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Large Heterogeneous
‘Panel Data Models

28.1 Introduction

the time dim T) is fixed, and assumes that conditional o
remaining hetero geneity over the cross-sectional units
ing either fixed o7 random

Panel datachlels introduced in the previous two chapters, 26

able characteristics,
through an additi

and inferences based upon them, and introduces models that explicitly allow for slope hetero-
geneity both in the case of static and dynamic panel data models. To deal with slope heterogene-
ity, particularly in the case of dynamic models, it is often hecessary to assume that the number
-of time series observations, T, is relatively large, so that individual equations can be estimated
- for each unit separately. Models, estimation and inference procedures developed in this and sub.-
Sequent chapters are more suited to large N and T' panels. Such panel data sets are becoming
Increasingly available and cover countries, regions, industries, and markets over relatively long
time periods, A
Despite the slope heterogeneity, the cross-sectional units could nevertheless share common
features of interest. For example, it s possible for different countries or geographical re ions
have different dynamics of adjustments %@ﬂmmmm%ﬁmg
HM . but the Y_could all converge to the same economic equilibrium-in-the vesy..
2grun, due to forces of arbjtrage and intemnnﬁdmn&ihlfeughdﬂtefnaﬁmmademd_cul-
& exchanges, Other examples include cases where slope coefficients'can be viewed as random
aWs from a distribution with a number of parameters that are bounded in N. Large number of
¢l data sets fit within this setup, where the cross-sectional units might be industries, regions,
Ountries, and we wi i i tterns of responses across otherwise heteroge-
U8 units. The parameters of interest may be intercepts, short-run coefficients, long-run coef-
S Or error varjances,
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This chapter deals with panels with stationary variables. The econometric analyses of panels
with unit roots and cointegration is covered in Chapter 31.

28.2 Heterogeneous panels with strictly exogenous regressors

Suppose that the variable y; for the i unit at time # is specified as a linear function of k strictly
exogenous variables, %t k=1,2,...,kintheform

k
yie =) Bttt + v (28.1)
k=1
= ﬁgtxit +uy i=12.. N, t=12,..,T,

- X
where 1 denotes the random error term, x;s is ak X 1 vector of exogenous variables and f3;; is the
k % 1 vector of coefficients. The above specification is very general and allows the coeflicients to
vary both across time and over individual units. As it is specified it is too general. It simply states
that each individual unit has its own coefficients that are specific to each time period. However,
as pointed out by Balestra (1996), this general formulation is, at most, descriptive, It lacks any
explanatory power and itis not useful for prediction. Furthermore, itis not estimable, as the num-
‘ber of parameters to be estimated exceeds the number of observations. For a model to become
interesting and to acquire explanatory and predictive power, it is essential that some structure is
imposed on its parameters.

One way to reduce the number of parameters in (28.1) is to adopt a random coefficient
approach, which assumes that the coefficients B ; are draws from probability distributions witha
fixed number of parameters that do not vary with N and /or T. Depending on the type of assump-
tion about the parameter variation, we can further classify the models into one of two categories:
stationary and non-stationary random-coefficient models.

The stationary random-coefficient models view the coefficients as having constant means and
variance-covariances. Namely, the k x 1 vector B, is specified as

:Bit=.3+"it) i=12...,N, t=12...,T, (28.2)

where f8 is a k X 1 vector of constants, and 7 is ak X 1 vector of stationary random variables
with zero means and constant variance-covariances. One widely used random coefficient speci-
fication is the Swamy (1970) model, which assumes that the randomness is time-invariant

By=B+m, i=12...,N, t=12...,T, (28.3)

and
E(n;) = 0, E(n;x;) =0, (28.4)
E(nn;) = { Sz’}’ i z;;’ (28.5)

Estimation and inference in the above specification are discussed in Section 28.4.
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Hsiao (1974, 1975) consider the following model

By=B+E&; (28.6)
=B+m+r i=12.. N t=12...,T

and assume

E(n) =E() = 0,E(gA}) =0, (28.7)
E(nx;) = 0,E(kix}) =0,

E(ﬂﬂ?}) = { 2y, i i=j

0, if i)
N o Ry, if i=j
HMM)*{ 0, if i#j

Alternatively, a time varying parameter model may be treated as realizations of a stationary
stochastic process, thus 8, can be written in the form,

By=PB=HB_;+38, (28.8)

where all eigenvalues of H lie inside the unit circle, and &; is a stationary random variable with
mean . Hence, letting H = 0 and §; be IID we obtain the model proposed by Hildreth and
Houck (1968), while for the Pagan (1980) model, H = 0 and

$i—p =28~ =A)e, (28.9)

where {_3 is the mean of B, and A(L) is a matrix polynomial in the lag operator L (with Le; =
€:—1), and €; is independent normal. The Rosenberg (1972), Rosenberg (1973) return-to-
normality model assumes that the absolute value of the characteristic roots of H be less than
1, with 5, independently normally distributed with mean g = (I — H)B.

The non-stationary random coefficients models do not regard the coefficient vector as having
constant mean or variances. Changes in coefficients from one observation to the n the
result of the realization of a nonstationary stochastic process or can be a function of exogenous
variables. When the coefficients are realizations of a nonstationary stochastic process, we may
again use (28.8) to represent such a process. For instance, the Cooley and Prescott (1976) model
can be obtained by letting H = I; and ¢ = 0. When the coefficients 8, are functions of

individual characteristics or time variables (e.g. see Amemiya (1978), Boskin and Lau (1990)),
we can let

By =Tqu + 1y (28.10)

While the detailed formulation and estimation of the random coefficients model depends on the
specific assumptions about the parameter variation, many types of random coefficients models
can be conveniently represented using a mixed fixed and random coefficients framework of the
form (see, for example, Hsiao, Appelbe, and Dineen (1992))
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it = 2V + Wity + vy i =12 N, = 1,2,...,T, 28.11)

where z;; and w;; are vectors of exogenous variables with dimensions £ and p respectively, ¥ isan
£ x 1 vector of constants, otz is ap X 1 vector of random variables, and uy is the error term. For
instance, the Swamy type model, (28.3), can be obtained from (28.11) by letting z;y = Wi =
x4, 7 = B, and @y = 1;; the Hsiao type model (28.6) and (28.7) is obtained by letting z; =
wi = X, Y = ﬁ, and ot = 1; + Ay the stochastic time varying parameter model (28.8) is
obtained by letting z; = X, Wi = xj, (H, L), ¥ = myand oy = A = 1By 8 — 1)’}
and the model where B, is a function of other variables is obtained by letting 2, = X ® Q)
V' = vec(I'), wir = Xy, iy = Ty €LC.

In this chapter we focus on models with time-invariant slope coefficients that vary randomly
or freely over the cross-sectional units, We begin by considering the implications of neglecting
such heterogeneity on the consistency and efficiency of the homogenous slope type estimators
such as fixed and randoni‘effe¢ts models.

28.3 Properties of pooled estimators in heterogeneous paneis

To understand the consequences of erroneously ignoring slope heterogeneity, consider the fol-
~ lowing panel data model, where, for simplicity of exposition, we set k=1

yit = Wi + Bxie + ity 28.12)

uz ~ 11D (O , Gﬁ) ,and p; are unknown fixed parameters. The coefficients, B;, are allowed to vary
freely across units but are otherwise assumed to be fixed (over time). It proves useful to decom-
pose f; into a common component, B, and a remainder term, 7;, that varies across units:

Bi=pB+n: (28.13)

The nature of the slope heterogeneity can now be characterized in terms of the properties of
1, in particular where there is systematic dependence between 7; and the regressors &y and an
additional regressor zj.

Consider an investigator that ignores the heterogeneity of the slope coefficients in (28.12),
and instead estimates the model

yit = o + St + 8zzit + vity (28.14)

where z is an additional regressor spuriously thought to be important by the researcher.
To simplify the derivations we make the following assumptions:
Assumption H.1: 1 is serially uncorrelated and distributed independently of u;; for all i 5 j,
with variance 0 < 0? < K.
Assumption H.2: wi = (i, zy)" is distributed independently of uyy, for all i, t and ¢/,
Assumption H.3: w;; follows a covariance stationary process with the covariance matrix, ;,

Q= < Wi Dinz >, (28.15)
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such that
1 N
B(®) = lim <N ; SZ,-), (28.16)

is a positive definite matrix. .

Assumption H.4: For each t, wy is distributed independently across i.

Note that not all the above assumptions are necessary when both N and T are sufficiently
large. For example, assumption H.4 is not needed when T is sufficiently large. Assumptions H.1
and H.3 can be relaxed when T is small. It is also worth noting that assumption H.3 does not
require the correlation matrix of the regressors for all i to be nonsingular, only that the ‘pooled’
covariance matrix, E(£2;), defined by (28.16), should be nonsingular.

In matrix notation, (28.12) and (28.14) can be written as

¥i = T+ Bxi 4wy, (28.17)

and

Vi =oTr + Wi + v, (28.18)

respectively, where

Yi = (}’il;}’il: e inT)/; Tr = (1; Lo 1)I1 X; = (xilz X2y )xiT)/;
w = (w1, up, ..., uiT)ll § = (0, 5Z)I;

and
X1z Vi1
X2 Zn Via
W, = . . ) Vi =
T AT LT

The fixed-effects (FE) estimators of the slope coefficients in (28.18) can be written as

~ N -1 N
SFE = < gxii ) = <ZW:MTW,> <ZW,{MT}7,-), (28.19)
z‘ i=1

i=1

where Mr= It — t7(t%71) " 7/ Under (28.17) we have
T T

N -1 N
s 1 , 1 , 1 ,
Opp = <]—\]-% ;W‘-MTWl) [ﬁ Z (WiMTXi) :61' + JV'I—" iil WiMTll,' . (28.20)

i=1

! The fixed-effects estimator in (28.19) assumes a balanced panel, But the results readily extend to unbalanced panels.
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It is now easily seen that under Assumptions H.1-H.4 and for N and/or T sufficiently large

N
1 W;MTu,- )
— — —— ) =0 28.21
= ?:1 ( - , 8.21)

P . i . . .
where 2> denotes convergence in probability. To see this, note that since u; are cross-sectionally
independent and wy are strictly exogenous, then we have

N N
1 W/Mru; 1|1 WMIW;
Vol Ly (Wira) | L L o (WIMIWLY |
(555 - w5 D%
Also, under Assumptions H:l and H.3, 0',-2 and E (T— 1W{MTWi) are bounded and as a result
N
1 WMy
Var| =S (=== | >0
. [N > ( : ,
if Nand/or T — 00. Also, under strict exogeneity of wy, E (T_ 1WI{MTu,-) = 0, for all {, and
the desired resultin (28.21) follows.
Using (28.21) in (28.20) we now have
N -1 N
. W/MTW; WiMrx;
Plim 8zr) = | Plim — Dl ———— 8| (@822
imN, T— 00 (O FE) { it (; NT )} m [; ( NT Bi (28.22)

In the case where the slopes are homogenous, namely ; = B, we have

Plim(§pp) = ( ’g ) . (28.23)
Consider now the case where the slopes are heterogenous. Using the above results, it is now
easily seen that the consistency result in (28.23) will follow if and only if
N

N 7] 1 /
W Mrx; == > L xMrx); )
> < iniat) ‘) n={ N 2‘1\71 j i) &, (28.24)
NT T i1 ZMTXM,

j=1 t

This condition holds under the random coefficient specification where it is assumed that 77;’s are
distributed independently of wy for all i and £. (See below and Swamy (1970)). Under Assump-
tion H.3 and as T — 00 we have

g 1 & »
— Y (gMrx) 1 — = ) Wil = 0
NT ; f i)~y ; ixx 11 f
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and

1 N 1 N P
NT (z:Mrx;) n; — N ; Wizx7; — 0.

i=1

Therefore, for the fixed-effects estimator, (28.19), to be consistent we must have

N N

1 yd 1 p

1_\; } Wixe?); —> 0, and JTT E Wiy —> 0, (28.25)
=1 i=1

as N —> 0o. Namely, any systematic dependence between 8; and the second-order moments of
the steady state distribution of the regressors wi must also be ruled out. When the conditions

in (28.25) are not satisfied, the inconsistencies of the fixed-effects estimators (for T'and N suffi-
ciently large) are given by?

