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 Spatial interdependence—the dependence of outcomes in some units on those in others—is substantively
 and theoretically ubiquitous and central across the social sciences. Spatial association is also omnipresent
 empirically. However, spatial association may arise from three importantly distinct processes: common ex
 posure of actors to exogenous external and internal stimuli, interdependence of outcomes/behaviors across
 actors (contagion), and/or the putative outcomes may affect the dimensions along which the clustering oc
 curs (selection). Accurate inference about any of these processes generally requires an empirical strat
 egy that addresses all three well. From a spatial-econometric perspective, this suggests spatiotemporal
 empirical models with exogenous covariates (common exposure) and spatial lags (contagion), with the
 spatial weights being endogenous (selection). From a longitudinal network-analytic perspective, the same
 three processes are identified as potential sources of network effects and network formation. From that
 perspective, actors' self-selection into networks (by, e.g., behavioral homophily) and actors' behavior that
 is contagious through those network connections likewise demands theoretical and empirical models in
 which networks and behavior coevolve over time. This paper begins building such models by, on theoretical

 side, extending a Markov type-interaction model to allow endogenous tie-formation, and, on empirical side,

 merging a simple spatial-lag logit model of contagious behavior with a simple p*-logit model of network for
 mation. One interesting consequence of network-behavior coevolution—identically, endogenous patterns
 of spatial interdependence—emphasized here is how it can produce history-dependent political dynamics,
 including equilibrium phat and path dependence (Page 2006). The paper concludes with an illustrative ap
 plication to alliance formation and conflict behavior among the great powers in the first half of the twentieth

 century.

 1 Introduction

 Networks—whether speaking of friendship or other relations among individuals, trade or conflict re
 lations among states, predator-prey relations in ecosystems, or any other relations (ties, connections,
 edges, etc.) among units (nodes, agents, actors, etc.)—are everywhere. And these ubiquitous networks

 Authors' note: We thank commenters at the Political Methodology Conference, University of Iowa, July 2010, especially our
 discussant, Jan Box-Steffensmeier; at the Path Dependency Conference, University of Minnesota, June 2010, especially conveners
 John Freeman and John Jackson; at the Spatial Econometrics Association World Conference, Chicago, June 2010; and at the
 Political Networks Conference, Duke University, May 2010. All errors are ours alone.

 © The Author 2012. Published by Oxford University Press on behalf of the Society for Political Methodology.
 All rights reserved. For Permissions, please email: journals.permissions@oup.com
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 matter. Network effects, arising from structural aspects of the network, or from actors' positions in the
 network, or from other actors via the network of connections importantly impinge upon the behaviors,
 opinions, outcomes, or other characteristics of units. Networks are also often endogenous. Units typically
 choose or affect their ties, that is, the edges that structure their network. A major challenge empirically for

 researchers interested in the theory and substance of network effects and network formation is that net
 work effects on nodes and the formation of ties between nodes tend to be mutually endogenous and,
 at the same time, both may be caused by outside factors, that is, by a third mechanism, we call com
 mon exposure. Archetypically from social-network analysis, for example, we may observe clusters of
 (non)smokers because (non)smoking is contagious—one acquires or avoids the habit from friends who
 smoke or abstain—or because (non)smokers choose to hang with (non)smokers: homophilic selection by
 behavior type—or we may observe clustering of (non)smokers because both the behavior of (non)smoking
 and the connections between mutually (non)smoking behavior types are caused by actors' common expo
 sure to outside conditions, such as shared sociodemographics, that affect both the propensities to smoke
 and to become/stay friends. Or, expanding a more political example from Koger, Masket, and Noel (2009,
 2010): Representatives who sit together may vote similarly because, sitting by party, they have similar
 constituencies (common exposure), or because they talk and influence each other (contagion), or they
 may choose to sit together because they like each other maybe for some of the same reasons they vote
 similarly (selection). Or, as in our empirical application, international conflict may be contagious through
 alliance connections, but nations with similar conflict behavior patterns may also be more likely to ally
 (selection), and some exogenous conditions to which particular nation-state dyads are exposed, a natural
 resource, for example, may affect both alliance and conflict patterns.

 From spatial-econometric perspective also, as Tobler's Law (Tobler 1970) aptly sums: "Everything
 is related to everything else, but near things are more related than distant things." Furthermore, as the
 pithy title by Beck, Gleditsch, and Beardsley (2006) reminds in corollary: "Space is More than Geogra
 phy." That is, the substantive content of Tobler's nearness, so the pathways along which interdependence
 between units may operate, extends well beyond physical distance, contact, and contiguity. Long liter
 atures in regional science, geography, and sociology elaborate from those disciplinary perspectives the
 multifarious mechanisms by which contagion may arise.1 In fact, as Brueckner (2003) showed, strategic
 interdependence (contagion) arises any time, some unit(s)'s actions affect the marginal utility of other(s)'s
 actions. Given such externalities, /'s utility depends on both its policy and that of j. Theoretically, sub
 stantively, then, spatial interdependence is ubiquitous. Empirically, clustering or correlation of outcomes
 on some dimension(s) of proximity (spatial association) is also obvious across a vast array of substantive
 contexts. However, and this is the crux of the great empirical challenge/opportunity represented by the
 substantive and theoretical ubiquity of interdependence, outcomes may evidence spatial association for at
 least these three distinct reasons. First, units may be responding relatedly to similar exposure to exogenous
 internal/domestic or external/foreign stimuli (common exposure) or second unit(s)'s responses may de
 pend on others' responses (contagion, one sort of network effect). States' adoptions of some economic
 treaty, for example, may cluster geographically or along other dimensions of proximity, for example, bilat
 eral trade volume, because proximate states experience similar exogenous domestic or foreign political
 economic stimuli or because each state's decision to sign depends on whether proximate others sign.
 A third possibility arises when the putative outcome affects the variable along which clustering occurs
 {selection or network formation). Treaty signatories might also cluster by some variable on which we
 observe their proximity (bilateral trade volume) because being cosignatories affects that variable (spurs
 trade between them).

 From either network-analytic or spatial-econometric perspective, accurate empirical distinction and
 gauge of the role and strength of these alternative processes—common exposure, contagion, and se
 lection; that is, node effects, network effects, and network formation—are difficult because the pro
 cesses manifest empirically similarly, but also crucial because the theories and policy-intervention advice
 supported by any observed spatial-cwm-network phenomena hinge critically on whether, or the relative
 degrees to which, they arise from contagion/network effects, selection/network formation, or common ex

 posure/node effects. The situations' substance and how policies might best intervene depend critically on

 'Simmons, Dobbin, and Garrett (2006) offer a list for international politics: coercion, competition, learning, and emulation (to
 which add relocation diffusion, Hagerstrand 1967, such as migration).
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 whether state signatories cluster in pockets of dense trade because those states tend to experience similar
 exogenous conditions that favor signing, or because some states' signing spurs trading partners to sign,
 or because the treaty fosters trade among cosignatories. Moreover, as we have elsewhere demonstrated
 analytically, by simulation, and in applications (Franzese and Hays 2006, 2007a, 2007b, 2008a, 2008b;
 Franzese, Hays, and Schaffer 2010; Hays, Kachi, and Franzese 2010), drawing effective distinctions and
 obtaining accurate estimates empirically of any of these processes requires careful attention to specifica
 tion (including measurement) of all three. Regardless of whether interest centers on network effects like
 the contagiousness of smoking, or on network formation like what determines trade or conflict patterns,
 one must model well both the network effects/contagion and the network formation/selection and also
 whatever exogenous factors important to either process.

