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Introduction

Researchers now regularly estimate spatial 
models in applied political science, both to 
enhance the validity of their direct (i.e., non-
spatial) covariate-effect estimates and to test 
explicitly spatial theories. While this is a 
welcome advance over past practices, we 
worry that much of this first generation of 
applied spatial research overlooks certain 
aspects of spatial models. In particular, while 
different theories imply different spatial-
model specifications, statistical tests fre-
quently have power against incorrect 
alternatives. As a consequence, researchers 
who fail to discriminate explicitly between 
the different manifestations of spatial asso-
ciation in their outcomes are likely to errone-
ously find support for their theoretically 
preferred spatial process (e.g., contagion or 
endogenous global spillovers) even where an 
alternative process instead underlies the 
association (e.g., diffusion or exogenous 
local spillovers). To help researchers avoid 

these pitfalls, we (1) elaborate the alternative 
theoretical processes that give rise to a tax-
onomy of spatial models, (2) indicate why 
and provide evidence that these alternative 
processes are frequently mistaken for one 
another during conventional hypothesis test-
ing, and (3) suggest a set of strategies for 
effectively discriminating between the seven 
alternative spatial-lag models (with one, two, 
or all three of spatially lagged errors, spa-
tially lagged independent variables, and/or 
spatially lagged dependent variable).

Cross-sectional, or spatial, interdependence 
is ubiquitous in the social sciences. Theories 
indicating that the actions of/outcomes in 
some units are a function of (i.e., depend upon) 
those of other units – as they are coerced by, 
compete with, learn from, and emulate one 
another – span across the sub-fields and sub-
stance of political science, for example.1 The 
diffusion of political institutions and policy is 
well established in American and compara-
tive politics, with units learning from and/
or emulating the institutions and instruments 
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of other units. Similarly, political behavior, 
from voting to violence, is necessarily inter-
dependent as expectations over outcomes are 
a function of beliefs about the actions of oth-
ers. The very structure of the global economy 
indicates the importance of interdependence 
in the study of comparative and international 
political economy, evidenced both in deepen-
ing economic integration and more prevalent 
policy coordination or competition. The very 
field name International Relations, mean-
while, centrally implicates interdependence 
in that area of study. More generally still, 
spatial interdependence is present whenever 
units are affected by the actions, behaviors, 
and outcomes of other units.

Given the theoretic centrality of spatial 
interdependence in political science and 
international relations, early work sought to 
introduce and extend methods for analyz-
ing this dependence directly (Beck et  al., 
2006; Franzese and Hays, 2007). Beyond 
the classic linear model, statistical methods 
have been developed for spatial analysis 
of binary outcomes (Franzese et  al., 2016; 
Wilhelm and de Matos, 2013), count data 
(Hays and Franzese, 2017), durations (Hays 
and Kachi, 2009; Hays et  al., 2015), and 
endogenous predictors (Betz et  al., 2020). 
Moreover, researchers have built on the dic-
tum that space is ‘more than geography’ and 
indicated how the specification of the con-
nectivity matrix itself enables researchers to 
test a range of political theories (Neumayer 
and Plümper, 2016; Plümper and Neumayer, 
2010). As a result, there has been a prolifera-
tion of empirical work in political science, 
which offers theories, estimates models, and 
conducts tests of spatial interdependence.2

While this is a welcome advance over 
past practices – treating spatial dependence 
as a nuisance or ignoring it altogether – we 
worry that much of this first generation of 
applied spatial research does not fully appre-
ciate or is unfamiliar with certain aspects of 
spatial models. Importantly, distinct spatial-
model specifications arise from different 
theoretical explanations of spatial clustering 

in the outcomes: i) endogenous interaction 
effects (e.g., spillovers in the outcomes),  
ii) exogenous interaction effects (e.g., spillo-
vers in the predictors), and/or iii) interac-
tions or clustering in the residuals (Elhorst, 
2010).3 Problematically, these theoretically 
distinct statistical models are quite similar 
and so produce similar patterns in empirical 
data, which complicates specification test-
ing (Anselin, 2001; Gibbons and Overman, 
2012). Specifically, diagnostic tests have 
power against incorrect alternatives (test-
ing rejects A in favor of B, when, in fact,  
C is present and causes the rejection, not B), 
making it difficult to statistically distinguish 
between these various models. To the extent 
that researchers attach theoretic importance 
to these different model specifications, which 
they should, and subsequently draw substan-
tively meaningful inferences off these diag-
nostic tests, it is important to understand how 
and the extent to which these tests can distin-
guish between these alternatives. Thus, while 
we can now estimate a variety of spatial mod-
els in many different contexts, these ambigui-
ties, left unaddressed, limit what we can learn 
from analyses utilizing spatial methods.

To begin to redress these limitations 
here, we first detail and describe the pos-
sible sources of spatial clustering and the 
econometric models that are implied when 
any combination of these sources is present. 
While a general model that allows for all three 
sources of spatial clustering is discussed, we 
show that this model is weakly identified 
based on structural assumptions and there-
fore can provide only a precarious guide to 
our specification search. This precludes a 
Hendry-like general-to-specific specifica-
tion search, as has been advocated in time-
series modeling (in political science by De 
Boef and Keele, 2008). Instead, researchers 
generally must constrain one of the possible 
sources of spatial clustering in order to dis-
criminate effectively between the remaining 
alternatives. While research design or theory 
should be the preferred bases on which to 
justify this constraint, we offer guidance for 
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researchers in situations where these solu-
tions are not available.

Our intention is not to discourage the use 
of spatial methods, as we feel spatial analysis 
is necessary and appropriate whenever one 
has cross-sectional or time-series-cross-sec-
tional observational data.4 Instead, we simply 
advocate that researchers exercise greater 
caution when estimating these models, espe-
cially when attempting to articulate and test 
specific theories of spatial interdependence. 
Taking ‘space’ seriously does not simply 
mean estimating a spatial model but rather 
estimating the appropriate spatial model. In 
the following section, we outline the vari-
ety of alternative spatial models, show how 
easy it is to mistake one of these models for 
another when drawing inferences, and sug-
gest tests to aid researchers in identifying and 
specifying appropriate models for estimation. 
Subsequently, we evaluate the small-sample 
performance of these tests under a variety of 
simulated conditions.

Specifying Spatial Models

In prior work, we have highlighted the sub-
stantive/theoretical ubiquity of interdepend-
ence across political science. While the 
emergence of applied spatial research in 
political science suggests broad agreement 
on the importance of spatial theories, some 
research may have too quickly turned to 
articulating and testing specific mechanisms 
(e.g., emulation vs learning) and sources 
(e.g., distance vs trade) for spatial depend-
ence across a range of issue areas without 
first devoting sufficient attention to the vari-
ous broader ways in which spatial depend-
ence can manifest in observational data. 
Before discriminating between competing 
theories of the bases of diffusion, researchers 
must first evidence that there is some form of 
diffusion. Researchers need to be aware of 
the various possible sources of spatial corre-
lation in their outcomes and adopt models 

that appropriately nest and test between 
these competing alternatives. Therefore, we 
open by discussing the potential sources of 
spatially correlated outcomes, before outlin-
ing the spatial-econometric models implied 
by each.5

According to Anselin (2010), spatial het-
erogeneity is the uneven distribution of a 
trait, event, or relationship across a region. 
Therefore, it is present whenever we observe 
spatial clustering in the outcomes across 
some set of sample units. By which we 
mean that when there is non-zero covariance 
among these units’ outcomes:

	

=
− × ≠ ≠

y y E y y

E y E y i j

cov( , ) ( )

( ) ( ) 0 for
i j i j

i j � (1)

i.e., whenever variation in the outcome is not 
randomly distributed across units. This only 
becomes problematic for non-spatial analyses, 
however, when the (spatial) distribution of 
these outcomes is not entirely explained by 
the (spatial) distribution of predictors. In these 
instances, additional unmodeled factors give 
rise to the spatial correlation we observe in 
our outcomes, the failure to account for which 
potentially threatens the accuracy of our esti-
mates and the validity of our inferences.