Cov(Wig ni)E(wizz) — E(Wixz) Cov(wiy, )
E(@ix) E(Wizz) — [E(wixz)]z
Cov(wixz, ﬂi)E(a)ixx) — E(ixz) Cov(wiy )
E(0is) E(@zz) — [Bwinz)]*

Plim(gx,FE -B) =

, (28.26)

Plim(8, px) = . @8.27)

where
1 1
Cov(wixx, 1;) = Plimn.o0 (f\]ﬂ Zl wixxﬁf) s Cov(Wing M;) = Plimn-s 0 <ﬁ Zl wz‘xz’?f) )
1Y ) g )
E(wixe) = Nl_igloo (ﬁ ; wixx) ) E(wizz) = ngnoo <N ; wizz) ) . (282g)

N
1
E(winy) = Nlimoo <N E wixz) .
i1

The above results have a number of interesting implications:

X

1. The FE estimators, 5 xpE and Sz,FE; are both consistent if
Cov(wiyz, 771‘) = Cov(Wjyy, n) = 0. (28.29)

Clearly, these conditions are met under slope homogeneity. In the present application
where the regressors are assumed to be strictly exogenous, the fixed-effects estimators con-
verge to their true values under the random coefficient model (RCM) where the slope
coefficients and the regressors are assumed to be independently distributed, Notice, how-
ever, that since the B;'s are assumed to be fixed over time, then any systematic depen-

2 Notice that under slope heterogeneity the fixed-effects estimators are inconsistent when N is finite and only T — o0.
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dence of 7; on'wy; over time is already ruled out under model (28.12). The random coeffi-
cients assumption imposes further restrictions on the joint distribution of 7; and the cross-
sectional distribution of w;;.

2. The FE estimator of §, is robust to slope heterogeneity if the incorrectly included
regressors, zy, are on average orthogonal to xy, namely when E(wi,) = 0, and if
Cov(wixz, ;) = 0. However, in the presence of slope heterogeneity, the FE estimator of
8, continues to be inconsistent even if z; and w; are on average orthogonal. The direction
of the asymptotic bias of Sx)pE depends on the sign of Cov(wjy, 1;). The bias of Sx‘FE is
positive when Cov(@ixy, ;) > 0 and vice versa.3

3. In general, where E(a),xz) # 0 and Cov(wix, 1;) # 0 and/or Cov(wiw, 1;) # 0, the
fixed-effects estimators, 5 xFE and SZ zE, are both inconsistent.

In short, if the slope coefficients are fixed but vary systematically across the groups, the appli-
cation of the general-to-specific methodology to standard panel data models can lead to mislead-

ing results (spurious mference) Animpottant example is provided by the case when attempts are
made to check for the presence.of nonlinearities by testing the significance of quadratic terms in,

static panel data models using ﬁxed effects estimators. Ip the context of our simple specification,

this would involve setting z;; = xtt, and a test of the significance of z; in (28.14) will yield sen-
sible results only if the conditions defined by (28.29) are met. In general, it is possible to falsely
reject the linearity hypothesis when there are systematic relations between the slope coefficients
4fid the cross-sectional distribution of the regressors. Therefore, results from nonhneanty tests
i panel data models should be interpreted with care. The linearity hypothesis may be rejected
not because of the existence of a genuine nonlinear relationship between y; and x;, but due to
slope heterogeneity.
Finally, it is worth noting that since the ;s are fixed for each i, the nonlinear specification

it = 0 -+ Syt + 8% + vy, (28.30)

cannot be reconciled with (28.29), unless it is assumed that B; varies proportionately with ;.
Clearly, it is possible to allow the slopes, f;, to vary systematically with some aspect of the
cross-sectional distribution of ;; without requiring ; to be proportional to #;;, and hence time-
varying, For example, it could be that

Bi=7vo+ V¥ (28.31)

where % = T Zthl xy. This specification retains the linearity of (28.29) for each i, but can
still yield a statistically significant effect for x% in (28.30) if slope heterogeneity is ignored and
fixed-effects estimates of (28.30) are used for inference. This feature of fixed-effects regressions
under heterogeneous slopes is illustrated in Figure 28.1. The figure shows scatter points and
associated regression lines for three countries with sIopesthat differ systematically with x;. It is
clear that the pooled regression based on the scatter points from all three countries will exhibit
strong nonlinearities, although the country-specific regressions are linear.

3 Notice that E(wiyx)E(@izz) — (B(wie))* > 0, unless wy and zy¢ are petrfectly collinear for all i, which we rule out.
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country 1

Figure 28.1 Fixed-effects and pooled estimators.

Example 63 One interesting study illustrating the importance of slope heterogeneity in cross coun-
try analysis is the analysis by Haque, Pesaran, and Sharma (2000) on the determinants of cross-
country private savings rates, using a subset of data from Masson, Bayoumi, and Samiei (1998)
(MBS), on 21 OECD countries over 19711993, MBS ran FE regressions of

PSAV' :  the private savings rate, defined as the ratio of aggregate private savings
to GDP;

on the explanatory variables

SUR  :  the ratio of general government budget surplus to GDP; .
GCUR  :  the ratio of the general government current expenditure to GDP;
GI : theratio of the general government investment to GDP;
GR : GDP growth rate; ‘
RINT : real interest rate;
INF : inflation rate;
PCTT :  percentage change in terms of trade;
YRUS : per capita GDP relative to the U.S.;
DEP :  dependency ratio, defined as the ratio of those under 20, 65 and over
to those aged 20-64;
W+ ratio of private wealth (measured as the cumulative sum of past
nominal private savings) to GDP.

x ™

Table 28.1 contains the FE regression for the industrial countries. We refer to this specification as
model Mo. The estimates under ‘model My’ in Table 28.1 are identical to those reported in column

1 of Table 3 in MBS (1998), except for a few typos. Apart from the coefficient of the GDP growth
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rate (GR), all the estimated coefficients are statistically (some very highly) significant, and in par-
ticular suggest a strong quadratic relationship between saving and per-capita income. However, the
validity of these estimates and the inferences based on them critically depend on the extent to which
slope coefficients differ across countries, and in the case of static models, whether these differences
are systematic. As shown above, one important implication of neglected slope heterogeneity is the
possibility of obtaining spurious nonlinear effects. This possibility is explored by adding quadratic
terms in W, INF, PCTT, and DEP to the regressors already included in model Mo, Estimation
results, reported under ‘model My’ in Table 28.1, show that the quadratic terms are all statistically
highly significant. While there may be some a priori argument for a nonlinear wealth effect in the
savings equation, the rationale for nonlinear effects in the case of the other three variables seems less
clear. The quadratic relationships between the private savings rate and the variables W, PCTT,
and DEP are in fact much stronger than the quadratic relationship between savings and per capita
income that MBS focus on. The R? of the augmented model, 0.801, is also appreciably larger than
that obtained for model Mo, 0.766, A similar conclusion is reached using other model selection cti-
teria such as the Akaike mfarmatzon criterion (AIC) and the Schwarz Bayesian criterion (SBC)
also reported in Table 28.1. As an alternative to the quadratic specifications used in model My, the
authors investigate the possibility that the slope coefficients in each country are fixed over time, but
are allowed to vary across countries linearly with the sample means of their wealth to GDP ratio or
their per-capita income. More specifically, denote the vector of slope coefficients for country i by B,
and define

T T
Wi=T")> Wy and YRUS; = T~ > “YRUS;.
1=1 t=1
Then, slope heterogeneity is modelled by
ﬁl’ = ﬂo ‘l“ ﬂ()lWi + ﬁozYRUSi. (2832)

Substituting the above expression for B; in the FE specification, yields
it = i + Boxit + Boy W) + Bop (ki YRUS)) + ui
where yi = PSAVy,
x4 = (SURy, GCURy, Glit, GRy, RINT, Wy, INFit, PCT Ty, YRUSy, DEPy)'.

The estimated elements of Bo, Boy, and B, together with their t-ratios are given in Table 28.2.
Apart from the coefficient of the SUR variable, all the other coefficients show systematic variation
across countries. The coefficient of the SUR variable seems to be least affected by slope heterogeneity,
and the hypothesis of slope homogeneity cannot be rejected in the case of this variable. However, none
of the other estimates is directly comparable to the FE estimates given in Table 28.1. In particular,
the coefficients of output growth variables (GRy; and GRy W) are both statistically significant,
while this was not so in the case of the FE estimates in Table 28.1. Care must also be exercised when
interpreting these estimates. For example, the results suggest that the effect of real output growth on
the savings rate is likely to be higher in a country with a high wealth~GDP ratio. Similarly, inflation
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Table 28.1 Fixed-effects estimates of static private saving equations, models Mg and M
(21 OECD countries, 1971-1993)

Model My Model My
Regressors  Linear Terms  Quadratic Terms  Linear Terms  Quadratic Terms
SUR ~—0.574 - ~0.58 -
(~9.39) - (—10.30) -
GCUR —0.467 - —0.521 -
(—11.30) - (—13.39) -
GI —0.603 - —0.701 -
(=871) — (—6.92) —
GR —0.060 - —0.065 -
(—1.14) - (—1.33)
RINT 0.212 — 0.281
(4.40) - (5.90)
w 0.023 - 0.175 —0.00025
(5.11) - (8.38) (—7.69)
INEF 0.180 = —0.041 0.011
(4.63) (—0.53) (3.29)
PCIT 0.047 0.063 —0,0013
(3.07) (4.11) (—2.81)
YRUS 0.586 —0.0048 0.286 —0.0026
(341) (—3.90) (1.70) (—2.15)
DEP -0.118 - ~1.201 0.0073
(—4.12) (—525) (4.85)
& 0.766 0801
G 2.325 2.145
LL —-1076.4 —1038.3
AIC —1108.4 -1071.3
SBC —1165.3 —1146.5

*The dependent variable (PSAV) is the ratio of private savings to GNP. Model Mg is the specification
estimated by Masson et al. (1998), see column 1 of Table 3 in that paper. The figures in brackets are
t-ratios, R is the adjusted multiple correlation coefficient,  is the standard error of the regression; LL is
the maximazed value of the log-likehood function; AIC is the Akaike information criterion, and SBC is
the Schwarz Bayesian criterion.

effects on the savings rate are estimated to be higher in countries with higher wealth to GDP ratios,
However, these results do not predict, for instance, that an individual countrys savings rate will
necessarily tise with output growth.

For further discussion on the consequences of ignoring parameter heterogeneity see, for
example, Robertson and Symons (1992) and Haque, Pesaran, and Sharma (2000).