 This article develops a framework for theoretical and empirical modeling of social phenomena with
 (common exposure and) simultaneous contagion and selection, that is, of mutually endogenous network
 effects and network selection, that is, of the coevolution of actors' behavior and network ties. Identically
 from spatial-econometric perspective, this means models with exogenous covariates reflecting common
 exposure, with spatial-lag contagion, and with patterns of spatial connectivity (spatial weights), that is,
 networks, which are endogenous to behavior. Our theoretical model of such processes builds from extant
 Markov type-interaction models, which explain evolving and steady-state profiles of actor types based
 on probabilities of type switching that depend on the previous period distribution of actor types accord
 ing to some set of exogenously given (possibly exogenously varying) connections between actors. These
 models parallel from the theoretical side extant empirical spatial-lag models of spatial econometrics, no
 tably in the exogeneity of the connectivity matrix, that is, of the network of connections between actors,
 which thereby expressly disallows network formation/selection. Accordingly, we extend such Markov
 type-interaction models to incorporate endogenous determination of the ties between units, ties made or
 broken endogenously (to an extent model parameters can vary) by the previous behavior types of those
 units. Likewise, empirically, we merge extant spatial-lag models of interdependent behavior—specifically,
 the simplest time-lagged spatial-lag logit model —which have typically maintained exogenous connec
 tions between units, with extent models of network formation, p* models—specifically, the simplest p*
 model of independent ties—which have typically maintained exogenous unit characteristics, including
 behaviors, as explanators of network ties. Theoretically and empirically, the emergent models are ones of
 network-behavior coevolution.

 The combination of network effects, specifically of behavioral contagion,2 and of network forma
 tion with self-selection of actors into networks, specifically of actors' choosing their ties according to
 some (dis)similarity or other function of the actors' behaviors or types (heterophily/homophily), implies
 that networks and behavior coevolve over time. This paper emphasizes one interesting consequence of
 such network-behavior coevolution, showing how it can produce history-dependent political dynamics,
 including Page's (2006) phat, path, and/or equilibrium dependence (Jackson and Kollman 2007; Jack
 son 2008; Page 2006, 2007; Walker 2007). Using our Markov type-interaction model extended to allow
 endogenous tie formation, we establish that, and derive the conditions under which, coevolutionary sys
 tems generate multiple steady-state equilibria, and we show the connection of this multiple steady-state
 generation to the various forms of history dependence. Our proposed combination of the simplest spatial
 lag logit and p*-logit models yields a discrete-time Markov model that can estimate the empirical mag
 nitude and substantive and statistical significance of such coevolutionary dynamics. A strength of this
 empirical approach is its direct connection with the theoretical Markov type-interaction model, which,
 inter alia, provides strong foundation for statistical tests of history dependence generated by coevolution.
 We give one such test below. The most developed (perhaps only) extant alternative approach to network
 behavior coevolution is Snijders and colleagues' (Snijders 1997, 2001, 2005; Steglich, Snijders, and West
 2006; Snijders, Steglich, and Schweinberger 2007) stochastic actor-oriented models for longitudinal so
 cial network-analysis: (simulation investigation for empirical network analysis (Siena). The paper briefly
 introduces the Siena coevolutionary model and estimation technique and summarizes our Monte Carlo

 Network effects subsume effects on nodes of the network (e.g., its density or hub & spoke structure), of the nodes' positions within
 the network (e.g., centrality or betweenness), and of other nodes' characteristics through their network connections (i.e., of alter
 on ego). We focus for now on this last commonly labeled contagion in the relevant literatures.
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 evaluations and comparisons of the two strategies.3 Materials published on the journal Web site online
 elaborate this introduction and details these simulation results.

 The rest of the paper proceeds thus. Section 2 presents the theoretical Markov type-interaction model,
 modified to allow endogenous tie formation. We propose our statistical model, specified to reflect that
 proposed theoretical model, and compare it to Siena in Section 3. Section 4 offers an illustrative appli
 cation examining the coevolution of the great powers' military alliances and conflict behavior in the first
 half of the twentieth century, again comparing our proposed simple logistic strategy with Snijders and
 colleagues' Siena. Section 5 concludes summarily.

 2 A Discrete-Time Markov-Chain Theoretical Model of Network-Behavior Coevolution

 This section gives a theoretical model of network-behavior shaping (contagion) and tie-formation (se
 lection) effects comprised of two sets of Markov chains. In this model, a group of actors are of certain
 behavior types, types which change over time as actors are influenced by others (and exogenous factors).
 Such behavior type contagion occurs only if the actors are connected, where the explicit notion of net
 works (or spatial weights) characterizes such connectedness. Simultaneously, the connectivity of actors
 also changes over time, not only due to exogenous factors but also as a function of types taken by actors
 in the previous period. We particularly highlight behavior type heterophily/homophily, where network
 ties more likely form and persist among actors whose behavior types are less/more similar the previous
 period. The key features of, and the additional sources of complexity due to, this extension of extant
 type-interaction models are: (1) it introduces the details of which actor interacts with which to represent
 network effects on actors' behavior, specifically, contagion effects, and (2) it describes how those inter
 action patterns, that is, the networks cum spatial-weights matrice, evolve endogenously based on actors'
 types in the previous period, which reflects homophily by behavior type.4

 We then demonstrate that this model can produce long-run steady-state (LRSS) equilibria5 that depend
 on starting values and history. With coevolution, multiple steady-state distributions of types are consistent
 with a single behavior-switching rule. The type/behavioral-rule combination that emerges at a given point
 in time depends on actors' prior types, so the evolution of behavioral types is history dependent and may
 be specifically path, phat, or initial-conditions equilibrium dependent (Page 2006).

 2.1 A Minimal Coevolutionary Model

 We offer a theoretical model minimally sufficient to incorporate both contagion in node behavior and
 behavioral homophily in network-tie formation and show that and how this suffices to generate steady
 state path dependence. Consider a discrete-time process with actors i e {1,..., N] and time periods
 t e {1,2,...}. Distinguish an actor's behavior from her behavior type, with type being the actors'
 probability of taking behavior 1. Let behavior be observed and dichotomous, whereas type is contin
 uous and unobserved by analysts but observed by actors, with contagion and selection occurring by
 type. Actors i choose behavior 1 or 0 (whether to smoke, vote, take an aggressive interstate behav
 ior, democratize, etc.) each period t, denoted % e {0, 1}. Denote the behavior type of i in t, that is,
 pr(sif = 1), by an e [0,.. •, 1]. The state of the system at the end of period t, which actors observe,
 is thus an N-dimensional vector of types at = [a\u ..., a^t), a corresponding vector of behaviors,
 st = (.sj,,..., SNt), and a matrix of latent and observed ties between actors to be described.