To elaborate the various manifestations 
of spatial association more fully, consider 
Figure 39.1. As we see, correlation in the 
outcomes arises from spatial (inter)depend-
ence in the observable and/or unobservable 
inputs.6 Broadly, there are two mechanisms 
that produce spatially correlated outcomes:  
i) spatial clustering and/or ii) spatial spillo-
vers or interactions. As with the outcomes, 
spatial clustering in the observables (unob-
servables) occurs when the level, presence, 
or change of an observed (unobserved) deter-
minant in one unit is correlated with but not 
a function of (not caused by) the value of that 
factor in other (spatially proximate) units:

ε= ≠ ≠y f x x x i j( , ) and cov( , ) 0 for i i i i j � (2a)

ε ε ε= ≠ ≠y f x i j( , ) and cov( , ) 0 for i i i i j � (2b)
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where y is the outcome, x is a predictor, and  
ε is the unobserved error, with subscripts i and 
j identifying cross-sectional units. Here, the 
predictors and/or errors are spatially clus-
tered, which, in turn, produces spatial cluster-
ing in the outcomes.7 This does not require or 
suggest interaction between the units, simply 
that proximate actors possess similar charac-
teristics (e.g., natural endowments that span 
across units) that, when manipulated, cause 
these unit outcomes to vary concurrently. 
That is, a common factor in the observables or 
unobervables results in correlated group 
effects.8 For example, policy or technological 
innovations that change in the costs of inputs 
or demand (holding supply fixed) impact the 
revenues of all producers of a good, even 
where there is no direct interaction between 
them.

Alternatively, spatially correlated out-
comes can arise due to spatial spillovers, 
when the outcomes of one unit are a function 
of (are caused by) the outcomes, actions, and 
behaviors of other units:

	 ε=y f x x( , , )i i j i � (3a)

	 ε ε=y f x( , , )i i i j � (3b)

	 ε ε ε= =y f x y f x x( , , ) ( ,( , ), )i i j i i j j i � (3c)

These we label interdependence, which seems 
to be the spatial process most commonly 
assumed by contemporary applied research-
ers. In this case, there are spillovers and/or 
externalities that arise from the observables 
(Equation 3a), unobservables (Equation 3b), 
or outcomes (Equation 3c) of other units. Note 
that here we need not assume that the observa-
bles or unobservables are governed by a spa-
tial process (are spatially correlated) – although 
they certainly may be – merely that there is 
cross-unit dependence, where the outcome in 
i is a function of the observables and/or unob-
servables in unit j. Theories of diffusion or 
contagion, or of strategic decision-making, for 
example, would generally imply such interde-
pendent processes.

While many of our theories suppose inter-
dependence in the outcomes, this necessarily 
implies that the relation of yi and yj oper-
ates through the combined spatial effects of 
the observables (xj) and unobservables (εj) 
(Equation 3c). Anselin (2003) discusses that 
for specification, then, a more fundamental 
consideration is whether these externalities 
are global or local (the third dimension of 
Figure 39.1), i.e., whether actors only affect 
their immediate neighbors, peers, etc., as 
assumed by a local process, or, as in Tobler’s 
oft used expression ‘everything is related to 
everything’, suggesting a global process in 

GlobalLocal

SpilloversClustering

ObservablesUnobservables

Spatially correlated outcomes

Spillovers(Clustering)

GlobalLocal

Figure 39.1  Manifestations of spatial association
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which actors affect proximate actors, who 
in turn affect their proximate actors, and so 
on. Perhaps more clearly, the distinction is 
between whether spillovers in the observables 
(X) and unobservables (ε) in my neighbors 
affect me directly, or they affect me indirectly 
through my neighbors’ outcomes (yj).9

Our theoretical propositions about which 
combination of these spatial effects pro-
duces spatial clustering in the outcomes 
imply different econometric specifications. 
Specifically, we have discussed three rele-
vant dimensions which should inform spatial 
specification: i) whether spatial heterogene-
ity in the outcome is caused by observable 
or unobservable factors (or both), ii) whether 
these spatial effects arise from clustering 
or spillovers (or both), and iii) if spillovers, 
whether these spillovers are local or global.10 
Table 39.1 lists the spatial models most com-
monly discussed in the literature.11

Beginning with the most restrictive of 
these models, the non-spatial linear-regres-
sion model assumes that any spatial correla-
tion in the outcomes is entirely a function of 
spatial correlation in the predictors:

	 ββ εε= +y X � (4)

That is, to account for the spatial correlation in 
outcomes, we need simply to include appro-
priate predictors (X), as regularly done in non-
spatial analysis. We emphasize this simple 
point as it seems to be misunderstood in some 
applied literature.12 Moreover, it underscores 
the importance of model specification more 

generally when undertaking spatial analysis, 
as misspecified models – those omitting rele-
vant spatially clustered predictors – will 
exhibit spatial dependence in the residuals 
(and, in turn, give power to spatially lagged 
(in)dependent variables). As such, a better 
specified model is one obvious solution when 
confronting spatially clustered residuals.13

In estimating these models, researchers 
assume a spherical error variance–covariance 
matrix (and, by extension, that ρ = λ = 0;  
θ = 0), i.e., that the residuals are not spatially 
correlated. This can be easily tested through 
a variety of post-estimation diagnostic tests, 
including the familiar Moran’s I and Lagrange 
Multiplier tests (Franzese and Hays, 2008). 
Should these tests reject the null, indicating 
spatial correlation in the residuals, further 
remedies are needed to avoid inefficiency 
and possible bias in our parameter estimates. 
Most applied spatial work in political science 
engages in this type of exploratory spatial 
analysis to justify the use of further spatial 
methods. However, these tests merely sug-
gest a spatial process and generally are not 
very helpful for making specification choices 
from among the broad class of possible spa-
tial models.

