Then each labeled edge of
Hm is identified to that of Sn with the same label, in orientation–reversing fashion,
by φ1/2ψ

−1
1/3. Their union F is now easily identified as a one–holed torus.

Since the Seifert fibers of V1/3 and V1/2 are transverse to the disks D2 × {y},
Seifert fibers of M2 transversely intersect each surface in the foliation described
above. There is a quotient map π, taking M2 to a closed one-manifold (that is, S1),
determined by crushing each surface in the foliation described above to a point.
Then F is the preimage under π of a point in S1, so cutting M2 along F yields a
surface bundle over I, necessarily of the form F × I. With F oriented as prescribed
above, the normal orientation to F in M2 is the upward direction along Seifert fibers
parameterized as in (1). The “first return map” σ : F → F is prescribed as follows:
from x ∈ F , move in the normal direction along the Seifert fiber through x until it
again intersects F ; the point of intersection is σ(x). It describes a monodromy for
the description of M2 as a bundle over S1.

From the description of σ and the fiber-preserving parameterizations ψ1/3 and
φ1/2, we find that for a point x on an arc labeled by h in Figure 6, σ(x) is the
corresponding point on the arc labeled by h + 1/6 (modulo 1). This models the
behavior of σ(x) on the regular fibers. The intersection of F with the singular fiber
in V1/3 is the disjoint union of the centers of H0 and H1, which are thus interchanged
by σ. An analogous description holds for the intersection of F with the singular
fiber in V1/2, yielding the description of σ in the statement of the lemma. Now since
V1/3 is cut by its intersection with F into two cylinders, and V1/2 is cut into three,
and these are identified along vertical annuli in their boundaries by φ1/2ψ

−1
1/3 to

form M2 cut along F , the description of M2 as a fiber bundle with fiber F follows.
By construction, the components of q−1

2 (T ) in M2 intersect each of V1/3 and
V1/2 in the fixed set of the complex conjugation-induced involution. In V1/3, the
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component [−1, 1] × {−1} is contained in H0, and [−1, 1] × {1} ⊂ H1. In V1/2,
the component [−1, 1]×{1} is contained in S0, and φ1/2ψ

−1
1/3 takes its endpoints to

endpoints of the components in V1/3. �

Note that q−1
2 (T ) intersects each of V1/3 and V1/2 in the fixed locus of the complex

conjugation-induced involution. Since the components of this locus lie in the disks
D2 ×{±1}, it follows that q−1

2 (T ) lies in fibers of the fibration M2 → S1 described
in Lemma 3.2. The description of Lemma 3.2 also implies that σ is periodic with
order 6. Therefore M2 has a sixfold cover p′ : M ′ → M2 which is trivially fibered;
that is, M ′ ∼= F × S1, such that components of (q2 ◦ p′)−1(T ) lie in disjoint fibers.

The uniqueness property of Lemma 2.3 implies that the manifolds M2 described
there and in Lemma 3.1 are homeomorphic as branched covers. In particular,
the map q4,1 : M4,1 → B3 described in Lemma 2.2 factors through q2 described
in Lemma 3.1. Let q2,1 : M4,1 → M2 be the map whose existence follows from
Corollary 2.2, such that q4,1 = q2 ◦ q2,1. Then q2,1 is a twofold branched cover,
branched over (q2)−1(T ).

Recall, from the first paragraph of Section 2, that Lemma 1.1 applies in the
context of manifolds with nonempty boundary.

Lemma 3.3. Let p̃ : M̃ → M2 be the map produced by Lemma 1.1, such that
p̃ = p′ ◦ q = q2,1 ◦ p for a branched cover q : M̃ →M ′ and a cover p : M̃ →M4,1:

M̃

p

��

q //

p̃

""DDDDDDDD M ′

p′

��
M4,1

q2,1 // M2
q2 // B3

Then p has degree 6 and ∂M̃ is connected, with genus 13.

Remark. For n ≥ 2, replacing M4,1 by M2n,1 above yields a cover p : M̃ → M2n,1,
again of degree 6, such that ∂M̃ is connected and has genus 12n− 11.