 The system incorporating both contagion and selection comprises two sets of Markov chains, N ex
 plaining type and AN(N — 1) explaining tie formation. We focus first on the behavior-type Markov
 chains that incorporate network contagion effects among the N actors. Equation (1) describes actor i's

 ^hese may be the first Monte Carlo evaluations of Siena and more certainly the first comparisons to an alternative (Leenders 1997
 did evaluate his precursor models).
 4Homophily refers to phenomena where ties more likely form/persist between actors similar in some characteristic(s).The
 homophilic-selection bases could be exogenous or endogenous. Behavioral homophily, network selection by similarity of the
 endogenous behavior (types), plus behavior being contagious by those enodgenously selected ties, equals coevolution.
 Equilibrium here means consistency between actors' behavioral types and their behavior-switching rules: system steady state or
 fixed-point; Nash strategic equilibrium is not implied.
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 probabilities of transitioning type from period f to t + 1:

 / y _ / oit v
 yi - 1J ~ yi - oit J

 ' C0i<7jt + (1 — CQi) yylTJ  1 — Left

 1-Right Clf (1 - (Tit) + (1 - gj))
 a)

 The left-hand side (LHS) is a row vector of next period's types, = Pr(.v)t+j = l|ff;f, <%/,<) and
 1 — = Pr(.s,i/+i = 0\alt, djjj), where 0 < 8ijit < 1 indicates the probability (or, isomorphically
 in this model and perhaps more substantively appealing, the strength) of dyad i j connection last period.
 At far, right-hand side (RHS) is the transition probability matrix, which, premultiplied by f's types, yields
 f + l's types. For example, cell (1,1) gives the probability i chooses behavior 1 given her propensity
 toward 1 last period, Pr(.s,>/+) = l|er/f). Because each new state arises from one of the two possible
 previous states, this matrix is row (or right) stochastic: its rows sum to 1. Therefore, defining any one
 element of each row, for example, the "staying probabilities" in cells (1,1) and (2, 2), suffices to complete
 the transition matrix.

 We separate each transition probability in two components. A temporal-autoregressive aspect first: an
 actor is more likely to maintain behavior 1 at t + 1 the nearer her latent type at t is to 1. The probability of

 "staying" in .v, = 1 is higher the greater was er,r, the propensity toward action 1 last period. The transition

 matrix's first-row (second-row) elements—giving the respective staying and "switching" probabilities
 from behavior 1 (behavior 0)—capture this temporal-dependence component by c^,alt and ci, (1 — an),
 respectively. Second, a contagion component: each actor's behavioral decisions are also influenced by
 others' types. Actors in a given dyad ({i, j], i ^ j) influence each other's behavior type only insofar
 as they are connected. Let 0 ^ djjj 1 denote the probability that a tie exists or, isomorphically in
 this model, the strength of the tie between i and j in period t, that is, Pr(dij,t = l).6 We express this

 probability/strength of connection as ^j^i(Sijajt)/(N — 1), which normalizes the j's tied to i by (N —
 l)-1 to bound this to the 0-1 interval.7 The second terms in the transition probabilities from behavior

 1, (1 — coi)^4jzn-^, relate to contagion effects. By this term, i's probability of staying in behavior 1

 increases with the weighted sum of the others' propensities to take action 1,  The analogous

 contagion component of the probability i stays in behavior 0 is seen in cell (2,2) as (1—ci, ) .
 Thus, the behavior is contagious, and contagion effects operate via actors' propensities toward action 1 or

 0, Ojt or 1 — Ojt, and strengthen with the latent dyadic tie strengths, Sij.
 Notice how the parameter c e [0,1] captures the extent to which i's own behavior type in time

 t influences her behavior in t + 1 and 1 — c indicates the remaining relative role of contagion, that is, of j's

 time-f type in determining i's t +1 behavior. The parameters c thus gauge the strength of contagion versus
 exogenous internal or external (here, autoregressive) factors. At one extreme where co, = 1, for example,
 i's time-f + 1 behavior choice remains, as her time-f choice was, solely determined by her behavior type,
 Gij and not at all affected by any others' to whom she is connected: that is, the strength of contagion is 0.8

 The behavior choice being dichotomous, one conditional probability suffices to describe those Markov
 chains, Pr^/^^-i = 1 \rrl,) — cr,;(+i (the other is just 1 — <t,-;(+i):

 Prfe,?+i = 1 kit) = 1 = ait

 + (1 — Oit)

 c0i&it ~t~ (1 c0i)
 N - 1

 1 -  ci;(l -er;r) + (l -cw)
 N -I

 (2)

 ^The model assumes undirected ties/symmetric spatial-weights matrices and one basis for connection between units. Extension
 to directed networks!asymmetric weights and multiple ties remains (very importantly, if perhaps not very easily) for future work
 (Franzese and Hays 2006 and Hays, Kachi, and Franzese 2010 have made such extensions in linear model systems).

 ^he row standardization common in spatial econometrics or the recommended spectral normalization of Kelejian and Prucha

 (2010) would also bound 0 ^ ^Li^kj(^ijajt) ^ our less orthodox 1 /(N — 1) weighting is equally functional and greatly
 facilitates the model's accounting.

 ^These two components enter in convex combination and the actor's types, a, are probabilities (that they choose 5 = 1). This
 properly bounds all transition probabilities to [0,..., 1].
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 Equation (3) gives the tie formation Markov chains. The unit of analysis is now a dyad (i, j). The proba
 bility that i and j are connected in period t + I is denoted (5,7,;+1 e [0,..., 1]:

 / Sij,t+1 V / Sij,t V/ SUJ 1 — Left
 \J - dij,t+\/ V1 _ / V "" Ri§ht C2'U^ ~ *j.,) + (1 ~ c2,ij)iPi ~ Vj )2

 Extant type-interaction models assume tie formation probabilities exogenous (in fact, often fixed and uni
 form), but the potential for endogenous ties is core to coevolution. We allow actors to prefer ties to others
 who behave (dis)similarly, behavioral (heterophily) homophily. To simplify, we build this behavioral se
 lection component directly into the transition probabilities only in the time-/ , d,jj = 0.9

 The second term of transition matrix element (2, 2), (1 —c2,/y)(cr, — oy)2 gives this behavioral selection
 effect: for homophily (heterophily), 0 < C2 < 1 (—1 < C2 < 0), as the distance between two actors'
 behavior types increases, the dyad is less (more) likely to connect. So, with 0 < ci < 1, our model
 exhibits homophilic tie formation by behavior type: two (non) smokers are more likely to be friends, two
 countries of similar conflict behaviors more likely to ally, two representatives of closer ideologies more
 likely to cosponsor bills, etc.