Of these models, the most widely discussed 
have been the spatial error model (SEM), the 
spatial lag model (SAR), and, more recently, 
the spatially lagged X model (SLX). Each 
assumes that any spatial correlation in 
the outcomes arises from a single source, 
exogenous observables, unobservables, or 

Table 39.1 C ommon spatial econometric models

Name Structural model Restrictions

General nesting model y = ρWy + Xβ + WXθ + u,u = λWu + ε None

Spatial Durbin error model y = Xβ + WXθ + u,u = λWu + ε ρ = 0

Spatial autocorrelation model y = ρWy + Xβ + u,u = λWu + ε θ = 0

Spatial Durbin model y = ρWy + Xβ + WXθ + ε λ = 0

Spatial autoregressive y = ρWy + Xβ + ε λ = 0; θ = 0

Spatially lagged Xs y = Xβ + WXθ + ε ρ = λ = 0

Spatial error model y = Xβ + u,u = λWu + ε ρ = 0; θ = 0

(Spatial) Linear model y = Xβ + ε ρ = λ = 0; θ = 0
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outcomes, restricting the other possibilities 
to zero. SEMs imply that the pattern of spa-
tial dependence is attributable to unmeasured 
covariates that are orthogonal to the included 
regressors, resulting in a non-spherical error 
variance–covariance matrix.14 Under these 
conditions, parameter estimates are unbi-
ased but inefficient (and standard errors are 
incorrectly estimated). Efficient parameter 
estimates and correct standard errors can be 
obtained by accounting for the spatial struc-
ture of the residuals, as done in the SEM:

	 λββ εε= + = +y X u u Wu, where  � (5)

where W is an N × N connectivity matrix with 
elements wij indicating the (pre-specified, 
exogenous) relative connectivity (i.e., rela-
tionship) from unit j to unit i and λ indicating 
the strength of the spatial interdependence 
along this pre-specified pattern of connec-
tions.15 In the terms of Table 39.1, this model 
assumes global spillovers in the unobserva-
bles, i.e., that the residuals are governed by a 
spatial autoregressive process.16 This will also 
be the preferred specification when we believe 
there is clustering in the unobservables. Unlike 
with observable predictors, we have no means 
of introducing this heterogeneity into the sys-
tematic component of the model directly and 
must assume that these unobserved compo-
nents are orthogonal to the observed ones (and 
so no bias issue), but accounting for the struc-
ture of the residuals should still provide some 
insurance against inefficiency resulting from 
this type of clustering and produce more accu-
rate standard error estimates.17

If, instead, researchers believe that there 
are spillovers in the observables, one of the 
other single-source spatial models should be 
estimated to i) avoid bias in the estimated 
non-spatial effect-parameters and ii) obtain 
estimates of these spatial (spillover) effects. 
Where theory and substance suggest these 
spillovers/externalities are local, the SLX 
model should be preferred:

	 ββ θθ εε= + +y X WX � (6)

Alternatively, where theory indicates these 
spillovers/externalities are global and in the 
outcome, the widely used SAR model is 
called for:18

	 ρ ββ εε= + +y Wy X � (7)

This will likely be familiar to most readers, 
as it has quickly become the workhorse 
model of applied spatial work in political sci-
ence (and elsewhere). While both SLX and 
SAR models allow for spillovers in observa-
bles, they differ over whether they model 
these as local or global processes, as dis-
cussed earlier, and whether there are spatial 
effects in the unobservables. More theoreti-
cally, they also differ over whether we believe 
there is cause to understand the spillovers of 
the observables as direct, xj ⇒ yi, as is more 
likely with social aggregates, like GDP for 
example, or indirect, (xj, εj) ⇒ yj ⇒ yi, as is 
more likely with strategic independence 
among decision makers like as in public poli-
cies, for example.

We have noted that the similarity of these 
models creates challenges for diagnostic 
tests. While this may not be obvious from the 
structural forms given in Equations 5–7, we 
can re-express them to highlight the similari-
ties. Taking the reduced form of u and substi-
tuting and rearranging terms, the SEM model 
becomes

	 λ λββ ββ εε= + − +y Wy X WX � (8)

The similarities between the SEM model and 
the SLX model (given in Equation 6) and the 
SAR model (given in Equation 7) are now 
readily apparent, as it is composed of a spa-
tial lag of the outcomes (λWy) and spatial 
lags of the predictors (λWXβ). Similarly, 
taking the reduced form of the SAR model in 
Equation 7 and its expansion produces

	 ββ εερ= − +−y I W X( ) ( )1 � (9a)

	

ββ ββ ββ

εε εε εε

ρ ρ

ρ ρ

= + + …

+ + + …

y X WX W X

W W

2 2

2 2 � (9b)
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Again, the similarities between the SAR 
and SLX models are now apparent, with 
the only differences being the higher-order 
polynomials of the spatial lag of X and the 
spatial error process. As a consequence, 
unmodeled spatial spillovers/externalities 
in the observable predictors, in the unob-
servables, or in the outcomes will result in 
a rejection of the zero null for the spatial-
effect parameter in any of these single-
source models.

To ward against this possibility, spatial 
econometricians have increasingly recom-
mended the two-source models:

	
ρ

β θ ε
= +

+ +
SDM y Wy

X WX

:
� (10)

	
ρ β
λ ε

= + +
= +

SAC y Wy X u

u Wu

: , 

where 
� (11)

	
β θ

λ ε
= + +

= +
SDEM y X WX u

u Wu

: , 

where 
� (12)

and a more general model still: the so-called 
General Nesting Spatial Model (GNS),

	
ρ β θ
λ ε

= + + +
= +

GNS : y Wy X WX u

u Wu

, 

where 
�(13)

which imposes no constraints on the three 
spatial parameters (ρ, λ, θ).19 Given that this 
model subsumes all the alternatives pre-
sented thus far, one might think to engage in 
a Hendry-like general-to-specific specifica-
tion search (Hendry, 1995), thereby avoiding 
the pitfalls encountered when adopting a 
specific-to-general approach. While this 
strategy has much to recommend it and is 
commonplace in the time-series literature, 
there are two problems that prevent adopting 
the general-to-specific approach in the spa-
tial context.

First, the GNS model is weakly identi-
fied. As discussed in Gibbons and Overman 
(2012), the GNS is the analog to Manski’s 

(1993) well known linear-in-means neigh-
borhood-effects model:

	
� �� �� � �� ��

� �� ��

= ρ β γ

ρ ε

+ + +

= +

y E y a x E x a v

u E u a

[ | ] [ ' | ] , 

where   [ | ]

1

Endog. Effects Exog. Effects

2

Corr. Errors

� (14a)

	

β ρ β γ
ρ

ρ
ρ

= +
+

−

+
−

+

y x E x a

E v a u

[ ' | ]
( )

1

1
[ | ]

1

1

1

1

� (14b)

This parallel should raise some red flags given 
the well known identification problems of 
the Manski model. As indicated in Equation 
14b, it is impossible to separately identify the 
endogenous and exogenous spatial effects in 
this model.20 With spatial econometric meth-
ods, however, one does not simply estimate 
one sum ‘neighborhood’ effect: each unit in 
a sample is known to be connected to others 
through W, and this matrix almost always 
provides more information than neighborhood 
membership. For example, within a given 
‘neighborhood’, there are first-, second-, and 
higher-order neighbors.21 As a result, spatial-
econometric models are usually able to use the 
pre-specification of W to achieve identifica-
tion in most cases.22

Focusing on an example with a single pre-
dictor, some algebraic manipulation of the 
GNS model in Equation 13 allows it to be 
re-written as

	

y Wy W y x

Wx W x

( )

( )

2

2

ρ λ ρλ β

θ λβ λθ ε

= + − +

+ − − + � (15a)

	

xq q q

q q

y Wy W y

Wx W x

1 2
2

3

4 5
2 ε

= + +

+ + + � (15b)

where the spatial parameters are weakly 
identified by the second-order terms in the 
polynomial. The reduced form of the GNS 
provides five parameters from which we can 
recover the four structural parameters. 
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Substituting q1 into q2 and q4 into q5 gives a 
set of quadratic relationships for λ:

λ λ

λ λ
β

= +

=
− +
q q

q q( )

2
2 1

2 5 4

These equations provide a unique solution 
for λ and, in turn, the other parameters:

λ β
β

ρ β
β

θ β β
β

=
− +

+

= +
+
+

= −
+

+

q q

q q

q
q q

q q

q
q q

q q

( )

( )

( )
.

