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For n = 4, 5 or 6, an n-gon can be regarded as a partially truncated triangle, resulting
from removing open affine neighborhoods of certain vertices of a triangle. This has particular
significance in hyperbolic geometry when the edges resulting from truncation are at right angles
to the others. Multiple versions of the hyperbolic laws of sines and cosines are proved for such
polygons in Chapter VI of Fenchel’s Elementary geometry in hyperbolic space [3].

The first results of this note, proved in Section 2, establish additional such laws which are not
already in [3] nor in Ratcliffe’s Foundations of hyperbolic manifolds [4]. Proposition 2.1 pertains
to hyperbolic quadrilaterals, and 2.2 to pentagons, in which the non-truncated vertices are ideal
(see Section 1 below). In these results, the length of a horospherical cross-section at an ideal
vertex plays the role that would be played by the dihedral angle at an ordinary vertex.

In Section 3 we turn to the analogous situation in dimension three. Our second collection
of results concern partially truncated tetrahedra in H3, which are homeomorphic to affine 3-
simplices with certain vertices or their open neighborhoods removed. Proposition 3.5 bounds
the transversal length of such a tetrahedron, meaning the minimum distance between a specified
pair of opposite internal edges, in terms of the tetrahedron’s set of internal edge lengths. Here
an edge is internal if it is not contained in a face resulting from truncation.

In both settings we follow the approach of [4, Ch. 3] and use the hyperboloid model for Hn,
where it is taken as a subset of Rn+1 equipped with the Lorentzian inner product, a certain non
positive-definite bilinear form. Vectors of the ambient Rn+1 carry information about different
objects of Hn, depending on the sign of their self-pairing. We introduce this perspective in
Section 1 below. One can leverage it to encode partially truncated triangles using just three
vectors, and partially truncated tetrahedra using four, as we subsequently do.

The results of this note are applied to help bound volumes of hyperbolic 3-manifolds with
totally geodesic boundary below, in other papers that have appeared or will soon.

1. Background: the meaning of vectors in the hyperboloid model

We begin by reviewing Ratcliffe’s notation from Chapter 3 of [4], which we will generally
follow in describing the hyperboloid model of hyperbolic space. The Lorentzian inner product
of x = (x1, . . . , xn+1) and y = (y1, . . . , yn+1) ∈ Rn+1 is defined as

x ◦ y = −x1y1 + x2y2 + . . .+ xn+1yn+1,

and x is said to be space-like, light-like, or time-like respectively as x ◦ x is positive, zero, or
negative. The Lorentzian norm of x is ‖x‖ =

√
x ◦ x, where the square root is taken to be

positive, zero, or positive imaginary in the respective cases above. The light cone is the set of
light-like vectors, and its interior is the set of time-like vectors. A time-like or light-like vector
is positive if its first entry is. The hyperboloid model Hn of hyperbolic space is the set of positive
vectors with Lorentzian norm i in Rn+1, equipped with the distance dH defined by

cosh dH(u,v) = −u ◦ v.
1
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(We note that the following version of the Cauchy-Schwartz inequality follows from the usual

one: for positive vectors x and y with x ◦ x ≤ 0 and y ◦ y ≤ 0, x ◦ y ≤ −
√

(x ◦ x)(y ◦ y), with
equality if and only if they are linearly dependent, see eg. formula (1.0.2) of [1].)

The distance function dH above is determined by the Riemannian metric on Hn given, at each
x ∈ Hn, by restricting the Lorentzian inner product to TxHn = x⊥

.
= {v |v ◦ x = 0}. (This

restriction is positive-definite since x is time-like, see [4, Theorem 3.1.5].) The isometry group
of Hn is the group O+(1, n) of matrices preserving the Lorentzian inner product and the sign of
time-like vectors, see [4, §3.1], acting on Hn by restriction.

Given x ∈ Hn and a unit space-like vector y, ie. with y ◦ y = 1, if y ∈ TxHn (recall that this
means x ◦ y = 0) then defining γy(t) = cosh t x + sinh ty determines a (unit-speed) geodesic in
Hn with γy(0) = x and γ′y(0) = y. For an arbitrary y ∈ TxHn,

γy(t)
.
= cosh (‖y‖t) x +

1

‖y‖
sinh (‖y‖t) y(1)

is a constant-speed geodesic with γy(0) = x and γ′y(0) = y. (This can be directly checked.) The
exponential map of Hn based at x, a diffeomorphism TxHn → Hn, is then given by y 7→ γy(1).

The most useful feature of the hyperboloid model for us is that vectors of Rn+1 which are not
time-like also encode geometric features of Hn.

1.1. The meaning of light-like vectors. Recall that x ∈ Rn+1 is light-like if x ◦ x = 0. Any
positive light-like vector x is approached by a sequence of positive time-like vectors (for instance
we can take tx + (1 − t) e1 for t approaching 1 from below); hence its projective class [x] in
RPn is approached by a sequence in the projectivization of Hn. Conversely, the projectivization
of the light cone is the frontier of the projectivization of Hn in RPn. In this sense we regard
projectivized members of the light cone as ideal points of Hn.

Individual vectors in the positive light cone carry more specific information.

Definition 1.1. The horosphere determined by a positive light-like vector x ∈ Rn+1 is S = {v ∈
Hn |v ◦ x = −1}. The horoball bounded by S is the set B = {v ∈ Hn |v ◦ x ≥ −1}.

A little multivariable calculus shows that the horosphere S determined by a positive light-like
vector x ∈ Rn+1 is the smooth submanifold f−1(−1) of Hn, where f(u) = u ◦x, and its tangent
space at any u0 ∈ S is Tu0S = {v ∈ Rn+1 |v ◦ u0 = 0 = v ◦ x}. For any such u0 one may
check directly that the formula F (v) = u0 + v +

(
v◦v
2

)
x defines a Riemannian isometry from

Tu0S, equipped with the restriction of the Lorentzian inner product, to S ⊂ Hn. Since the
inner product’s restriction is positive-definite on Tu0S, this explicitly confirms the well known
fact that S is an isometrically embedded copy of the Euclidean space Rn−1. It also yields the
following formula for the Euclidean distance dS(u0,u1) in S between vectors u0 and u1:

dS(u0,u1) =
√
−2(1 + u0 ◦ u1)

To see this, set F (v) equal to u1 and solve for v ◦ v by taking the Lorentzian inner product
of both sides with u0. Using the formula for dH(u0,u1) given above we obtain the comparison
equation dS(u0,u1)/2 = sinh(dH(u0,u1)/2). We note that this implies in particular that the
isometric embedding F is proper; that is, S has compact intersection with any compact set of
Hn.

Lemma 1.2. For v ∈ Hn and a positive light-like vector x, the signed hyperbolic distance d
from v to the horosphere S determined by x satisfies ed = −v ◦x, where the sign of d is positive
if v lies outside the horoball B bounded by S. This distance is realized at t = d on the geodesic

γ(t) = e−tv − sinh t

x ◦ v
x = e−tv + e−d sinh tx ∈ Hn,
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which has γ(0) = v. We call γ the geodesic through v in the direction of x.