 As before, the other terms, and C2,,y (1 — <%/,?) in (1,1) and (2,2), reflect temporal autoregression—
 again: standing in for all common exposure factors that affect tie formation. Analogously to ci, C2 reflects
 the strength of temporal autoregression (common exposure) relative to behavioral selection effects in
 the transition probabilities, and (1 — C2jj) reflects the remaining extent to which hetero- or homophilic
 selection determines tie formation. The combinatorial forms of the various weights again serve to bound
 probabilities properly [0,..., 1],

 A single conditional probability again suffices to specify the tie formation chains:

 Pr(4;V+l = 1 \dij,t) = dij,t+1 = Sit + (1 - <5,y,f)[l - {C2,ij0- - $ijj) + (1 - c2,ij)(ai ~ °y)2}]- (4)

 The systems of difference equations (1) and (3) complete our theoretical model of network-behavior
 coevolution, that is, of jointly endogenous contagion and selection. The steady-state equilibrium of this
 system consists of a vector of each actor's type and each dyad's tie forming probability, (a, §). This

 steady state solves equations (1) and (3) for a for Vij+i = <x,>r and Sijj+i = Sij,t, V/, j e {1,..., N}. In
 particular contexts, our interests may lie primarily in the steady states and/or the intertemporal dynamics of

 actors' types or of dyads' ties, a or <5; regardless, either can only be characterized deriving vectors of types
 and tie probabilities both due to the endogeneity generated by homophily and contagion (Our exposition
 will highlight behavior type and network-tie steady states, suppressing dynamics for compactness.)

 To illustrate the multiple steady states of this coevolutionary system, consider a two actor, i — {1,2},
 one undirected edge, S\2, example. This gives a system of three equations of motion, two for the actors'
 behavior type and one for their dyad's tie formation processes:

 Olt = ffl,f-l[C01<71,f-l + (1 ~ C01 Ml2,f — l&2,t— l]

 + (1 — ci,r-i)[l - {cn(l — oi,t-\) + (1 — cii)<5i2,r—1 (1 - f2,/-l)}]

 <721 = O2,t-\[C02O2,t-\ + (1 — C02)di2,t-ltri,t-l] (5)

 + (1 - <72,f-l)[l - {ci2(l - ff2,f-l) + (1 - Cl2))<5l2,l-l(l — CTU-l)}]

 <5i2,t = S\2,t-yS\2,t-l + (1 - <5l2,f-l)[l - {C2(l - Sn,t-\) + (1 - C2)((Ti,f-i - CT2,f-l)2}]

 Solving this system for its LRSS a and S yields: {<ti = 02, S\2 = 1}. Any o\ = 02 and S\2 = 1 is
 a candidate steady state; in the LRSS, 1 will be tied to 2 but at different o\ = 02 depending (at least)
 on initial conditions. Page (2006)'s rigorous definitions of history dependence distinguish sensitivity to
 initial conditions, to the set or sequence of past conditions, or to immediate past conditions in shaping
 equilibria (that is, steady states) and, distinctly, outcomes along the path. As we shall illustrate, at which
 type the actors in this model will settle (equilibrium) depends on where they start (initial conditions) and
 the immediate past but also on the set (phat) and sequence of past conditions (path).

 indirect, time-lagged network selection effects nonetheless manifest in both states, and the qualitative conclusions of the model do
 not depend on the simplification.

This content downloaded from 132.174.255.116 on Thu, 08 Aug 2019 01:06:55 UTC
All use subject to https://about.jstor.org/terms



 Network-Behavior Coevolution  181

 2.2 Illustrations of History Dependence in Coevolutionary Models

 History dependence refers to phenomena where past conditions alter a system's future course. This broad
 notion is often conflated with the much narrower concept, path dependence, but following Page (2006)
 we define history dependence most broadly and differentiate three increasingly restrictive cases within
 it: state, phat, and path dependence. The most restrictive path dependence means that a system's future
 history depends on the path, that is, the sequence or order, of past conditions, and not merely on the
 set, which is the less-restrictive phat or set dependence. The least-restrictive state dependence is where a
 system's trajectories can be partitioned into a finite number of states that contain all relevant information

 for the future of the system regardless of events outside that partition (meaning that the system's future
 depends on its current state not the path or set of earlier conditions). We also distinguish outcome from
 equilibrium history dependence. In the former, each period's outcome (e.g., st) depends somehow on
 outcome(s) in past period(s) (e.g., st-v) or on the time index. Equations (1) and (3) show that our model,
 like any temporal-autoregressive model, is outcome history dependent. More interesting here is steady
 state dependence: whether the LRSS of behavioral types, a, and strength-of-ties, S, depend on their history
 (sequence, set, or state). We illustrate the forms of history dependence our model may exhibit by a series
 of numerical exercises in a two-actor system with given sets of initial and/or sequences of behavior type
 and tie probability values, a and S, and/or exogenous parameters, c.

 Figure 1 shows the sequence of actor l's behavior type (o\t) over the first 11 periods, with the Markov
 chains (equation (5)) solved recursively from two sets of initial conditions (starting values), {ern = <721 =
 <5i2,1 =0.4} or {(Tii = o"2i = <512,1 = 0.7}, but with all parameter values fixed in both cases at coi =cn =
 0.9, C02 = 0.1, C12 = 0.9, C2 = 0.5. The LRSS behavior types are ~0.6173 and 0.6244, respectively
 (with <72 = a\ in both, as concluded above). The LRSS types depend on starting values of the endogenous
 variables, a and d, even with the exogenous parameters (c's) fixed; that is, in Page (2006) terms, the
 system exhibits initial conditions equilibrium dependence. This does not necessarily indicate either of the
 stricter forms of history dependence, phat or path, but conventional type-interaction models do not exhibit
 even this weakest initial conditions, dependence.

 To analyze stricter forms of history dependence, we consider changes in parameters c over the system's
 history. As mentioned above, the temporal-autoregressive parameters, being the only exogenous noncon
 tagion or nonselection terms in the respective equations of the theoretical model, serve also as placeholders
 for all the exogenous conditions to which the actors may be exposed (i.e., analogously to the exogenous
 X/? of a regression model). As such, history dependence on these c may be substantively more interesting
 and practically more important than dependence on type starting values because one could more easily
 imagine intervention on and relate substantively to variation in some actor/dyad-specific attributes, x, that
 is, theoretical-model conditions c, than manipulating or varying initial states.10

 Initial Condition 2: <j\ «0.6173

 'Initial Condition 1: ai psO.6144

 4 6 8

 Time period
 10

 Fig. 1 Initial-conditions steady-state sensitivity in a revolutionary system.

 10Our emphasis on history dependence relating to the parameters of a nonlinear system of equations resonates with results in Jackson
 and Kollman (2007).
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 Fig. 2 Early conditions steady-state sensitivity (Phat dependence).