2 5

1 4

1
2 5

1 4

4
2 5

1 4

The problem is that these parameters are 
identified solely by the structural assump-
tions of the functional form implied by 
autoregression and the pre-specified W, and 
the performance of the GNS model deterio-
rates rapidly as these assumptions become 
more appreciably incorrect, as we show later 
in our Monte Carlo experiments.

How, then, should researchers who are 
interested in undertaking spatial analysis 
proceed? Broadly, there are two strategies 
one can pursue. The first is to constrain one 
of the spatial parameters to zero, thereby 
allowing firmer identification of the remain-
ing free parameters and more robust esti-
mation of the relevant two-source model.23 
The second is to add additional structure 
to the model in the form of unique weights 
matrices for the observables and unobserva-
bles. While possible, this second approach 
seems unappealing to us as a general strat-
egy, given that we can think of no reason 
why we would generically expect to have 
strong prior information to indicate that 
unobserved effects are spatially governed 
in a manner distinct from observed predic-
tors.24 Accordingly, we focus on evaluating 
the efficacy of the first strategy, constraining 
one or more parameters, as a more generally 
applicable approach.

Implicitly, this is the approach currently 
advocated by most spatial econometricians, 
who have increasingly recommended one or 
another of the two-source models. However, 
to date, researchers have received conflict-
ing advice over which model should be 
preferred as a general model, with some 
strongly advocating the SDM and others the 
SAC. Elhorst (2010: 10) offers a fun account 
that highlights this discord: ‘In his keynote 
speech at the first World Conference of the 
Spatial Econometrics Association in 2007, 
Harry Kelejian advocated [SAC models], 
while James LeSage, in his presidential 
address at the 54th North American Meeting 
of the Regional Science Association 
International in 2007, advocated [SDM] 
models’. Moreover, most of the work sys-
tematically exploring the small-sample 
performance of these models generally has 
done so with data-generating processes that 
satisfy the constraints assumed by the statis-
tical model.

Instead of simply advocating one model 
over another, as is commonly done, we 
believe researchers should adopt a more 
systematic approach to motivating these 
constraints. First, one could use research 
design, such as natural experiments, to 
eliminate one (or more) of the three possi-
ble sources. This is the strategy suggested 
by Gibbons and Overman (2012), both to 
evade the issues that arise from the uniden-
tified GNS and avoid models only identi-
fied off-structure (e.g., spatial econometric 
models, generally).25 Focusing exclusively 
on those contexts where natural experiments 
are available, however, bounds the range of 
issues that can be studied. As such, we con-
sider approaches where such strategies are 
not possible.26

A natural alternative in such instances 
is to use theory to guide these constraints. 
Where theory can eliminate one of the pos-
sible sources, we should be more confident 
in our selection of the appropriate two-
source model. Even where we do not have 
strong theory to confidently eliminate one 
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of these sources, we suggest a third alterna-
tive: use the aim of the research to guide the 
model selection. That is, where researchers 
are principally interested in obtaining unbi-
ased estimates of the non-spatial param-
eters,27 the spatial Durbin model should 
be preferred. This should provide the most 
insurance against possible omitted variable 
bias by explicitly introducing both forms 
of observable spillovers into the systematic 
component of the model. However, where 
researchers are explicitly interested in evalu-
ating spatial theories, we believe one of the 
other two-source models (SAC or SDEM) 
are best. Each frees one parameter to cap-
ture spillovers in observables (either ρ or 
θ) while accounting for spatial effects in 
the unobservables (λ). To us, distinguishing 
between spatial spillovers in observables and 
spatial effects in unobservables is the most 
significant consideration. Importantly, this 
will help prevent researchers from drawing 
erroneous conclusions about diffusion and/
or spillovers where none exist, i.e., where 
spatial clustering in the outcomes is deter-
mined in whole or part by spatial effects 
in unobservables. Where such spillovers 
still find support, we have only lost the 
ability to statistically and empirically dis-
tinguish whether they were truly global  
or local – a cost that, by comparison, seems 
less severe.

Using either theory or research focus to 
guide specification, however, also natu-
rally risks a much more problematic cost: 
estimating the incorrect model (and so, 
generally, calculating incorrect effect esti-
mates). This can occur in four ways with 
the estimation of two-source spatial models:  
(1) the truth is all three spatial effects; (2) the 
truth is two sources but our statistical model 
imposes the wrong constraint, yielding the 
wrong two-source model; (3) the truth is a 
single-source model; (4) the truth is a non-
spatial model. In either of the first two, we 
risk bias in the estimates of the included spa-
tial and non-spatial parameters, as is always 
the case with spatially misspecified models. 

Thirdly, if the truth is a single source among 
our included two, the estimation should 
reveal that. If our two-source model does 
not include the true single source, the com-
bination of estimated coefficients on the 
included should produce that omitted third, 
but we would incorrectly find support for 
both included spatial parameters being non-
zero, even though the truth is that only the 
omitted third is non-zero (the fourth, non-
spatial case should be unproblematic, as the 
estimation would return to zero for the spa-
tial parameters.)

The possibility that an omitted single-
source process would be reproduced through 
the combination of two-source parameter 
estimates has been well established for the 
SEM model, which can be re-expressed as 
a spatial Durbin model (noted above and re-
expressed here):

λββ εε= + = +y X u u Wu, where  � (17a)

λ λββ ββ εε= + − +y Wy X WX � (17b)

In this case, we can test the common-factor 
restriction of Burridge (1981), θ = −λβ, 
after estimating an SDM to evaluate whether 
it can be constrained to the SEM. Similarly, 
we can see that the SAR model can be re-
expressed as a higher-order variation of the 
SDEM:

	 ρ ββ εε= + +y Wy X � (18a)

	
y X WX W X

I W( )

2 2

1

ρ ρ

ρ

ββ ββ ββ

εε

= + +

+…+ − −
� (18b)

Thus, the only difference between the SDEM 
and the SAR model is the higher-order poly-
nomials of WX in the latter.28 Finally, while 
expressing the relationship between the SLX 
and the SAC model is not as straightforward, 
the basic intuition for why a true effect of θ 
in the SLX model would cause significant 
findings for both ρ and λ in the SAC model 
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parallels the above discussions in that the 
estimates of each is a function of WX:

	

ρ
λ

ββ
εε

= + +
= +

y Wy X u

u Wu

, 

where  � (19a)

	
ρ ρ

ρ λ

ββ ββ ββ

εε

= + + + …

+ − −− −

y X WX W X

I W I W( ) ( )

2 2

1 1
�(19b)

Both this and the SAR–SDEM relation do 
not allow for a simple common-factor 
restriction test (as in the SEM–SDM case). 
Therefore, rather than testing constraints 
on parameters, one could use tests that 
compare the performance of non-nested 
models. For example, the ‘closeness’ test 
in Vuong (1989) can evaluate whether the 
two models differ significantly in their 
ability to explain the data. In this context, a 
failure to reject the null hypothesis would 
indicate support for the more parsimonious 
single-source model. We do not explore 
this approach at length here, but it may 
warrant further consideration in subse-
quent work.

In the next section, we explore the conse-
quences of imposing the wrong constraints 
when estimating spatial models.

