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Abstract

This article deals with a variety of dynamic issues in the analysis of
time-series–cross-section (TSCS) data. Although the issues raised are
general, we focus on applications to comparative political economy,
which frequently uses TSCS data. We begin with a discussion of spec-
ification and lay out the theoretical differences implied by the various
types of dynamic models that can be estimated. It is shown that there
is nothing pernicious in using a lagged dependent variable and that all
dynamic models either implicitly or explicitly have such a variable; the
differences between the models relate to assumptions about the speeds
of adjustment of measured and unmeasured variables. When adjust-
ment is quick, it is hard to differentiate between the various models;
with slower speeds of adjustment, the various models make sufficiently
different predictions that they can be tested against each other. As the
speed of adjustment gets slower and slower, specification (and estima-
tion) gets more and more tricky. We then turn to a discussion of esti-
mation. It is noted that models with both a lagged dependent variable
and serially correlated errors can easily be estimated; it is only ordi-
nary least squares that is inconsistent in this situation. There is a brief
discussion of lagged dependent variables combined with fixed effects
and issues related to non-stationarity. We then show how our favored
method of modeling dynamics combines nicely with methods for deal-
ing with other TSCS issues, such as parameter heterogeneity and spatial
dependence. We conclude with two examples.
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iid: independent
identically distributed

1. INTRODUCTION

Time-series–cross-section (TSCS) data are
perhaps the most commonly used data in com-
parative politics (broadly defined) and particu-
larly in comparative political economy.1 There
are various issues related to TSCS data; here
we focus on some important ones related to
the dynamic (time-series) properties of the data.
Obviously many of these issues are similar to
those for a single time series, but the context
of comparative political economy and the rel-
atively short lengths of the TSCS time peri-
ods make for some interesting special issues.
We assume that the reader is familiar with
the basic statistical issues of time-series data.
Because various specification issues are covered
for political scientists elsewhere (Beck 1985,
1991; Keele & Kelly 2006; De Boef & Keele
2008), we go fairly quickly over the basic issues,
spending more time on issues relating to the
dynamic modeling and interpretation of those
models in political economy.

1.1. Notation and Nomenclature

Our interest is in modeling the dynamics of
TSCS models. By dynamics we mean any pro-
cess where some variable has an impact that is
distributed over time. Let yi,t be an observa-
tion for unit i at time t where i = 1, . . . N and
t = 1, . . . T . We assume that y is measured as
a continuous variable, or at least can be taken
as continuous. In what follows, we typically do
not care if we have one or more than one inde-
pendent variable or variables, so let xi,t be either
an observation on a single independent variable
or a vector of such variables; if the latter, it is

1Comparative politics refers to any comparison of political
units, so it encompasses almost all of international relations,
which has countries or country pairs as the unit of analysis,
and any study that compares units (regions, states, or coun-
ties) within a single country. Our language comes from com-
parative political economy, but everything applies to all other
types of TSCS studies (both within and beyond political sci-
ence) so long as the data are observed over a long enough
period. Adolph et al. (2005) report that by the early 2000s
∼5% of all political science articles in JSTOR journals used
TSCS data.

assumed that the dynamics apply similarly to all
the components of that vector.

Where we need to differentiate dynamics,
we use a second variable (or vector of variables),
zi,t. Because the constant term is typically ir-
relevant for what we do, we omit it from our
notation (or include it in the vector of other
independent variables). We assume that these
independent variables are exogenous, which is
clearly both a strong and critical assumption.
We postpone discussing specifications for yi,t

until the next section.
TSCS data are most commonly used in com-

parative political economy, and so we refer to
time periods as years and units as countries.
Given the yearly frequency, we focus on models
where explicit lags are only of one or two years;
we would not expect to see the higher-order
dynamic processes common in standard time-
series analysis of monthly or quarterly data.
Although we focus on low-order processes, it
is trivial to extend the interpretation, tests, and
estimation to higher-order dynamics.

T must be large enough so that averaging
over time makes sense. In our prior work (Beck
& Katz 1995, 1996), we did not examine sit-
uations where T < 15. Political economy data
often span a sample period of 30 or more years
and so there are no problems. This article does
not discuss standard survey panels that typically
have five or fewer waves, and there is no reason
to believe that the methods discussed here ap-
ply to such survey panels. We make no assump-
tions about N, although in comparative political
economy it is seldom less than 20 (advanced in-
dustrial nations); it can be quite large (>100,000
for some studies in international relations using
dyadic data).

We distinguish two types of error terms:
νi,t refers to an independent identically dis-
tributed (iid) error process, whereas εi,t refers to
a generic error process that may or may not be
iid. Unless specifically stated, we restrict non-
iid processes to simple first-order autoregres-
sions. This simplifies notation with no loss to
our argument; it is simple to extend our ar-
gument to more complicated error processes.
Because coefficients are only interpretable in
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the context of a specific model, we superscript
coefficients to indicate the specification they re-
fer to whenever confusion might arise. We use
the terms specification and model interchange-
ably, and refer to both as equations when refer-
ring to a specific equation in the text.

When relevant, we use L as the lag operator,
so that

Lyi,t = yi,t−1 if t > 1 1.

and Lyi,1 is missing. The first difference opera-
tor is then � = 1 − L.

1.2. Stationarity

We initially, and for most of the article, as-
sume that the data are drawn from a station-
ary process. A univariate process is stationary
if its various moments and cross-moments do
not vary with the time period. In particular,
the initial sections assume that the data are
drawn from a “covariance stationary” process,
that is,

E(yi,t) = μ 2a.

Var(yi,t) = σ 2 2b.

E(yi,t yi,t−k) = σk 2c.

(and similarly for any other random variables).
Stationary processes are mean reverting, and

the best long-run forecast for a stationary pro-
cess is that mean. Thus, we can think of the
mean as the “equilibrium” of a stationary pro-
cess. Alternatively, we can think of the statistical
properties of the data as not varying simply as
a function of time (so, for example, there are
no trends in the data). We briefly discuss non-
stationary data in Section 4.

1.3. Missing Data

To simplify notation, we assume that the
dataset is rectangular, that is, each country is
observed for the same time period (which is
called the “sample period” even though it is not
a sample of anything). It is easy to extend ev-
erything to a world in which some countries are
not observed for a few years at either the begin-

ning or the end of the period under study, and
the only cost of so doing would be an additional
subscript in the notation.

Missing data in the interior of the period
under study is not benign. At a minimum, their
absence causes all the standard problems asso-
ciated with missing data (Little & Rubin 1987).
The default solution, list-wise deletion, is well
known to be an inferior solution to the missing-
data problem for cross-sectional data. But the
problem is more severe for TSCS data because
the specification invariably includes temporal
lags of the data; even if the model has only
first-order lags, each observation with missing
data leads to the deletion of two data points.
Thus, even more than with cross-sectional data,
multiple imputation techniques are de rigueur
for dynamic models that have more than a
trivial amount of “missingness.” Obviously the
amount of missingness will vary as we move
from studies of advanced industrial societies to
studies of poorer nations, and so the attention
paid to missingness can vary.

Although it is easy to say that analysts
should use Little & Rubin’s multiple imputa-
tions, the standard methods for cross-sectional
imputations (hot decking or assuming that
both missing and non-missing observations are
essentially multivariate normal) are not appro-
priate for TSCS data. This is because we know
a lot about TSCS data. Thus, for example, we
would expect that missing economic variables
are likely to be highly related to observed values
in nearby countries with similar economies, or
that observations on trending time series can
be imputed with interpolated values. Honaker
& King’s (2010) Amelia II allows users this
kind of flexibility. But there is no mechanistic
solution to the missing-data problem in
political economy. To give but one example,
missingness is often related to civil wars; if
we simply use some complicated averaging
method to impute missing economic data
during a civil war, our imputations are likely
to be overly optimistic. Analysts using TSCS
datasets with significant missing data can only
be warned that they must take extreme care.
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LDV: lagged
dependent variable

FDL: finite
distributed lag model

AR1: first-order
autoregressive error
process

SC: first-order serially
correlated error model

1.4. Roadmap

The next section, on the interpretation of al-
ternative dynamic specification, is the heart of
the article. There we deal only with stationary
data. The third section briefly examines com-
bining dynamics with cross-sectional issues, in
particular accounting for heterogeneity across
units. The fourth section extends the argument
to slowly moving and non-stationary data. Two
examples of dynamic modeling with political
economy TSCS data are discussed in the fifth
section, and we offer some general conclusions
in the final section.