28.4 The Swamy estimator

Consider the panel data model

Vit = ﬂ;xit + uy, (28.33)
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Tahle 28.2 Fixed-effects estimates of private savings equations
with cross-sectionally varying slopes, (Model M2), (21 OECD
countries, 1971-1993)

Regressors ﬁ 0 ,[3 01 ﬁ 02
SUR —0.625 - -
(—12.10)
GCUR —1.146 0.0022 -
(—6.91) (4.26)
GI —1.891 0.0039 -
(—2.44) (1.60)
GR —0.744 0.0023
(—2.69) (2.71) -
RINT 0417 - —0.0052
- v (4.36) - (—3.53)
w 0.119 -0,00033 -
- (5.28) (—4.70) -
INF —0.860 0.0031 -
(—5.29) (6.29)
PCTT —0.214 0.00083 —
(—1.88) (2.30)
YRUS 1.435 ~0.0046 -
(6.31) (—6.72)
DEP 0.502 —0.0021 —
(2.54) (—3.39
R 0.838
I 1,934
LL —982.9
AIC —1022.9
SBC —1106.5

*See the notes to Table 28.1

under the Swamy (1970) random coefficient scheme (28.3), where n; satisfies assumptions
(28.4)-(28.5). For simplicity, we also assume that wy is independently distributed across i and
over t with zero mean and Var (uy) = oriz. Substituting B; = B + 1; into (28.33) we obtain,
using stacked form notation,

i, =X + vy,
where the composite error, vy, is given by
vi = X1 + &;.
Stacking the regression equations by cross-sectional units we now have

y=XB+v,

where
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where
Y1 X. V]
Y2 X, va
y = . , X = . yand v =
YN. XN, VN.

Suppose we are interested in estimating the mean coefficient vector, 8, and the covariance matrix
ofv, Z, given by

2 0 0
0 2 0

= E (VV/) = . : ’
0 0 Z‘.N

where
T =Var (v) = o?Ir + X, 2,X,.

For known values of £ and o2, the best linear unbiased estimator of B is given by the general-
ized least squares (GLS) estimator, known in this case as the Swamy estimator

Baw = (XT71%) 7 X5 Yy,
N -1 N
i=1 i=1
It is easily seen that (under the assumption that R, is nonsingular) (see property (A.9) in

Appendix A)

Note that X! exists even if 2, is singular. In general we can write*

Ir X XX, ¢
E-—l —_ _l in Jenl/) (Ik+ i, M. szn> i,

i 5
of o} o} o

which is valid irrespective of whether &, is singular or not. Let

XX, Xy
5 QT = 27
Toy To;
11
Hir = Qir + ?Sln .

Qir =

4 In formula (A.9), [etX = X2y, Y ::X,/», C= (%—, and D = ¥, then the desired result follows.
i
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Then

X_{_E;ﬁ = Qr — QrH7 Qiry
and

)_QL%I—YI_ = qr — QrH; -

It follows that the Swamy estimator can also be written as

N -1 N
Bow = {}: (Qr— QrHy cw)] > (ar — QrHip gir)- (28.34)
. i=1

i=1

By repeatedly utilizing the identity relation (A.9) in Appendix A, we obtain

_ N
Bsw = Z RiB,
i=1
where
N -1 i -1
R = [ (2 +2 ;) } (2 + %) (28.35)
=1
and
Bi= (XiX) Xy, B = Var(B)) = 07 OGX) T (28.39)

expression (28.34) shows that the Swamy estimator is a matrix weighted average of the least
squares estimator for each cross-sectionalunit (28.36), with the weights inverwfggo‘r_tjg)gal
o their covariance matrices. It also shows that the GLS estimator requires only a matrixinversion
of order k, and so it is not much more complicated to compute than the sample least squares

estimator.
The covariance matrix of the SW estimator is

- N -1 N -1
Var (ﬁsw) = (Zx,fz,.’lx,) = [Z (szn + % ,}i)_l] . (28.37)
=1 i

i=1

If errors u; and 7; are normally distributed, the SW estimator is the same as the maximum like-
lihood (ML) estimator of § conditional on £, and o2, Without knowledge of §, and o? we
can estimate 3, @, and U,-Z, i = 1,2,...,N simultaneously by the ML method. However, it

can
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can be computationally tedious. A natural alternative is to first estimate X;, then substitute the
estimated ¥; into (28.37).

Swamy proposes using the least squares estimator of 8;, ﬁ,- = (X{X;)"'X]y; and the resid-

uals 0;, = y; — X; f3; to obtain consistent estimators ofoiz, fori = 1,...,N,and 2. Noting
that

i, = [Ir — X, (X[ X)X Juy, (28.39)
and
B =B+ X X)) X/u;, (28.39)

we obtain the unbiased estimators of crl.2 and £, as

I\/ l\.
6 = Ll (28.40)
T—k
1
= —’IT——ky‘/ (I — X (X X)X Iy,
1 N
" A
=g (B Lh) (b= )
N -1
1 XX,
— =Y 57 XX . (28.41)
TN T

Just as in the error-components model, the estimator (28.41) is not necessarily non-negative
definite. In this situation, Swamy has suggested replacing (28.41) by

N N
A K ]. ~ -1 A A~ -1 A /
=g BN BB -NTR). e
i=1 =1 j=1
-
This estimator, although biased, is nonnegative definite and consistent when T tends to infinity.

For further discussion on the above estimator see Swamy (1970), and Hsiao and Pesaran
(2008).

28.5 The mean group estimator (MGE)

One alternative to Swamy’s estimator of B in equation (28.33) is the mean group (MG) esti-
mator, proposed by Pesaran and Smith (1995) for estimation of dynamic random coefficient
models. The MG estimator is defined as the simple average of the OLS estimators, 8;

1 N
.BMG: N;ﬁp
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where

ﬁi = (X:'.Xi-)_l X;y;.

G estimation is possible when both T and N are sufficientlylarge, and is applicable irre

of whether the slope coefficients are random 1 (in Swamy's sense), Qiﬁfxgmwthe.sense_that.the.
diversity in the slope coefficients across cross sectional units cannot be captured by means of

a finjte parameter probability distribution. To compute the variance of the MG estimator, first

note that

Bi=B+mn+&,
where
h .= (Xl{.Xi~)—1Xl{.ui~’
Brc=B+1+E, (2849)
and
1S L 1
= N;’?p §= N;E,

Hence, when the regressors are strictly exogenous and the errors, uy, are independently dis-

i | ()"
=1
An unbiased estimator of the covariance matrix of /,\3 Mg can be computed as
A 1 N o, ~ ~ ’
o {ba) = iy 3o =) (-
ar \ By N D ; B ﬁMG) <ﬂ ﬂMG)

For a proof, first note that

tributed, the variance of B¢ is

Var <B MG) Var () + Ve

Bi — Buc = (”i—ﬁ)_l"(gi._’E)’
(.B ﬁMG) <ﬂ ﬂMG) = (ﬂi —ﬁ) (ﬂf —ﬁ)/ + (Ei. —§> <§i. —E)/
+ (n; “ﬁ) (51 - §>/ + <E1 _g> (m; _—77)/:

and

M=

T
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and

g:E [(ﬁ,- - ﬁmg) <l§,~ - BMG)I:! = (N - D)2, + <1 _ %}.) iG?E [(x;xf,)“],

functions of W; and/or YRUS; (see equation 28.32), and that the error variances, Var(u) = Uiz,
are the same across countries. Clearly, these are rather restrictive assumptions, and the consequences
of incorrectly imposing them on the parameters of interest need to be examined. Under the alterna-
tive assumption of unrestricted slope and error variance heterogeneity, MG estimates can be com-
puted as simple averages of country-specific estimates from country-specific regressions and can then
be used to make inferences about E(B;) = . Results on country-specific estimates and MG esti-
mates are surnmarized in Table 28.3. The estimated slope coefficients differ considerably across
tly dis- countries, both in terms of their magnitude and their statistical significance. Some of the coefficients
arestatistically significant only in the case of 3 or 4 countries and in general arevery poorly estimated,
This is true of the coefficients of GI, GR, W, PCT'T, and YRUS. Also the sign of these estimated coef-
ficients varies quite widely across countries. The coefficients of RINT and INF are better estimated,
but still differ significantly both in magnitude and in sign across the countries. Only the coefficients
of SUR and GCUR tend to be similar across countries. The coefficient of SUR is estimated to be
negative in 19 of the 20 countries, and 13 of these are statistically significant. The positive estimate
obtained for New Zealand is very small and not statistically significant. S imilarly, 17 out of 20 coef-
ficients estimated for the GCUR variable have a negative sign, with 7 of the 17 negative coefficients
statistically significant. None of the three positive coefficients estimated for GCUR is statistically
significant. The MG estimates based on the individual country regressions in Table 28.3 support
these general conclusions. Only the MG estimates of the SUR and the GCUR variables are statisti-
cally significant (see the last two rows of Table 28.3). At ~0.671, the MGE of the SUR variable is
only marginally higher than the corresponding FE estimate in Table 28.2 that allows for some slope
heterogeneity.

|
|
_a,tihefc L ' Using the above results it is now easily seen that
ans o
T, first e /a o
\ E [Var <ﬂMG>] = Var (:BMG> ’
‘ as required. For a further discussion of the mean group estimator, see Pesaran and Smith (1995),
! and Hsiao and Pesaran (2008).
} Example 64 Continuing from Example 63, Haque, Pesaran, and Sharma (2000) further investigate
l the determinants of cross country private savings rates by carrying out a country-specific analysis,
) The FE regression in Table 28.2 assumes that the slope coefficients across countries are exact linear
(28.43
?
\

28.5.1 Relationship between Swamy’s and MG estimators

The Swamy and MG estimators are algebraically equivalent when T is sufficiently large. To see
this, consider By in equation (28.34), and note that

~ 1 -1 B ' T
HiTl = (Q_iT + 71:5271 1) = Q;TI (Ik + ;l—_'ﬂn lQ_iTI> .
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Table 28.3 Country-specific estimates of ‘static’ private saving equations (20 OECD countries, 1972-1993)

Country SUR CCUR GI GR RINT W INE PCIT YRUS DEP
Australia —-081 ~—0.18 —1.00 008 018 006 027 004 042 046
[0.18] [0.27] [041] [0.08] [0.08] [0.02] [0.09] [0.03] [0.17] [0.22]

Austria ~048 —042 035 006 024 0004 0.09 011 —010 —0.03
[0.s6] [0.40] [0.84] [0.32] [032] [0.05] [054] [0.16] [0.24] [0.21]

Belgium —0.68 —0.53 =247 009 —004 —0.02 —0.10 —0.00 017 —022
[023] [0.15] [1.51) [o.a1] [o.a4] [o0.03] [0.13] [0.02] [0.09] [0.35]

Canada —131 —056 101 024 010 ~003 029 017 007 —017
[0.10] [0.14] [(1.03] f0.09] [0.08] [0.04] [0.09] [0.0s] {0.2] [0.12]

Denmark —1.08 —0.64 036 003 —020 —001 010 002 014 —117
[o.1s] {0.22] [o0.80] [0.2s] [0.20] [0.03] [029] [0.05] [0.24] [0.36]

Finland —-070 —0.35 087 014 040 003 052 00l 002 —039
[0.16] [021] [I'se] [0.20] [0.8] [003] [022] [0.02] [0.19] [0.52]

France —145 —078 =313 010 -0.16 —0.04 —022 —0.06 012 —0.16
[0.51] [0.52] [2.00] {[023] [0.18] [0.10] [024] [0.08] [0.12] [043]

Germany —0.80 -—054 —018 019 -006 000 002 —001 —0.10 =—028
) {0.35] [0.28] [o0.71] {o.18] [0.17] [0.03] [0.25] [0.0S] [0.20] [0.11]

Greece —069 —029 =113 015 123 010 105 —049 —087 152
. [0.451 T[o0.71] [1.65] [0.34] [0.58] [0.05] [063] [027] ([129] [1.24]
Ireland —048 —050 133 —008 —071 -013 -0.88 032 079 114
[0.29] [0.14] [1.18] [0.14] [0.28] [0.06] [022] [o.11] [024] [0.35]