Monte Carlo Analysis

In our simulations, we explore the possibil-
ity of detecting interdependence in outcomes 
and spillovers from covariates in cross-sec-
tions of data when there is spatial clustering 
in both observables and unobservables using 
the relevant models from Table 39.1. We 
define clustering as a common spatial or 
group fixed effect. Substantively, clustering 
differs from both interdependence and spill-
overs in that changes in covariates and dis-
turbances inside one unit do not cause 
outcomes to change in other units. The simu-
lation DGP is

	 ρ β θ= + + +y Wy x Wx u	

where y is an N × 1 vector of outcomes, x is 
an N × 1 covariate vector, u is an N × 1 
vector of disturbances, W is an N × N spatial 
weights matrix, ρ is the spatial interdepend-
ence parameter, β is the ‘direct-effect’ 
parameter, and θ is the spatial spillover 
parameter.

The individual elements of the vectors x 
and u are generated as

	 η ε η ε= + = +x uandig g
x

ig
x

ig g
u

ig
u 	

where xig and uig refer to the covariate and 
disturbance for unit i in spatial group g, ηg

x 
and ηg

u are the common spatial effects, dis-
tributed as standard normal variates 
(clustering), and ε ig

x  and ε ig
u  are the unit-spe-

cific components of the covariate and distur-
bance, which are also distributed as standard 
normal variates.

The spatial weights matrix identifies intra-
group connectivity and takes the form

	 =





















W

W

W

W

0 0

0 0

0 0 G

1

2





   



	

Thus, the complete weights matrix has 
a block diagonal structure for G groups, 
when the units or individuals in the sample 
are stacked by groups. We set the number 
of groups (G) to 15, the number of mem-
bers in each group (ng) to 20, and the degree 
of intragroup connectivity at 40%. We 
assume the connectivity weights are uni-
form and sum to one. That is, the weights 
are 1/nc, where nc is the number of intra-
group connections. This weights matrix is 
motivated by the fact that we usually do not 
know the relevant spatial groups. Should 
North Africa be grouped with Sub-Saharan 
Africa? Does Pennsylvania belong in the 
Northeast or Midwest? We do however 
observe intragroup relationships such as 
contiguity.
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We evaluate the small-sample perfor-
mance of the SAR, SAC, SLX, SDEM, 
SDM, and GNS models under four exper-
imental conditions: (1) no spillovers 
and no interdependence (θ = 0, ρ = 0),  
(2) spillovers and no interdependence (θ = 0.2,  
ρ = 0), (3) no spillovers and interdependence 
(θ = 0, ρ = 0.2), and (4) both spillovers and 
interdependence (θ = 0.2, ρ = 0.2). We set  
β = 2 in all of our experiments. Furthermore, 
clustering in the covariate and in the distur-
bances, as generated above, are present in 
all experiments.

Table 39.2 provides the ML estimates 
for the direct covariate effect (β̂). It is 
notable that all of the models perform rea-
sonably well across the experiments, with 

the exception of SAR. The direct effect is 
underestimated on average with this model. 
Clustering in the disturbances strengthens 
their correlation with the spatial lag, above 
and beyond the correlation that exists when 
the structural disturbances are independ-
ent and identically distributed (i.i.d.) This 
generates an inflating simultaneity bias in  
ρ̂, which induces an attenuating bias in β̂ . 
Moreover, estimation using the SAR model 
performs relatively poor in root-mean-
squared-error terms (largely a function 
of the bias), and the standard error esti-
mates are overconfident (we should note, 
however, that SAR’s underestimation of  
β tends to be in some partial way com-
pensated by its overestimation of ρ in 

Table 39.2  ML estimates of covariate-coefficient estimate ( ˆ , 2ββ ββ == , N = 300, 1,000 trials)

(1) (2) (3) (4)

θ = 0, ρ = 0 θ = 0.2, ρ = 0 θ = 0, ρ = 0.2 θ = 0.2, ρ = 0.2

SAR

  Bias −0.18 −0.17 −0.20 −0.18

  RMSE 0.21 0.19 0.22 0.20

  Overconfidence 1.47 1.42 1.47 1.41

SAC

  Bias −0.01 −0.01 −0.01 −0.01

  RMSE 0.07 0.07 0.07 0.07

  Overconfidence 1.05 1.05 1.05 1.06

SLX

  Bias 0.00 0.00 0.01 0.01

  RMSE 0.07 0.07 0.08 0.08

  Overconfidence 0.95 0.95 0.92 0.92

SDEM

  Bias 0.00 0.00 0.00 0.00

  RMSE 0.06 0.06 0.06 0.06

  Overconfidence 1.05 1.05 1.03 1.03

SDM

  Bias 0.00 −0.01 −0.03 −0.04

  RMSE 0.06 0.06 0.07 0.08

  Overconfidence 1.06 1.06 1.05 1.04

GNS

  Bias 0.00 0.00 −0.01 −0.01

  RMSE 0.06 0.06 0.06 0.06

  Overconfidence 1.03 1.04 1.06 1.07
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terms of yielding an estimated total effect 
ρ β− −I W( ˆ ) ˆ1  closer to the true value, two.

The results for the spatial interdepend-
ence-parameter estimates (ρ̂) are presented 
in Table 39.3. Here, we see the inflation bias 
(in SAR and SDM, especially) driven by 
the unmodeled spatial clustering in the dis-
turbances. The standard error estimates are 
highly overconfident as well. In SAR, across 
all four experiments, the standard deviation 
in the sampling distribution for ρ̂ is more 
than double the size of the average estimated 
standard error. The combination of an infla-
tion bias and overconfident standard errors 
means the rejection rate is extremely high 
when the null hypothesis is true. In other 
words, estimation with SAR produces a high 
rate of false positive rejections when there 

is unmodeled clustering (this is Galton’s 
problem).

Estimation with SAC does better than with 
SAR or SDM in terms of bias, root-mean-
squared-error performance, and standard 
error accuracy. The improvement stems from 
the fact that SAC accounts for the clustering 
in the disturbances (unmodeled/unobserved 
factors) by allowing them to follow a spatial 
AR process. This is not a perfect representa-
tion of the true DGP, but the AR specification 
is easy to implement when the spatial groups 
are not known, and there are substantial gains 
from doing so. The SAC provides protection 
against false positive rejections. The cost is a 
loss of power, which is large in column (3).  
However, the rate at which the SAC model 
correctly rejects the null hypothesis is 

Table 39.3  ML estimates of interdependence ( ˆ , 2ρρ ββ == , N = 300, 1,000 trials)

(1) (2) (3) (4)

θ = 0, ρ = 0 θ = 0.2, ρ = 0 θ = 0, ρ = 0.2 θ = 0.2, ρ = 0.2

SAR

  Bias 0.29 0.32 0.23 0.45

  RMSE 0.30 0.33 0.24 0.46

  Overconfidence 2.24 2.17 2.25 2.18

  False positives (0.10 level) 97.4% 99.2%

  Power (0.10 level) 99.9% 99.9%

SAC

  Bias −0.08 0.01 −0.09 0.20

  RMSE 0.12 0.10 0.14 0.22

  Overconfidence 1.16 1.21 1.19 1.24

  False positives (0.10 level) 28.8% 18.2%

  Power (0.10 level) 36.9% 72.6%

SDM

  Bias 0.70 0.70 0.56 0.76

  RMSE 0.70 0.70 0.56 0.76

  Overconfidence 1.38 1.38 1.33 1.36

  False positives (0.10 level) 100% 100%

  Power (0.10 level) 100% 100%

GNS

  Bias 0.11 −0.03 −0.30 −0.22

  RMSE 0.80 0.79 0.75 0.66

  Overconfidence 7.06 6.20 4.75 3.84

  False positives (0.10 level) 97.9% 97.5%

  Power (0.10 level) 92.2% 89.0%
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sensitive to experimental conditions. If we 
increase the strength of interdependence, for 
example, the power will improve. Both the 
SDM and GNS models perform poorly, pro-
ducing biased estimates and overconfident 
standard errors.