2. DYNAMIC MODELS:
STATIONARY DATA

There are various specifications for any time-
series model; for reviews considering applica-
tions to political science, see Beck (1991) and
De Boef & Keele (2008). All time-series speci-
fications have identical counterparts in TSCS
models. These specifications appear in any
standard text, so we discuss general specifica-
tion issues without either citation or claim of
originality.

In our prior work (Beck & Katz 1996) we
argued that a lagged dependent variable (LDV)
specification is often adequate; because that has
sparked some discussion (Achen 2000, Keele &
Kelly 2006), we spend some time on this issue.
After discussing a variety of specifications, we
discuss issues of interpretation and estimation.2

2.1. Dynamic Specifications

The generic static (non-dynamic) specification
is

yi,t = β s xi,t + νi,t . 3.

This specification is static because any changes
in x or the errors are felt instantaneously and

2We often refer to Achen’s (2000) critiques of the use of
LDVs. Although it is odd to spend time critiquing a decade-
old unpublished paper, this paper has been influential (more
than 300 Google Scholar citations as of this writing). We
only deal with the portions of Achen’s paper relevant to issues
raised here.

their effect dissipates instantaneously; there are
no delayed effects. (It may be that xi,t is mea-
sured with a lag, so the effect could be felt with
a lag, but the model is still inflexible in that
the effect is completely and only felt at the one
specified year.)

There are several ways to add dynamics to
the static specification. The simplest is the fi-
nite distributed lag (FDL) model, which as-
sumes that the impact of x sets in over two (or
a few) periods but then dissipates completely.
This specification has

yi,t = β f 1xi,t + β f 2xi,t−1 + νi,t 4.

with the obvious generalization for higher-
ordered lags. Equation 3 is nested inside
Equation 4 (Equation 3 is a special case of
Equation 4), so testing between the two is sim-
ple in principle (although the correlation of x
and its lags makes for a number of practical
issues).

Another commonly used dynamic specifica-
tion is to assume that the errors follow a first-
order autoregressive (AR1) process rather than
the iid process of Equation 3. If we assume that
the errors follow an AR1 process, we have a se-
rially correlated (SC) error model:

yi,t = βSC xi,t + νi,t + ρεi,t−1 5a.

= βSC xi,t + νi,t

1 − ρL
5b.

= βSC xi,t + ρyi,t−1 − βSCρxi,t−1 + νi,t . 5c.

The formulation in Equation 5c makes the dy-
namics implied by the model clearer and also
makes it easier to compare various models.

Another alternative is the LDV model (with
iid errors):

yi,t = βLDV xi,t + φyi,t−1 + νi,t 6a.

= βLDV xi,t

1 − φL
+ νi,t

1 − φL
. 6b.

As Equation 6b makes clear, the LDV model
simply assumes that the effect of x decays geo-
metrically (and for a vector of independent vari-
ables, all decay geometrically at the same rate).
Note also that the compound error term is an
infinite geometric sum (with the same decay pa-
rameter as for x); this error term is equivalent to
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a first-order moving average (MA1) error pro-
cess, again with its decay parameter constrained
to equal φ, the rate at which the effect of x on y
decays.

Both the SC and LDV specifications are spe-
cial cases of the autoregressive distributed lag
(ADL) model,

yi,t = β ADLxi,t + θ yi,t−1 + γ xi,t−1 + νi,t, 7.

where Equation 5c imposes the constraint that
γ = −β ADLθ and Equation 6a assumes that
γ = 0. The nesting of both the LDV and SC
specifications within the ADL specification al-
lows for testing between the various models.

For interpretative purposes, it can be help-
ful to rewrite the ADL model in error correc-
tion (EC) form (Davidson et al. 1978). To do
this, subtract yi,t−1 from both sides of the ADL
model to get a first difference in y on the left-
hand side, and add and subtract β ADLxi,t−1 from
the right-hand side to get a first difference of x
in the specification. This leads to

�yi,t = βEC�xi,t −λ(yi,t−1 −κxi,t−1)+νi,t, 8.

which allows for the nice interpretation that
short-run changes in y are a function of both
short-run changes in x and how much x and
y were out of equilibrium last year, where the
equilibrium y and x are given by yi,t = κxi,t

and the speed of equilibration (per year) is λ.
The coefficients of the EC model can be easily
derived from the corresponding ADL model:
βEC = β ADL, λ = θ − 1 and κ = γ+β ADL

θ−1 . For
comparison with other models the ADL model
works better, but for direct substantive inter-
pretation of the coefficients the EC model is
easier to work with (since one can directly read
off the short-run impact of a change in x as well
as various long-run impacts). Because the two
are identical, either one can be estimated. We
return to the EC model when we deal with non-
stationary data in Section 4.

2.2. Interpretation

To see how the various specifications differ, we
turn to unit and impulse response functions.
Since x itself is stochastic, assume the process

MA1: first-order
moving average
process

ADL: autoregressive
distributed lag model

EC: error correction
model

IRF: impulse
response function

URF: unit response
function

has run long enough for y to be at its equilib-
rium value (stationarity implies the existence of
such an equilibrium). We can then think of a
one-time shock in x (or ν) of one unit, with a
subsequent return to equilibrium (zero for the
error) the next year; if we then plot y against
this, we get an impulse response function (IRF).
Alternatively, we can shock x by one unit and
let it stay at the new value; the plot of y against
x is a unit response function (URF).

The static specification assumes that all vari-
ables have an instantaneous and only an instan-
taneous impact. Thus, the IRF for either x or
ν is a spike, associated with an instantaneous
change in y, and if x or ν then returns to its pre-
vious value in the next period, y immediately
also returns to its previous value. The URF is
simply a step function, with the height of the
single step being β s .

The FDL model generalizes this. The URF
has two steps, of height β f 1 and β f 1 + β f 2, and
the interval between the steps is one year. Thus,
unlike in the simple static model, if x changes, it
takes two years for the full effect of the change
to be felt, but the effect is fully felt in those two
years. For example, it may take one year for a
party to have an impact on unemployment, but
it may be the case that after that year the new
party in office has done all it can and will do
in terms of changing unemployment. Similarly,
an institutional change may not have all of its
impact immediately, but the full impact may
occur within the space of a year.

We could add more lags to Equation 4,
allowing for more complicated dynamics.
But time series within a country are often
temporally correlated, so multicolinearity
makes it difficult to get good estimates of the
coefficients of the FDL specification with many
lags of x. Given the annual frequency of much of
the data seen in comparative political economy,
the problem of having to add too many lags to
Equation 4 (say more than one additional lag)
may not, in practice, be a problem. It may be
unlikely that interesting institutional changes
have only an immediate impact, but the FDL
model might be appropriate. It surely should be
borne in mind in thinking about appropriate
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specifications, and, as we shall see, it combines
nicely with some other specifications.

The SC model has a different IRF for x and
the error. The IRF for x is a spike, identical
to that of the static model; the IRF for the er-
ror has a declining geometric form with rate of
decay ρ. It seems odd that all the omitted vari-
ables have a declining geometric IRF but the x
we are modeling has only an instantaneous im-
pact. Maybe that is correct, but this is not the
first specification that would occur to us. The
SC specification can be generalized by adding
more lags of x, but we would still have very dif-
ferent dynamics for x and the unobserved vari-
ables in the “error” term. One should clearly
have a reason to believe that dynamics are of
this form before using the SC specification.