Italy —046 005 —016 013 012 -000 009 -000 —0.12 032
: [0.18] [0.21] [0.48] [0.as] [0.i1] [0.03] [0.13] [0.04] [015] [0.19]
Japan -058 —079 —098 —0.14 —005 0.04 001 004 —006 022

[021] [031] [0s50] [0.2] [0.16] [0.03] [0.09] [0.01] [0.08] [0.32]
Netherlands ~ —0.75 —0.43 —150 —005 009 012 =—037 006 030 022
[0.33] [0.33] [2.64] [0.20] [0.28] [0.05] [027] [0.15] [026] [0.39]

NewZealand [0.02] =054 —122 —012 —0.07 002 —020 007 —046 024
[029] [045] [0.78] [0.22] [0.20] [0.03] [0.19] [0.07] [033] [0.18]

Norway —022 013 —015 —006 002 =007 —004 023 012 —0.16 .
[0.51] [0.66] [0.61] [046] [0.51] [0.05] [0.60] [0.07] [031] [0.64]
Portugal —100 -057 291 060 047 —007 064 021 —072 016
[020] [0.32] [1.64] [024] [020] [0.05] [0.19] [0.13] [037] [041]
Spain —018 =006 136 —00l 007 —009 011 018 —078 —028
[0.55] [0.59] [1.58] [031] [0.38] [0.05] [042] [0.2] [032] [057]
Sweden —084 —096 —254 —053 024 005 =002 009 000 022
[0.11] [020] [1.49] [030] [0.23] [0.05] [023] [0.10] [022] [0.81]
Switzeland ~ —022 —009 036 —026 002 006 021 —004 —0.06 —059
[0.50] [016] [076] [013) [0.14] [0.03] [0.11] [0.5] [0.12] [0.09]
UK —072 003 —079 037 018 —004 021 001 —025 034
[0.12] [0.10] [0.34] [009] [0.08] [0.03] [0.08] [0.04] [0.15]) [0.15]
Average —0.671 —0401 ~—0.335 0.046 0104 0001 0089 0.048 - —0.069 0.080

Standarderror [.083] [.067] [.332] [.052] [.081] [.014] [.088] [.036] [.127] [.090]
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-1993) Table 28.3 Continued
~ =2

)EP & e xR Ao R LL
146 Australia 0.573 0.83 029 0.70 1.24 0.90 -11.36
1.22] Austria 1.210 0.08 2.69 1.56 0.10 0.28 —27.78
-0.03 Belgium 0.693 18.10 2.84 1.03 0.81 0.69 —15.51
2.21] Canada 0.518 0.01 1,27 018 0.22 0.76 —~9.10
-0.22 Denmark 1.197 1.63 0.20 1.56 2,32 0.49 —27.55
2.35] | Finland 1.079 8.32 2.44 1.78 0.38 0.70 —258.27
-0.17 France 0.689 1.78 12.51 1.80 1.13 0.54 —15.40
0.12] Germany 0.817 10.02 0.00 0.76 0.48 0.16 —19.15
-1.17 Greece 2.439 6.25 0.09 1.08 0.32 0.53 —43.21
0.36] Ireland 1.469 3.04 0.59 1.49 0.01 0.77 —32.06
-0.39 Italy 0.606 2.80 5.09 0.74 2.76 0.72 —12.87
0.52] Japan 0.399 0.39 1.59 4.97 0.12 0.77 —3.37
-0.16 Netherlands 1.052 3.40 1.57 0.20 2,02 0.52 —24.70
0.43] New Zealand 1.743 12,38 826 0.68 1045 0.70 —35.82
-0.28 Norway 1.622 8.47 2.18 0.81 0.53 0.39 —34.23
0.11] Portugal 2.042 C.00 1.67 0.80 0.69 0.86 —39.30
1.52 Spain 1.319 8.68 547 1.20 0.40 0.58 —29.68
1.24] Swedan 1.194 16,97 0.76 0.15 1.67 0.68 —~27.49
114 Switzerland 0.535 3.13 340 0.70 7.79 0.44 -9.83
0.35] UK 0.541 1.63 2,20 1.38 0.50 0.81 —10.07

32 -
-0 3 **G is the standard error of the country specific regressions, X2 (), xz (1), x%(2) and X% (1) are chi-aquared statistics
0.19] P g sc g N H q
- for tests of residual serial correlation, functional form mis-specification, non-normal errors and heteroskedasticity. The
_0-22 figures in brackets are their degrees of freedom. R is the adjusted multiple correlation coefficient, and LL is the maximized
0.32] log-likelihood value of the country-specific regressions. '
022
0.39]

0.24
0.18] Write
-0.16 )
'0.64] szn—l = A\A,

0.16 T
[041] where ) represents an overall index of parameter heterogeneity, such that

028 P P 8
[0.57] , .

022 A — 0, highest degree of heterogeneity,
[0.81] A — 00, homogeneity.
—0.59
[0.09] Then 3 sw can be written as

0.34
[0.15] N -1 y

0.080 ~ A —1\~1 A —1y—1
[.090] Bsw = Z [Q"T - (Ik + }AQiT ) Qr Z QT — (Ik + ?AQiT ) QT | -
PR, i=1

=1

For a fixed N and T/, and for a sufficiently small A
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P 3 N\,
Ik+71—~AQviTV =Ik—?G;T+ T G —...

where Gy = AQH}. Therefore,

, al A A\ -
Bsw = {Z {Q&T - <Ik - ?GiT + (;) Gl + ) QiT:I}
i=1
N N 1\ 2
Z [%T - (Ik - ?GiT + (E) G+ .. ) qa{l .
f=1
N N 1\ -1
= {ZG:-‘TQ&— 7 2 G+ 0 [(?) ”

i=1 N

N A N A 2
{ZGiT(IiT 7 ZG%TqiT +0 [(?) “ .
i=1 =1

Hence for any fixed T > kand forany N,as A — 0,

N -1 N
Bsw — (Z GiTQiT> Z GiTqiT.
i=1

i=1

However, note that

N -1 N N -1 N
(Z G,-TQiT> > Girqr = (Z AQE"IQiT> > AQar
i=1 i=1 i=1 i=1 )
1 1
=N Y Qrlar= I > Bi=Bue
i=1 =1
From which it follows that
lim Bgyw(2) = By
A—0

and, for all values of Nand A > 0,

Jim (Bsw()v) - ﬁMG) = 0.
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28.6 Dynamic heterogeneous panels

Consider the ARDL(p,q,4,...,9) model (see Chapter 6 for an introduction to ARDL
N et

k-times
models)
v q
Y =it ) Ayt Y Sy fori =1,2,...,N, (28.44)
= j=0

where x; is a k-dimensional vector of explanatory variables for group i; «; represent the
fixed-effects; the coefficients of the lagged dependent variables, Ajj, are scalars; and §j; are k-
dimensional coefficient vectors. In the following, we assume that the disturbances u, i =
L2,...,N;t=12,...,T, are independently distributed across i and ¢, with zero means, vari-
ances Gl?‘, and are distributed independently of the regressors x;.

The error correction representation of the above ARDL model is:

1 q—1
Ay = oty + Pyie—1 + Bix + Z )»:; Ayij + Z 8?;'/Axi,t—j + uy, (28.45)

where

p q
Gr=—(=) M) Bi=) 3
j=1

j=0

p
== M j=12.p
m=j+1

q
Si=—= ) 8mj=12...,9-1
m==j+41 y

x .
If we stack the time series observations for each group, (28.45) can be written as

p-1 g1
Ay, =oytr + i1 + X B + Z)";AYL,—}' + Z AX;, i85 +
=1 =0

fori=1,2,...,N,where Trisa T x 1vector of ones, ¥i,—j and X;,—; are j-period lagged values
ofy, and X, Ay, = y; — vi,-1, AX; = X, — Xi,—1 Ayi,~jand AX; _; are j-period lagged
values of Ay; and AX;.

If the roots of the polynomial

P
fie) =1=> " =0,

j=1
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fori =1,2,...,N, fall outside the unit circle, then the ARDL(p, 9,4, . - -, g) model is stable. In
this chapter we will take up this assumption, while the non-stationary case will be discussed in
Chapter 31. This condition ensures that ¢; < 0, and that there exists a long-run relationship
between y; and x; defined by (see Sections 6.5 and 22.2)

yie = 0% + Ny

for each i=1,2,...,N, where n; is I(0), and 8; are the long-run coefficients on X,

0;=—B;/b;

28.7 Large sample bias of pooled estimators
in dynamic heterogeneous models

Traditional procedures for estimation of pooled models, such as the FE estimator or the IV/GMM
approaches reviewed in Chapter 27, can produce inconsistent and potentially misleading esti-
mates of the average value of the parameters in dynamic panel odels unless the slope coef-
ficients are in fact homogeneous. To see this, consider the simple dynamic panel data model

(ARDL(1,0))
yir = 0 + Ayig—1 + By + ity (28.46)

where the slopes, A; and B;, as well as the intercepts, o, are allowed to vary across cross-
sectional units (groups). Here, for simplicity, ;t is a scalar random variable but the analysis can
be extended to the case of more than one regressor. We assume that x;; is strictly exogenous. Let
6; = B,/ (1 — ;) be the long-run coefficient of ;¢ for the ith group and rewrite (28.46) as

Ayie = a; — (1 — Ap) (yig—1 — i) + vy
or
Ay = i — ¢, ()’i,t—l - Qixit) + Uit

Consider now the random coefficient model

;=@ + Ny (28.47)
9; =6 + ny. (28.48)

Hence
Bi=0ip; =09 + 133, (28.49)

where
Nz = PNy + 0100 + M, (28.50)

(e )~l(3) (22 22))
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and

w33 = Var (n3) = Var($ny + 0051 + ny7).
LettingA = 1 — ¢ and B = 0 ¢, and using the above in (28.46) we have

Yir = i+ Ayip—1 + By + vy, (28.51)
Vit = thit = N Yit—1 + N (28.52)

Itis now clear that v and y;; ) are correlated and the FE or RE estimators will not be consistent.
This is not a surprising result in the case where T is small. In Chapter 27 we saw that the FE
(and RE) estimators are inconsistent when T is finite and N large when the slopes A; and ; are
homogeneous, thatis, 7;; = 773 = 0. The significant result here is that the inconsistency of the
FE and RE estimators will niot disappear even when both T — 00 and N — 00, if the slopes A; _
and/or B; are heterogenous across groups. In fact, in the relatively simple case where

Aj = A, (or Ny = 0) s
Bi=B+ny,

namely only the coefficients of «;, vary across groups, and

wip = iy (1 — o) + pxip—1 + v,
|10[ <1, E{y) = i

vy ~ IID (0, 7%), (28.53)
we have$
A 1-20) (1= w :
Dlim (AFE) PO s )‘1(11 ) 3 (28.54)
A ﬂpzy(l - )\,2) w33
() -8 -2
N};’_}"&) Brx B U - ’
where

2
U = <%> (1=p%) @ =20)" + (1= 22p%) w3s + (1~ 0*) 87 > 0,

and w3z = Var (77,-3) = Var (,B,) measures the degree of heterogeneity in ;. It is now clear that
when p > 0,

Plim ()A»FE) > A, Plim (BFE) < B.

$ Itis interesting that when o > 0 the heterogeneity bias, given by (28.54), is in the opposite direction to the Nickell ;‘7{4’
bias defined by (27.3).
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The bias of the FE estimator of the long-run coefficient, bz = Brm/ (1 — XFE) , is given by

. A 0
N:P’l)"linoo <9FE> T 1l
where
(14 A)wss
Wy = - " - .
1+ [(%) 0 =20 + (62 +03)]
Thus note that

Plim (éFE> >0, if p>0

In the case where #;; is trended or if p —> -1 from below we have

Plim (ipg) =1, and Plim (31313) =0,
p—>1 p—>1

irrespective of the true value of A. See Pesaran and Smith (1995) for further details.