 We start with the simplest form of phat dependence, early conditions sensitivity. Figure 2 plots the
 path of actor l's LRSS behavior type under two different sets of parameters. Condition 1 remains at
 {coi = 0.9, cn =0.1, C02 = 0.1, c\2 = 0.9, C2 =0.1} for all 11 periods. Condition 2 instead starts with
 parameters {coi = 0.1, en = 0.6, C02 = 0.1, c\2 = 0.1, C2 = 0.3}, but some intervention changes the
 parameters to {coi = 0.9, en = 0.1, C02 = 0.1, C12 = 0.9, C2 =0.1} from t = 2 onward. Starting values
 for the endogenous behaviors and ties, a and S, are the same in both scenarios; the only differences lie
 in their sets of c. Conclusion: the set of past conditions, specifically early conditions, of the exogenous
 parameters, c, matter; the system with behavioral contagion and homophily is (at least) phat dependent.
 Finally, the top-left graph of Fig. 3 shows that, with both behavior-type contagion and behavior

 homophilic selection (coevolution), our model exhibits true equilibrium path dependence (Page 2006):
 the LRSS behavior types a and tie strength S depend on the order, not just set, of past events. The graph
 plots the dynamics and LRSS of actor 2's behavior type under alternative Path 1 and 2 scenarios that differ
 only by the sequence of exogenous values, coi > ci l, C02, ci2, <?2> with the first two vectors c order reversed.

 The history is constant within and equal across scenarios from t — 3, and both paths share endogenous
 variable starting values: [a\ — 0.6,02 = &ij = 0.4}. The LRSS behavior types are a\ = <72 % 0.5141
 under Path 1 and o\ = 02 ^ 0.5008 under Path 2 (<5i2 = 1 in both). The two paths differ only in the
 sequence of past conditions but generate different LRSS: true path dependence.
 Figure 3 reveals a core result from our model. The coevolutionary system exhibiting path dependence

 plotted at top-left has both behavioral contagion and behavior-homophilic section. We can set Co and
 ci to 1, eliminating contagion, and/or C2 to 1, eliminating selection, and compare responses the same
 alternative paths of conditions. At top-right, with contagion but without homophilic selection, l's LRSS
 behavior type is <ri = 0.6429 regardless of path, and at bottom-left, with homophilic selection but without
 contagion, l's behavior type remains as initially assigned: o\ — 0.6. Path dependence is also eliminated
 with no contagion and no homophilic selection of course. The crucial upshot is that behavioral contagion
 and behavioral-homophilic selection are both required to generate path dependence; this suggests a direct
 empirical test for path dependence in the empirical model below.
 Table 1 summarizes the crucial conclusions of the proposed discrete-time Markov chain type-switching

 model of coevolutionary dynamics: endogenous coevolution of network (spatial) connections, which de
 pend in part on the behaviors of the connected nodes, and of node behaviors shaped in part by others'
 behaviors through that network generates systems of nonlinear difference equations that can easily pro
 duce initial condition, state, phat, and path steady-state history dependence.11 We specified the transition
 probabilities of an example system with parameters reflecting temporal autoregression and, implicitly,
 other exogenous (or predetermined) covariates on the one hand (embodying common exposure factors),
 and on the other hand, contagion through network connections in the behavioral model and homophily

 1 'To appreciate how easily coevolution introduces complexity, note how minimally Page's Rule of Six (2007)—systems must have
 numbers of actors plus choices of six or more to have multiple equilibria—is met here: 2 actors plus 3 dichotomous equations, 2
 behaviors and 1 tie, suffice because the symmetric network-tie choices, i j and j i contribute just 1 equation.
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 Our Model  No Homophily

 Path 2

 coi: 0.1—0.1—0.9
 en: 0.6—0.2—0.1
 c02: 0.1—0.2—0.1
 c12: 0.1—0.1—0.9
 c2 : 0.3-0.6-0.1

 Path 1

 c01: 0.1—>0.1—*0.9
 cn: 0.2—0.6—0.1
 c02: 0.2—0.1—0.1
 c12: 0.1—0.1—0.9
 c2 : 0.6—0.3—0.1

 4 5 6 7

 No Contagion

 4 5 6 7 8 9 10 11

 No Homophily, No Contagion

 Time period

 Fig. 3 Equilibrium (steady-state) path dependence in a (revolutionary system.

 by behavior type in the network-tie formation model (selection). Our analysis indicated that the existence
 of steady-state history dependence depended on the joint presence of contagion and selection. Dynamic
 models of ties and/or behavior without one or both processes do not exhibit steady-state path dependence.
 This will suggest the form of a test for path dependence in the empirical model to come.

 3 Empirical Strategies

 This section uses our theoretical model, which expresses two kinds of transition probabilities, one in be
 havior and one in network ties, as functions of three kinds of conditions—exposure to exogenous factors,
 contagion, and selection—to suggest a simple empirical strategy for estimating models of social phe
 nomena that can distinguish these inputs as sources of network-cum-spatial association, correlation, or
 clustering. Our logistic discrete-time Markov model for empirical analysis of coevolutionary processes
 combines the simplest (time-lagged) spatial-lag models of behavioral contagion from spatial econo
 metrics with the simplest (independent) p* models of behavior-homophilic selection in tie formation

 Table 1 Path dependence in type-interaction models

 No contagion (ci = 1)  Contagion (c'| ^ 1)

 Exogenous tie formation
 (c2 = 1)

 Endogenous tie formation:
 homophily (c2 ^ 1)

 No contagion of behavior types. Tie
 formation is also exogenous to behavior
 type

 LRSS: a* = tri0, Vi, 8*j f = Sijfi, Vi, j
 Path independent

 No contagion in actors' behavior types,
 but tie formation is endogenous to
 behavior types, with actors more likely
 to form ties with similar behaviortypes
 (homophily)

 LRSS: a* = <j,0, Vi, <5*.; = 1, Vi, j Path
 independent

 Behavior type is contagious, but tie
 formation is exogenous to behavior
 type

 LRSS: a* = 1, Vi, d*j t = Vi, j
 Path independent

 Behavior type is contagious, and tie
 formation is endogenous to behavior
 type, with actors more likely to form

 ties with similar behavior types
 (homophily)

 LRSS: a* = a*,, Vi, j, S*j t = 1, Vi, j
 Path dependent

 Note. LRSS, long-run steady state. Time index "0" in <7;o and <5yo indicate starting values.
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 from network analysis. The section also briefly introduces the extant alternative, Snijders' actor-oriented
 continuous-time coevolution model, Siena (Snijders 1997, 2001, 2005; Snijders, Steglich, and Schwein
 berger 2007; Ripley and Snijders 2010) and summarizes our Monte Carlo evaluations of Siena's sMoM
 and our simple-logistic estimators' performances.12

 3.1 A Simple Logistic Discrete-Time Markov Model Strategy

 Our discrete-time Markov empirical model has contagion in behavior (not behavior type) and selection by
 observed ties (not latent tie strengths). We give the behavior-shaping probabilities as N simple spatial-lag
 logit models, with only time-lagged (and not simultaneous) spatial-lags, and tie formation probabilities
 as the simplest p* model, one with independent dyads (similarly reducing tie formation to N(N — 1)
 conditionally independent logits):13

 Pr(s;,; = l|sf_i,df_i) = logit(/?0 + + jM/.f-iSf-i),
 (6)

 PrW/.r = l|s,_i,d,_i) = logit(y0 + yidijtt-\ + y2 • /(«;,= s/>f-0)>

 where d^t-i is a row vector of size N containing the (N — 1) binary tie formation indicators between
 i and each other actor at the end of period t — 1 (and 0 in element i for dyad ii), and /(sj.f-i = Sjtt-\)
 indicates whether given dyad's behaviors were the same in the previous period, capturing homophily. As
 noted, this model's contagion and selection, that is, network effects and formation, both operate through
 observed behaviors, not latent behavior type.