Proof. A vector u ∈ Rn+1 lies in S if and only if u ◦ u = −1, so it lies in Hn, and u ◦ x = −1.
By the theory of Lagrange multipliers, the restriction of f(u)

.
= u ◦ v to S may attain a local

extremum at u ∈ S only if the gradient of f at u is a linear combination of the gradients of the
constraint functions g1(u)

.
= u ◦ x and g2(u)

.
= u ◦ u. By a direct computation, ∇f(u) = v̄,

∇g1(u) = x̄, and ∇g2(u) = ū, where v̄ is obtained from v by switching the sign of first entry,
and similarly for the others. It follows that at any local extremum of the restriction of f to S,
v is a linear combination of x and u.

Since v, which is time-like, is not a multiple of x, which is light-like, this implies that we can
express u in terms of v and x. Upon plugging u = ax + bv into the constraints and solving for
a, b ∈ R we obtain the unique solution

u =
1

2

(
1− 1

(v ◦ x)2

)
x− 1

v ◦ x
v.(2)

The value of f at u is thus u◦v = 1
2

(
v ◦ x + 1

v◦x
)
, so by the definition of the hyperbolic distance

dH we have

cosh dH(u,v) =
1

2

(
−v ◦ x +

1

−v ◦ x

)
.

Therefore edH(u,v) is either −v ◦ x or its reciprocal, whichever is at least 1 since dH(u,v) is
non-negative. If we take d to be the signed distance, with non-negative sign if v is outside the
horoball B, then by the definition of B we have ed = −v ◦ x in all cases.

We finally note that d really is the (signed) distance from v to S; that is, the unique critical
point u of f described above is the global maximizer for the values of f on S, so dH(x,u) is
the global minimizer of distances from v to points of S. This follows from uniqueness and the
fact that as u ∈ Hn escapes compact sets, f(u) → −∞. Toward the latter point, note for an

arbitrary u = (u1, . . . , un+1) ∈ Hn that u1 =
√

1 + u22 + . . .+ u2n+1, so we can rewrite f(u) as

f(u) = −
√

(1 + u22 + . . .+ u2n+1)(1 + v22 + . . .+ v2n+1) + u2v2 + . . .+ un+1vn+1

=
(u2v2 + . . .+ un+1vn+1)

2 − (1 + u22 + . . .+ u2n+1)(1 + v22 + . . .+ v2n+1)√
(1 + u22 + . . .+ u2n+1)(1 + v22 + . . .+ v2n+1) + u2v2 + . . .+ un+1vn+1

.

In passing from the first to the second line above we use the fact that
√
a−
√
b = (a−b)/(

√
a+
√
b).

Expanding the numerator, canceling certain terms, and rearranging yields:

−1− (u22 + . . .+ u2n+1)− (v22 + . . .+ v2n+1)−
∑
i 6=j

(ui − vj)2.

The denominator is at most some fixed multiple of
√

1 + u22 + . . .+ u2n+1, by the Cauchy-Schwarz

inequality, whereas the numerator is at most the opposite of the square of this quantity. So as
claimed, f(u)→ −∞ as u escapes compact sets.

For the parametrized curve γ defined in the statement, direct computation reveals that γ(t) ◦
γ(t) = −1 for all t, so γ maps into Hn, and that γ′′(t) = γ(t). Therefore γ is a hyperbolic
geodesic, by [4, Theorem 3.2.4]. More direct computation shows that γ(0) = v and γ(d) is the
nearest point u to v on S described in (2). �

Lemma 1.3. For linearly independent positive light-like vectors x0 and x1 of Rn+1, the minimum
signed distance d from points on S1 to S0 satisfies ed = −1

2x0 ◦ x1, where Si is the horosphere
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of Hn determined by xi for i = 0, 1. This distance is uniquely attained by points at t = ±d/2 on
the geodesic

γ(t) =
1√

−2(x0 ◦ x1)

(
et x0 + e−t x1

)
=

1

2
e−d/2

(
et x0 + e−t x1

)
from x1 to x0.

Proof. A vector u ∈ Rn+1 lies in S1 if and only if u ◦ u = −1, u is positive, and u ◦ x1 = −1.
By the theory of Lagrange multipliers, the restriction of f(u) = u ◦ x0 to B1 may attain a local
extremum at u ∈ S1 only if the gradient of f at u is a linear combination of the constraint
gradients ∇g1(u) and ∇g2(u), where g1(u) = u ◦ x1 and g2(u) = u ◦ u. Direct computation
yields ∇f(u) = x̄0, ∇g1(u) = x̄1, and ∇g2(u) = 2ū, where x̄0 is obtained from x0 by multiplying
the first entry by −1 and similarly for the others. It thus follows that at such a local extremum
u, x0 is a linear combination of x1 and u so, since x0 is not a multiple of x1, u is a linear
combination of the xi.

Plugging u = ax0 + bx1 into the constraint equations and solving for a, b ∈ R yields

u =
−1

x0 ◦ x1
x0 +

1

2
x1(3)

This is a positive vector since it is a positive linear combination of the positive vectors x0 and
x1. By Lemma 1.2 and a direct computation, the signed distance d from u to S0 satisfies
ed = −1

2x0 ◦ x1.
Substituting u for v in the formula for the geodesic γ(t) defined in Lemma 1.2 and simplifying

yields

γ(t) =
et

−x0 ◦ x1
x0 +

e−t

2
x1.

Note that γ(0) = u ∈ S1 and γ(d) ∈ S0. The more-symmetric formula given in the statement is
obtained by translating the parametrization, replacing t by t− d/2.

It remains to show for u from the formula (3) that f(u) is a global maximum of f on S1,
hence that d is a global minimum of the signed distance to S0 on S1. This follows from the fact
that u is the unique critical point of f on S1, together with the fact that f(v)→ −∞ as v ∈ S1
escapes compact sets. Indeed, for any fixed r < 0, and any v ∈ S1 such that f(v) ≥ r, we have
v ◦ u = −f(v)/x0 ◦ x1 − 1/2 ≥ −r/x0 ◦ x1 − 1/2, so v is contained in the closed ball of radius
cosh−1(r/x0 ◦ x1 + 1/2) around u. This ball is compact. �

1.2. The meaning of space-like vectors. Recall that y ∈ Rn+1 is space-like if y ◦ y > 0.
We note that the orthogonal subspace V = {x ◦ y = 0} to a space-like vector y is time-like,
ie. containing a time-like vector, since if this were not so then Rn+1 would have no time-like
vectors. This motivates:

Definition 1.4. The polar hyperplane to a space-like vector y is P = {x ∈ Hn |x ◦ y = 0}.

As defined in [4, §3.2], a hyperplane of Hn is its intersection with a time-like, codimension-one
vector subspace of Rn+1. Corollary 4 of [4, §3.2] implies that the group of hyperbolic isometries
acts transitively on the set of hyperplanes. Thus each hyperplane is the polar hyperplane to a
space-like vector, since for instance (Rn×{0})∩Hn is the polar hyperplane to en+1 = (0, . . . , 0, 1).

Every hyperplane P = V ∩Hn is a totally geodesic copy of Hn−1 in Hn, being, for any x ∈ P ,
the image of the restriction of the exponential map based at x to TxP = V ∩ x⊥. Conversely,
the exponential map’s explicit description shows that any (n − 1)-dimensional totally geodesic
subspace P of Hn is contained in V = span{x, TxP} for any x ∈ P , and hence is a hyperplane.
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We define a half-space to be the closure of one component of Hn−P , for a hyperplane P . We
call P the boundary of H and H − P the interior. From eg. the model case above we see that
each hyperplane bounds exactly two distinct half-spaces, which have disjoint interiors.