The LDV model has an IRF for both x and
the error that has a declining geometric form;
the initial response is βLDV (or 1 for the error);
this declines to zero geometrically at a rate φ.
Although the effect never completely dissipates,
it becomes tiny fairly quickly unless φ is almost
one. The URF starts with an effect βLDV im-
mediately, increasing to βLDV

1−φ
. If φ is close to

one, the long-run impact of x can be 10 or more
times the immediate impact.

Although the ADL specification appears to
be much more flexible, it actually has an IRF
similar to that of the LDV specification, other
than in the first year (and is identical for a shock
to the error process). Initially, y changes by
β ADL units; in the next period the change is
β ADLθ + γ , which then dies out geometrically
at a rate θ . Thus, the ADL specification is only
a bit more general than the LDV specification.
It does allow for the maximal impact of x to oc-
cur a year later, rather than instantaneously (or,
more generally, the effect of x after one period
is not constrained to be the immediate impact
with one year’s decay). This may be important
in some applications. A comparison of the vari-
ous IRFs and URFs is in Figure 1, which clearly
shows that the difference between the specifi-
cations has simply to do with the timing of the
adjustment to y after a change in x.

Before we get to slightly more complicated
models, this analysis tells us several things. The

various models differ in the assumptions they
impose on the dynamics that govern how x and
the errors impact y. None of the dynamic speci-
fications can be more or less right a priori. Later,
we discuss some estimation (see Section 2.5) and
testing (see Section 2.6) issues, but for now we
can say that various theories would suggest var-
ious specifications. The most important issue
is whether we think a change in some variable
is felt only immediately or whether its impact is
distributed over time; in the latter case, do we
think that a simple structure, such as a declin-
ing geometric form, is adequate? How would
we expect an institutional change to affect some
y of interest in terms of the timing of that ef-
fect? If only immediately or completely in one
or two years, the SC or FDL model seems right;
if we expect some initial effect that increases to
some limit over time, the LDV or ADL model
would be used. But there is nothing atheoretical
about the use of a lagged dependent variable,
and there is nothing that should lead anyone
to think the use of a lagged dependent variable
causes incorrect harm. It may cause “correct”
harm, in that it may keep us from incorrectly
concluding that x has a big effect when it does
not, but that cannot be a bad thing. As has been
well known, and as Hibbs (1974) showed three
decades ago for political science, the correct
modeling and estimation of time-series models
often undoes seemingly obvious findings.

A related way to say the same thing is that
each of the models (for stationary data) implies
some long-run equilibrium and a speed with
which that equilibrium is reached after some
shock to the system. It is easy to solve for equi-
libria (if they exist) by noting that in equilibrium
both x and y are stable. Let yE and xE refer to
equilibrium x and y. Then for the ADL model
it must be true that

yE = β ADLxE + θ yE + γ xE , 9.

yielding yE = (β ADL+γ xE
1−θ

(|θ | < 1 by station-
arity). This is easier to see in the EC form,
where yi,t−1 = κxi,t−1 in equilibrium and λ is the
rate (per year) at which y returns to this equi-
librium. All the models for stationary data im-
ply both a long-run equilibrium and a speed of
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Figure 1
Comparison of impulse and unit response functions for four specifications: autoregressive distributed lag
(ADL, yi,t = 0.2xi,t + 0.5yi,t−1 + 0.8xi,t−1), finite distributed lag (FDL, yi,t = 1.5xi,t + 0.5xi,t−1), lagged
dependent variable (LDV, yi,t = 1.0xi,t + 0.5yi,t−1), and autoregressive errors (Static, yi,t = 2xi,t ).

equilibration, with the different parameter con-
straints determining these long-run features.
Each of these models implies different short-
and long-run reactions of y to x, and standard
econometric methods (see Section 2.6) can be
used to discriminate between them.

2.3. Higher-Order Processes
and Other Complications
We can generalize any of these models to allow
for non-iid errors and higher-order dynamics.
However, because our applications typically use
annual data, it is often the case that first-order

www.annualreviews.org • Time-Series–Cross-Section Data 337

A
nn

u.
 R

ev
. P

ol
it.

 S
ci

. 2
01

1.
14

:3
31

-3
52

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
Io

w
a 

on
 0

6/
21

/1
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



PL14CH16-Beck ARI 14 April 2011 17:11

error processes suffice, and it would be unusual
to have more than second-order processes. As
we shall see, it is easy to test for higher-order
error processes, so there is no reason to sim-
ply assume that errors are iid or only follow
a first-order process. For notational simplicity,
we restrict ourselves to second-order processes,
but the generalization is obvious.

Consider the LDV model with AR1 errors,
in which

yi,t = βLDV xi,t + φyi,t−1 + νi,t

1 − ωL
. 10.

After multiplying through by (1 − ωL), we get
a model with two lags of y, x and lagged x and
some constraints on the parameters; if we gen-
eralize the ADL model similarly, we get a model
with two lags of both y and x and more con-
straints. The interpretation of this model is sim-
ilar to the model with iid errors.

We have already seen that the LDV model
with iid errors is equivalent to a model where
the effect of all the independent variables and
the error decline at the same geometric rate. But
if we assume that the “errors,” that is, omitted or
unmeasured variables, follow an MA1 process
with the same decay rate, φ, as for the measured
variables (which may or may not be a good as-
sumption), then we have

yi,t = βLDV xi,t + φyi,t−1 + (1 − φL)νi,t, 11a.

which simplifies to

yi,t = βLDV xi,t

1 − φL
+ νi,t . 11b.

That is, we have a model that combines a geo-
metrically declining impact of x on y with iid er-
rors. It is surely more likely that the “errors” are
correlated than that they are independent. Of
course, the most likely case is that the errors are
neither iid nor MA1 with the same dynamics as
x, so we should entertain a more general spec-
ification, where the effects of both measured
and unmeasured variables have a declining ge-
ometric impact with different rates of decline.
The simplest such specification is Equation 10.
We return to this more general specification in
Section 2.5.

2.4. More Complicated
Dynamics—Multiple
Independent Variables

We typically have more than one independent
variable. How much dynamic generality can or
should be allowed for? One easy generalization
is to allow for two independent (or sets of in-
dependent) variables, x and z. Allowing also for
a separate speed of adjustment for the errors
yields

yi,t = β
xi,t

1 − φx L
+ γ

zi,t

1 − φzL
+ νi,t

1 − φν L
. 12.

Obviously each new variable now requires us
to estimate two additional parameters. Also, on
multiplying out the lag structures, we see that
with three separate speeds of adjustment we
have a third-order lag polynomial multiplying
y, which means that we will have the first three
lags of y on the right-hand side of the specifica-
tion (and two lags of both x and z) and a second-
order moving average error process. Although
there are many constraints on the parameters
of this model, the need for three lags of y costs
us three years’ worth of observations (assuming
the original dataset contained as many obser-
vations as were available). With k independent
variables, we would lose k+1 years of data; for
a typical problem, where T is perhaps 30 and
k is perhaps 5, this is nontrivial. Thus, we are
unlikely to ever be able to (or want to) estimate
a model where each variable has its own speed
of adjustment.

But we might get some leverage by allowing
for two kinds of independent variables: those
where adjustment (speed of return to equi-
librium) is relatively fast (x) and those where
the system returns to equilibrium much more
slowly. To simplify, assume the error process
shows the same slower adjustment speed as z;
we can obviously build more complex models,
but they bring nothing additional to this
discussion. We then would have

yi,t = βx xi,t + βz
zi,t

1 − φL
+ νi,t

1 − φL
13a.