 Estimating equation (6) is straightforward; behavior and tie formation can be estimated separately
 or as a seemingly unrelated system of logit equations. If the disturbances—that is, the extreme-value
 disturbances from the underlying choice models—are correlated across equations, separate estimation
 would produce consistent, though inefficient, estimates of parameter values, and standard error estimates
 would be inaccurate. The standard error inaccuracy issue can be redressed by robust (i.e., consistent)
 standard errors using a systems sandwich estimator of the variance-covariance matrix. The sandwich
 matrix in this formulation, the outer product of the gradients of the likelihoods, provides estimates of the
 parameter covariances across equations, which are incorporated into the variance estimates.14

 3.2 Siena's sMoM Continuous-Time Markov Model

 In the network-analytic tradition, Snijders and colleagues (op. cit.) have advanced furthest in empirical
 modeling of dynamic, endogenous contagion, and selection.15 In Siena, N actors are connected by an
 observed, binary, potentially endogenous, and time-variant matrix, x, of ties, xij>t. A vector of N observed,
 binary behaviors, z, at time t has elements z,i(. Additional exogenous explanators may exist at unit or
 dyadic level, or w;J>(. Opportunities arise for actors to change their network ties, switching at most 1 tie
 on or off, at continuous-time fixed rate, pff, according to an exponential model. Likewise, opportunities

 to switch or leave unchanged the dichotomous behavior arise at rate p!5®11.16 When an opportunity to change
 network ties arrives for some i, she may choose to switch on or off any one of her N — 1 ties by comparing

 the values of her objective function, /"et(x, x', z) + e"et(x, x', z), under the existing behaviors, z, and
 network, x, to the existing behaviors and the network under the considered tie change, x'. The weights
 on the various network statistics in these objectives are the coefficients, /?Pet, to be estimated. Assuming
 e"et extreme value distributed, independently across i and t, yields a multinomial-logit categorical choice
 model. Similarly, when a chance to change behavior arrives, i compares values of an analogous objective

 l2Materials published on the journal Web site online elaborate and detail the introduction and comparisons.
 13Lazer (2001) takes similar approach to modeling network-behavior coevolution. Important future extensions include enriching
 these models to simultaneous spatial-dependence and nonindependence p* cases (feasibly, computational demands of both can be
 very high).

 >4Stata gives these system sandwich estimates at one postestimation command: suest.
 l5Wasserman (1980a, 1980b), Leenders (1997) presage. Bayesian latent-space longitudinal networks (Hoff, Raftery, and Handcock

 2002; Hoff and Ward 2004; Hoff and Westveld 2007) may also relate.
 16Although Siena can accommodate richer parameterizations, both p are held constant across i but allowed to differ arbitrarily by

 t here. These rates of intraobservational event occurrence can vary freely, so the assumption of one i making one 1-unit change at
 a time is inconsequential. The strong assumption (we also make) of conditional independence of the choices does remain though.
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 function under alternative actions (here, binary): switch to 1 or 0 or leave unchanged. Again assuming

 i.i.d. extreme value stochastic components (e|'eh), the logistic form emerges.
 The behavior and network objective functions (and also the rate functions if desired) can include any of

 a number of commonly supposed social-network phenomena. For instance, importantly for our purposes,
 covariate-related dissimilarity, which is "defined by the sum of absolute covariate differences between i
 and the others to whom he is related" (371):

 covariate-related dissimilarity: s,(x) = ^x,j|v,- — vj\. (7)
 j

 Entering s,- (x) in the tie formation equation with covariates v, and vj being i's and j's behaviors gives a
 behavioral homophilic (or, rather, heterophilic) selection term. RSiena estimates such models by sMoM.
 That is, it simulates network-behavior outcomes according to the processes of the proposed model and
 estimates the parameters of that model (along with estimated variance-covariances for those parameter
 estimates by the delta method) by optimizing fit of simulated to observed sample statistics.17

 As a theoretical model and estimation strategy for simultaneous tie formation and behavioral choices,
 Siena is the state of the art. Yet, notice also the many caveats stressed:

 • "Although in our experience, these equations mostly seem to have exactly one solution, they do not
 always have a solution" (Snijders 2001, 374).

 • "[The moment-conditions stated are] far from implying the statistical efficiency of the resulting
 estimator, but it confers a basic credibility to [... it and... ] ensures the convergence of the stochastic
 approximation algorithm..." (Snijders 2001, 373).

 • "... the method proposed here is not suitable for observations... too far apart in [... the number of
 intraobservational changes]. For such [... cases, dependence of one observation on the previous... ]
 is practically extinguished, and it may be more relevant to estimate the parameters of the process
 [... separately]" (Snijders 2001, 374).

 • "It is plausible that these estimators have approximately normal distributions, although a proof is
 not yet available" (Snijders 2001, 375).

 This is a small subset of the statements acknowledging various aspects of the estimation strategy perfor
 mance as unknown or maybe problematic, but we do not highlight them as criticism. Siena seems the
 currently best developed tool capable of addressing coevolution, which we think is common and impor
 tant in social science, and its approach to modeling network formation and behavioral choice shares our
 emphasis on affording address of a theoretically and substantively central empirical challenge of distin
 guishing and distinctly estimating the common exposure, contagion, and selection effects in generating
 social outcomes that ubiquitously exhibit network/spatial association. Our point is instead to underscore
 how little is known regarding Siena's performance as an estimator. Understandably given its complexity,
 little has been proven analytically about its properties; nor, also understandably given its computational
 demands and its specialized implementing software until RSiena's recent advent, has its performance been
 explored much in Monte Carlo analysis.

 3.3 Estimation Strategy Evaluation and Comparison

 Next, we summarize our evaluation and comparison of the simple time-lagged spatial-lag logistic
 regression strategy proposed here and Siena's sMoM strategy for estimating models of network-behavior
 coevolution, that is, with contagion and selection. These evaluations and comparisons are elaborated and
 detailed in the web materials.