Proof. Most of the content of this lemma follows immediately from Lemma 1.1. The
assertions that p has degree 6 and M̃ has connected boundary use two additional
observations:

(1) Each component of (q2)−1(N (T )) has connected preimage in M4,1, mapping
to it with degree 2.

(2) M ′ has connected boundary, and each component of (q2)−1(T ) has six
preimage components in M ′, each mapped homeomorphically by p′.

That item (1) above is true follows from the more general fact, recorded in Lemma
2.2, that for any n, each component of T has connected preimage in Mn,k under
qn,k. Item (2) obtains from the fact that each component of (q2)−1(T ) is contained
in a copy of the fiber surface F , a one-holed torus, and M ′ ∼= F × S1.

Thus let Ṽ be a component of p̃−1(q−1
2 (T )). By the final assertion of Lemma

1.1, q maps Ṽ to its image in M ′ with the same degree as that of q2,1|p(eV ). This
is 2 by observation (1) above; hence q has degree 2. (The degree is at most two,
since the degree of p̃ is at most 12, and p′ has degree 6.) It follows, furthermore,
that q maps any component of ∂M̃ which intersects Ṽ onto its image with degree
2. Thus since ∂M ′ is connected and intersects q(Ṽ ), ∂M̃ is connected as well.
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Since q2,1 has degree 2 and p̃ has degree 12, p has degree 6. The genus of ∂M̃
may be computed using the fact that it is a connected cover, with degree 6, of the
genus 3 surface ∂M4,1. �

We now turn from consideration of the manifolds-with-boundary Mn,k to their
doubles, as defined at the beginning of the paper. It is clear from the definition that
a map f : M → N between manifolds with boundary determines a map, which we
again denote f : DM → DN , between doubles, and that the map between doubles
inherits the property of being a cover or branched cover of degree n from the original
map.

Proposition 3.4. Taking the branched cover q2,1 : DM4,1 → DM2 and the cover
p′ : DM ′ → DM2 to be determined by the corresponding maps on M4,1 and M ′,
respectively, the map supplied by Lemma 1.1 is p̃ : DM̃ → DM2.

The point of this proposition is that Lemma 1.1 is “doubling equivariant”; that
is, applying it and then doubling the resulting diagram of (branched) covers yields
the same result as doubling first and then applying it. It is a consequence of the
normal form theorem for free products with amalgamation.

Fact. Let A and B be groups sharing a subgroup C, and let A ∗C B be the free
product of A with B, amalgamated over C. If π : A ∗C B → K is an epimorphism
to a finite group K such that π(C) = K, then

kerπ = 〈kerπ|A, kerπ|B〉 ' (kerπ|A) ∗kerπ|C (kerπ|B).

Proof of Fact. It is clear that 〈kerπ|A, kerπ|B〉 is contained in kerπ. We claim
equality; this follows from the normal form theorem for free products with amal-
gamation (see [14, Ch. IV, §2]). Fix sets SA and SB of right coset representatives
for C in A and B, respectively. Then the normal form theorem asserts that each
g ∈ A ∗C B − {1} has a normal form, which is a unique expression g = cs1s2 · · · sn
for some n ≥ 1, where c ∈ C and each si is in SA or SB , with si ∈ SA if and only
if si+1 ∈ SB . We will call n the length of g, and note that the claim is immediate
if g has length 1.

If g ∈ kerπ has length n > 1, then write g in normal form as above, and let c0 ∈ C
have the property that π(c0) = π(cs1 · · · sn−1). Taking g0 = cs1 · · · sn−1c

−1
0 and

g1 = c0gn, we may write g = g0g1 as a product of words in kerπ. It is evident that
g1 has length 1 and easily proved, by passing elements of C to the left, that g0 has
length at most n− 1. Then by induction, each of g0 and g1 is in 〈kerπ|A, kerπ|B〉,
so g is as well.