Table 39.4 provides the ML estimates for 
the spillover parameter (θ̂). Whenever there 
is no interdependence (ρ = 0), estimates from 
the SLX model do well in terms of bias but 
not in terms of efficiency. The variance in 
the sampling distribution is relatively large. 
Also, the standard errors are highly overcon-
fident. Across the experiments, the standard 
deviations for the empirical sampling dis-
tributions are about 2.5 times large than the 
average estimated standard error. Because of 
the overconfident standard errors, the SLX 

model produces a high rate of false positive 
rejections, even when where is no interde-
pendence. When there is interdependence, 
omitted variable bias causes the performance 
of SLX to deteriorate further. Similar to the 
SAC improvement over SAR, estimation with 
SDEM does better than with SLX in terms of 
bias, root-mean-squared-error performance, 
and standard error accuracy. SDEM provides 
some protection against false positive rejec-
tions; the cost for this protection is a loss of 
power. Again, both the SDM and GNS mod-
els perform poorly, producing biased esti-
mates and overconfident standard errors.

To sum, clustering in unobservables – for 
example, unobserved or unmodeled clustered 
factors – complicates our ability to detect 
interdependence in outcomes and spillovers 

Table 39.4  ML estimates of spillover effect ( ˆ , 2θθ ββ == , N = 300, 1,000 trials)

(1) (2) (3) (4)

θ = 0, ρ = 0 θ = 0.2, ρ = 0 θ = 0, ρ = 0.2 θ = 0.2, ρ = 0.2

SLX

  Bias 0.00 0.00 0.46 0.49

  RMSE 0.32 0.32 0.60 0.63

  Overconfidence 2.41 2.41 2.62 2.62

  False positives (0.10 level) 47.8% 74.8%

  Power (0.10 level) 56.6% 89.7%

SDEM

  Bias 0.01 0.01 0.41 0.42

  RMSE 0.21 0.21 0.46 0.47

  Overconfidence 1.12 1.12 1.08 1.08

  False positives (0.10 level) 13.6% 70.0%

  Power (0.10 level) 31.6% 92.1%

SDM

  Bias −1.60 −1.70 −1.55 −1.64

  RMSE 1.61 1.71 1.56 1.65

  Overconfidence 1.29 1.31 1.28 1.32

  False positives (0.10 level) 99.9% 99.9%

  Power (0.10 level) 99.9% 99.9%

GNS

  Bias −0.23 0.05 0.58 0.81

  RMSE 1.84 1.89 1.80 1.77

  Overconfidence 6.16 5.71 4.59 3.89

  False positives (0.10 level) 97.6% 97.7%

  Power (0.10 level) 98.9% 98.7%

BK-SAGE-CURINI_FRANZESE-190202-V2_Chp39.indd   742 3/27/20   12:38 PM



Model Specification and Spatial Interdependence 743

from observable covariates in cross-sections 
of data. When one suspects both interde-
pendence and exogenous spillovers, it would 
seem natural to estimate either the SDM or 
GNS models, but this is not advisable under 
these conditions. The SDM allows for both 
interdependence and spillovers, but it ignores 
the clustering in disturbances. This omis-
sion generates a bias in the estimates for the 
interdependence parameter (ρ) and the spill-
over parameter (θ). Why not also allow for 
spatial correlation in the disturbances? This 
is what the GNS does. Unfortunately, this 
model is only identified from strong struc-
tural assumptions (functional form and W), 
and, in this case, the structural assumption 
about the disturbances is incorrect, so failure 
of these other strong assumptions has severe 
ramifications. Therefore, GNS tends not to 
perform any better than SDM. Both models 
frequently produce statistically significant 
estimates of interdependence and spillover 
parameters with the wrong sign!

When one suspects clustering on unob-
servables, it does not seem advisable to 
estimate either the SDM or GNS models. 
Instead, estimating either SAC or SDEM 
would seem to be a more prudent strategy 
(and preferable to SAR and SLX as well). 
While design should be leveraged to select 
between these models where possible, often 
this will not be an option and researchers 
will instead have to eliminate either inter-
dependence or spillovers (plus spatial error 
dependence) on theoretical grounds.29 This 
makes it difficult to offer a general prescrip-
tion; however the nature of one’s data will 
often be instructive. When the outcomes 
of interest are social aggregates – such as 
unemployment rates, crime rates, or the 
aggregate demand for cigarettes (these are 
common outcomes in the spatial-econometrics 
literature) – outcome contagion makes lit-
tle sense. The unemployment rate in one 
locality does not literally cause the unem-
ployment rate in another; rather, economic 
conditions cluster spatially and economic 
conditions in j cause unemployment in i 

(exogenous spillovers). On the other hand, 
when the outcomes are choices made by 
strategically interdependent actors – as is 
common in political science – interdepend-
ence is far more plausible: tax rates in i do 
likely respond to tax rates in j.

Ultimately, however, researchers are sim-
ply deciding whether theory indicates that 
changes to my neighbors’ covariates affect me 
directly (as in SDEM) or indirectly through 
the changes they elicit in my neighbors’ out-
come (as in SAC). To us, this consideration 
seems less consequential (though not incon-
sequential because Wy implies multipliers 
whereas WX does not) than determining 
whether the spatial clustering we observe in 
the outcomes arises from spillovers of either 
exogenous (WX) or endogenous (Wy) type 
or merely through the presence of (spatially) 
common unobservables, which both SDEM 
and SAC better enable us to do.

Conclusion

In general, there are two primary conclusions 
with which we hope to leave readers and prac-
titioners. The first conclusion is the impor-
tance of undertaking appropriate diagnostics 
to explicitly test the restrictions implied by 
one’s model, considering the different sources 
of spatial association, exogenous and endog-
enous, observed and unobserved. While this 
will seem obvious to readers more familiar 
with model specification in other literatures 
(e.g., time series), these issues have not been 
as well articulated in the spatial literature that 
guides political scientists to date. This is espe-
cially important in spatial-analytic contexts, 
where researchers are more likely to attach 
theoretic importance to these findings and, as 
such, should exercise greater care when speci-
fying their models. The second is that no 
single model can or should serve universally 
as baseline specification that guards against 
misspecification. While some in the spatial-
econometric literature have advocated 
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strongly for the SAR, SLX, or spatial Durbin 
models, we present a variety of theoretically 
plausible and empirically likely conditions 
where each of these models will cause 
researchers to draw faulty inferences. We 
have argued and presented support for the 
case that the heretofore relatively neglected 
SAC or SDE models will have broader utility 
as prudent defaults; but even those, we would 
acknowledge, can perform poorly under some 
plausible conditions.