Example 65 The FE static’ private savings regressions reported in Tables 28.1 and 28.2 within
Example 63 are subject to a substantial degree of residual serial correlation, which can lead o incon-
sistent estimates even under slope homogeneity since the wealth variable, W, is in fact constructed
from accumulation of past savings. The presence of residual serial correlation could be due to a host
of factors: omitted variables, neglected slope heterogeneity in the case of serially correlated regres-
sors, and of course neglected dynamics. The diagnostic statistics provided in the second part of Table
28.3, within Example 64, show statistically significant evidence of residual serial correlation in the
case of eight of the twenty countries.S It is clear that, even when the slope coefficients are allowed to be
estimated freely across countries, residual serial correlation still continues to be a problem, at least in
the case of some, if not all, the countries.” The usual time seties technique for dealing with dynamic
misspecification is to estimate error correction models based on ARDL models. ARDL models have
the advantage that they are robust to integration and cointegration properties of the regressors, and
for sufficiently high lag-orders could be immune to the endogeneity problem, at least as far as the
long-run properties of the model are concerned. In the present application, observations for each
individual country are available for too short a period to estimate even a first-order ARDL model
including all the 10 regressors for each country separately.® Pooling in the form of FE estimation can
compensate for lack of time series observations but, as shown in previous example, this can have its
own set of problems. To check the robustness of the 'static’ FE estimates presented in Table 28.2 to
dynamic misspecification, Haque, Pesaran, and Sharma (2000) estimated the following first-order
dynamic panel data model

6 The diagnostic statistics are computed using the Lagrange multiplier procedure described in Section 5.8, and are valid
irrespective of whether the regressions contain lagged dependent variables, implicitly or explicitly.

7 Under slope homogeneity restrictions, residual serial correlation is a problem for all the countries in the panel.

8 A first-order ARDL model in the private savings rate for each country that contains all ten regressors would involve
estimating twenty-two unknown parameters with only twenty-two time series observations available per country!
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1by Vit = oy + Ayie—1 + Boxi + Boy GaWi) + Bixie—1 + ug. (28.55)

The country-specific long-run coefficients are given by

;= (Bo+ By + BoWi)/(1~ ). (28.56)

The FE estimates computed using all the 21 countries over the period 1972-1993 are given in Table
284 Clearly, there are significant dynamics, particularly in the relationship between changes in the
, government surplus and expenditure variables (SUR, GCUR, and GI) and the private savings rate.
,f There is also important evidence of cross-sectional variations in the coefficients of wealth, income
and demographic variables (W, YRUS and DEP). However, unlike the static estimates in Table
28.2, the coefficients of GDP growth and the real interest rate are no longer statistically significant,
Overall, this equation presents a substantial improvement over the static FE estimates, In fact, the
estimated standard error of this dynamic regression is 62 percent lower than the standard error of
the FE estimates favoured by Masson, Bayoumi, and Samiei (1998), and reproduced in the first

columsn of Table 28.1. Using the formula (28.56) the following estimates of the long-run coefficients
are obtained

SUR ~0.432
(=3.11)
GCUR —0.398
(—4.65)
) within GI —0.202
0 incon- (—-0.91)
structed GR —0.004
‘o a host (=0.03)
1 regres- RINT 0.154
of Tuble (1.64) _
i the w 0224 —0.00057W;
ved to be (4.58)  (=3.77)
tleast in INF (gigi
feyg;’;: PCTT 0.136
(411) . .
ors, and YRUS 1384 —0.0047W,
1 as the (2.58)  (—2.92)
for each DEP 0708  —0.0027W;
L model (2.19)  (—2.64)
ition can
* have its According to these estimates the long-run coefficients of the SUR and GCUR variables are still sta-
228210 tistically significant, although the coefficient of the SUR variable is now estimated to be much lower
vst-order than the estimate based on the static regressions. The long-run coefficients of the GI, GR and RINT
variables are no longer statistically significant. It appears that, in contrast to government consump-
tion expenditures, the effect of changes in government investment expenditures on private savings is
darevalid temporary and tends to zero in the long run. The inflation and the terms of trade variables (INF
nel. 9 For relatively simple dynamic models where T (= 22) is reasonably large and of the same order of magnitude as N
1d involve (= 21), the application of the IV type estimators, discussed in Chapter 27, to a first differenced version of (28.55) does not

! seem necessary and can lead to considerable loss of efficiency.
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Table 28.4 Fixed-effects estimates of dynamic private savings equations
with cross-sectionally varying slopes (21 OECD countries, 1972-1993)

Regressors Coeflicients Regressors Coefficients
PSAV_4 0.670 w 0.074
(20.80) (4.41)
SUR —0.771 W x Wi -0.00019
(—1628) (—3.62)
SUR_ 0.628 INE 0.082
(11.54) : (3.11)
GCUR —0.544 PCTT 0.045
(7.78) (4.54)
GCUR— 0412 YRUS 0.456
(6.16) (2.49)
GI w 0666 YRUS x Wi —0.00157
(—5.54) . (—2.81)
GLy 0.600 DEP 0233
(4.80) (2.12)
GR —0.0014 DEP x W; —0.00089
(—0.03) (—2.52)
RINT 0.051
(1.60)
7 0.908
& 1.451
LL —807.61
AIC —845.61
SBC 924.18

*The figures in brackets are t-ratios.

and PCTT) have the expected signs and are also statistically significant. The long-run coefficients of
the remaining variables vary with country-specific average wealth-GDP ratio and when averaged
across countries yield the values of 0.043 [0.026], —0.118 [0.219] and —0.148 [0.12§] for W,
YRUS, and DEP variables respectively. The cross-sectional standard errors of these estimates are
given in square brackets. The average estimate of the coefficient of the relative income variable has
the wrong sign, but itis not statistically significant. The average estimates of the other two coefficients
have the expected signs, but are not statistically significant either. It seems that the effects of many of
the regressors considered in the MBS study are not robust to dynamic misspecifications. However, it
would be interesting to examine the consequences of jointly allowing for unrestricted short-run slope
heterogeneity and dynamics.

28.8 Mean group estimator of dynamic heterogeneous panels

Consider a dynamic model of the form

Yit = Aiyig—1 + Xl{tle oy, i= 12,00 ,N; £=1,2,.. T, (28.57)
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where x;tisak X 1 vector of exogenous variables, and the error term 1 is assurned to be indepen-
dently, identically distributed over ¢ with mean zero and variance o 2, and is independent across i.
Let¢; = (A, B7). Further assume that ¥, is independently distributed across i with

E(y)=v=(8), (28.58)
E[(; =) —¥)] = A (28.59)
Rewriting ¥; = ¥ - 7;, (28.58) and (28.59) can be equivalently written as
_ N _ | A i = J,
E('l.-) =0, E (ﬂﬂ?,-) = { 0 if i) (28.60)

Although we may maintain the Assumption (28.7) that E (nx},) = 0,we canno longer assume
that E (U,’J’i,t—l) = 0. Through continuous substitutions, we have

oo xR
Yigm1 = ) O Y (B 1)+ DA m Vg, (28.61)
j=0 j=0

where 7, = (77,.1, 17?2)/. It follows that E(1;9;4—1) % 0.

The violation of the independence between the regressors and the individual effects, N
implies that the pooled least squares regression of y; on y;;_1, and x; will yield inconsistent
estimates of ¥, even for sufficiently large T and N. Pesaran and Smith (1995 have noted that, as
T — 00, the least squares regression of yi on y;¢.-1 and x; yields a consistent estimator of v,
1%. Hence, the authors suggest a MG estimator of ¥ by taking the average of 1?ri across i, °

N

. 1. .

Yme = I >, A (28.62)
i=1

where
N

'/’}i = (Wz{.wf-)—l Wz{.)’i.)

Wi = (yi,—1,Xi) withy;, 1 = (yio, 911, - - -, yiT—1)’. The variance of 1} MG 18 consistently esti-
mated by

N /
Var (!A”MG) = N_(J\—TL—T) ; (1}, - 12’MG> <'zt - 1}MG) :

Note that, for finite T, ¥, for ¥ is biased, with a bias of order 1/T (Hurwicz (1950), Kiviet
and Phillips (1993)). Hsiao, Pesaran, and Tahmiscioglu (1999) have shown that the MG esti-

mator is asymptotically normal for large N, and large T so long as +/N/T —> 0 as both N and
T — o0.
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28.8.1 Small sample bias

The MG estimator in the case of dynamic panels is biased when T is small, due to the presence

of the lagged dependent variable in the model which biases the OLS estimator of the short-run
coefficients A; and ;. Pesaran, Smith, and Im (1996) investigate the small sample properties of
various estimators of the long-run coefficients for a dynamic heterogeneous panel data model.
They find that when T is small the MG estimator can be seriously biased, particularly when N

is large relative to T. In particular, for finite T, as N — 00 (under the usual panel assumption—
of independence across groups), the MG estimator still converges to a normal distribution, but
with a mean which is not the same as the true value of the parameter under consideration, if the
underlying equations contain lagged dependent variables or weakly exogenous regressors. Tosee
this, first note that, for a finite T,

E (1/7 A}G) =¥+ % ‘iE [(\_V,{W,-,)"1 W,f_u,-,] : (28.63)
=1

Ttis easy to see that, due to the presence of lagged dependent variables, N — 00 is not sufficient
for eliminating the second term. One needs large enough T for the bias to disappear. In practice,
when the model contains lagged dependent variables, we have

- K;
E[(wiw) ™ Wiw| = = + 0 (17%),

where K;7 is bounded in T and a function of the unknown underlying parameters. Hence

Pesaran and Zhao (1999) propose a number of bias reduction techniques for the MG estimatdr
of the long-run coefficients in dynamic models. Estimation of such coefficients poses additional
difficulties due to the nonlinearity of long-run coefficients in terms of the underlying short-run
parameters is an additional source of bias for the MG estimation of dynamic models. In a set
of Monte Carlo experiments, Hgiao, Pesaran, and Tahmiscioglu (1999) showed that the MG
estimator is unlikely to be a good estimator when either N or T'is small.

28.9 Bayesian approach

Under the assumption that yjo are fixed and known and #; and u;; are independently normally
distributed, we can implement the Bayes estimator of ¥; conditional on & 2and A, namely

N _IN
Uy = E:[G%GVﬁv0‘1+-A]_l} S [orwiw) Tt + A, (28.64)

i=1 =1
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where Wi = (y;,—1, X)) withy; 1 = (io, ¥, . ., ¥ir—1)". This Bayes estimator is a weighted
average of the least squares estimator of individual units with the weights being inversely propor-

tesence tional to individual variances. When T — 00, N — 0, and N/T3/2 — 0, the Bayes estimator
ort-run is asymptotically equivalent to the MG estimator (28.62) (Hsiao, Pesaran, and Tahmiscioglu
rties of (1999)).
model. In practice, the variance components, o2 and A are rarely known. The Monte Catlo studies
w conducted by Hsiao, Pesaran, and Tahmiscioglu (1999) show that, following the approach of
mption Lindley and Smith (1972) in assuming that the prior-distributions of o and A are independent
on, but and are distributed as
n, if the
i To see N
PATY o Lo = WA R T ] [l (28.65)
i=1
(28.63) yields a Bayes estimator almost as good as the Bayes estimator with known A and o', where
W () represents the Wishart distribution with scale matrix, R, and degrees of freedom r.