Lemma 1.5. There is a bijective correspondence between half-spaces of Hn and unit space-like
vectors of Rn+1 that sends y ∈ Rn+1 to H = {x ∈ Hn |x ◦ y ≤ 0}. In the other direction, it
sends a half-space H to the unit outward normal y to H at any point of its boundary.

Above, given a hyperplane P and any x ∈ P , a normal vector to P at x—and to a half-space
H bounded by P—is an element of TxHn orthogonal to the codimension-one subspace TxP . A
unit normal vector y to P determines a geodesic γy(t) = cosh tx + sinh ty that intersects P
transversely, and we say y is outward to H if γ(t) ∈ H for all t < 0.

Proof. For a hyperplane P and any x ∈ P , since the orthogonal subspace to TxP in TxHn is
one-dimensional there are exactly two unit normals to P . If y is one of these, the other is −y,
and exactly one of them is outward to a given half-space H bounded by P . Take this to be y.
Any x′ ∈ P is of the form γz(1) for some z ∈ TxP , with γz as in (1)—ie. x′ is the exponential
image of z—and hence y ◦ x′ also equals 0. Thus P is the polar hyperplane of y.

For this y, we claim that H = {x ∈ Hn |x ◦ y < 0}. Defining f : Hn → R by f(x) = x ◦ y,
note that since the interior of H is a connected component of the complement of P = f−1(0), it
maps into one of (−∞, 0) or (0,∞) under f . Since it contains γy(t) for t < 0, it is the former.
Similarly, the other component of Hn − P maps into (0,∞), so the claim holds.

Conversely, a unit space-like vector y belongs to TxHn = x⊥ at any point x of its polar
hyperplane P , and it is normal to TxP = V ∩x⊥ for V = {v ∈ Rn+1 |v◦x = 0}. A computation
shows that it is also the outward normal to the half-space H = {x ∈ Hn |x ◦ y ≤ 0}. �

We use this to give a series of geometric interpretations on the Lorentz pairing between vectors
of various types and space-like vectors. The first follows directly from Theorem 3.2.12 of [4].

Lemma 1.6. For v ∈ Hn and a unit space-like vector y, the signed distance d from v to the
polar hyperplane of y satisfies sinh d = v ◦ y, where the sign is negative if and only if v is
contained in the interior of the half-space bounded by P with outward normal y.

In the next result and below, the ideal boundary of a hyperplane P = V ∩ Hn (respectively,
a half-space H bounded by P ) is the intersection of V (resp. the closure of the component of
Rn+1 − V containing the interior of H) with the positive light cone.

Lemma 1.7. For a positive light-like vector x ∈ Rn+1, let S be the horosphere determined by x.
Suppose P ⊂ Hn is a hyperplane with ideal boundary not containing x, and let y ∈ Rn+1 be the
outward-pointing normal to the half-space H bounded by P with ideal boundary containing x.
Then x ◦ y < 0, and the minimal signed distance h from P to S satisfies eh = −x ◦ y, uniquely
realized by γ(0) ∈ P and γ(h) ∈ S for

γ(t) = e−h cosh tx + e−t y.

This is the unique geodesic perpendicular to P in the direction of x, in the sense of Lemma 1.2.

Proof. A vector v ∈ Rn+1 lies in P if and only if v ◦v = −1, v is positive, and v ◦y = 0. By the
theory of Lagrange multipliers, the restriction of f(v)

.
= v◦x to P may attain a local extremum

at v ∈ P only if the gradient of f at v is a linear combination of the constraint gradients ∇g1(v)
and ∇g2(v), where g1(v) = v ◦ y and g2(v) = v ◦ v. Direct computation yields ∇f(v) = x̄,
∇g1(v) = ȳ, and ∇g2(v) = 2v̄, where x̄ is obtained from x by multiplying the first entry by −1
and similarly for the others. It thus follows that x is a linear combination of y and v for such
a point v, so since x is not a multiple of y we can express v in terms of x and y.
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Plugging v = ax + by into the constraint equations and solving for a, b ∈ R yields:

v = ±
(
−1

x ◦ y
x + y

)
(4)

Only one of these two solutions is positive. We claim that v is positive and hence is the unique
critical point of the restriction of f to H. By Lemma 1.2 its signed distance h to B will then
satisfy eh = −x ◦ y, and the geodesic through v in the direction of x will be given by:

γ(t) = e−tv − sinh t

x ◦ v
x =

cosh t

−x ◦ y
x + e−ty = e−h cosh tx + e−t y.

To prove the claim, we first note that x ◦y < 0: this follows from the fact that the half-space
H whose ideal boundary contains x is characterized as H = {v ∈ Hn |v ◦y ≤ 0}. We then write
x = (x1,x0) and y = (y1,y0) for vectors x0,y0 ∈ Rn, so the first entry of v is x1/(−x ◦ y) + y1.
The hypothesis that x is positive means that x1 > 0, so since x ◦ y < 0, the first entry of v is
certainly positive if y1 ≥ 0. We therefore suppose that y1 < 0. Since x is light-like and y is unit
space-like, we can write x1 = ‖x0‖ and y1 = −

√
‖y0‖2 − 1, and hence

x ◦ y = ‖x0‖
√
‖y0‖2 − 1 + x0 · y0,

where x0 ·y0 is the ordinary dot product of x0 and y0. Since x◦y < 0 we must have x0 ·y0 < 0;
by the Cauchy Schwarz inequality, −x0 · y0 ≤ ‖x0‖‖y0‖. Thus we have:

−1

x ◦ y
x1 + y1 =

‖x0‖
−x0 · y0 − ‖x0‖

√
‖y0‖2 − 1

−
√
‖y0‖2 − 1

≥ ‖x0‖
‖x0‖‖y0‖ − ‖x0‖

√
‖y0‖2 − 1

−
√
‖y0‖2 − 1

Simplifying the above and using the fact that 1/(‖y0‖−
√
‖y0‖2 − 1) = ‖y0‖+

√
‖y0‖2 − 1, we

obtain in this case that x1/(−x ◦ y) + y1 ≥ ‖y0‖ > 0. This proves the claim.
It remains to show that v is the global maximizer for the restriction of f to P , hence that it

is the minimizer for the signed distance to S. This follows from the fact that v is the unique
critical point of the restriction of f to P , together with the fact that f(u) → −∞ as u ∈ P
escapes compact sets. Indeed, for any fixed r < 0 and u ∈ P such that u ◦ x > r, we have
u ◦ v = (−1/x ◦ y)u ◦ x > −r/x ◦ y; hence u lies in the closed ball of radius cosh−1(r/x ◦ y)
about v. �

The result below combines a few recorded by Ratcliffe in [4].

Lemma 1.8 (cf. [4], pp. 65–69). Let y1,y2 ∈ Rn+1 be linearly independent space-like vectors,
with polar hyperplanes P1 and P2 in Hn, contained in n-dimensional subspaces V1 and V2 of
Rn+1, respectively. Exactly one of the following holds:

(1) P1 and P2 intersect in Hn, and |y1 ◦y2| < ‖y1‖‖y2‖. Hence for some η(y1,y2) ∈ (0, π):

y1 ◦ y2 = ‖y1‖‖y2‖ cos η(y1,y2).