For interested readers, we expand on the 
discussion presented here in Cook et al. (forth-
coming, b) in several ways. First, we con-
sider alternative specifications of the weights 
matrix, beyond the block-group structure 
examined here. Second, we increase the true 
effect size of the spatial lag of the predictor. 
Here, we have used a common coefficient size 
for each of the processes, however this implies 
a larger total effect size for the spatial lag of 
the outcome than the spatial lag of the pre-
dictor. Third, we consider not just coefficient 
estimates and hypothesis tests but substan-
tive effects as well – i.e., the derivatives dydx 
(see Franzese, Chapter 31, this Handbook) –  
comparing the efficacy of the various mod-
els in capturing pre-spatial, post-spatial, and 
total effects. Fourth, we consider extensions 
to TSCS data, where temporal dynamics 
may also impair spatial-model specification. 
Finally, we illustrate our approach to model 
selection with an empirical example (democ-
racy and income) to aid applied researchers.30
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Notes

 1 	 See Franzese and Hays (2008) for a fuller account 
of the substantive range of ‘spatial’ theories 
advanced in political science. In addition, Cook 
et  al. (2019) discuss the application of spatial-
econometric models to research in public admin-
istration and public management.

 2 	 This trend is likely to continue growing as these 
methods become more familiar to researchers 
and packages facilitating their easy estimation 
become available in widely used statistical soft-
ware languages, such as the ‘spdep’ package in R 
and the ‘sp’ suite in Stata 15.

 3 	 Briefly noting the models that these would imply: 
spatial clustering can manifest due to unobserved 
factors common to proximate units, suggest-
ing the spatial error model (SEM), or through 
exogenous perturbations to the predictors in 
my neighbor(s), which can influence me directly, 
motivating a spatially lagged X (SLX) model, or 
indirectly, by affecting my neighbors’ outcome 
and thereby my own outcome, as in a spatial 
autoregressive (SAR) model. Or it might be any 
combination thereof, suggesting one of several 
models that are more general.

 4 	 We suspect this is often true in experimental data 
on human subjects as well.

 5 	 For clarity, we confine our attention in this paper 
to the cross-sectional analysis of continuous data. 
While many of the themes and topics general-
ize to a broader set of circumstances, we save 
peculiarities confronted when dealing with quali-
tative outcomes and/or panel/time-series-cross-
sectional for address in other work.

 6 	 Although most of the literature uses the terms 
observables and unobservables, the actual issue is 
whether these factors are observed and included in 
the model’s systematic component or unobserved 
and left in the unmodeled residual component. 
We will continue to follow convention throughout, 
but the reader is encouraged to understand (un)
observeds for all references to (un)observables.

 7 	 Generally, this is discussed as the predictor and/or 
residual being governed by a spatial autoregressive 
process. However, it may also be that the predictor 
is a function of spatially correlated (but not autore-
gressive) factors. The consequences with respect to 
parameter estimates in the model of y are identical.

 8 	 More formally, Andrews (2005) states common-
factor residuals and predictors satisfy the following:
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Therefore, if units i and j are each members of 
group g, they are jointly impacted by the respec-
tive loading.

 9 	 The distinction also closely parallels that between 
moving-average (MA) and autoregressive (AR) 
processes in time-series contexts. Roughly, spa-
tial-lag X (and spatial-MA error) processes are 
local, MA-like, and spatial-lag y (and spatial-AR 
error) processes are global, AR-like (in the errors 
only, not the outcomes, as in the SAR-error case).

 10 	 This is analogous to Anselin’s (2003) two-dimen-
sional taxonomy for externalities.

 11 	 Note that this is a partial list. All of the models 
presented here assume parameter constancy, 
first-order spatial dependence (when present), 
and global (and not local) spatial autocorrelation 
in the unobservables (when present). As noted, 
these are the most common alternatives in the lit-
erature and importantly include those advocated 
by LeSage and Pace (2009) and Elhorst (2010).

 12 	 For example, Buhaug and Gleditsch (2008) 
argue that conflicts cluster in space because the 
characteristics that produce conflict also clus-
ter in space. If correct, this would be captured 
simply via the inclusion of the relevant country-
characteristics. Instead, they estimate a model 
with spatially lagged independent variables (e.g., 
democracy in contiguous countries), these WXs 
actually relate to a different argument as we dis-
cuss later.

 13 	 As always, the distribution of our residuals –  
spatial or otherwise – is entirely dependent on 
the specification of the systematic component of 
our model.

 14 	 In the remaining models, we will continue to 
assume that the residuals are orthogonal after 
the appropriate spatial specification is set. The 
possible endogeneity of the predictors present 
further complications as discussed in Betz et al. 
(2020).

 15 	 Under spatial dependence in orthogonal residu-
als, standard errors can also be consistently 
estimated, leaving the parameter-inefficiency 
unaddressed, by using appropriately designed 
robust standard errors (Driscoll and Kraay, 1998).

 16 	 The local (i.e., moving average) analog to this 
model would be given as

y X Wβ ε γ ε= + +

	 where the residual is decomposed into a spatial 
and non-spatial component. However, unlike the 
more common SEM, there is not autoregression 
in the residuals and therefore there is no inverse 
required in the reduced form, as noted by Anselin 
(2003). This model is not widely used in practice, 
likely because researchers have little information 

to justify this constraint, instead preferring the 
perhaps greater generality of the SEM model.

 17 	 Note that this is not true of panel or time-series-
cross-sectional data, where we can use spatial 
fixed effects to account for time-invariant hetero-
geneity in the unobservables directly. An example 
of this can be found in Cook et al. (2019).

 18 	 In actuality, the SAR model suggests global spill-
overs in both the observables and unobservables 
as we can see from the reduced form given below.

 19 	 We note again that each of these models assumes 
a global autocorrelation in y and/or ε and that 
only first-order processes are considered.

 20 	 Instead, all that is identified is the total spillover 
effect; this is Manksi’s reflection problem.

 21 	 This should suggest the importance of W given 
that the degree to which the weights matrix 
accurately reflects the true spatial relationships 
among the units is paramount. Both our ability 
to detect whether spatial dependence is present 
and to identify which source of spatial effects are 
present depend upon the accuracy of W.

 22 	 In this instance, the spatial analog is

( ) ( )

( )
1 1 1

1
2 2

1

yy XX WWXX WWXX

WW XX

β βρ γ ρ βρ γ
ρ βρ γ ε

= + + + +

+ + + … +

 23 	 While we do not fully elaborate it here, the intu-
ition – beyond simply being identified – as to why 
two parameter specification checks work well fol-
lows directly from Anselin et  al.’s (1996) robust 
Lagrange Multiplier tests (here given for spatial 
error):

W Wyε ε σ ε σψψ

ψψ

( )
=

′ − ′

− 
λ

ε εLM
T

ˆ ˆ / ˆ ˆ / ˆ

1
*

2 2
2

	 which treats ρ – the spatial heterogeneity attrib-
utable to the spatial lag of the outcomes – as a 
nuisance parameter, adjusting for its effect on 
the likelihood. In effect, removing the portion of 
cov( ˆ , ˆ )Wεε εε  that can be attributable to cov( ˆ , )Wyεε . 
Equivalently, we could construct additional pre-
specification tests (or simply estimate models) 
that hold fixed the effect of one alternative while 
evaluating the second.

 24 	 Even when these exist, the likely high degree of 
correlation between the weights matrices would 
likely leave a still weakly identified model.

 25 	 See also Egami (2018) for a strategy attempting 
nonparametric causal-inference tests of spatial 
spillovers in observational data.