The Hsiao, Pesaran, and Tahmiscioglu (1999) Bayes estimator is derived under the assump-
ifficient tion that the initial observation y;y are fixed constants, As discussed in Anderson and Hsiao
ractice, (1981, 1982), this assumption is clearly unjustifiable for a panel with finite T. However, contrary

to the sampling approach where the correct modelling of initial observations is quite important,
the Hsiao, Pesaran, and Tahmiscioglu (1999) Bayesian approach appears to perform fairly well in
the estimation of the mean coefficients for dynamic random coefficient models as demonstrated
in their Monte Carlo studies.
c 28.10 Pooled mean group estimator
Considerthe ARDL model (28.44). Pesaran, Shin, and Smith (1999) has proposed an estimation
method for ARDL models, under the assumption that the long-run coefficients on X, defined _,
by 0; = —B;/¢;, are the same across the grw
10rt-run
In a set This estimator, known as the pooled mean group estimator, provides a useful intermediate alter-
the MG native between estimating separate regressions, which allows all coefficients and error variances
— to differ across the groups, and standard FE estimators that assume the slope coefficients are the
same across i. Under the above assumptions, the error correction model can be written more
compactly as
Ay; = ¢;£,(0) + Wik; + &, (28.66)
1ormally
rely where
Wi = (Ayi—1, AYi-20 o o) AYipt1, AXy AXy gy, AXg41),
(2864 £,0) =y,—1 — X0,
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is the error correction component, and
o (at g% ® ¥ e * N/
k= Mg, Ao ilp_l,SiO,Sﬂ, a8

There are three issues to be noted in estimating (28.66). First, the regression equations for each
group are nonlinear in ¢); and 6. A further complication arises from the cross-equation parameter
restrictions existing by virtue of the long-run homogeneity assumption. Finally, note that the
error variances differ across groups. The log-likelihood function is

T 1
tr(p) = -3 > naro? - 5 Y o, (28.67)
i=1 i=1

where
-

Q= [A)’i‘ - d)igi (9)]’1‘11’ [Ay; — ¢i§i o1,
H; = Iy — Wi (W W) "W,

Iy is an identity matrix of order T, ¢ = (0',¢',0"Y, ¢ = (91,02 . Loy, ando =
(0’%,0%,. ey a%\,)’. In the case where the x}§ are I(0), the pooled observation matrix on the
regressors

N

1 PF
_— —X.H;X
NT = O’;"' X, ot )

converges in probability to a fixed positive definite matrix. In the case where the x;'s are I(1), the
matrix

Ly
NT2 Zl 'O_—%XiHiXi;
=
converges to a random positive definite matrix with probability 1. These conditions should hold
for all feasible values of ¢; and 0% as T — 00 either for afixed N, or for N — oo and T — o0,
jointly. See Pesaran, Shin, and Smith (1999) for details.

The ML estimates of the long-run coefficients, #, and the group-specific error-correction coef-
ficients, ¢, can be computed by maximizing (28.67) with respect to ¢. These ML estimators
are termed pooled mean group (PMG) estimators in order to highlight the pooling effect of the
homogeneity restrictions on the estimates of the long-run coefficients, and the fact that averages
across groups are used to obtain group-wide mean estimates of the error-correction coefficients
and the other short-run parameters of the model.

Pesaran, Shin, and Smith (1999) propose two different likelihood-based algorithms for the
computation of the PMG estimators which are computationally less demanding than estimating
the pooled regression. The first is a ‘back-substitution’ algorithm that only makes use of the first
derivatives of the log-likelihood function
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R N &2 “leN (2)
b=- (Z _;XJHiXi> [Z X H; <AYi - q3fyf,—1>], (28.68)

i=1 i
- YRS S Y
¢ = (E,-HfE,-) & H;Ay, (28.69)
67 =T Ay — ¢€ ) Hi(Ay, — i), (28.70)

~ A ~(0)
where §; = y;—; —X;0. Starting with an initial estimate of §,say § , estimates of ¢, and o?can
be computed using (28.69) and (28.70), which can then be substituted in (28.68) to obtain a

new estimate of @, sayé b , and so on until convergence is achieved. Alternatively, the PMG esti-
mators can be computed using (a variation of ) the Newton-Raphson algorithm which makes use
of both the first and the second derivatives. An overview of alternative numerical optimization
techniques is provided in Section A.16 of Appendix A.

Note that, for small T, the PMG estimator (as well as the group-specific estimator) will be sub-

ject to the familiar downward bias an the coefficient of the lagged dependent variable. Because
t}m direction for each ggogp)jygzaging m%&@m ce {;155;&54
Bias corrections-are-availableintheliterature (e.g, Kivietand Phillips (1993)), but these apply to
the short-run coefficients. Because the long-run coefficient is a nonlinear function of the short-
run coefficients, procedures that remove the bias in the short-run coefficients can leave the long-

run coefficient biased. Pesaran and Zhao (1999) discuss how the biasin the long-run coefficients
can be reduced.

Example 66 Continuing from Example 65, Haque, Pesaran, and Sharma (2000) then allowed for
both unrestricted short-run slope heterogeneity and dynamics. To this end, they estimate individ-
ual country regressions containing first-order lagged values of the savings rates, PSAVit.1. The
MG and pooled mean group (PMG) estimates of the long-run coefficients based on these dynamic
individual country regressions are given in Table 28.5. For ease of compatison, the MG estima-
tor based on a static version of these regressions, as well as the corresponding FE estimates, are
reported. Unlike the FE estimates, the consequences of allowing for dynamics on the MG estimates
are rather limited. Once again only the coefficients of the SUR and the GCUR variables are sta-
tistically significant, although the dynamic MG estimates suggest the coefficient of the PCTT vari-
able to be also marginally significant. Finally, the last column of Table 28.5 provides the pooled
mean group estimates of the long-run coefficients, where the short-run dynamics are allowed to
differ freely across countries but equality restrictions are imposed on one or more of the long-run
coefficients; the rationale being that due to differences in factors such as adjustment costs or the
institutional set-up across countries slope homogeneity is more likely to be valid in the long run,
The PMG estimates in Table 28.5 impose the slope homogeneity restrictions only on the long-
run coefficients of the SUR variable. As expected, the PMG estimates are generally more precisely
estimated and confirm that, amongst the various determinants of private savings considered by
MBS, only the effects of the SUR and the GCUR variables seem to be reasonably robust to the
presence of slope heterogeneity and yield plausible estimates for the offsetting effects of govern-
ment budget surpluses and government consumption expenditures on private savings across OECD
countries. '
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Table 285 Private saving equations: fixed-effects, mean group and pooled MG estimates (20 OECD

countries, 1972-1993)

FE Estimates Mean Group Estimates Pooled MGE
Regressors Static Dynamic Static Dynamic Dynamic
SUR —-0.518 —0.968 —0.671 —0.911 —0.870
(—8.50) (—7.76) (—8.07) (—5.48) (~19.81)
GCUR —0.461 —0.665 —0401 —0.394 —0474
(—10.76) (—8.17) (—5.95) (—4.38) (—6.88)
GI —0.555 —0.789 —0.335 —0.109 —0.401
(—5.28) (—4.14) (—1.01) (—0.22) (—114)
GR —0.059 0.091 0.046 0.057 0.029
(—1.09) (—093) (0.88) (0.92) (0.48)
RINT 0.205 w0127 0.104 0.183 0.139
(4.11) (1.41) (1.28) (1.61) (1.66)
w 0.020 0.028 0.001 0.002 —0.004
(4.51) (3.49) (0.061) (0.115) (—0.21)
INE . 0.161 0.069 0.089 0.137 0.103
(3.91) (0.93) (1.02) (1.18) (1.11)
PCTT 0.044 0.094 0.048 0.103 0.077
‘ (2.83) (3.31) (1.34) (a21) (2.37)
YP —0.087 -0.076 —0.069 —0.056 —0.031
(—2.54) (—=1.23) (=0.77) (—0.60) (—0.35)
DEP —-0.161 —0.241 0.080 0.058 0.050
(—5.13) (—4.22) (0.63) (0.45) (0.39)

*The dependent variable is PSAV;. The estimates refer to the long-run coefficients. Dynamic fixed-effects (PE) estimates
are based on a first-order autoregressive panel data model containing the lagged dependent variables, PSAV;;.—1. The
dynamic Mean Group (MG) estimates are based on country-specific regressions also containing. PSAV;¢—1. The Pooled
MG estimates impose the restrictions that the long-run coefficients of the SUR variable is the same across countries, butare
otherwise comparable to the dynamic MG estimates. Due to the presence of YRUS variable in the model, country-specific
parameters for the U.S. are not identifies, and the U.S. is dropped from the panel.

28.11 Testing for slope homogeneity

Given the adverse statistical consequences of neglected slope heterogeneity, it is important that
the assumption of slope homogeneity is tested. To this end, consider the panel data

yir = o + Bixi + v, (28.71)

where @; are bounded on a compact set, X; is @ k-dimensional vector of regressors, f; is a
k-dimensional vector of unknown slope coefficients, and u;; ~ IID(0, o%). The null hypoth-
esis of interest is

Ho: f; =B, forall, |Bll < K < o0, (28.72)
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against the alternatives
Hj : B; = B, foranon-zero fraction of slopes.

One assumption underlying existing tests for slope homogeneity is that, under Hy, the fraction
of the slopes that are not the same does not tend to zero as N —> co.

28.11.1 Standard F-test

There are a number of procedures that can be used to test Hy, the most familiar of which is the
standard F-test defined by

’

e N(T —k— 1)\ RSSR — USSR
"\ k(N=1) USSR

. where RSSR and USSR are restricted and unrestricted residual sum of squares, respectively,

obtained under the null (8; = B) and the alternative hypotheses. This test is applicable when

Nisfixedas T — 00, and the error variances are homoskedastic, 07 = o2, But it is likely to

perform rather poorly in cases where N is relatively large, the regressors contain lagged values of
the dependent variable and/or if the error variances are cross sectionally heteroskedastic,

28.11.2 Hausman-type test by panels

For cases where N > T, Pesaran, Smith, and Im (1996) propose using the Hausman (1978)
procedure by comparing the fixed-effects (FE) estimator of 8,

i=1

N -1 N ’
:BFE = <Z X,{Mz‘Xz) Z X,{MTYD (28.73)
i=1 .

with the mean group (MG) estimator
N
Buc=N"'>"B, (28.74)
i=1

—~1 . . . . .
where M; = It — 1T (T’TTT) 'L'IT, 77 isa T X 1 vector of ones, It is an identity matrix of
order T, and

B; = (XM.X) ™ XMy, (28.75)

For the Hausman test to have the correct size and be consistent two conditions must be met
(see also Section 26.9.1)

(a) Under Hy, By and B i must both be consistent for B, with 3 g being asymptotically
more efficient such that

AVar (:@MG — ﬁFE> = AVar <BMG) — AVar ([;FE) > 0, (28.76)
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where AVar (-) stands for the asymptotic variance operator,

(b) Under Hy, ﬁ MG — [Ai zg should tend to a non-zero vector.

In the context of dynamic panel data models with exogenous regressors both of these condi-
tions are met, so long as the exogenous regressors are not drawn from the same distribution. In

such a case a Hausman-type test based on the difference B E— B v would be valid and is shown
to have reasonable small sample properties. See Pesaran, Smith, and Im (1996) and Hsiao and
Pesaran (2008).

However, as is well known, the Hausman procedure can lack power for certain parameter val-
ues as its implicit null does not necessarily coincide with the null hypothesis of interest. This
problem turns out to be much more serious in the application of the Hausman procedure to the
testing problem that concerns us here. For example, in the case of panel data models containing

only strictly exogenous regressors, a test of slope homogeneity based on [3 FE — B wmc will lack
power in all directions, if under the alternative hypothesis, the slopes are random draws from
the same distribution. To see this, suppose that under Hj the slopes satisfy the familiar random
coefficient specification .