The normal form theorem also implies that the naturally embedded subgroups
A and B in A ∗C B intersect in C. Therefore kerπ|A ∩ kerπ|B = kerπ|C , and
it follows again from the normal form theorem that the inclusion-induced map
(kerπ|A) ∗kerπ|C (kerπ|B)→ 〈kerπ|A, kerπ|B〉 is an isomorphism. �

Proof of Proposition 3.4. Recall that we have identified the exterior of T , E(T ),
with B3 −N (T ), where N (T ) is a regular neighborhood of T in B3, with two
components homeomorphic to D2 × I. The double of B3 is homeomorphic to S3,
T doubles yielding the link L of Figure 1, and N (T ) doubles yielding a regular
neighborhood N (L). Each component of N (L) is homeomorphic to D2 × S1, with
the corresponding component of N (T ), homeomorphic to D2 × I, mapping in by
(x, y) 7→ (x, eπiy) and its mirror image by (x, y) 7→ (x, e−πiy). Using this description
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of N (L), the link exterior E(L) is the double of E(T ) across the subsurface ∂B3 ∩
E(T ) of ∂E(T ), and meridians of T in E(T ) are meridians of L in E(L).

Using the above description, van Kampen’s theorem describes π(L) as a free
product with amalgamation, π(L) ' π(T ) ∗Λ π(T ), across the subgroup Λ from
Lemma 2.1, which corresponds to ∂B3 ∩ E(T ). Here π(T ) = {ḡ | g ∈ π(T )} is
π1(E(T )), isomorphic to πT . There is a “doubling involution” r on π(L) determined
by r(g) = ḡ, g ∈ π(T ). This is induced by the doubling involution exchanging E(T )
with E(T ) in E(L), fixing their intersection ∂B3 ∩ ∂E(T ).

The projections πn,k : π(T ) → Zn and π2 : π(T ) → Z2, respectively, defined in
Lemma 2.2 and Lemma 2.3 respectively, uniquely determine corresponding projec-
tions on π(L) with the property that πn,k◦r = πn,k and that respectively π2◦r = π2.
Since Λ contains the meridian representatives h and hxhx−2, each such projection
maps it onto the image of π(L). Then by the fact above, we have

DΓn,k
.= kerπn,k = 〈Γn,k,Γn,k〉 ' Γn,k ∗Λn,k

Γn,k,

where Λn,k
.= kerπn,k|Λ. (The corresponding fact holds for DΓ2

.= kerπ2.)
We now defineDEn,k (respectively, DE2) to be the double of En,k (resp. E2) across

the subsurface ∂En,k∩∂Mn,k ⊂ ∂En,k (resp. ∂E2∩∂M2). This notation is somewhat
abusive, since this subsurface does not occupy all of ∂En,k, but we note that it is
represented in Γn,k by Λn,k, since its complement is (qn,k)−1(∂N (T )∩E(T )). Then
DEn,k (respectively, DE2) covers E(L), and the description above makes clear that
this is the cover corresponding to DΓn,k (resp. DΓ2). Hence filling DEn,k (resp.
DE2) along preimages of meridians of L yields the branched cover DMn,k (resp.
DM2) defined in the statement of the proposition.

We make a similar claim regarding p′ : DM ′ → DM2. The cover p′ : E ′ → E2 is
regular, corresponding to the kernel of a map π′ : Γ2 → Z6, and since ∂E ′ ∩ ∂M ′
is connected, it corresponds to a subgroup Λ′ = kerπ′|Λ2 of index 6 in Λ2. Then
defining π′ : Γ2∗Λ2 Γ2 → Z6 by requiring π′◦r = π′, we argue as above to show that
p′ : DM ′ → DM2 is obtained by filling the cover of DE2 corresponding to kerπ′

along preimages of meridians.
Lemma 3.3 implies that Γ̃ = Γ4,1 ∩ Γ′ has index 2 in Γ′, and that Λ̃ = Γ4,1 ∩ Λ′

has index 2 in Λ′. Then it follows as above that the subgroup DΓ̃ .= DΓ4,1∩DΓ′ =
〈Γ̃, r(Γ̃)〉, and that it is isomorphic to the free product of Γ̃ with itself, amalgamated
across Λ̃. The proposition follows. �

Proposition 3.4 supplies a diamond of maps to which Proposition 1.2 may be
applied. We thus prove Theorem 0.1 below by using Proposition 1.3 to find a
fibering of M ′ transverse to the preimage of L.