 26 	 Egami’s (2018) approach requires no temporally 
simultaneous interdependence and is designed to 
test for, but not estimate (see Franzese, Chapter 
31, this Handbook), spatial effects. We are inter-
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ested in spatial-effect estimation in other con-
texts.

 27 	 Unbiased estimation of isolated parameters is suf-
ficient for testing purposes, for effect or response 
estimation; however, generally one needs more 
(see Franzese, Chapter 31, this Handbook).

 28 	 While this does not as easily permit a Burridge-
type restriction, we could specify a higher-order 
SDEM model and then perform an F-test of zero 
coefficients on these higher-order polynomials. 
Rejection would indicate that the standard SDEM 
model is insufficient. To be clear, we would not 
be able to reject the possibility that the truth is 
some higher-order SDEM from this analysis. This 
problem is analogous to that discussed by Beck 
(1991) in the time-serial context, where the AR(1) 
model can be closely approximated by a higher-
order MA model. While we have no information 
to discriminate between those two, researchers in 
these situations should typically prefer the more 
parsimonious SAR model.

 29 	 As an alternative, one could estimate both SAC 
and SDEM. If one rejects λ = 0 in both models 
and ρ = 0 and θ = 0 in the SAC and SDEM mod-
els, respectively, it is likely that all three sources 
of clustering in the outcome are present. Power 
concerns make it more difficult to interpret the 
other combinations of possible results.

 30 	 Interested readers can also find an empirical 
application in Cook et al. (2015), an earlier ver-
sion of this paper.

References

Andrews, D. W. (2005), ‘Cross-section regres-
sion with common shocks’, Econometrica 
73(5), 1551–1585.

Anselin, L. (2001), Spatial econometrics, in B. 
Baltagi (ed.) A Companion to Theoretical 
Econometrics. Oxford: Blackwell, pp. 310–330.

Anselin, L. (2003), ‘Spatial externalities, spatial 
multipliers, and spatial econometrics’, Interna-
tional regional science review 26(2), 153–166.

Anselin, L. (2010), ‘Thirty years of spatial 
econometrics’, Papers in regional science 
89(1), 3–25.

Anselin, L., Bera, A. K., Florax, R. and Yoon, M. J. 
(1996), ‘Simple diagnostic tests for spatial 
dependence’, Regional science and urban 
economics 26(1), 77–104.

Beck, N. (1991), ‘Comparing dynamic specifica-
tions: The case of presidential approval’, 
Political analysis 3(1), 51–87.

Beck, N., Gleditsch, K. S. and Beardsley, K. 
(2006), ‘Space is more than geography: 
Using spatial econometrics in the study of 
political economy’, International studies 
quarterly 50(1), 27–44.

Betz, T., Cook, S. J. and Hollenbach, F. M. 
(2020), ‘Spatial interdependence and instru-
mental variable models’, Political science 
research and methods 1–16, doi:10.1017/
psrm.2018.61.

Buhaug, H. and Gleditsch, K. S. (2008), ‘Con-
tagion or confusion? Why conflicts cluster in 
space1’, International studies quarterly 52(2), 
215–233.

Burridge, P. (1981), ‘Testing for a common 
factor in a spatial autoregression model’, 
Environment and planning A 13(7), 
795–800.

Cook, S., An, S.-H. and Favero, N. (2019), 
‘Beyond policy diffusion: Spatial econometric 
models of public administration’. Journal of 
public administration research and theory, 
29(4): 591–608.

Cook, S. J., Hays, J. C. and Franzese, R. J. 
(2015), ‘Model Specification and Spatial 
Interdependence’. http://www.sas.rochester.
edu/psc/polmeth/papers/Cook_Hays_Franz-
ese.pdf (Accessed on 19 November, 2019).

Cook, S. J., Hays, J. C. and Franzese, R. J. 
(forthcoming, b), Empirical Analysis of Spa-
tial Interdependence. Cambridge: Cambridge 
University Press.

De Boef, S. and Keele, L. (2008), ‘Taking time 
seriously’, American Journal of Political Sci-
ence 52(1), 184–200.

Driscoll, J. C. and Kraay, A. C. (1998), ‘Consist-
ent covariance matrix estimation with spa-
tially dependent panel data’, Review of 
economics and statistics 80(4), 549–560.

Egami, N. (2018), ‘Identification of causal diffusion 
effects using stationary causal directed acyclic 
graphs’, arXiv preprint. arXiv:1810.07858.

Elhorst, J. P. (2010), ‘Applied spatial economet-
rics: raising the bar’, Spatial economic analy-
sis 5(1), 9–28.

Franzese, R., Hays, J. and Cook, S. (2016), 
‘Spatial- and spatiotemporal-autoregressive 
probit models of interdependent binary  
outcomes’, Political science research and 
methods 4(1), 151–173.

Franzese, R. J. and Hays, J. C. (2007), ‘Spatial 
econometric models of cross-sectional 

BK-SAGE-CURINI_FRANZESE-190202-V2_Chp39.indd   746 3/27/20   12:38 PM



Model Specification and Spatial Interdependence 747

interdependence in political science panel and 
time-series-cross-section data’, Political analysis 
15(2), 140–164.

Franzese, R. J. and Hays, J. C. (2008), Empirical 
methods of spatial interdependence, in Janet 
M. Box-Steffensmeier, Henry E. Brady, and 
David Collier (eds.) Oxford Handbook of 
Political Methodology. Oxford: Oxford Uni-
versity Press, pp. 570–604.

Gibbons, S. and Overman, H. G. (2012), ‘Mostly 
pointless spatial econometrics?’, Journal of 
regional science 52(2), 172–191.

Hays, J. C. and Franzese, R. J. (2017), A com-
parison of the small-sample properties  
of several estimators for spatial-lag count-
models, in R. J. Franzese (ed.) Advances in 
Political Methodology. Cheltenham: Elgar 
Research Collections, Edward Elgar,  
pp. 180–207.

Hays, Jude C. and Kachi, Aya. (2015) Interde-
pendent duration models in political science. 
In Franzese, R. J. (ed.) Quantitative Research 
in Political Science (Vol. 5). Thousand Oaks 
(CA): Sage, pp. 33–62.

Hays, J. C., Schilling, E. U. and Boehmke, F. J. 
(2015), ‘Accounting for right censoring in 
interdependent duration analysis’, Political 
analysis 23(3), 400–414.

Hendry, D. F. (1995), Dynamic Econometrics. 
Oxford:Oxford University Press.

LeSage, J. and Pace, R. K. (2009), Introduction to 
Spatial Econometrics. Boca Raton (FL): CRC press.

Manski, C. F. (1993), ‘Identification of endoge-
nous social effects: The reflection problem’, The 
review of economic studies 60(3), 531–542.

Neumayer, E. and Plümper, T. (2016), ‘W’, 
Political science research and methods 4(1), 
175–193.

Plümper, T. and Neumayer, E. (2010), ‘Model 
specification in the analysis of spatial depend-
ence’, European journal of political research 
49(3), 418–442.

Vuong, Q. H. (1989), ‘Likelihood ratio tests for 
model selection and non-nested hypothe-
ses’, Econometrica, 57(2): 307–333.

Wilhelm, S. and de Matos, M. G. (2013), ‘Esti-
mating spatial probit models in r.’, The R 
journal 5(1): 130–143.

BK-SAGE-CURINI_FRANZESE-190202-V2_Chp39.indd   747 3/27/20   12:38 PM