ﬂi =B+ vV~ 1ID(0, %),
where X, # 0 is a non-negative definite matrix, and E(}(}{Vi) = 0foralliandj. Then

N

~ " N 1 N
Bz — Buc = (Z X;{MrXi> Z (XM X;) v; — N7t Zv,-—|—
=1 i=1 i=1

N N

N
( > x;MrXi)_1 S OxMee; ~ N7 (XIMX,) T X Me,
i=1 i=1 =1

and it readily follows that, under the random coefficients alternatives and strictly exogenous

regressors, we have E(/Ai E — B e 1 Ha ) = 0. This result holds for N and T fixed as well as
when N and T — 00, and hence condition (b) of Hausman’s procedure is not satisfied.

Another important case where the Hausman test does not apply arises when testing the homo-
geneity of slopes in pure autoregressive panel data models. To simplify the exposition, consider
the following stationary AR(1) panel data model

yie = o;(1 — B,) + Biyie—1 -+ &, with l,Bil <L (28.77)
It is now easily seen that with N fixed and as T — 00, under Hy (where 8; = B) we have
VNT (Byz — ) >4 N (01— £,
and

M(BMG - ,B) N (01~ 7).
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Hence the variance inequality part of condition (a), namely (28.76), is not satisfied, and the
application of the Hausman test to autoregressive panels will not have the correct size.

28.11.3 G-test of Phillips and Sul

Phillips and Sul (2003) propose a different type of Hausman test where, instead of comparing
two different pooled estimators of the regression coefficients (as discussed in Section 28.11.2),
they pro i of slope homogeneity on the difference between the individual-
estimates and a snitably defined pooled estimator. In the context of the panel regression model

(28.71), their test statistic can be written as

G=(B-tn@hu) 5, (B-tvohu),

Al
where ﬂ = (ﬂl, ﬂz, 1By is an Nk x 1 stacked vector of all the N individual least square
estimates of 3, B rz s a fixed-effect estimator as before, and ¥ g ls a consistent estimator of %,
the asymptotic variance matrix of ,6 —IN® ﬁ g, under Ho. Under standard assumptions for

stationary dynamic models, and assuming Hy holds and N is fixed, then G —; x2(Nk) as
T — 09, s0long as X, is a non-stochastic positive definite matrix.

As compared to the Hausman test based on B MG — B e the G test is likely to be more pow-
erful; but its use will be limited to panel data models where N is small relative to T. Also, the G
test will not be valid i ic models, very much for the same kind of rea-

sons noted above in relation to t t based on 8 MG — Brp. Thisis easily established
mmmm considered by Phillips
and Sul (2003). In the case of AR(1) panel regressions with o? = g2 itis easily verified that
under Hy

o [V (B, Br) | = Avar[ T(hi=p) T (Pis- 5)]

)-(55)
)

Acov [ﬁ (IB; - BFE) ) VT (3, - IBFE)] (1 - IBZ

N

Therefore

1-— 18 > —1 ’
Eg:: T (IN——N TNTN)-
It is now easily seen that rank (£,) = N — 1,and 2., is non-invertible.

28.11.4 Swamy’s test

Swamy (1970) proposes a test of slope homogeneity based on the dispersion of individual slope
estimates from a suitable pooled estimator. Like the F-test, Swamy’s test is developed for panels
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where N is small relative to T, but allows for cross-sectional heteroskedasticity. Swamy’s statistic
applied to the slope coefficients can be written as

§= i (Bx - BWFE)/ E{%‘i (.Bx - ﬁWFE) : (28.78)

A2 . . 2 P
where 87 is an estimator of 0} based on 8y, namely

1 A / A
~2
o; = m (Yi - XlﬂWFE) M; (Yi - XI,BWFE) 4

and B wrg is the weighted pooled estimator also computed using 61.2, namely
N

N
A XM X\ 1 o XMy
B = (3 ) 5 WMoy,

-1 Y i=1 i

In the case where N is fixed and T tends to infinity, under Hy the Swamy statistic, §, is asymp-
totically chi-square-distributed with k(N — 1) degrees of freedom.

28.11.5 Pesaran and Yamagata A-test

Based on Swamy (1970)’s work, Pesaran and Yamagata (2008) propose a standardized disper-
sion statistic that is asymptotically normally distributed for large N and T. One version of the dis-
persion test, denoted by A, makes use of the Swamy statistic, S defined by (28.78), and another
version, denoted by A, is based on a modified version of the Swamy statistic where regression
standard errors for the individual cross-sectional units are computed ugig_g—thg.p_&levgl_@-
effects, rather than the ordinary least squares estimator, as proposed by Swamy. It is shown that,
in the case of models with strictly exogenous regressors, but with non-normal errors, both ver-
sions of the A-test tend to the standard normal distribution as (N, T) —; 00, subject to cer-
tain restrictions on the relative expansion rates of N and T. For the A-test it is required that
VN/T — 0,as (N, T) —»j 00, whilst for the A-test the condition is less restrictive and is
given by VN /T% — 0. When the errors are normally distributed, mean-variance bias adjusted
versions of the A-tests, denoted by Aadj and Z\adj; are proposed that are valid as (N, T) —>; 00
without any restrictions on the relative expansion rates of N and T.
More specifically, A and A-tests are defined by

. NS —k\ -« NS -k
A=\/N —_— ], A:«/N(—————————) 28.79
< 2k ) 2k @679

where

and

Altho
the es

prope

whert

Assur

Assuz
defin
defin:

Assu
and E
Vi =



statistic

(28.78)

s asymp-

d disper-
»f the dis-
{ another
egression

led fixed-

own that,
both ver-
«ct to cer-
sired that
ive and is
s adjusted
1) -—->} XD

(28.79)
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where
o A ~ / X/M X A ~
S= Z (ﬁi - ABWFE> 16; ‘ (ﬁi - :BWFE>: (28.80)
i=1 i
” M. X; - ‘M Y
ﬁWFE:<ZXI~; l) ZXNJ l;
o; ‘ Vo
i=1 i i=1 i
and
~2 1 A N/ .
9 =T <Y:‘ —XiﬂPE> M, (}’i - XiﬁFE)-

Although the difference between S and S might appear slight at first, the different choices of
the estimator of o'# used in construction of these statistics have important implications for the
properties of the two tests as N and T tends to infinity. To see this let

Qir = T7" (X{MX)), (28.81)
N
Qur = D) (Yo XMex), 8.2
{==1
P; = MX; (XM X)) ' XM, (28.83)
M; = It — Z;(2/2) ' Z), (28.84)

where Z; = (77,X;), and consider the following assumptions:
Assumption H.S:

(i) sit[X,- ~ HD(O, 0'1-2), O%nax = maxls,-sN(U;?“)w < K, and O'%nin = minlsisN(G%) > 0.
(i) ey and &js are independently distributed for i # j and/ort #s.
(i) E(e5|X;) < K.

Assumption H.6: (i) The k X k matrices Q ;r,i = 1,2,..., N, defined by (28.81) are positive‘
definite and bounded, max;<j<n E [|Q 7| < K, and Q ;7 tends to a non-stochastic positive
definite matrix, Q;, max;<i<N E ||Q.l| < K, as T — 0.

(ii) The k x k pooled observation matrix Q y7 defined by (28.82) is positive definite, and
Q vt tends to a non-stochastic positive definite matrix, Q = limy._, oo N7! Zfil Q;

as (N, T) L .

Assumption H.7: There exists a finite Tg such that for T' > To, E{[vjM;v;/(T—1)]"*¢} < K
and E{[v/Mv;/ (T —k—1)]7*€} < K, for each i and for some small positive constant €, where
U= e,-/o’,'.
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Assumption H.8: Under Hj, the fraction of slopes that are not the same does not tend to zero as
N — oo.

Under Assumptions H.5~H.7 and assuming that Ho (the null of slope homogeneity) holds,
then the dispersion statistics § and § defined above can be written as

N
N2 = N2 " ar 4 0, (NTV2) 4 0, (T72), (28.85)
i=1
N
N7V = NN " zr 4 0, (NT2) + 0, (T71/2), (28.86)
i=1
where .
n (T —k— “I)U;Pi'l)i ~ (T — 1)U/'Pivi
iT = dzir = ————t—, 28.87
ZiT UéMivi ) and zr 'UQMIU,‘ ( )

Under Assumptions H.4-H.7, 2,7 and %t are independently (but not necessarily identically)
distributed random variables across { with finite means and variances, and for all i we have

E(r) = k4 O(T™Y), Var(r) = 2k + O(T™), (28.88)
E(r) = k+ O(T™%), VarGir) = 2k + 0(T7h), (28.89)
E |2,-T|2+€/ 2 oK and B0 < K. (28.90)

Also under the null hypothesis that the slopes are homogenous, we have

A >4 N(0,1),as (N, T) EA 00, so long as «/N/T — 0,

A =3 N(0,1), as (N, T) EN 00, solongasx/ﬁ/T2 — 0,

where the standardized dispersion statistics, A and A are defined above. Furthermore, if the
errors, £, are normally distributed, under Ho we have

A — 4 N, 1),as (N, T) EN 00, so long as «/N/T — 0,

A =4 N(O,1), as (N, T) - oo.

The small sample properties of the dispersion tests can be improved under the normally
distributed errors by considering the following mean and variance bias adjusted versions of

Aand A
. N(r+1) (N—1§~k)
Aty = , 28.91)
4 V(r—k—1\ 2k (

where
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. N71§ — EGir)
Ay = VN [ —==200 ),
J f( Var(en) >

where

MI—k-1 Gur) = 2k (T — k= 1)* (T —3)
T—k—3 "' T o k(T —k—3)

E(zir) = (28.92)

The Monte Carlo results reported in Pesaran and Yamagata (2008) suggest that the Aadj test
works well even if there are major departures from normality, and is to be recommended.

28.11.6 Extensions of the A-tests

The A-tests can be readily extended to test the homogeneity of a subset of slope coefficients,
Consider the following partitioned form of (28.71)

i =otr+ Xa B+ X Bp+e,i=1,2,...,N,
Tx1 Txk; Txlk;
or

Vi = Zy &+ Xp By +e;
Tx1  Tx(k+1) T'xky

where Zjy = (7r,X;) and §; = (Otf, B ,/-1)/. Suppose the slope homogeneity hypothesis of inter-
estis given by .

Hy: By = By fori=1,2,...,N. . (28.93)

The dispersion test statistic in this case is given by

1

N 4
~ N ~ / X'ZM'IX‘Z‘ A -
S = Z (/3:2 - ﬂZ,WFE> — &; l (ﬂiz - ﬂz,wm);
i=1 i
where

~ -1
B n = (Xl{ZMiIXiZ) X,{zMiIYiJ
Y X MaXn ) B X Moy
~ il s 2 7
Bo,wre = Z_t ~2 Z T
¢ o N g .
i=1 i =1 i
-1
My =1r -2, (Zth) Z;,

a .
) (Y.' —Xop Z,FE) Mj (Yi'“‘ XiZﬁz,FE)
o

2
i

T—k —1 ’
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and
N “I'wN
Bore = (Z szMi1Xi2> ZszMilYi-
i=1 i=1

Using a similar line of reasoning as above, it is now easily seen that under Hy defined by (28.93),

and for (N, T) —}> 00, such that «/N/T? —> 0, then

1%
Az =\/—N—(Ii~j—2zl_k—*—‘_k‘%> -4 N(@O1).
2

In the case of normally distributed errors, the following mean-variance bias adjusted statistic can
be used “

A= NI =k +1) (Nylgz_k;,)
“GEN T k- 1) A

The A-tests can also be extended to unbalanced panels. Denoting the number of time series
observations on the i* cross-section by T, the standardized dispersion statistic is given by

i (Zi, - k) -
= 5 o) S (3 n),

I -1 . .
X; = (X{l,xl‘z,. ..,x,-Ti) y My, = I, — 773 (T/T,-TTi) T/T,- with 71, being a T; X 1 vector of
unity,

>

mz

L
we) =5

. .
= (XM X;) X;My,y;, (28.95)
. VXM, X\ 1 e XMy,
f j“™M i irt
Bwrs = ( E ~2 ) 2:—152—’ (28.96)
=1 i i=1 i

Yi = (yil;yil; e ‘Jy[T,‘)/J

and

N —
B = (ZX,{Man) IZXQMT,%- (28.97)
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The A-test can also be applied to stationary dynamic models. Pesaran and Yamagata (2008)
show that the test will be valid for dynamic panel data models so longas N/T >k, as (N, T) —>j
00, where 0 < k& < 00. This condition is more restrictive than the one obtained for panels with
exogenous regressors, but is the same as the condition required for the validity of the fixed-effects
estimator of the slope in AR(1) models in large N and T panels.