Proof of Theorem 0.1. By Lemma 3.2, M2 is homeomorphic to a bundle over S1

with fiber the surface F depicted in Figure 6 and monodromy σ : F → F . The
fibers of M2 join to yield a fibering of DM ′ with fiber surface DF , the double of
F , and monodromy map which we will call Dσ. This is pictured in Figure 7. Here
the hexagons and squares to the left of the vertical line are fitted together along
labeled arcs as in Figure 6 forming a copy of F , and the hexagons and squares to
the right of the vertical line are fitted together along their labeled edges forming a
copy of F . To form DF , each unlabeled edge is identified with its correspondent
by reflection through the vertical line. Dσ is the map that restricts on F to σ and
is equivariant with respect to the doubling involution, hence is itself of order 6.
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Figure 7. The collection of transverse curves in DF

Recall that p′ : M ′ → M2, defined below Lemma 3.2, is the sixfold cover of M2

which is trivially fibered over S1 with fiber F . Since DM ′ is the double of M ′, it
is trivially fibered over S1 with fiber DF . Using Lemma 3.2, we may identify DM2

with DF × I/((x, 0) ∼ (Dσ(x), 1)). Then identifying DM ′ with DF × I/((x, 0) ∼
(x, 1)), the covering map is given by (x, y) 7→ ((Dσ)k(x), 6(y− k

6 )) for y ∈ [k6 ,
k+1

6 ],
0 ≤ k < 6. Since the components of (q2)−1(T ) lie in disjoint copies of the fiber
surface F for M2, the components of q−1

2 (L) lie in disjoint copies of DF ⊂M . Take
π : DM ′ → DF to be projection onto the first factor. Then by the description
above, if λ is a component of (q2 ◦ p′)−1(L) ⊂M ′, π(λ) is a simple closed curve on
DF and Dσ takes π(λ) to π(λ′), where λ′ is another component of (q2 ◦ p′)−1(L).

To understand (q2 ◦ p′)−1(L), we first describe (q2)−1(T ) in M2. This the
fixed set of the involution which restricts on each of V1/3 and V1/2 to the com-
plex conjugation-induced involution. The fixed arc [−1, 1]× {1} ⊂ V1/3 lies in the
disk H0, running from the midpoint of the side labeled 0 to the midpoint of the
opposite, unlabeled side in Figure 6. The other arc [−1, 1]×{−1} ⊂ V1/3 runs from
the midpoint of the side of H1 labeled 1/2 to the midpoint of the opposite side.
The arc [−1, 1] × {1} ⊂ V1/2 lies in S0, joining the midpoints of the sides labeled
0 and 1/2. Thus the union of these three arcs is an arc properly embedded in M2,
comprising one component of the preimage of T .

The other component of q−1
2 (T ) is the arc [−1, 1]×{−1} ⊂ V1/2, with endpoints

in B1/2 ⊂ ∂M2. This lies in the disk D2 × {−1} in V1/2, midway between S1 and
σ(S1) = S2. Thus using the description from Lemma 3.2 of M2 as F × I/(x, 0) ∼
(σ(x), 1), the second arc of q−1

2 (T ) lies in S1 × {1/2}, joining midpoints of the
unlabeled boundary components.

Now in DM2, (q2)−1(L) is the double of (q2)−1(T ), with one component in
DF×{0} and one inDF×{1/2}. Then (q2◦p′)−1(L) ⊂ DM ′ has twelve components
in disjoint copies of DF . This set is depicted by the dashed arcs in Figure 7. If
α is such an arc, a simple closed curve on DF containing α may be obtained by
taking the union of a collection of arcs A, of minimal cardinality such that α ∈ A
and for each β ∈ A, the arcs meeting β at its endpoints are also in A. Inspection
reveals six such simple closed curves, permuted by Dσ, each of the form π(λ) for
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some component λ of (q2 ◦ p′)−1(L). There are six, rather than twelve, because
(Dσ)3 is the hyperelliptic involution of DF , which preserves simple closed curves.