= βx xi,t−φβx xi,t−1+βzzi,t+φyi,t−1+νi,t . 13b.
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Thus, at the cost of one extra parameter, we can
allow some variables to have only an immediate
or very quick effect, while others have a slower
effect, with that effect setting in geometrically.
With enough years we could estimate more
complex models, allowing for multiple dynamic
processes, but such an opportunity is unlikely
to present itself in studies of comparative
political economy. We could also generalize
the model by allowing for the lags of x and z to
enter without constraint. It is possible to test
for whether these various complications are
supported by the data, or whether they simply
ask too much of the data. As always, it is easy
enough to test and then make a decision.

2.5. Estimation Issues

As is well known, a specification with no lagged
dependent variable but serially correlated er-
rors is easy to estimate using any of several vari-
ants of feasible generalized least squares, with
the Cochrane-Orcutt iterated procedure being
the most well known. It is also easy to estimate
such a model via maximum likelihood, breaking
up the full likelihood into a product of condi-
tional likelihoods.

The LDV model with iid errors is optimally
estimated by ordinary least squares regression
(OLS). However, it is also well known that
OLS yields inconsistent estimates of the
LDV model if the error process is serially
correlated. Perhaps less well known is that
Cochrane-Orcutt or maximum likelihood pro-
vides consistent estimates of the LDV model
with serially correlated errors by accounting
for that serial correlation (Hamilton 1994,
p. 226). Thus, it is easy to correctly estimate
the LDV model while allowing for serially
correlated errors if analysts wish to do so. But
we hope that analysts will not wish to do so.

It is often the case that the inclusion of a
lagged dependent variable eliminates almost all
serial correlation of the errors. To see this, start
with the SC equation:

yi,t = βSC xi,t + εi,t 14a.

εi,t = νi,t + ρεi,t−1. 14b.

Remember that the error term is simply all the
omitted variables, that is, everything that de-
termines y that is not explained by x. If we ad-
join yi,t−1 to the specification, the error in that
new specification is εi,t − φyi,t−1, where εi,t is
the original error in Equation 14a, not some
generic error term. Since the εi,t are serially cor-
related because they contain a common omitted
variable, and yi,t−1 contains the omitted vari-
ables at time t − 1, including yi,t−1 will almost
certainly lower the degree of serial correlation,
and often will eliminate it. But there is no reason
to simply hope for this; we can estimate (using
OLS) the LDV model assuming iid errors, and
then test the null hypothesis that the errors are
independent using a Lagrange multiplier test.
(This only requires that OLS be consistent un-
der the null of iid errors, which it is.) The test
is trivial to implement, by simply regressing the
residuals from the OLS regression on the lag(s)
of this residual and all the independent vari-
ables including the lagged dependent variable
with NTR2 from this regression, being asymp-
totically distributed χ2 with degrees of freedom
equal to the number of lags tested. If, as often
happens, we do not reject the null that the re-
maining errors are iid, we can continue with
the OLS estimates. If we do reject that null, we
should estimate a more complicated model.

Obviously, failing to reject the null of no
serial correlation of the errors is not the same
thing as knowing there is no serial correlation
of the errors. Is this incorrect logic in inter-
preting a failure to reject the null likely to
cause problems? There are two reasons to be
sanguine here. First, the large amount of data
in typical TSCS studies gives the Lagrange
multiplier test good power. In our first example
(Section 5.1), with ∼300 total observations, the
Lagrange multiplier test detected a serial cor-
relation of the errors of ∼0.10. It is also the case
that ignoring a small amount of serial correla-
tion (that is, estimating the LDV model with
OLS as if there were no serial correlation) leads
to only small amounts of bias. As Achen (2000,
p. 13) elegantly shows, the estimation bias in
incorrectly using OLS to estimate the LDV
model with serially correlated errors is directly
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ADLLDV2
specification: the
autoregressive
distributed lag
specification with a
second lag of the
dependent variable

proportional to that serial correlation. Applied
researchers make many assumptions to simplify
analysis, assumptions that are never exactly cor-
rect. Ignoring a small serial correlation of the
errors is surely one of the more benign mistakes.

As we shall see in Section 3, a number of
fruitful avenues of investigation are open if the
errors are either uncorrelated or sufficiently
uncorrelated that we can ignore their small
correlation. But what if a researcher is not so
sanguine? As we have seen in Section 2.5, one
can easily estimate, using methods other than
OLS, the ADL model with serially correlated
errors. But a more fruitful approach, as shown
in Section 2.3, is to include second-order lags
of the variables in the ADL specification; this
“ADL2” specification can be appropriately
estimated by OLS, once again allowing the
researcher to more easily examine other inter-
esting features of the data. Of course the same
Lagrange multiplier testing procedure should
first be used to test for remaining serial corre-
lation, but with annual data we can be hopeful
that we will not need highly complicated lag
structures in the preferred specification.

Obviously more parsimonious specifications
are easier to interpret (and convey to the
reader), and so more complicated specifications
with higher-order lags come at a cost. Thus,
we might want to consider models intermedi-
ate between the ADL and ADL2 models. One
obvious choice is to simply append a second lag
of the dependent variable to the ADL speci-
fication; this is analogous to moving from the
static to the LDV specifications, as discussed
above. This simpler specification, ADLLDV2,
should be tested to see if the errors are iid. The
ADLLDV2 specification may be a good com-
promise between parsimony and fidelity to im-
portant features of the data; in our first example
this is our preferred model. In other cases even
simpler models may provide a better tradeoff
between the various goals.

2.6. Discriminating Between Models

We can use the fact that the ADL model
nests the LDV and SC models to test which

specification better fits the data. The LDV
model assumes γ = 0 (in Equation 7), whereas
the SC model assumes γ = −θβ ADL. Thus,
we can estimate the full ADL model and test
whether γ = 0 or γ = −θβ ADL.3 If both sim-
plifications are rejected, we can retain the more
complicated ADL model.4 Even in the absence
of a precise test, the ADL estimates will often
indicate which simplification is not too costly
to impose.

For fast dynamics (where θ is close to zero),
it will be hard to distinguish between the LDV
and SC specifications—or, alternatively, it does
not make much difference which specification
we use. To see this, note that if the SC model
is correct, but we estimate the LDV model, we
are incorrectly omitting the lagged x variable
although it should be in the specification, but
with a constrained coefficient θβ. As θ goes to
zero, the bias from failing to include this term
goes to zero. Similarly, if we incorrectly esti-
mate the SC model when the LDV model is
correct, we have incorrectly included in the
specification the lagged x variable, with co-
efficient −θβ. Again, as θ goes to zero, this
goes to zero. Thus, we might find ourselves
not rejecting either the LDV or SC specifi-
cations in favor of the more general specifica-
tion, but for small θ it matters little. As θ grows
larger the two models diverge, and so we have
a better chance of discriminating between the
specifications.

This view is different from the conventional
wisdom on omitted-variable bias. It is normally
thought to be worse to incorrectly exclude
than to incorrectly include a variable. This

3The first test is an ordinary t-test. The second is easiest via
a linear approximation to the nonlinear constraint using a
Taylor series (Greene 2008, pp. 96–98); this test is imple-
mented in some common statistical packages such as Stata.
4Starting with the ADL model and then testing whether sim-
plifications are consistent with the data is part of the idea of
general-to-simple testing (also called the encompassing ap-
proach) espoused by Hendry and his colleagues (Hendry &
Mizon 1978, Mizon 1984). This approach could start with
a more complicated model with higher-order specifications,
but given annual data, the ADL model with no more than two
lags is often the most complicated specification that need be
considered.
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difference is because both models constrain the
coefficient of the lagged x, and so the SC model
“forces” the lagged x to be in the specification.
But if we start with the ADL model and then
test for whether simplifications are consistent
with the data, we will not be misled. This test-
ing of simplifications is easy to extend to more
complicated models, such as Equation 13b.