For any v ∈ P1 ∩ P2, η(y1,y2) is the angle in TvHn between the normal vectors y1 and
y2 to P1 and P2, respectively, at v.

(2) The distance between points of P1 and P2 attains a non-zero minimum, and |y1 ◦ y2| >
‖y1‖‖y2‖. Hence for some η(y1,y2) ∈ (0,∞):

|y1 ◦ y2| = ‖y1‖‖y2‖ cosh η(y1,y2).

In this case η(y1,y2) is the (minimum) distance in Hn between P1 and P2, and y1◦y2 < 0
if and only if y1 and y2 are oppositely oriented tangent vectors to the hyperbolic geodesic
intersecting each of P1 and P2 perpendicularly.
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(3) P1 ∩ P2 = ∅ but their ideal boundaries intersect, and |y1 ◦ y2| = ‖y1‖‖y2‖.

In case (3) above we say that P1 and P2 are parallel. One can show in this case that there
are sequences in P1 and P2 such that the infimum of distances from points of the first sequence
to points of the second is 0. We now expand on case (2) above.

Lemma 1.9. Suppose y1 and y2 are linearly independent space-like vectors such that the distance
between points of their polar hyperplanes P1 and P2 attains a non-zero minimum. This distance
is realized as d(v1,v2) for unique v1 ∈ P1 and v2 ∈ P2, with v1 given by:

v1 = ±(y1 ◦ y2/‖y1‖) y1 − ‖y1‖y2√
(y1 ◦ y2)2 − ‖y1‖2‖y2‖2

,

where the sign of “±” above is negative if v1 belongs to the half-space H2 bounded by P2 with y2

as outward unit normal vector, and negative otherwise.

Proof. Standard facts of hyperbolic geometry imply the uniqueness of v1 ∈ P1 and v2 ∈ P2, and
furthermore that the geodesic γ joining v1 and v2 intersects each of P1 and P2 perpendicularly.
Therefore γ has tangent vector y1 at v1 and y2 at v2, and it follows that γ = Span{y1,y2}∩Hn.
Taking v1 = ay1 + by2 and solving the equations v1 ◦ y1 = 0 and v1 ◦ v1 = −1 (necessary for
v1 ∈ Hn) for a and b yields the two solutions above. Taking an inner product with y2 now yields

v1 ◦ y2 = ± 1

‖y1‖
(y1 ◦ y2)

2 − ‖y1‖2‖y2‖2√
(y1 ◦ y2)2 − ‖y1‖2‖y2‖2

By Lemma 1.5, v1 belongs to the half-space H2 with y2 as outward normal if and only if
v1 ◦ y2 < 0, hence if and only if the “±” above is negative. �

2. Dimension two

Here we prove trigonometric formulas for a hyperbolic quadrilateral with two ideal vertices
and a hyperbolic pentagon with one ideal vertex, each with right angles at all finite vertices.

Proposition 2.1. Let Q ⊂ H2 be a convex quadrilateral with a single compact side of length
` and right angles at its endpoints, and let B0 and B1 be horoballs centered at the two ideal
vertices of Q. If ai is the signed distance to Bi from the other endpoint of the half-open edge of
Q containing the ideal point of Bi, i = 0, 1, and d is the signed distance from B0 to B1, then

sinh(`/2) = e(d−a0−a1)/2.

If θi is the length of the horocyclic arc Si ∩Q, i = 0, 1, where Si = ∂Bi, then for each i,

θ0
ea1

=
θ1
ea0

=
sinh `

2ed

Proof. For a quadrilateral Q ⊂ H2 with a single compact edge γ and right angles at the endpoints
of this edge, let x0 and x1 be positive light-like vectors determining the horobolls B0 and B1

centered at the ideal vertices of Q. Using the fact that the geodesic containing γ is a codimension-
one hyperplane of H2, let y be the space-like vector Lorentz-orthogonal to this geodesic with
the property that xi ◦ y < 0 for i = 0, 1. (Since the ideal vertices of Q are on the same side of
this geodesic, the inner products with y have the same sign by Lemma 1.7.)

Let v0 and v1 be the finite vertices of Q, numbered so that vi is an endpoint of the half-open
edge of Q with its other endpoint at the center of Bi, for i = 0, 1. Since Q is right-angled, vi

is described in terms of xi and y by the formula (4) for each i. (Note that there is a unique
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geodesic ray perpendicular to the geodesic containing γ with its ideal endpoint at the center of
Bi, since there is no hyperbolic triangle with two right angles.) That is:

v0 =
−1

x0 ◦ y
x0 + y v1 =

−1

x1 ◦ y
x1 + y

By Lemma 1.7 their signed distances ai to the Bi satisfy eai = −xi ◦ y for i = 0, 1. If ` is the
length of γ then from the distance formula we obtain

cosh ` = −v1 ◦ v2 =
−x0 ◦ x1

(x0 ◦ y)(x1 ◦ y)
+ 1

It follows from Lemma 1.3 that the minimal signed distance d from S0 to S1 satisfies ed =
−1

2x0 ◦ x1, hence by a half-angle formula sinh(`/2) = e(d−a0−a1)/2 as claimed.
Let u0 and u′0 be the points of intersection between the horosphere S0 = ∂B0 and the edges of

Q joining the class of x0 to v0 and the class of x1, respectively. We obtain an explicit description
for u0 by plugging in t = a0 to the parametrized geodesic γ(t) starting at v0 given in Lemma
1.7, and for u′0 by plugging in t = d/2 to the parametrized geodesic λ(t) from x1 given in Lemma
1.3. These yield:

u0 =
1

2

(
1 +

1

(x0 ◦ y)2

)
x0 +

−1

x0 ◦ y
y u′0 =

1

2
x0 +

−1

x0 ◦ x1
x1

From the horospherical distance formula we thus have

θ0 = dS0(u0,u
′
0) =

√
−2(1 + u0 ◦ u′0) =

√
1

(x0 ◦ y)2
− 2(x1 ◦ y)

(x0 ◦ x1)(x0 ◦ y)

A similar computation yields an analogous formula for θ1, and we observe that

θ0e
−a1 = θ1e

−a0 = sinh `/(2ed)

=
1

(x0 ◦ y)(x1 ◦ y)

√
2(x0 ◦ y)(x1 ◦ y)− x0 ◦ x1

−x0 ◦ x1

The latter assertion in the statement follows. �

Proposition 2.2. Let P ⊂ H2 be a convex pentagon with four right angles and one ideal vertex,
and let B be a horoball centered at the ideal vertex of P . Let d be the length of the side of P
opposite its ideal vertex, let w0 and w1 be its endpoints, and for i = 0, 1 let `i be the length of
the other side containing wi. If vi is the other endpoint of this side and ai is its signed distance
to B, for i = 0, 1, then

cosh `i =
eai cosh d+ ea1−i

eai sinh d
for i = 0, 1.

Moreover, if θ is the length of the horocyclic arc S ∩ P , where S = ∂B, then

θ

sinh d
=

sinh `0
ea1

=
sinh `1
ea0

.