The bold arcs depicted in Figure 7 join to produce two disjoint simple closed
curves in DF transverse to this collection. We have indicated orientations with
arrows so that, giving DF the standard orientation from the page, the algebraic
and geometric intersection numbers of each bold curve with each dashed curve
coincide. Thus by Proposition 1.3, spinning annuli along the bold curves yields a
fibration of DM ′ transverse to (q2 ◦ p′)−1(L). Then by Proposition 1.2, DM̃ is
fibered, and the branched cover q : DM̃ → DM ′ takes fibers to fibers.

If F̃ is the fiber surface of DM̃ , then q restricts on F̃ to a twofold branched cover
of a fiber surface of DM ′ transverse to (q2 ◦ p′)−1(L), branched over their points of
intersection. From Figure 7, we find 16 points of intersection between the arcs of
π((q2 ◦ p′)−1(L)) and the bold arcs which determine the spinning curves. It follows
that a spun fiber surface has 32 points of intersection with (q2 ◦ p′)−1(L), since π
maps these curves two-to-one. Since the spun fiber surface of DM ′ has genus two,
an Euler characteristic calculation shows that F̃ has genus 19. Together with the
information in Lemma 3.3 and Proposition 3.4, this establishes the theorem. �

Remark. For n ≥ 2, the spun fiber surface for M ′ identified above pulls back to a
fiber surface of genus 17n − 15 in DM̃ , where p : M̃ → M2n,1 is the sixfold cover
from the remark below Lemma 3.3.

4. The algebra of the tetrus

This section is devoted to proving the dichotomy of Proposition 0.3. Below we
will use the upper half space model of hyperbolic space, H3 = C×R+, equipped with
the complete Riemannian metric with all sectional curvatures −1. The orientation-
preserving isometry group of this model is isomorphic to PSL2(C), acting extending
its action on (C×{0})∪{∞}, the ideal boundary of H3, by Möbius transformations.
If an embedded totally geodesic plane has ideal boundary L ∪ {∞}, where L is a
line in C× {0}, we will refer to it as the hyperplane over L.

Any complete orientable hyperbolic manifold M has associated to it a Kleinian
group Γ, that is, a discrete subgroup of PSL2(C), with the property that M is
isometric to H3/Γ. We will use the following characterization of arithmeticity for
Kleinian groups, which can be found in [15, Theorem 8.3.2] for instance.

Proposition. Let Γ be a finite-covolume Kleinian group. Then Γ is arithmetic if
and only if the following three conditions all hold.

(1) The invariant trace field kΓ has exactly one complex place.
(2) For each γ ∈ Γ, tr γ is an algebraic integer.
(3) The invariant quaternion algebra AΓ is ramified at all real places of kΓ.

Above, the invariant trace field kΓ is the field obtained by adjoining to Q traces
of elements of Γ(2) = 〈γ2 | γ ∈ Γ〉 < Γ. The invariant quaternion algebra is the set
of kΓ-linear combinations of elements of Γ(2), given the natural algebra structure it
inherits from M2(C). The invariant quaternion algebra is ramified at a real place
of kΓ if after extending scalars to R, it is isomorphic to the well known Hamilton’s
quaternions, the vector space over R with basis elements 1, i, j, and ij satisfying
i2 = j2 = (ij)2 = −1. See Sections 2.1 and 2.5 of [15], and Definition 3.3.6.
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We note that a complete hyperbolic manifold M does not determine a unique
Kleinian group Γ, as the quotient of H3 by Γ is isometric to its quotient by any con-
jugate of Γ, for example. However, it is easy to see that kΓ is conjugation-invariant
(since conjugation preserves the trace of an element of PSL2(C)), and that AΓ is
isomorphic to the invariant quaternion algebra of any conjugate of Γ. Mostow’s
rigidity theorem implies that the Kleinian group determined by a complete hyper-
bolic manifold M of finite volume is unique up to conjugation; hence kΓ and AΓ
are invariants of M . It further holds, in fact, that kΓ is a number field; that is, a
finite extension of Q, and that kΓ and AΓ are commensurability invariants of M ,
shared by all manifolds with which it has a common finite cover.