3. COMBINING DYNAMIC AND
CROSS-SECTIONAL ISSUES

Modeling dynamics with TSCS data is only
half the job; clearly analysts also need to model
the cross-sectional properties of the data. We
have discussed various cross-sectional issues for
TSCS data elsewhere (Beck & Katz 1995, Beck
2001). Here we discuss some issues that re-
late to the interaction of modeling dynam-
ics and cross-sectional issues. For reasons of
space, we omit discussion of dynamics with
discrete dependent variables (see Beck et al.
1998). Dynamics are no less important in mod-
els with discrete dependent variables, but the
recommended modeling is different for that
situation.

3.1. Independent Errors Simplify
Cross-Sectional Modeling

We have advocated modeling dynamics by in-
cluding appropriate current and lagged values
of the x’s and lagged values of the dependent
variable so that the resulting errors appear to
be serially independent, enabling easy inter-
pretation and estimation. This approach makes
it much simpler to model cross-sectional sit-
uations. Most standard programs that allow
for modeling complicated cross-sectional situ-
ations do not allow for temporally correlated
errors. Although this is a practical rather than
a theoretical issue, some estimation methods
are sufficiently complex that one really wants
to use a “canned” program (see Sidebar “Why
Not Just Correct the Standard Errors?”).

In particular, realistic political economy
models often should allow for spatial ef-
fects, that is, they should recognize that vari-

WHY NOT JUST CORRECT THE
STANDARD ERRORS?

Most standard programs that allow for modeling complicated
cross-sectional situations do not allow for temporally correlated
errors. Some researchers try to solve this problem by using sim-
ple models and then correcting the standard errors using some
variant of Huber’s (1967) “robust” standard errors. This is the
reasoning behind our recommendation to use PCSEs (panel cor-
rected standard errors) to deal with some difficult cross-sectional
complications of the error process. There are similar autocor-
relation consistent standard errors (Newey & West 1987). We
do not recommend these because failing to account for serially
correlated errors often leads to substantial inefficiencies in esti-
mation as well as incorrect standard errors; failing to account for
cross-sectional problems in the data is usually less serious. In any
event, users of our preferred methods have no need to resort to
autocorrelation consistent standard errors.

ables in one country impact other countries.
Models of the political causes of economic per-
formance, for example, must take into account
that the economic performance of any country
is a function of the economic performance of
its trading partners. These issues have been dis-
cussed in the context of TSCS data elsewhere
(Beck et al. 2006, Franzese & Hayes 2007), and
here we simply point out that our preferred
approach to dynamics makes it easy for ana-
lysts to deal with this critical cross-sectional
issue.

Another cross-sectional feature that should
be considered (see Beck & Katz 2007 and the
references cited there) is that parameters may
vary randomly by country, and possibly as a
function of country-level covariates. It is easy
to allow for this by using the “random coeffi-
cients model” (which is equivalent to a “mixed”
or “hierarchical” or “multilevel” model) if the
error process is iid. Note that one of the ran-
domly varying parameters can be that of the
lagged dependent variable, the parameter that
controls the speed of adjustment in the model.
Perhaps countries differ in that speed of adjust-
ment. As we see in Section 5.1, this issue is easy
to examine when errors are iid.
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3.2. Fixed Effects and Lagged
Dependent Variables

Perhaps the most common cross-sectional is-
sue is heterogeneity of the intercepts. In the
TSCS context, this is usually dealt with by
adding “fixed effects” (country-specific inter-
cepts) to the specification. We would adjoin
these country-specific intercepts to the pre-
ferred ADL specification. But here we get into
potential trouble, since it is well known that au-
toregressive models with fixed effects lead to bi-
ased parameter estimates (Nickell 1981). This
bias is induced because centering all variables
by country, which eliminates the heterogeneity
of the constant term, induces a correlation be-
tween the centered lagged dependent variable
and the centered error term.

It is also well known that this bias is of order
1
T , and almost all of the work on this prob-
lem has been in the context of small-T “pan-
els.” When T is 2 or 3, the bias is indeed severe
(50% or so). But when T is 20 or more, the bias
becomes small.

Various corrections for this bias are well
known. Most of them involve the use of in-
strumental variables, building on the work of
Anderson & Hsiao (1982). As is often the case,
it is hard to find good instruments, and so
the instrumental variable corrections often ob-
tain consistency at the price of rather poor fi-
nite sample properties. Other estimators (Kiviet
1995) are hard to combine with other methods
and hard to generalize to even non-rectangular
data sets.

We ran Monte Carlo experiments to com-
pare OLS estimation of a simple LDV model
with fixed effects to the Kiviet and Anderson-
Hsiao estimators (Beck & Katz 2009). For the
T ’s seen typically in TSCS analysis (20 or
more), OLS performs about as well as Kiviet
and much better than Anderson-Hsiao. Given
the advantages of the OLS method discussed
in the previous subsection, we do not hesitate
to recommend OLS when country-specific in-
tercepts must be adjoined to the specification
of a TSCS model. Judson & Owen (1999) give

similar advice following a similar discussion of
this issue.

4. NON-STATIONARITY IN
POLITICAL ECONOMY
TSCS DATA

Before we look at some examples, one topic
remains: what to do with non-stationary data.
During the past two decades, with the pioneer-
ing work of Engle & Granger (1987), time-
series econometrics has been dominated by the
study of non-stationary series. There are many
ways to violate the assumptions of stationar-
ity presented in Equation 2, but most of the
work has focused on the issue of unit roots
or integrated series in which shocks to the se-
ries accumulate forever. These series are long-
memoried; even distant shocks persist to the
present. The key question is how to estimate
models where the data are integrated (we re-
strict ourselves to integration of order one with
no loss of generality). Such data, denoted I(1),
are not stationary but their first difference is sta-
tionary. The simplest example of such an I(1)
process is a random walk, where

yi,t = yi,t−1 + νi,t, 15.

with νi,t being stationary by definition. Inte-
grated data look very different from data gener-
ated by a stationary process. Most importantly,
they do not have equilibria (because there is no
mean reversion), and the best prediction of an
integrated series many periods ahead is the cur-
rent value of that series.

There is a huge literature on estimating
models with integrated data. Such methods
must take into account that standard asymptotic
theory does not apply, and also that

lim
t→∞

Var(yi,t) = ∞. 16.

Thus, if we wait long enough, any integrated
series will wander “infinitely” far from its mean.
Much work on both diagnosing and estimating
models with integrated series builds on both
these issues. Our interest is not in the estimation
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of single time series but rather TSCS political
economy data.5

Political economy data is typically observed
annually for relatively short periods of time
(often 20–40 years). Of most relevance, dur-
ing that time period we often observe very few
cycles. Thus, although the series may be very
persistent, we have no idea if a longer time
period would show the series to be stationary
(though with a slow speed of adjustment) or
non-stationary. These annual observations on,
for example, GDP or left political control of
the economy are very different from the daily
observations we may have on financial rates. So
although it may appear from an autoregression
that some political economy series have unit
roots, is this the right characterization of these
series? For example, using Huber & Stephens’
(2001) data, an autoregression of social secu-
rity on its lag yields a point estimate of the
autoregressive coefficient of 1.003 with a stan-
dard error of 0.009; a similar autoregression of
Christian Democratic party cabinet participa-
tion yields 1.03 with a standard error of 0.001.
It does not take heavy-duty statistical testing to
see we cannot reject the null (that the autore-
gressive coefficient is one) in favor of the alter-
native (that it is less than one). But does this
mean that we think the series might be I(1)?