Proof. Let P be a pentagon with four right angles and a single ideal vertex, and let x be a positive
light-like vector that determines a horosphere S centered at the ideal vertex of P . Labeling the
endpoints of the edge of P opposite its ideal vertex as w0 and w1, for i = 0, 1 let γi be the other
edge of P containing wi, and let yi be a unit space-like vector in R3 orthogonal to the geodesic
containing γi. Choose the yi so that yi ◦ x < 0 for each i. Equivalently, by Lemma 1.7, yi is on
the opposite side of x from the plane u ◦ x = 0 in R3. Since γi and the ideal point of P are on
the same side of the geodesic containing γ1−i for each i, y0 ◦ y1 < 0 by [4].
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Let us call vi the endpoint of γi not equal to wi, for i = 0, 1. An explicit formula for vi is
given by (4), with y there replaced by yi. As in the proofs of Theorem 3.2.7 and 3.2.8 of [4] we
have the following explicit formula for wi:

wi =
−(y0 ◦ y1)yi + yi−1

±
√

(y0 ◦ y1)2 − 1
,

where “+” or “−” is chosen so that wi is a positive vector. For, say, i = 0 we thus have

w0 ◦ v0 =
y0 ◦ y1 − (x ◦ y1)/(x ◦ y0)

±
√

(y0 ◦ y1)2 − 1
=
−(x ◦ y0)(y0 ◦ y1) + x ◦ y1

−(x ◦ y0)
√

(y0 ◦ y1)2 − 1

In passing from the first to the second equality we have fixed the sign choice “+” for the radical.
This is the right choice since y0 ◦ y1 and the x ◦ yi are all negative, and w0 ◦ v0 is as well.

If `i is the length of γi and ai is the distance from vi to S, for i = 0, 1, and d = dH(w0,w1)
is the length of the side opposite the ideal vertex, then the above equation becomes

cosh `0 =
ea0 cosh d+ ea1

ea0 sinh `

This is because cosh ` = −w0 ◦ v0 by definition, dH(vi, S) = −x ◦ yi by Lemma 1.2, and as can
be explicitly checked, cosh d = −w0 ◦w1 = −y0 ◦ y1. The derivation of the formula for cosh `1
is analogous, and we have proved the hyperbolic law of cosines.

For the law of sines we first note that the point of intersection ui between S and the geodesic
from vi in the direction of x is given by the formula (2), with v there replaced by vi, for i = 0, 1.
From direct calculation and/or Lemma 1.7 we have vi ◦ x = yi ◦ x, whence for each i we have

ui =
1

2

(
1 +

1

(x ◦ yi)2

)
x +

−1

x ◦ yi
y0

From this we obtain the following formula for the length θ of the horocyclic arc S ∩ P :

θ =
√
−2(1 + u0 ◦ u1) =

√
(x ◦ y0)2 + (x ◦ y1)2 − 2(y0 ◦ y1)(x ◦ y0)(x ◦ y1)

(x ◦ y0)(x ◦ y1)

Direct computation now establishes this case of the hyperbolic law of sines. �

3. Dimension three: transversals of truncated tetrahedra

We turn now to dimension three, in which hyperplanes are planes, ie. two-dimensional totally
geodesic copies of H2. Here we contemplate four different scenarios in which quadruples of
objects determine convex regions in H3:

Case TT: disjoint, non-parallel planes P1, P2, P3, P4 such that for each i, a single half-
space Hi bounded by Pi contains Pj for all j 6= i; or

Case PT: for a fixed k ∈ {1, 2, 3}, planes P1, . . . , Pk and horoballs Bk+1, . . . , B4, all pair-
wise disjoint and with the Pi pairwise non-parallel, such that for each i ≤ k, a single
half-space Hi bounded by Pi contains all Pj , j 6= i, and Bj′ .

Above, “TT” stands for “Truncated Tetrahedron” and “PT” for “Partially Truncated”, referring
to the objects that these quadruples determine. In the two subsections below we define these
objects and prove trigonometric formulas about their transversal lengths, in the respective cases.
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3.1. The case TT. The first result of this section helps us define the truncated tetrahedron
determined by four planes as in case TT above. We recall the standard fact, proved in eg. [2,
Lemma 2.3], that for any collection of three disjoint planes in H3 there is a unique third plane
meeting each of the original three at right angles.

Lemma 3.1. Suppose P1, P2, P3, P4 are disjoint, pairwise non-parallel planes in H3 such that

for each i, a single half-space Hi bounded by Pi contains Pj for all j 6= i. For any fixed i, let P̂i

be the plane that intersects Pj at right angles for each j 6= i. If Pi does not meet P̂i orthogonally

then there is a single half-space Ĥi bounded by P̂i such that for all j 6= i, Ĥi contains the shortest
geodesic arc from Pj to Pi.

Proof. Fix i ∈ {1, 2, 3, 4}, and let us establish some notation. For each j ∈ {1, 2, 3, 4} let yj be
an outward unit normal, in the sense described below Lemma 1.5, to the half-space bounded by
Pj that contains each other Pj′ . For any j 6= j′, yj and yj′ are then oppositely-oriented tangent
vectors to the hyperbolic geodesic intersecting Pj and Pj′ perpendicularly, so yj ◦ yj′ < 0 by
Lemma 1.8. For each j 6= i, let vj be the point of intersection between Pj and the geodesic
intersecting it and Pi perpendicularly. For each j, Lemma 1.9 gives:

vj = −(yi ◦ yj) yj − yi√
(yi ◦ yj)2 − 1

.(5)

Note that if any such vj was contained in P̂i then, since both P̂i and the shortest geodesic arc

from vj to Pi intersect Pj at right angles, this entire geodesic arc would be contained in P̂i. But

then Pi would also intersect P̂i at right angles, at the other endpoint of this geodesic arc. So

because Pi does not intersect P̂i at right angles by hypothesis, no such vj is contained in P̂i.

Now fix some j 6= i, let Ĥi be the half-space bounded by P̂i that contains vj , and let zi
be its outward normal, as described in Lemma 1.5. As noted in the first paragraph above, for
any j′ 6= j, i, yj is a tangent vector to the geodesic meeting Pj and Pj′ perpendicularly. This

geodesic lies in P̂i, so yj is a tangent vector to P̂i and is therefore orthogonal to zi. Thus by (5):

zi ◦ vj =
zi ◦ yi√

(yi ◦ yj)2 − 1

Since vj is in the interior of Ĥi, zi ◦ vj < 0 by Lemma 1.5. The equation above therefore gives
zi ◦yi < 0 as well. But the latter quantity does not depend on j, so this implies that zi ◦vj′ < 0,

and hence that vj′ ∈ Ĥi for all j′ 6= i. The Lemma now follows from the fact that the shortest

geodesic arc from any Pj to Pi does not not cross P̂i, since each intersects Pj at right angles. �

We note that there is a single complementary case to that of Lemma 3.1 in case TT: if Pi

intersects P̂i at right angles for some i, then the single plane P̂
.
= P̂i intersects all four planes

at right angles and thus also equals P̂j for each j 6= i.

Definition 3.2. Suppose P1, P2, P3, P4 are disjoint, pairwise non-parallel planes in H3 such
that for each i, a single half-space Hi bounded by Pi contains Pj for all j 6= i. For each
i < j ∈ {1, 2, 3, 4}, denote the shortest arc in H3 joining Pi to Pj as λij .

If P̂i as in Lemma 3.1 does not meet Pi orthogonally for any i, the truncated tetrahedron
determined by the Pi is

∆ =

(
4⋂

i=1

Hi

)
∩

(
4⋂

i=1

Ĥi

)
,

where Ĥi is the half-space supplied by Lemma 3.1 for each i.
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v1

y3

y2 y4

y1

v3

Figure 1. A truncated tetrahedron, with missing “vertices” labeled by space-
like vectors. Notation as in the proof of Lemma 3.3.