Although the definitions above do not give much clue as to the significance or
relative plenitude of arithmetic hyperbolic manifolds, they have the advantage of
being computable in several different ways. We refer the reader to [15] for a broad
overview of the study of arithmetic hyperbolic 3-manifolds, and also for many of
the computational shortcuts which we will use below.

In verifying Proposition 0.3 one may use SnapPea and Snap, programs which
compute geometric and arithmetic invariants of hyperbolic 3-manifolds. The math-
ematics behind SnapPea is described in [11] and [27]. The program is available
at http://www.geometrygames.org/SnapPea. Snap is introduced in [10], and is
available at http://www.ms.unimelb.edu.au/∼snap.

Since O4 has underlying topological space B3 and singular locus the tangle T of
Figure 3, its double DO4 has underlying topological space S3 and singular locus
the two-component link L on the left-hand side of Figure 1. We may thus regard
DO4 as obtained by (4, 0)-Dehn surgery on L; that is, by removing the interior of
each component of N (L) and, in its place, gluing a cylinder with conical singularity
of angle π/2 so that the original meridian — the boundary slope of the four-holed
sphere ∂B3 ∩ ∂E(T ) — bounds a singular disk.

SnapPea describes a hyperbolic structure on the manifold obtained by (4, 0)-
surgery on each component of L, with hyperbolic volume approximately 5.724.
Snap determines that the Kleinian group associated to DO4 has a nonintegral
trace and hence is non-arithmetic. Since DM4,1 is a fourfold branched cover, its
associated Kleinian group is a subgroup of the group DE4 associated to DO4. Thus
since arithmeticity is a commensurability invariant, DM4,1 is non-arithmetic.

The link Lµ on the right-hand side of Figure 1 is obtained from L by mutation.
That is, Lµ is obtained from L by cutting along the sphere ∂B3 which divides T
from its mirror image and regluing by an order-two homeomorphism µ of ∂B3 that
preserves the set ∂T and acts on it as an even permutation. Theorem 2.6 of [22]
asserts that a mutation homeomorphism of a four-punctured sphere in a hyperbolic
manifold is realizable by an isometry, and it is well known that the same holds true
for a sphere with four cone points of equal cone angle in a hyperbolic orbifold (the
proof strategy outlined in [22, Remark 2.7] extends to this context, for example).

As evidence supporting the paragraph above, we note that SnapPea returns the
same volume for the complement of Lµ as for that of L, and the same volume for
their (4, 0)-Dehn surgeries. In fact, we will explicitly identify the isometry realizing
µ in Lemma 4.3 below. It follows that the orbifold which we will denote DµO4,
resulting from (4, 0)-Dehn surgery on each component of Lµ, is isometric to the
twisted double of O4 obtained by cutting DO4 along the totally geodesic sphere
∂O4 with four cone points and regluing by the isometry realizing µ.
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π/12 π/12

π/6

π/2

π/12 π/12

Figure 8. O4 is a quotient of T4 above.

Applying Snap, we find that DµO4 is arithmetic. In fact, its invariant trace field
and quaternion algebra are identical to those of DO4 (this is a general fact about
hyperbolic manifolds related by mutation; see [19]). The only difference in the
invariant data is that the Kleinian group associated to DµO4 has integral traces.

It remains to show that µ lifts to an isometry of ∂M4,1, so that there exists a
manifold DµM4,1 which covers DµO4. This is equivalent to the assertion that a
lift of µ to the universal cover normalizes the subgroup Λ4 < E4 corresponding
to ∂M4,1. Since we will explicitly describe such a lift in Lemma 4.3, we defer
establishing this fact until then. Then DµM4,1 inherits arithmeticity from DµO4.