If these series had unit roots, they would
tend to wander far from their means, and the
variance of the observations would grow larger
and larger over time (a similar argument is made
by Alvarez & Katz 2000). But by definition both
the proportion of the budget spent on social se-
curity and Christian Democratic cabinet par-
ticipation are bounded between 0% and 100%,
which then bounds how large their variances
can become. Further, if either series were I(1),
then we would be equally likely to see an in-
crease or decrease in either variable regardless
of its present value. Do we really believe that
there is no tendency for social security spend-
ing to be more likely to rise when it is low

5There is a literature on panel unit roots (Im et al. 2003, Levin
et al. 2002), but at this point the literature is still largely about
testing for unit roots.

and to fall when high, or for Christian Demo-
cratic cabinet strength to exhibit a similar ten-
dency? In the Huber & Stephens data, social
security spending ranges only between 3% and
33% of the budget, and Christian Democratic
cabinet strength ranges between 0% and 34%.
Even though these series are very persistent,
they simply cannot be I(1). The impressive ap-
paratus built over the past two decades to esti-
mate models with I(1) series does not provide
the tools needed for many, if not most, political
economy TSCS datasets.

One possibility is to induce stationarity by
first differencing all slowly changing variables,
leading to a model that explains changes in y by
changes in x. In practice, first-difference mod-
els often perform poorly (at least from the per-
spective of the researcher, for whom changes in
x appear unrelated to changes in y). Modeling
first differences also throws out any long-run
information about y and x, so the effect of a
change in x is the same regardless of whether y
is high or low by historical standards.

Fortunately, the modeling issue is not really
about the univariate properties of any series
but the properties of the stochastic process
that generated the y’s conditional on the
observed covariates. Even with data similar
to Huber & Stephens’, the errors may appear
stationary and so the methods of the previous
section can be used. In particular, whether the
series are integrated or stationary but slowly
moving, they may be well modeled by the EC
specification (Equation 8), which, as we have
seen, is just an alternative parameterization of
the ADL model. The EC form is nice because
it combines the short-run first-differences
model with the long-run tendency for series to
be in equilibrium. If the estimated λ in the EC
specification is zero, that indicates that y and x
have no long-run equilibrium relationship. We
have already seen that if x and y are stationary,
they always have a long-run relationship, so this
is only a problem if the series are integrated.
In other words, if the series are stationary but
adjust very slowly, the EC (or equivalent ADL)
model is a good place to start, and if the series
are integrated, either the EC model will work
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(the series are said to be co-integrated) or the
residuals will appear highly correlated. Because
our preferred methodology chooses specifi-
cations with almost uncorrelated residuals, it
should never lead to choosing an incorrect EC
(or ADL) specification.

Why do we propose ignoring much of what
has dominated econometric argument for two
decades? First, economists study many series
(such as interest or exchange rates) that inher-
ently are in levels, and so are likely to be inte-
grated; variables in political economy are often
expressed as a proportion of GDP or the gov-
ernment budget and hence are much less likely
to be integrated. Other political variables, such
as party control of government, may be per-
sistent, but cannot possibly be integrated (they
take on values of zero and one only, and so have
neither infinite variance nor no tendency to re-
vert back toward the mean). A second differ-
ence is that economists have no theory about
whether one short-run exchange rate adjusts to
a second rate, or the second rate adjusts to the
first, or both; this leads to complicated estima-
tion issues. In many political economy mod-
els, it is clear that y adjusts to x but not vice
versa. We think that left governments increase
spending but we do not think that low spending
leads directly to a right-wing government (Beck
1992). Thus, even with highly persistent data,
the EC (or ADL) model, estimated by OLS, will
quite often work well, and, when it fails, simple
tests and a rigorous methodology will indicate
that failure.6

5. EXAMPLES

In this section we consider two examples
to explore the practical issues in estimating

6There is a slight technical problem in that the distribution
of the estimated λ is not normal if the series are not co-
integrated. Instead, they have a Dickey-Fuller type distribu-
tion, which has fatter tails. Thus, there may be some cases
where a standard test of the null hypothesis that λ = 0 yields
incorrect conclusions. But given the large n and T of TSCS
data, in many cases it is clear that the EC model is adequate
or not, and if we incorrectly assume stationarity, consistent
application of appropriate standard methods will indicate the
problem.

dynamics in political economy TSCS datasets.
The first example, presented in some detail,
looks at the political determinants of capital
taxation rates where adjustment speeds are
fairly slow. The second example, presented
more cursorily, looks at the impact of political
variables on the growth of GDP. In the GDP
example, where the dynamics are quite fast, the
specification choice has fewer consequences.
All computations were done using Stata 11.1,
with data kindly provided by Geoff Garrett.
Although our analysis is different from those
of Garrett & Mitchell, we began by easily
replicating their results.

5.1. Capital Taxation Rates

Our first example models capital taxation rates
in 16 OECD nations from 1961 through 1993
using the data and specification of Garrett &
Mitchell (2001).7 Obviously tax rates move
relatively slowly over time; the autoregressive
coefficient of tax rates is 0.77. Thus, although
tax rates are clearly stationary, it will take some
number of years for the system to get close to
fully adjusting; it takes about 2.65 years for any
shock to dissipate.

Before estimation, one should examine the
data to see whether there is sufficient within-
country heterogeneity to make TSCS analy-
sis meaningful, to see whether there appears to
be very much inter-country heterogeneity that
might need to be modeled, and to see whether
there are any temporal pattens, such as trends,
that need to be modeled. For the first two issues
a standard country-specific box plot of tax rates,
shown in Figure 2, is appropriate; for the third
question time-series plots by country, shown in
Figure 3, are more useful.

7The data set is not rectangular; some countries only report
tax rates for a portion of the period under study. In total there
were 322 observations after one drops missing data at the
beginning of a period (and omits observations with missing
lagged data so that all results pertain to the same data). The
extra lag in the ADLLDV2 model leads to the loss of the
first observation for each country, yielding 306 observations
for that estimation. This loss of data points is an additional
reason why analysts may not prefer this specification.
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Figure 2
Box plots of capital taxation rates by country, 1967–1992.

Whereas some countries (Austria,
Denmark, the Netherlands, and New Zealand)
show little if any variation in their tax rates, the
other countries show enough variation over
time to make a TSCS analysis of interest. There
is also some inter-country heterogeneity, with
France, Sweden, and the United Kingdom
having generally higher rates. Figure 3
shows that taxation rates in some countries
are strongly trending whereas others show
little trend; this figure also clearly shows the
beginning of period missingness pattern in the
data. A regression of tax rates on time shows a
trend of ∼0.33% (with a small standard error)
per annum in those rates. Thus, it appears
as though a TSCS analysis of these data is
sensible, and it may be the case that there will

be unexplained temporal and cross-sectional
heterogeneity. Following Garrett & Mitchell,
we mean-centered all observations by country
and year, which is equivalent to allowing for
year- and country-specific intercepts.8

8Of course one can only decide whether these year- and
country-specific intercepts are needed after a specification
is chosen, and because these intercepts are atheoretical, one
should attempt to find specifications where they are not nec-
essary. Alas, this is often impossible. Here the intercepts were
significant in all specifications. We might have preferred a
model with a time trend instead of year-specific intercepts,
but the difference between the two specifications was neg-
ligible, and we preferred to stay consistent with Garrett &
Mitchell. Obviously in actual research such decisions should
be made with care, and researchers should not simply do what
others have done before.
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Figure 3
Time-series plots of capital taxation rates by country.

Garrett & Mitchell (2001) wish to explain
capital taxation rates (this is only one of their
analyses) by variables related to the economy,
the demand for services, and political factors.
We work more or less with the Garrett &
Mitchell specification, dropping a few vari-
ables that were not substantively interesting
nor statistically significant in any specification.
We thus regress the capital tax rate (CAP-
TAX ) on unemployment (UNEM), economic
growth (GDPPC), the proportion of the pop-
ulation that is elderly (AGED), vulnerability of
the workforce as measured by low wage imports
(VULN), foreign direct investment (FDI), and
two political variables: the proportion of the
cabinet portfolios held by the left (LEFT ) and
the proportion held by Christian Democrats

(CDEM). Because we mean-centered all vari-
ables, there are no intercepts in the model.
Table 1 reports the results of the various dy-
namic estimations. All standard errors are our
recommended panel-corrected standard errors
(Beck & Katz 1995), which are easy to compute
with our recommended methodology.