 Our simulations followed (Snijders 2001) to specify a data-generating process (DGP) exactly replicat
 ing a Siena model of coevolution with the behaviors of N actors contagious through a network of ties

 17The online appendix elaborates; see also Snijders (2001) and Ripley and Snijders (2010) for further estimation procedure details
 and options.
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 generated by behavioral homophily. Using this DGP, we generated 100 trials each of eight different sce
 narios: varying the number of actors N e {30, 50}, the number of observed periods, T €{5,11}, and the
 rates of event occurrence, pnet = pbeh <= {1,5}. The coefficient magnitudes are not directly comparable;
 nevertheless, we can conclude already from the raw parameter estimates on several points. First, in con
 texts with higher event rates, that is, where intraobservational changes in networks and behavior are likely

 to have been great reliable estimation of coevolutionary processes by either strategy seems impossible.
 For both strategies, statistical power to discern behavioral contagion or behavioral homophilic selection
 was negligible at the higher rates, and parameter estimates exhibited very large biases and/or mammoth
 inefficiency. Standard error accuracy was also problematic. At lower rates, either estimator reports reason
 ably honestly about the certainty of its parameter estimates. Siena seems essentially unbiased in lower-7"
 samples but suffers some downward or deflationary bias in its estimates at larger T (oddly). The spatial
 logistic parameter estimates seemed roughly to parallel Siena's in magnitude, although bias could not be
 gauged since the "true" parameters of this incorrect model under the Siena DGP were unknown. At these
 lower rates, the simpler spatial-logistic strategy seemed to have some edge in efficiency and, thereby, in
 power, with this advantage growing more noticeable with lower T and smaller samples. Judging by the
 parameter estimates, therefore, one could summarize: at low event rates, both strategies work generally
 acceptably and roughly comparably well, with an efficiency advantage and simplicity perhaps favoring
 the logistic strategy; at higher event rates, neither strategy managed to gain any appreciable traction on
 contagion or selection.

 To evaluate the performance of Siena and our simple logit more effectively, we should calculate esti
 mated effects on behavior or tie formation by each estimator of some common hypothetical. We consider
 the following hypothetical regarding contagion. If all i's network partners behave in one way (all 0 or 1),
 what are the odds that i will choose the network consistent over the network inconsistent behavior? In

 the Siena DGP, we can get these odds thus: if all i's ties are initially to dissimilar behavior types (so her
 average similarity score is 0) and i switches her behavior to match her network partners, her average simi
 larity will go to 1, and the corresponding odds of going from inconsistent to consistent behavior, assuming
 i is chosen to act, are exp(/? beh) to 1 (~ 2.714). In the simple-logit model, if i's network partners switch
 their behavior from all-0 to all-1, then for i, behavior 1 likewise goes from being network inconsistent to
 network consistent, and the odds of choosing behavior 1 gives the equivalent contagion effect, here as the
 spatial-lag variable goes from 0 to 1. For a comparable homophilic-selection effect of behavioral similar
 ity on network ties, we ask: what are the odds that i will choose to connect to another actor who behaves
 similarly over to one who behaves dissimilarly? In the Siena model, if all i's ties are between dissimilar
 behavioral types (average similarity 0), choosing to connect to a similar behavior type increases covariate
 (behavior)-related similarity from 0 to 1, and the odds of forming such a tie (relative to choosing a tie with
 a dissimilarly behaving actor) are exp(/? net) to 1. In the simple logit model, an indicator variable turns on
 (off) when a potential network partner behaves similarly (dissimilarly), so the relevant odds calculation is
 straightforward.

 Several issues remain. First, the Siena effects described above assume that i is chosen to make a behav

 ioral or network change, but not all actors will be selected in that DGP With rate of event occurrence set
 to 1, the probability an actor i is selected during an interobservational period is about .63 (the negative ex
 ponential cumulative distribution evaluated at 1). The selection-adjusted odds ratio is .63 x 2.714 = 1.71.
 Second, the logit models are dynamic in a way the Siena DGP is not. Specifically, the logit parameter
 estimates determine transition probabilities for a first-order Markov chain. Accordingly, the comparable
 odds ratios would derive from the steady-state (stationary) distribution of the Markov chain. Finally, even
 with these adjustments, the logit models are still misspecified, especially the network model because the
 true DGP only allows actors to make one change at a time, a restriction the simple logits do not impose.
 Consequently, the logit model will likely underestimate the size of the relevant selection effects. Many
 ties that would have formed among similarly behaving actors absent this restriction, will not be formed in
 the Siena DGP.

 Table 2 compares these behavioral homophilic selection and behavioral contagion effects using the
 estimates from the lower event rate scenarios. We provide the mean effect estimate and the standard
 deviation and root mean squared errors (RMSE) for these estimates. The relative bias and efficiency
 we summarized regarding the structural parameter estimates transfer to the effects estimates. While the
 mean Siena effect estimates frequently exhibit less bias, the simple logistic strategy outperforms the Siena
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 Table 2 Monte Carlo simulation results for comparable effects (true effect = 1.72)

 Sample: N  = 30, T = 5  Sample: N = 30, T = 11

 Parameter  Result  SIENA  Simple logit  Parameter  Result  SIENA  Simple logit

 Network  Mean  2.068  1.512  Network  Mean  1.580  1.410

 Selection CF  SD  1.836  0.320  Selection CF  SD  0.491  0.172

 (0-» 1)  RMSE  1.869  0.381  (0-» 1)  RMSE  0.510  0.353

 Behavior  Mean  1.763  1.800  Behavior  Mean  1.732  1.735

 Contagion CF  SD  1.621  0.922  Contagion CF  SD  0.740  0.577

 (0-> 1)  RMSE  1.622  0.926  (0-> 1)  RMSE  0.740  0.577

 Sample: N  = 50, T = 5  Sample: N =  50, T = 11

 Parameter  Result  SIENA  Simple logit  Parameter  Result  SIENA  Simple logit

 Network  Mean  1.865  1.539  Network  Mean  1.598  1.462

 Selection CF  SD  0.874  0.268  Selection CF  SD  0.392  0.145

 (0—> 1)  RMSE  0.886  0.323  (0-* 1)  RMSE  0.410  0.294

 Behavior  Mean  1.951  1.761  Behavior  Mean  1.778  1.716

 Contagion CF  SD  1.353  0.598  Contagion CF  SD  0.854  0.438

 (0-> 1)  RMSE  1.373  0.600  (0-* 1)  RMSE  0.856  0.438

 estimates across the board in RMSE terms, often by large margins. In the small sample case (N = 30,
 T = 5), for example, the RMSE from the simple logit model for behavior homophilic selection effect is a

 little over | the size of corresponding RMSE calculated from the Siena estimates.
 The summary upshot seems to be: neither strategy can offer much hope of learning anything reliable

 about coevolution when event rates are high—which may be discernable by high amounts of change in
 networks and/or behaviors between observational periods that seem substantively far apart in that actors
 could have undertaken many interim actions. At low event rates, conversely, both strategies work generally
 acceptably and roughly comparably well, with an efficiency advantage and simplicity perhaps favoring the
 logistic strategy.

 4 Illustration: Military Alliances and Conflict Behavior

 We illustrate with an analysis of the alliance formation and conflict behavior of great powers during the
 first half of the twentieth century (Levy 1981), a period of much variation in conflict behavior (hardly
 unique to that period) and of multipolarity during which military alliances were in flux (rarer). We sus
 pect alliance ties and conflict behavior coevolve. States self-select into alliances, and these decisions are
 plausibly driven by homophilic or heterophilic preferences. More aggressive/pacific states may seek like
 wise aggressive/pacific allies, or the opposite may hold. At the same time, conflict behavior is contagious
 through alliances. Indeed, that states would be drawn into their allies' conflicts is key to most alliances
 (e.g., Kimball 2006).