An alternative, direct approach to proving Proposition 0.3 uses explicit descrip-
tions of Kleinian groups associated to DO4 and DµO4. Let T4 be the truncated
tetrahedron of Figure 8. (This is combinatorially isomorphic to the double of the
partially truncated tetrahedron labeled Tn in [20, Figure 3], across its bottom face.)
We will regard T4 as a polyhedron in H3, with the property that labeled edges have
the specified dihedral angles and all others have dihedral angle π2; in particular,
each triangular face is perpendicular to the other faces it meets.

In [20, pp. 119–120], isometries h and x pairing the hexagonal faces of T4 are
described, so that the quotient of T4 by this face pairing is O4. The lemma below
describes isometries H4 and X4 which realize these face pairings under the embed-
ding of T4 determined by the following criteria: every (z, t) ∈ T4 has = z ≥ 0, the
bottom triangular face lies in the hyperplane over R with its vertex of dihedral
angle π/2 at (0, 1), and T4 is preserved by reflection in the hyperplane over iR.

Lemma 4.1. Let τ = 1
2
√

2

(√
3 + 1 + i

√
4 + 6

√
3
)
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2
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2
2

√
2

2

)
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√
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2
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There is an isometry taking O4 to the convex core of H3/E4, where E4 = 〈H4, X4 〉
is as described in Theorem 2.1. The image of ∂O4 is the quotient of the hyperplane
H over R by its stabilizer in E4, the subgroup Λ4 = 〈P1, P2, P3〉, where

P1 = H−1
4 P2 = H4X4H4X

−2
4 P3 = (X4H4X4)H−1

4 (X4H4X4)−1
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Each of P1, P2, and P3 is elliptic. The final conjugacy class of elliptic elements of
Λ4 is represented by P4 = P1P2P

−1
3 = (X4H4X

−1
4 )H4X4H4X

−2
4 (X4H4X

−1
4 )−1.

Using a computer algebra program, one can check that E4 as described above
satisfies the relations of the presentation which we recorded in Theorem 2.1:

E4
∼= 〈H4, X4 | (H4)4 = (H4X4H4X

−2
4 )4 = 1 〉.

These relations are a consequence of Poincaré’s polyhedron theorem. One may also
verify, again by using a computer algebra program, that each of P1, P2, and P3 is
elliptic, of order 4, and contained in PSL2(R). This fits with the orbifold surgery
description of O4 above, since the boundary subgroup Λ described in Lemma 2.1 is
generated by parabolic elements corresponding to meridians of T .

Because ∂O4 is the quotient of the hyperplane H over R by Λ4 = StabE4(H), H
is a component of the boundary of the convex hull of the limit set of E4. The Klein-
Maskit combination theorem [16] thus yields a description of the Kleinian group
corresponding to the double of O4 across its boundary. Below, if γ =

(
a b
c d

)
∈

PSL2(C), define γ̄ =
(
ā b̄
c̄ d̄

)
.

Lemma 4.2. Let DE4 = 〈E4, E4〉, where E4 = {γ̄ | γ ∈ E4}. Then DO4 is
isometric to H3/DE4.

The fact that DE4 has a nonintegral trace follows from a computation:

tr X4X4 = 2 + 5/
√

3.

This verifies the “non-arithmetic” half of Proposition 0.3. In order to verify the
“arithmetic” half, we need to explicitly describe the Kleinian group corresponding
to DµO4. The lemma below identifies the isometry which realizes µ.

Lemma 4.3. Define

M =


√√

3+1
2

(
31/4 +

√
2

2

)√√
3+1
2

−
(

31/4 −
√

2
2

)√√
3+1
2 −

√√
3+1

2


M is an involution normalizing Λ4 and acting on the generators by

MP1M
−1 = P−1

2 MP2M
−1 = P−1

1 MP3M
−1 = P−1

1 P−1
4 P1.

M induces self-isometries of ∂O4 and ∂M4,1, to which we will refer by µ (in both
cases).