The static model (not shown) is clearly in-
adequate; a Lagrange multiplier test for se-
rial correlation of the errors strongly rejects
the null hypothesis of serially independent er-
rors. Because the static model is nested in-
side both the LDV and SC models, standard
Wald tests (a t-test of either H0:ρ = 0 or H0:
βTAX L = 0) clearly show that the static model
can be rejected in favor of either of these two
models.
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Table 1 Comparison of SC, LDV, ADL, and ADLLDV2 estimates of Garrett & Mitchell’s (2001)
model of capital taxation in 16 OECD nations, 1967–1992 (country and year centered)

SC LDV ADL ADLLDV2

Variable β̂ PCSE β̂ PCSE β̂ PCSE β̂ PCSE
VULN −0.22 0.12 −0.10 0.07 −0.28 0.13 −0.33 0.14
FDI 0.51 0.26 0.37 0.21 0.59 0.26 0.48 0.28
UNEM −0.18 0.22 −0.34 0.14 −0.68 0.27 −0.68 0.30
AGED 1.42 0.51 0.35 0.24 0.26 0.71 −0.27 0.87
GDPPC −0.69 0.11 −0.62 0.12 −0.80 0.13 −0.81 0.14
LEFT 0.004 0.012 0.006 0.009 0.003 0.013 0.002 0.014
CDEM 0.018 0.022 0.015 0.012 0.015 0.025 0.031 0.024
TAXL 0.70 0.06 0.76 0.07 0.93 0.10
VULNL 0.21 0.14 0.24 0.15
FDIL −0.55 0.29 −0.56 0.31
UNEML 0.48 0.26 0.62 0.28
AGEDL 0.24 0.76 0.98 0.94
GDPPCL 0.29 0.12 0.36 0.14
LEFTL 0.005 0.013 0.004 0.014
CDEML 0.005 0.024 −0.010 0.025
TAXL2 −0.26 0.09
ρ 0.66

Abbreviations: ADL, autoregressive distributed lag; ADLLDV2, the ADL specification with a second lag of the dependent
variable; LDV, lagged dependent variable; PCSE, panel corrected standard errors; SC, first-order serially correlated error
model. See text for definitions of variables in the left-hand column.

But we must compare both the LDV and
SC specifications to the more general ADL
specification. Again, since both these specifi-
cations are nested inside the ADL specification
we can use standard Wald tests (in this case an
F-test of the null hypothesis that the coefficients
on all the lagged x’s are zero); that null is deci-
sively rejected, so the more general ADL spec-
ification is preferred.

The ADL specification still shows serial cor-
relation of the errors; a Lagrange multiplier test
of the null hypothesis of independent errors
shows we can reject that null of iid errors. (A
regression of the residuals from the ADL spec-
ification on the lagged residuals and all the other
independent variables has an R2 of 0.046, which,
multiplied by the number of observations in
that regression, yields a statistic of 14; since
this statistic is distributed χ2

1 , the null hypoth-
esis of independent errors is clearly rejected.)
As discussed in Section 2.5, we added a second

lag of capital taxation to the specification; re-
sults of estimating this specification are in the
ADLLDV2 columns. We cannot reject the null
hypothesis of independent errors for this re-
gression (χ2

1 = 1.1). The ADLLDV2 specifica-
tion is both statistically superior to the simpler
specifications and shows iid errors. There are,
of course, many other specifications that a sub-
stantive article would test (multiple speeds of
adjustment, for example), but we do not pursue
these here.

All the models show that a one-time unit
shock to the error process dies out exponentially
(or nearly exponentially for the ADLLDV2
model) with similar decay rates ranging from
24% to 34% per annum for the first three mod-
els; for the ADLLDV2 model, the initial de-
cay rate is only 7% in the first year but in-
creases to 33% (one minus the sum of the coef-
ficients on the lagged dependent variable) after
the first year. Given the standard errors on these
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coefficients, the decay rates are quite similar.
Thus, for example, a classical confidence inter-
val for the decay rate in the ADL model is (11%,
38%), and in the ADLLDV2 model after the
first year it is (17%, 49%).

Turning to the estimated effect of the vari-
ous independent variables (omitting the two po-
litical variables, which show almost no effect but
huge standard errors), recall that the SC speci-
fication assumes that the effect of the variables
is only instantaneous, the LDV model assumes
the effect decays geometrically, and the ADL
and ADLLDV2 models allow us to test those
assumptions. In those latter specifications, the
coefficients on the current and lagged values
of VULN and FDI are close in absolute value
and of opposite sign. Thus, the impact of those
variables on capital taxation rates is more or less
only instantaneous, and the ADL coefficient es-
timates of this instantaneous effect are similar
to the SC estimates but different from the LDV
estimates. Of course, the ADL specifications al-
low us to study the speed of adjustment, whereas
the SC specification just assumes instantaneous
adjustment.

The coefficients on UNEM and GDPPC and
their lags are of opposite sign but do not quite
offset each other. Here the ADL estimates are,
as we would expect, much closer to the LDV
estimates than to the SC estimates. But again,
we need not make the assumptions about de-
cay rates that the LDV specification imposes;
instead, we can examine what the decay pro-
cess looks like. Interestingly, and contrary to
Achen’s notion of the lagged dependent vari-
able “dominating” a regression, the coefficients
of all four of these substantive coefficients are
as large as or larger than the similar coefficients
in the SC specification.

The variable AGED determines tax rates in
the SC specification but fails to show any impact
in any of the other specifications. Intuitively,
although AGED perhaps “ought” to affect tax
rates, its coefficient in the SC specification
“seems” a bit large; would a one-point increase
in the aged population be expected to lead to
a more-than-one-point increase in capital taxa-
tion rates? Perhaps it is not so simple to discuss

which results “make sense,” and making sense
is hardly a statistical criterion. Note also that
AGED is itself highly trending (its autoregres-
sion has a coefficient of 0.93 with a standard er-
ror of 0.01). Although we can reject the null that
AGED has a unit root, it, like the capital tax rate,
changes very slowly. Thus, we might suspect
that the simple contemporaneous relationship
between the two variables is spurious (in the
sense of Granger & Newbold 1974). Of course
we cannot know the “truth” here, but it is not
obvious that the ADL (or LDV) results on the
impact of AGED are somehow foolish or wrong.

The moral so far is that researchers should
estimate a model flexible enough to account
for various types of dynamics; they should also
try hard to make sure that the error process is
close to iid. The ADLLDV2 model performs
very well here, both in terms of its passing var-
ious tests and its interpretability (with the sim-
pler ADL model being easier to interpret but
not quite passing the statistical tests). While no
specification will be good in all situations, it is
clear that researchers should not consider more
general specifications before accepting highly
constrained ones such as either the SC or LDV
model.

Our focus is on dynamics, but no TSCS
analysis is complete without a final assessment
of heterogeneity over countries. Remember
that our analysis uses country-centered data, so
there can be no heterogeneity in the various
centered means. But we can see if the model fails
to work for some subset of countries by cross-
validation (Stone 1974), leaving out one coun-
try at a time. Thus we reran the ADLLDV2
specification, leaving out one country at a time
and then using the estimated values to pre-
dict capital tax rates in the omitted country.
The mean absolute prediction error was then
computed for each country. For all observa-
tions, the absolute forecast error was about 2.3.
Four countries—Japan, Norway, Sweden, and
the United Kingdom—had mean absolute fore-
cast errors above 3.5, indicating at least some
lack of homogeneity. We do not pursue this is-
sue further here, but clearly this issue would be
pursued in a more complete analysis. (We also
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do not present other post-estimation analyses
that should be standard, such as residual plots
by countries.)