If P̂i does meet Pi orthogonally for some i, then taking P̂ = P̂i to be the unique plane that
intersects each Pi at right angles and renumbering the Pi so that the geodesic containing λ13
separates P2 ∩ P̂ from P4 ∩ P̂ , we define ∆ as a degenerate truncated tetrahedron by:

∆ = P̂ ∩

(
4⋂

i=1

Hi

)
∩ h12 ∩ h23 ∩ h34 ∩ h14,

where h12 is the half-plane in P̂ that is bounded by the geodesic containing λ12 and contains

P3 ∩ P̂ and P4 ∩ P̂ ; and so on.
For each i < j ∈ {1, 2, 3, 4}, call λij an internal edge of ∆. The internal edge opposite λij is

λkl, where k < l ∈ {1, 2, 3, 4}−{i, j}. For each i, the internal face opposite Pi is the right-angled

hexagon in ∆ ∩ P̂i bounded by the internal edges λjk, for each pair j < k ∈ {1, 2, 3, 4} − {i},
and arcs of the Pj , j 6= i. The non-internal faces and edges of ∆ are external. Each of these is
entirely contained in Pi for some i.

The transversal of ∆ joining an internal edge λij to its opposite λkl is the shortest geodesic
arc with one endpoint on each edge; or if these edges intersect, it is their point of intersection.

Note that if for some i < j, λij intersects its opposite edge λkl, then ∆ is degenerate since
the plane containing both λij and λkl intersects all four Pi orthogonally. Conversely, if ∆ is

degenerate then it is a right-angled octagon in P̂ , and with the Pi numbered as in this case of
Definition 3.2, the opposite edges λ13 and λ24 do intersect.

In the non-degenerate case, each internal face of ∆ is of the form ∆ ∩ P̂i for some i, and

each edge λij is the intersection of the internal faces contained in P̂k and P̂l for k < l ∈
{1, 2, 3, 4} − {i, j}. In this case, ∆ is homeomorphic to the complement in a tetrahedron of the
union of small regular neighborhoods of the vertices; see Figure 1.

The main results of this section record some observations about the lengths of transversals of
truncated tetrahedra. Before embarking on this we record the following basic geometric fact.

Lemma 3.3. Suppose P1, P2, P3, P4 are disjoint, pairwise non-parallel planes in H3 such
that for each i, a single half-space Hi bounded by Pi contains Pj for all j 6= i; and for any

i < j ∈ {1, 2, 3, 4}, let λ̃ij be the geodesic intersecting Pi and Pj at right angles. Fixing such an

i < j and k < l ∈ {1, 2, 3, 4} − {i, j}, and fixing parametrizations λ̃ij(s) and λ̃kl(t) by arclength,

the function D(s, t) that records the hyperbolic cosine of the distance from λ̃ij(s) to λ̃kl(t) has
a unique critical point in R2, at which it attains an absolute minimum. The absolute minimum
value depends only on the pairwise distances between the planes.

All assertions above but the final one follow from standard geometric facts in a straightforward
way, but we will prove them all here using the general perspective taken in this note.
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Proof. Similarly to the proof of Lemma 3.1, for each i ∈ {1, 2, 3, 4} let yi be an outward unit
normal, in the sense described below Lemma 1.5, to the half-space Hi bounded by Pi that
contains each other Pj . For any j 6= i, yi and yj are then oppositely-oriented tangent vectors
to the hyperbolic geodesic intersecting Pi and Pj perpendicularly, so yi ◦ yj < 0 by Lemma 1.8.
Furthermore, by this result the hyperbolic cosine of the distance from Pi to Pj , which we will
here denote Lij , satisfies Lij = −yi ◦ yj for each i < j ∈ {1, 2, 3, 4}.

Since the Pi are labeled arbitrarily, we may take (i, j, k, l) = (1, 2, 3, 4) without loss of gen-

erality. We will also prove the Lemma’s conclusion for particular parametrizations of λ̃12 and
λ̃34 below. This will imply the general result, since for any other parametrization the resulting
D(s, t) will be obtained from this one by precomposing with a translation of R2 and a map of
the form (s, t) 7→ (±s,±t).

Let v1 and v3 be the points of intersection λ̃12 ∩ P1 and λ̃34 ∩ P3, respectively. Then λ̃12 is
parametrized by arclength as λ̃12(s) = cosh sv1 − sinh sy1 starting at v1 and running into H1,

since y1 is outward-pointing from H1, and likewise λ̃34(t) = cosh tv3− sinh ty3 starts at v3 and
runs into H3. D(s, t) described above thus satisfies

D(s, t) = −(cosh sv1 − sinh sy1) ◦ (cosh tv3 − sinh ty3)

= − cosh s cosh t (v1 ◦ v3) + cosh s sinh t (v1 ◦ y3)

+ sinh s cosh t (y1 ◦ v3)− sinh s sinh t (y1 ◦ y3)

We claim first that D(s, t)→∞ as s and t escape compact sets. To see this we write:

D(s, t)

cosh s cosh t
= −(v1 ◦ v3) + tanh t (v1 ◦ y3) + tanh s (y1 ◦ v3)− tanh s tanh t (y1 ◦ y3),(6)

and record each inner product above in terms of the distances Lij from Pi to Pj by substituting
the formulas for v1 and v3 from Lemma 1.9.

v1 ◦ v3 = −L12L13L34 + L23L34 + L12L14 + L24√
(L2

12 − 1)(L2
34 − 1)

,(7)

v1 ◦ y3 = −L12L13 + L23√
L2
12 − 1

, y1 ◦ v3 = −L13L34 + L14√
L2
34 − 1

, y1 ◦ y3 = −L13

For large enough values of t, values of the ratio (6) can be made arbitrarily close to −(v1 ◦v3) +
(v1 ◦ y3) + tanh s(y1 ◦ v3)− tanh s(y1 ◦ y3). Substituting from (7), we write this as:[

L34√
L2
34 − 1

− 1

][
L13

(
L12√
L2
12 − 1

− tanh s

)
+

L23√
L2
12 − 1

]

+
L14√
L2
34 − 1

[
L12√
L2
12 − 1

− tanh s

]
+

L24√
(L2

12 − 1)(L2
34 − 1)

Since tanh s < 1 for all s, this sum exceeds a fixed positive bound regardless of the value of s.
Now as t decreases without bound, the ratio (6) approaches −(v1 ◦v3)−(v1 ◦y3)+tanh s(y1 ◦

v3) + tanh s(y1 ◦ y3). This is again seen to have a positive lower bound, upon writing it as:[
L13L34 + L14√

L2
34 − 1

+ L13

][
L12√
L2
12 − 1

− tanh s

]
+

L23L34 + L24√
(L2

12 − 1)(L2
34 − 1)

+
L23√
L2
12 − 1

We thus have a fixed positive lower bound for the ratio D(s, t)/(cosh s cosh t), for large enough
values of |t|. It follows that D(s, t)→∞ with |t|, regardless of the value of s. A parallel argument
to the above (or again using the fact that the numbering of the Pi is arbitrary) shows that the
same is true with the roles of s and t reversed, proving the claim.
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The claim implies that D(s, t) does attain a minimum on R2, necessarily occurring at a critical
point. Our next goal is to classify critical points by setting the gradient ∇D(s, t) = 0 equal to
0 and solving for (s, t). Computing partials and dividing by cosh s cosh t yields:

∂D/∂s

cosh s cosh t
= − tanh s (v1 ◦ v3) + tanh s tanh t (v1 ◦ y3) + y1 ◦ v3 − tanh t (y1 ◦ y3)

∂D/∂t

cosh s cosh t
= − tanh t (v1 ◦ v3) + (v1 ◦ y3) + tanh s tanh t (y1 ◦ v3)− tanh s (y1 ◦ y3)

Setting these two equations equal to 0 simultaneously, then solving the first for tanh s in terms
of tanh t and substituting into the second, yields the quadratic a(tanh t)2 + b tanh t+ a = 0 for

a = (y1 ◦y3)(y1 ◦v3)− (v1 ◦y3)(v1 ◦v3) and b = (v1 ◦v3)
2 +(v1 ◦y3)

2− (y1 ◦v3)
2− (y1 ◦y3)

2.

Direct computation shows that a < 0 and that

b+ 2a = (v1 ◦ v3 − v1 ◦ y3)
2 − (y1 ◦ v3 − y1 ◦ y3)

2

= (v1 ◦ v3 − v1 ◦ y3 − y1 ◦ v3 + y1 ◦ y3)(v1 ◦ v3 − v1 ◦ y3 + y1 ◦ v3 − y1 ◦ y3)

> 0, being a product of negative numbers.

(The relevant computations here are very similar to those above.) It therefore follows that
the roots of the quadratic above in tanh t are positive and their product is one, with one root
larger than one and one smaller. Since tanh t takes only values less than 1, only the smaller
root corresponds to a critical point. Therefore D(s, t) has a unique critical point, which must
correspond to its global minimum.

The minimum of D(s, t) thus occurs at a value (s, t) that is given in terms of the Lij by the
quadratic formula. Since the values of D(s, t) depend only on s, t, and the Lij , it follows that
the minimum value itself depends only on the Lij . �

Lemma 3.4. Suppose P1, P2, P3, P4 are disjoint, pairwise non-parallel planes in H3 such that
for each i, a single half-space Hi bounded by Pi contains Pj for all j 6= i, and let ∆ be the
truncated tetrahedron determined by the Pi as in Definition 1. For any fixed i < j ∈ {1, 2, 3, 4}
and k < l ∈ {1, 2, 3, 4} − {i, j}, the length of the transversal of ∆ joining λij to λkl equals the

minimum distance between the geodesics λ̃ij and λ̃kl respectively containing them. It depends only
on the lengths of the internal edges of ∆, and written as T (x, y; a, b, c, d), where x = cosh `(λij),
y = cosh `(λkl), and a, b, c, d are hyperbolic cosines of the other four internal edge lengths of ∆,
it is symmetric in a, b, c and d, and strictly increasing in each of them, for any fixed x, y > 1.

Proof. We note that λ̃ij and λ̃kl here are the same-named geodesics from Lemma 3.3. Given
this, the claim that the transversal length is the minimum distance between them implies that
T (x, y; a, b, c, d) equals the minimum value of D(s, t) from that result. The fact that it depends
only on the internal edge lengths will thus follow directly from the conclusion of Lemma 3.3—
since the internal edge lengths are the pairwise distances between planes—and the symmetry
will follow from the fact that the labeling of the Pi, and hence also the Lij , is arbitrary.

To prove the claim we establish first that λ̃ij intersects λ̃kl, if at all, in λij ∩ λkl. The two

components of λ̃ij − λij are contained in the half-spaces bounded by Pi and Pj opposite Hi and

Hj , respectively; the analog is true for the components of λ̃kl − λkl; and this implies that each

component of λ̃ij − λij is entirely disjoint from λ̃kl. Therefore if λ̃ij intersects λ̃kl, it does so in
λij ∩ λkl. In this case the transversal length and the minimum of D(s, t) both equal 0.

We now suppose that λ̃ij does not intersect λ̃kl, and let γ be the unique shortest geodesic

arc from λ̃ij to λ̃kl. That is, γ joins λ̃ij(s0) to λ̃kl(t0), where the unique minimum of D(s, t)

occurs at (s0, t0). By a standard argument, γ intersects each of λ̃ij and λ̃kl at a right angle (if
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not, one could reduce its length by moving an endpoint at a non-right angle of intersection in
the direction of the smaller angle). Because λ̃ij intersects each of Pi and Pj at right angles, any

geodesic arc with an endpoint on a component of λ̃ij −λij is entirely contained in the half-space

bounded by Pi or Pj containing that component. Such an arc is therefore disjoint from λ̃kl, and
it follows that γ has its endpoints on λij and λkl. This proves the claim.

It remains to show that T (x, y; a, b, c, d) is increasing in each of its last four variables. For
this, as in the proof of Lemma 3.3 we take i = 1, j = 2, k = 3, and l = 4 after renumbering the
Pi if necessary. The value T (x, y; a, b, c, d) is then the minimum of the function D(s, t) defined
there. Although it is not explicit in the notation, the function D itself depends on the values
x = L12, y = L34, a = L13, b = L14, c = L23, and d = L24. To exhibit this, we plug the values
from (7) into the formula of (6), yielding:

D(s, t)

cosh s cosh t
=
L12L13L34 + L12L14 + L23L34 + L24√

(L2
12 − 1) (L2

34 − 1)

− tanh t
L12L13 + L23√

L2
12 − 1

− tanh s
L13L34 + L14√

L2
34 − 1

+ tanh s tanh t L13.

The value d = L24 appears only once in this formula, in the numerator of the first summand
above, with a positive sign. It is thus clear that for any fixed s and t, the value of D(s, t) increases
with d (regarding the other Lij as fixed). Its absolute minimum, and hence the transversal length
T (x, y; a, b, c, d), therefore also increases with d. Since T (x, y; a, b, c, d) is symmetric in a, b, c,
and d, the same then holds for a, b and c. �

Proposition 3.5. Suppose P1, P2, P3, P4 are disjoint, pairwise non-parallel planes in H3 such
that for each i, a single half-space Hi bounded by Pi contains Pj for all j 6= i, and let ∆ be the
truncated tetrahedron determined by the Pi as in Definition 1. For any fixed i < j ∈ {1, 2, 3, 4}
and k < l ∈ {1, 2, 3, 4} − {i, j}, let T (x, y; a, b, c, d) record the length of the transversal of ∆
joining λij to λkl as in Lemma 3.2, where x = cosh `(λij), y = cosh `(λkl), and a, b, c, d are
hyperbolic cosines of the other four internal edge lengths of ∆. For some fixed L > 1, if each of
a, b, c, and d is at least L, then

coshT (x, y; a, b, c, d) ≥ 2L√
(x− 1)(y − 1)

,

with equality if and only if a = b = c = d = L.

The Proposition’s proof rests on our ability to explicitly locate the critical point of the function
D(s, t) from Lemma 3.3, and hence explictly compute values of T , in highly symmetric situations.