 Table 3 presents our estimates. Model 1, columns 1A and IB, applies our estimator with contagion of
 dichotomous behaviors, with connection and selection occurring through observed dichotomous ties; that
 is, the system of equation (6) above. Model 2 adds covariates. Specifically, the conflict behavior model
 includes regime type (Polity score) and national capabilities (Correlates of War [COW] Composite Index
 of National Capability [CINC] score). The alliance ties model includes regime similarity, given as one
 minus the absolute value of the difference in polity scores divided by the maximum difference (20), and the

 absolute value of the CINC differences, measuring power asymmetry. These are also covariate similarity
 measures, but in an exogenous regressor (as assumed here anyway), unlike our behavioral homophily
 regressor. The CINC scores are scaled to sum to one across all countries, so both our regime similarity
 and power asymmetry measures lie between 0 and 1. We suspect the disturbances (from the underlying
 choice models) correlate across equations in this application (unlike in our simulation DGP), so equation
 by-equation estimation would produce consistent, if inefficient, parameter estimates, while conventional
 standard error estimates would be inaccurate. Accordingly, we will report robust standard errors using a

This content downloaded from 132.174.255.116 on Thu, 08 Aug 2019 01:06:55 UTC
All use subject to https://about.jstor.org/terms



 188 Robert J. Franzese Jr. et al.

 Table 3 Estimation results: military-alliance ties and conflict behavior

 Discrete-time Continous-time

 ours Snijders et al. (by Siena)

 (1A)  (IB)  (2A)  (2B)  (3A)  (3B)
 (Markov  Alliance  MIDs  Alliance  MIDs  Alliance  MIDs

 models> > )  networks  behavior  networks  behavior  networks  behavior

 Temp lag  4.99**  1.45**  5.04**  1.33**  —  —

 (0.14)  (0.27)  (0.14)  (0.28)
 Dyad-specific

 Previous MIDs  -0.39**  —  -0.42**  —  -4.67

 similarity (behavior)  (0.15)  —  (0.15)  —  (5.14)
 Regime similarity

 (0.28)
 0.45

 Power asymmetry  6.56**

 (1.51)
 State-specific

 Previous alliance tie  0.85**  —  0.74* 1.71

 (Network)  (0.31)  (0.33)  (4.06)
 Polity  -0.05

 (0.03)
 National capability  10.96*

 (4.69)
 Loglikelihood  -225.08  -179.50  -223.05  -175.34

 Note. Models (1) and (2) report Seemingly Unrelated Regressions-robust standard errors. These models also include unit fixed
 effects (not reported).

 * .05 level of significance; ** .01 level of significance.

 systems sandwich estimator of the variance-covariance matrix. Models 1 and 2 also contain country or
 dyad unit indicators. Model 3 (3A and 3B) applies the Siena continuous-time Markov model/estimator to
 "snapshots" at 5-year intervals (1900, 1905,... ,1950) of the great powers' alliance networks and conflict
 behavior. For the network statistic, we used covariate (behavior)-related similarity, and for the behavior

 statistic, we used the average similarity effect. The former is defined as s"et — ^ xij (sim^ — simz),

 where the similarity scores are sim?- = A ^ , A being the maximum sample difference, and simz is
 • Uph liiiiWrsitf)

 the mean of all similarity scores. The latter behavior statistic is defined as sf = ——^—1 . (The
 1 2-, j xij

 same statistics as in the Monte Carlo simulations.18)
 With the first two models, we find evidence (1) of heterophily—pacific powers are more likely to

 ally/maintain alliances with aggressive powers—and (2) that conflict behavior is (positively) contagious
 through alliances. The Model 1 estimates, for example, imply that the average probability of a great power
 engaging in a militarized dispute given no involvement in the previous period rises from .55 to .74 when
 one's allies change from pacific to aggressive behavior in the previous period. The heterophily effects
 are smaller. The average probability that an alliance of great powers will persist period-to-period is about
 .92 when the alliance partners behaved dissimilarly. With both parties pacific or both aggressive, this
 probability drops to below .89. Note that the sustaining influence of asymmetry extends beyond behavior
 to include capabilities (see Model 2A); relatively, weak countries are more likely to ally and stay allied
 with relatively powerful partners. This supports theoretical expectations from the alliance formation liter
 ature regarding power asymmetry and alliance formation (Morrow 1991). The signs of our Siena-model
 estimates also suggest behavioral contagion and heterophilic selection, but these estimates are not sta
 tistically significant. Model 3's small Wald statistics seem to confirm the finding from our Monte Carlo
 analysis that Siena is relatively less efficient and powerful than our simpler spatial-logistic strategy.19

 18Snijders (2001) and Ripley and Snijders (2010) offer many alternatives and much further discussion.
 19We also tried a Siena model with the same covariates as in column 2, but we do not report it because the estimator failed to produce
 a positive-definite covariance matrix.
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 Overall, our empirical results suggest that the conflict behavior of great powers and their military
 alliance networks coevolve. One significant implication of this is that great power relations may be path
 dependent. As noted above, our theoretical models suggested that the test of endogenous coevolution, that
 is, of contagion in behavior and selection by behavior jointly, was also a test of path dependence. Namely,

 we test whether Ho- /Contagion x Aiomophiiy = 0. Using a Wald strategy, and the Delta method asymptotic
 linear approximation for the estimated variance of fic x /?h, the /2 statistics and associated probabilities
 are 3.56 and 0.0591 for Model 1, 3.25 and 0.0713 for Model 2: suggestive, if not overwhelming, evidence
 for path dependence.

 5 Conclusion

 Theoretically, this paper built a discrete-time Markov type-interaction model in which the behaviors of
 actors and the networks that connect them coevolve. One interesting implication of the model is that it pro

 duces history-dependent behavior possibly including path dependence. We suspect such network-behavior
 coevolution, and with it the possibility of path dependency, manifests importantly in many areas of social
 science inquiry. To evaluate this possibility empirically, we built from the theoretical model a spatial-lag
 logistic model of coevolution that combines a simple time-lagged spatial-lag model of contagious behav
 ior with a simple pMogit model of behavioral homophilic network formation (which is also a time-lagged
 spatial-lag model). We evaluated and compared the performance of this proposed simple estimation strat
 egy and/with the extant alternative from social-network analysis, Snijder's Siena model of node behavior
 and tie formation. Neither strategy seemed .capable of gaining traction in environments where a great deal
 of change in connectivity and behavior occurs within periods between observations, but either seemed at
 least somewhat capable of doing so in more favorable scenarios. There, our analyses suggested the simple
 spatial-logistic strategy had simplicity, efficiency, and power advantages making it an attractive alternative
 to the more sophisticated Siena. Finally, we demonstrated the feasibility and utility of this theoretical and
 statistical framework by applying it to analyze the patterns of alliance formation and conflict behavior
 among the great powers during the first half of the twentieth century. A test for path dependence that we
 derived from these theoretical and empirical efforts suggests that conflict alliance formation patterns in
 that period were likely coevolutionary and so path dependent.
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