We also assessed heterogeneity by test-
ing for parameter heterogeneity (by country).
Here, since we focus on dynamics, we fit the
ADL specification allowing for the coefficient
of the lagged dependent variable (θ ) for each
country to be a random draw from a normal
distribution with zero mean. This allows us to
see whether the general speed of adjustment
varies by country. Results of this estimation re-
veal no statistically (or substantively) significant
parameter heterogeneity (on the lagged depen-
dent variable); the estimated standard deviation
on the normal from which the coefficients were
drawn was only 0.09.

The standard error of the estimated stan-
dard deviation was 0.07. A test of the null hy-
pothesis that θ does not vary by country yields
a statistic of 0.70; this statistic is χ2

1 , so far from
the critical value for rejection of the null. We
can look at the individual country estimates of
θ . Most are within 0.01 of the overall estimate
of θ , with only the coefficient for the United
Kingdom really differing; the estimated θ for
the United Kingdom is 0.11 under the over-
all estimate for θ , though with a standard error
of ∼0.07. Given all this, we prefer not to pur-
sue whether further investigation of the speed
of adjustment in tax rates in the United King-
dom is needed, but clearly this type of analy-
sis in other situations might prove extremely
useful.

5.2. The Growth of Gross
Domestic Product

Our second example relates to political econ-
omy explanations of the growth of GDP in 14
OECD nations observed from 1966 through
1990 (yielding 336 observations), using data
from Garrett (1998). Our treatment is cur-
sory for reasons of space. We use one of his
models, taking the growth in GDP as a lin-
ear additive function of political factors and
economic controls. The political variables are
the proportion of cabinet posts occupied by

left parties (LEFT ), the degree of central-
ized labor bargaining as a measure of corpo-
ratism (CORP), and the product of the lat-
ter two variables (LEFT x CORP). The eco-
nomic and control variables are a dummy mark-
ing the relatively prosperous period through
1973 (PER73), overall OECD GDP growth
(DEMAND), trade openness (TRADE), capital
mobility (CAPMOB), and a measure of oil im-
ports (OILD). All variables, following Garrett’s
use of country fixed effects, were mean centered
by country. As before, all standard errors are
panel corrected.

GDP growth appears stationary, with an au-
toregressive coefficient of 0.32. Thus, all spec-
ifications are expected to show relatively fast
dynamics, with quick returns to equilibrium.
Turning to models with explanatory variables,
results of estimating various specifications are
in Table 2.

The static model showed modest serial cor-
relation of the errors; a Lagrange multiplier
test showed we could clearly reject the null of
serially independent errors (χ2

1 = 8.6). Sub-
stantively, the serial correlation of the errors
is small (0.12), so the OLS results are similar
to the slightly more correct results in the two
dynamic specifications.

Given the rapid speed of adjustment (the co-
efficient on the LDV is 0.16), it is not surprising
that all three specifications show similar esti-
mates. Very few coefficients are significant in
any of the specifications, but the two variables
that show a strong impact in the static specifi-
cation continue to show a strong impact in the
two dynamic specifications.

The similarity of the SC and LDV estimates
is not surprising; because of the fast dynamics,
the two models are not really very different. Af-
ter one period, the various independent vari-
ables in the LDV specification have only 3%
of their original impact; the long-run effects in
the LDV specification are only 18% larger than
the immediate impacts. Thus, the two specifi-
cations are saying more or less the same things,
and the estimated coefficients are quite simi-
lar. Substantively, it appears as though GDP
growth in a country is largely determined by
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Table 2 Comparison of SC and LDV estimates of Garrett’s (1998) model of economic growth in
14 OECD nations, 1966–1990 (country centered)

Static SC LDV

Variable β̂ PCSE β̂ PCSE β̂ PCSE
DEMAND 0.007 0.0012 0.007 0.002 0.007 0.001
TRADE −0.018 0.019 −0.021 0.021 −0.019 0.019
CAPMOB −0.20 0.21 −0.25 0.23 −0.24 0.21
OILD −7.86 7.34 −6.69 7.89 −5.85 7.08
PER73 1.76 0.42 1.76 0.45 1.45 0.43
CORP 0.54 0.56 0.43 0.61 0.30 0.56
LEFT −0.075 0.17 −0.076 0.18 −0.062 0.17
LEFTxCORP 0.10 0.53 0.10 0.56 0.17 0.52
GDP_L 0.16 0.07
ρ 0.12

Abbreviations: LDV, lagged dependent variable; PCSE, panel corrected standard errors; SC, first-order serially correlated
error model. See text for definitions of variables in the left-hand column.

GDP growth in its trading partners, and poli-
tics appears to play little if any role.

Both specifications were tested against the
full ADL specification that contained all the
one-year lags of the independent variables.
Standard hypothesis tests do not come close to
rejection of the simpler SC or LDV models in
favor of the ADL model. Since the LDV and
AIC specifications are not nested, discriminat-
ing between them is not so simple. Because both
specifications have the same number of parame-
ters, discrimination using standard information
criteria (AIC or BIC) simplifies to comparisons
of goodness of fit, on which criterion both spec-
ifications perform almost equally well. This will
often be the case, since both the SC and LDV
specifications imply very quick adjustments to
equilibrium when the dynamic parameters are
near zero.

In summary, the data are consistent with
very short-run impacts, and it does not much
matter how we exactly specify those dynam-
ics. In terms of the Achen critique, there are
two predictors of GDP that are strong in the
SC model; they remain about equally strong in
the LDV model. As we have argued, there is
nothing about lagged dependent variables that
makes them “dominate a regression” or makes
“real” effects disappear. Given the nature of dy-

namics, this will always be the case when vari-
ables adjust quickly.

6. CONCLUSION

There is no cookbook for modeling the dy-
namics of TSCS models. Instead, careful ex-
amination of the specifications, and what they
entail substantively, can allow TSCS analysts
to think about how to model these dynamics.
Well-known econometric tests help in this pro-
cess, and standard methods make it easy to es-
timate the appropriate dynamic model. Mod-
eling decisions are less critical where variables
equilibrate quickly; as the adjustment process
slows, the various specifications imply more and
more different characteristics of the data. An-
alysts should take advantage of this to choose
the appropriate model, namely, one that implies
dynamics consistent with theoretical concerns.
The specification chosen should of course be
flexible enough to allow for testing against al-
ternative dynamic specifications.

Being more specific, we have provided evi-
dence that, contra Achen, there is nothing per-
nicious in the use of a model with a lagged de-
pendent variable. Obviously attention to issues
of testing and specification are as important
here as anywhere, but there is nothing about
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lagged dependent variables that makes them
generically harmful. As we have seen, there is
a variety of generic dynamic specifications, and
researchers should choose among them by us-
ing the same general methodology they use
in other cases. The ADL model (or its ADL2
complication) is a good place to start; at that
point, various specializations of the model can
be tested against this general specification. An-
alysts, should, of course, interpret the dynamic
results in substantive terms, focusing on long-
as well as short-run effects.

Instead of pushing dynamics into a compli-
cated error process that then must be “fixed
up” to allow for estimation, it is much better to
model the dynamics directly—that is, in terms
of observable variables. There are both theoret-

ical and practical advantages to this. The theo-
retical advantage is that dynamic issues become
much more than nuisances for estimation. The
practical advantage is that it is easy to estimate
models with (approximately) independent er-
ror processes via OLS, and easy then to esti-
mate these models with additional complicating
cross-sectional features.

There are many important features of TSCS
data, both in the temporal and spatial realms.
Both sets of features are interesting, and nei-
ther should be swept under the rug. Fortu-
nately, the econometrics involved with good
TSCS modeling are not difficult, and a clear eye
on specification and testing allows researchers
to find substantively interesting features of the
data.
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