Proof. We re-record the formulas of (7) in the special case that L13 = L14 = L23 = L24 = L,
and L12 = x, L34 = y:

v1 ◦ v3 = −L

√
(x+ 1)(y + 1)

(x− 1)(y − 1)
, v1 ◦ y3 = −L

√
x+ 1

x− 1
, y1 ◦ v3 = −L

√
y + 1

y − 1
, y1 ◦ y3 = −L

We claim that if a = b = c = d = L then the minimum of D(s, t) occurs at (s0, t0) where

s0 = `(λ12)/2 and t0 = `(λ34)/2, yielding cosh s0 =
√

1
2(x+ 1) and cosh t0 =

√
1
2(y + 1). This

can be proved by substituting directly into the formulas for ∂D/∂s and ∂D/∂t from the proof
of Lemma 3.3, showing that this (s0, t0) is the unique critical point of D. Plugging it into the
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formula for D from the Lemma yields:

D(s0, t0) = − cosh s0 cosh t0 (v1 ◦ v3) + cosh s0 sinh t0 (v1 ◦ y3)

+ sinh s0 cosh t0 (y1 ◦ v3)− sinh s0 sinh t0 (y1 ◦ y3)

=
L

2

[
(x+ 1)(y + 1)√
(x− 1)(y − 1)

− (x+ 1)
√
y − 1√

x− 1
−
√
x− 1(y + 1)√

y − 1
+
√

(x− 1)(y − 1)

]
When simplified, this yields the formula of the Proposition statement. It now follows from
Lemma 3.4 that this bounds the value of coshT (x, y; a, b, c, d) below when a, b, c, and d are all
at least L, and that equality holds if and only if a = b = c = d = L. �

3.2. The case PT. We now change the set-up slightly by replacing the plane P4 with a horoball
B disjoint from P1, P2, and P3, and such that for each i ∈ {1, 2, 3}, Pi bounds a half-space Hi

containing B and the other two hyperplanes.

If the ideal point of B does not lie in the mutual perpendicular P̂ to P1, P2, and P3, then we
define the partially truncated tetrahedron determined by B and the Pi to be the intersection of the

Hi, i = 1, 2, 3, with the half-space H bounded by P̂ that contains the ideal point of B, and three

half-spaces Ĥi, i = 1, 2, 3. For each such i, Ĥi is bounded by the mutual perpendicular P̂i to the
other two planes Pj , Pk that contains the ideal point of B and hence meets B perpendicularly.

Ĥi is the half-space bounded by Pi that contains the shortest geodesic arc from B to Pi.

Definition 3.6. Taking a, b and c to be the distances from P1 to P2, P2 to P3 and P3 to P1,
respectively, and hi to be the distance from Pi to B, for each i ∈ {1, 2, 3}, denote the partially
truncated tetrahedron constructed as above by T (h1, h2, h3, a, b, c).

Proposition 3.7. For T
.
= T (h1, h2, h3, a, b, c) as in Definition 3.6, if hi = h for each i, and

a = b = c = `1, for fixed h and `1 > 0, then the distance D between the edge of T joining P1 to
B and the edge joining P2 to P3 satisfies

coshD = 2

√
1 +

cosh `1
√

2√
cosh `1 − 1

.

Proof. Let x ∈ R1,3 be the positive light-like vector that determines the horoball B, and for
i = 1, 2, 3 let yi be a unit space-like vector in R3 normal to Pi and such that x ◦ yi < 0 for each
i. Then also, yi ◦ yj < 0 for j 6= i by hypothesis.

By the proof of Lemma 1.7, the geodesic ray γ(t) from the closest point v1 on P1 in the
direction of x satisfies

γ(t) = e−tv1 −
sinh t

x ◦ v1
x =

cosh t

−x ◦ y1
x + e−ty1.

We wish to minimize the distance from γ(t) to the geodesic from P2 to P3. Taking L1 = cosh `1
we recall that this is parametrized as

λ23(s) = cosh s z2 + sinh sy2, for z2 =
(y2 ◦ y3)y2 − y3√

(y2 ◦ y3)2 − 1
=
L1 y2 − y3√

L2
1 − 1

Due to the symmetry of the situation, the closest point of λ23 to γ(t) is its midpoint s0, which

satisfies cosh s0 =
√

L1+1
2 and sinh s0 =

√
L1−1

2 . Plugging this in gives γ(s0) = (−y2 −
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y3)/
√

2(L1 − 1). We thus are looking to minimize

γ(t) ◦ λ23(s0) =
x ◦ y2 + x ◦ y3

x ◦ y1
cosh t− y1 ◦ y2 + y1 ◦ y3√

2(L1 − 1)
e−t

= 2 cosh t+
2L1√

2(L1 − 1)
e−t = et +

(
1 +

L1

√
2√

L1 − 1

)
e−t

Setting a derivative equal to 0 yields

e2t = 1 +
L1

√
2√

L1 − 1
⇒ et =

√
1 +

L1

√
2√

L1 − 1

Plugging this into γ(t) ◦ λ23(s0) yields the formula given above. �

Arguing as for Lemma 3.4, we obtain:

Lemma 3.8. For T
.
= T (h1, h2, h3, a, b, c) as in Definition 3.6, if hi ≥ h for each i, and a, b,

and c are all at least `1, for fixed h and `1 > 0, then the distance D between the edge of T joining
P1 to B and the edge joining P2 to P3 is at least D from Proposition 3.7.

We now replace another plane by a horoball. That is, consider a collection P1, P2, B1, B2 of
mutually disjoint planes (the Pi) and horoballs (the Bi) such that for each i ∈ {1, 2}, B1, B2,
and P3−i are contained in a single complementary component of Pi. As in the previous case,
there is a partially truncated tetrahedron determined by the Pi, i = 1, 2, and the four planes
orthogonal to triples of the four vertex objects.

Definition 3.9. Taking ` be the distance from P1 to P2, d the distance from B1 to B2, and
hij the distance from Pi to Bj , for i, j ∈ {1, 2}, denote the partially truncated tetrahedron
constructed above by T (d, h11, h12, h21, h22, `).

Proposition 3.10. For T
.
= T (d, h11, h12, h21, h22, `) as in Definition 3.9, if hij = h for each

i, j ∈ {1, 2}, then the distance D from the edge of T joining P1 to B1 to the edge joining P2 to
B2 satisfies

coshD = 1 +
ed

e2h
+

√
ed

e2h

√
2 + 2 cosh `+

ed

e2h
.

Proof. For i = 1, 2, let x ∈ R1,3 be the positive light-like vector that determines the horoball Bi,
and let yi be a unit space-like vector in R3 normal to Pi and such that xi ◦ yj < 0 for each i.
For each i, the geodesic ray γi from the closest point vi of Pi in the direction of xi is given by

γi(t) =
cosh t

−xi ◦ yi
xi + e−tyi.

Let λ be the mutual perpendicular to the geodesic joining the ideal point of B1 to that of B2 and
the geodesic containing the shortest arc between P1 and P2. The π-rotation around λ exchanges
Bi with B3−i and Pi with P3−i, for i = 1, 2. Thus it takes γi(s) to γ3−i(s) for i = 1, 2. It follows
that the shortest distance between γ1(s) and γ2(t) is realized at some s = t.

To identify this t, we set d
dt [−γ1(t) ◦ γ2(t)] equal to 0. After simplification, this yields:

e2t =

√
2 + 2 cosh `1 + ed/e2h

ed/e2h

Plugging this back into −γ1(t) ◦ γ2(t) yields the result. �
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