Using Monte Carlo experiments it is shown that the A-testhas the correct size and satisfactory
power in panels with strictly exogenous regressors for various combinations of N and T. Similar
results are also obtained for dynamic panels, but only if the autoregressive coefficient is not too
close to unity and so longas T > N. See Pesaran and Yamagata (2008) for further discussion.

28.11.7 Bias-corrected bootstrap tests of slope homogeneity
for the AR(1) model

One possible way of improving on the asymptotic test developed for the AR models would be to
follow the recent literature and use bootstrap techniques.!® Here we make use of a bias-corrected
version of the recursive bootstrap procedure.!!

One of the main problems in the application of bootstrap techniques to dynamic models
in small T samples is the fact that the OLS estimates of the individual coefficients, A;, or their
FE (or WFE) counterparts are biased when T is small; a bias that persists with N — 00. To
deal with this problem we focus on the AR(1) case and use the bias-corrected version of Awzg

as proposed by Hahn and Kuersteiner (2002).1> Denoting the bias-corrected version of Ayzg
by -, we have

Awre = hwrg + % (l + XWFE); (28.98)
and estimate the associated intercepts as
&, wre = ¥i — Awr -1,
where y; = T™1 ZtT=1 yyandy;_y = T ZLI ¥i4—1. The residuals are given by
b = yi — &, WrE — AWEE Yii—1,

with the associated bias-corrected estimator of 02 given by 62 = (T — 1)1 T= (&)2. The
i 8 Y 0 t=1

b bootstrap sample, y,gtb) fori=1,2,...,Nandt=1,2,...,T can now be generated as

b

b o 2 N
y,gt) =‘X,-,WFE+)NWFE)’,‘(’?_1 —I—O’;Q'Et), fort =1,2,...,T,

10 For example, see Beran (1988), Horowitz (1994), Li and Maddala (1996), and Bun (2004), although none of these
authors makes any bias corrections in their bootstrapping procedures.

11 Bias-corrected estimates are also used in the literature on the derivation of the bootstrap confidence intervals to gen-
erate the bootstrap samples in dynamic AR(p) models. See Kilian (1998), among others.

12 Bias corrections for the OLS estimates of individual A, are provided by Kendall (1954) and Marriott and Pope (1954),
and further elaborated by Orcutt and Winokur (1969). See also Section 14.5. No bias corrections seem to be available for
FE or WFE estimates of AR(p) panel data models in the case of p > 2.
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where yl%' ) = yio, and § ,(tb ) are random draws with replacements from the set of pooled standard-
ized residuals, &3/6;,i = 1,2,...,N,and t = 1,2,...,T. Withyg’), fori = 1,2,...,Nand
t=1,2,..., T the bootstrap statistics

- N7I8 —1
A®) ZJN(T ,b=1,2,...,B,

where $® is the modified Swamy statistic, defined by (28.80), computed using the b boot-
strapped sample. The statistics AW forh = 1,2, ..., B, can now be used to obtain the bootstrap
p-values

LSs (ia  x
op =5 2 1(AY - ),

b=1

where B is the number of bootstrap sample, I(A) takes the value of unity if A > 0 or zero
otherwise, and A is the standardized dispersion statistic applied to the actual observations. If
pp < 0.05, say; the null hypothesis of slope homogeneity is rejected at the S per cent signifi-
cance level.

28.11.8 Application: testing slope homogeneity in earnings dynamics

In this section we examine the slope homogeneity of the dynamic earnings equations with the
panel study of income dynamics (PSID) data set used in Meghir and Pistaferri (2004). Briefly,
these authors select male heads aged 25 to 55 with at least nine years of usable earnings data. The
selection process leads to asample of 2, 069 individuals and 31, 631 individual-year observations.
To obtain a panel data set with a larger T, only individuals with at least 13 time series observa-
tions are included in the panel. This leaves us with 1,031 individuals and 19,992 individual-year
observations. Following Meghir and Pistaferri (2004), the individuals are categorized into three
education groups: High School Dropouts (HSD, those with less than 12 grades of schooling),
High School Graduates (HSG, those with at least a high school diploma, but no college degree),
and College Graduates (CLG, those with a college degree or more). In what follows, the earning
equations for the different educational backgrounds, HSD, HSG, and CLG, are denoted by the
superscripts e = 1,2, and 3, and for the pooled sample by 0. The numbers of individuals in the
three categories are N M = 249, N® = 531, and N () = 251. The panel is unbalanced with

t=1,... Tim andi=1,...,N® andan average time period of around 18 years.

In the research on earnings dynamics, it is standard to adopt a two-step procedure where in the
first stage the log of real earnings is regressed on a number of control variables such as age, race
and year dummies. The dynamics are then modelled based on the residuals from this first stage
regression. The use of the control variables and the grouping of the individuals by educational
backgrounds is aimed at eliminating (minimizing) the effects ofindividual heterogeneities at the
second stage.

It is, therefore, of interest to examine the extent to which the two-step strategy has been suc-

cessful in dealing with the heterogeneity problem. With this in mind we follow closely the two-
step procedure adopted by Meghir and Pistaferri (2004) and first run regressions of log real earn-
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standard- . ings, wl(f ) , on the control variables: a square of “age” (AGE-(e)Z) s race ( WHITE.(E)) , year dummies

.,Nand B (YEAR(Y)), region oflesidence (NEl(te), CE,(f), STH(E)), and residence in a standard metropoli-
tan statistical area (SMSA“. ), for each educatlon groupe = 0, 1,2, 3, separately.!3 The residuals
from these regressions, which we denote by y,-t ; are then used in the second stage to estimate
dynamics of the earnings process.

Specifically,

b boot: 3 = o #2920 406, e =0,1,2,3,

bootstrap
where within each education group A¥ is assumed to be homogeneous across the different indi-
viduals. Our interest is to test the hypothesis that A©) = kfe) foralliine.

The test results are given in the first panel of Table 28.6. The A statistics and the associ-
ated bootstrapped p values by education groups all lead to strong rejections of the homogeneity
hypothesis. Judging by the size of the A statistics, the rejection is stronger for the pooled sam-
ple as compared with the sub-samples, confirming the importance of education as a discrimi-
natory factor in the characterizations of heterogeneity of earnings dynamics across individuals.
The test results also indicate the possibility of other statistically significant sources of hetero-
geneity within each of the education groups, and casts some doubt on the two-step estimation __
procedure adopted in the literatuie for deallwmmphaslzed

by Browning, Hirnes, and AlVarez (2010~
amics ; In Table 28.6 we also provide a number of different EE estimates of L), e = 0, 1,2, 3, on the

assumption of within group slope homogeneity. Given the relatively small number of time series

0 or zero
rvations. If
ent signifi-

os Wiﬂ} the observations available (on average 18), the bias corrections to the FE estimates are quite large.
)4). Briefly, The cross-section error variance heterogeneity also plays an important role in this application,
S data..The as can be seen from a comparison of FE and WFE estimates with the latter being larger. Focusing
servations. on the bias-corrected WFE estimates, we also observe that the persistence of earnings dynamics
€s observa- rises systematically from 0.52 in the case of the school drop outs to 0.72 for the college graduates.
v{dual-year This seems sensible, and partly reflects the more reliable job prospects that are usually open to
dinto t.hree individuals with a higher level of education.

schooling), The homogeneity test results suggest that further efforts are needed also to take account of
8¢ degre.e), within group heterogeneity. One possibility would be to,adopt a Bayesian approach, assuming
the earning that A9, i 1,2,...,N® are draws from a common probability distributi d f tten-
oted by the L= . : ‘ proba ility stribution and focus atten
duals in the tion on the whole posterlor density function of the persistent coefficients, rather than the aver-
lanced with o age estimates that tend to divert attention from the heterogeneity problem. Another possibility

would be to follow Browning, Bjrnas, and Alvarez (2010) and consider particular parametric

functions, relating )\fe) to individual characteristics as a way of capturing within group hetero-

vhereinthe )

as age, race geneity. Finally, one could consider a finer categorization of the individuals in the panel; say by
is ﬁr%t,stage further splitting of the education groups or by introducing new categories such as occupational
educational classifications. The slope homogeneity tests provide an indication of the statistical importance

eities at the of the heterogeneity problem, but are silent as how best to deal with the problem.

as been suc-
ely the two- 13 Log real earnings are computed as w(e) In (LABY(E) /PCEDt) , where LABY( 9 is earnings in the current US dollar,

og real earn- and PCED; is the personal consumption expenditure deflator, base year 1992,
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Table 28.6 Slope homogeneity tests for the AR(1) model of the real earnings equations

Pooled  High School Highschool  College

Sample dropout graduate graduate
e=0 e=1 e=12 e=3
N 1,031 249 531 251
Average T} 18.39 18.36 18.22 18.79
Total observations 18,961 4,572 9,673 4,716
Tests for slope homogeneity
Atest Statistic 25.59 7.20 13.65 1832
Normal approximation p-value [0.0000] [0.0000] [0.0000] [0.0000]
Bias-corrected bootstrap p-value ~ [0.0000] [0.0000] [0.0000} [0.0000]
Autoregressive coefficient (1) , |
FE estimates (A g) 04841 04056 04497 0.5538
Lo (0.0065) (0.0147) (0.0095) (0.0106)
WEE estimates (Awzg) 0.5429 04246 0.5169 0.6002
] (0.0056) (0.0133) (0.0086) (0.0095)
Bias-corrected WEE (Ayrg) 0.6504 0.5188 0.6192 0.7214
(0.0055) {0.0126) (0.0080) (0.0101)

Notes: The FE estimator and the WEE estimator ate defined by (28.97), and (28.96), respectively, and their associated

— /n . )
standard etrors (shown in round brackets) are based on Var (}» FE) =42 (Z{il e 1My 1) ,where

N
—1 R ' .
6% = (T —-N-— 1) E (Yi - APEYi,—l) My, (Yi - kFEyi,—x),
=1

o [ L -1
T= Z{il T}, and Var (}“WFE) = <Zfi1 o Zy‘/.‘__erl.y,-,__l) .

Bias corrected estimates are based on Awpp = Jwrg + (T/N) (1 + XWFE) and Var ()\WFE) =T! (1 - X%VFE)

Bias-corrected bootstrapped tests also use Jweg and the associated estimates to generate bootstrap samples (see Section

28.11.7 for further details).

28.12 Further reading

Further details on estimation and inference on large heterogeneous panels can be found in Hsiao
(1975), Pesaran and Smith (1995), and Hsiao and Pesaran (2008).

28.13 Exercises

1. Suppose that

)’it:ﬂgtxit‘i’uit;izllzl"'le t=12,...,T,
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