Proof. It is clear that M is an involution, since its trace is equal to 0; in fact, it is
the 180-degree rotation in the midpoint of the geodesic arc in the hyperplane over
R joining the fixed point of P1 to that of P2. Thus we expect it to exchange P1

with P±1
2 . That MP1M

−1 = P−1
2 may be verified by direct computation, as may

the action on P3. Since any 3 elements of the collection {P1, P2, P3, P4} generate
Λ4, it is normalized by M . Therefore M induces an isometry µ of ∂O4.

We further recall, from Theorem 2.1, that the fundamental group G4,1 of M4,1

is kerπ1, where π1 : E4 → Z4 = 〈h4〉 takes H4 and X4 to h4. It follows from the
description in Lemma 4.1 that π1(P2) = π1(P4) = h4, and π1(P1) = π1(P3) = h−1

4 .
Therefore, if φM : Λ4 → Λ4 is the automorphism induced by conjugation by M , we
find that π1 ◦ φM = ι ◦ π1, where ι : Z4 → Z4 takes h4 to h−1

4 . Since the identity
subgroup is characteristic, φM preserves kerπ1|Λ4 . Hence M induces an isometry
on ∂M4,1, which corresponds to this subgroup. �
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The Klein–Maskit combination theorem now yields the description below.

Lemma 4.4. Let µ : ∂O4 → ∂O4 be the isometry induced by M , and define DµO4 =
O4 ∪µ O4. There is an isometry from DµO4 to H3/〈E4,ME4M

−1〉.
Below we describe the arithmetic data for DµO4.

Lemma 4.5. Let DME4 = 〈E4,ME4M
−1〉. Then DME4 has integral traces,

the invariant trace field kDME4 = Q(i
√

4 + 6
√

3), and the invariant quaternion
algebra has Hilbert symbol(

−4, 2 + 4
√

3 + i(3 +
√

3)
√

4 + 6
√

3
kDME4

)
.

In particular, DME4 is arithmetic.

Proof. This proof is almost entirely computational, and we will spare the reader
the details in favor of an overview. Using a presentation of DME4 as a free product
with amalgamation, it can be shown that it is generated by the elements H4, X4,
and X

M

4
.= MX4M

−1. Then formula (3,26) and the remark below it in [15] imply
that the trace of any element in DME4 is an integral polynomial in the traces of
the following elements.

H4, X4, X
M

4 , H4X4, H4X
M

4 , X4X
M

4 , H4X4X
M

4

The invariant trace field is obtained by adjoining to Q the squares of the traces of
the generators as well as the following products of traces, by [15, Lemma 3.5.9].

trH4X4 trH4 trX4 trX4X
M

4 trX4 trX
M

4

trH4X
M

4 trH4 trX
M

4 trH4X4X
M

4 trH4 trX4 trX
M

4

Finally, the Hilbert symbol for the invariant quaternion algebra, which is deter-
mined by any nonelementary subgroup, may be obtained as(

tr2H4(tr2H4 − 4), tr2H4tr2X4(tr[H4, X4]− 2)
kDME4

)
,

according to [15, Theorem 3.6.2].
The formulae above yield the invariant data recorded in the statement of the

lemma. The Galois conjugates of i
√

4 + 6
√

3, aside from its complex conjugate,
are ±

√
6
√

3− 4; hence the invariant trace field has exactly one complex place.
The invariant quaternion algebra is ramified at a real place of kDME4 if and only if
both entries of its Hilbert symbol are sent to negative numbers by the corresponding
real embedding (see [15, Section 2.5]). This holds, and arithmeticity follows. �

Remark. Snap outputs the following minimal polynomial for the invariant trace
field kDE4 = kDME4:

x4 − 2x3 − x2 + 2x− 2.
This factors over Q(

√
3) as (x2 − x − 1 +

√
3)(x2 − x − 1 −

√
3), after which an

application of the quadratic formula yields the roots below.

1±
√

5 + 4
√

3
2

1±
√

5− 4
√

3
2

Since 5− 4
√

3 = −(4 + 6
√

3)(1 +
√

3)2, Snap agrees with Lemma 4.5 regarding the
invariant trace field.
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