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Figure: Weekly AFDC Benefits

Why do welfare benefits cluster geographically?
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Outcome Interdependence and Covariate Clustering

Interdependence vs. Clustering

Why do welfare benefits and regime types cluster geographically?

@ Interdependence: Welfare migration induces a localized
race-to-the-bottom in benefits. Diffusion in regime type. E.g.,
countries learn from and emulate their neighbors.

@ Clustering: Spatially correlated determinants of welfare
benefits and regime type. E.g., states politically dominated by
Democrats pay more than those dominated by Republicans,
and party dominance clusters regionally; wealthy countries are
more likely to be democratic, and there are rich and poor
“neighborhoods.”

How do we distinguish these possibilities?
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Outcome Interdependence and Covariate Clustering

Do my outcomes cluster?

@ The most popular test for spatial association is Moran's /,
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where S = ZlNzl szl wij.
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@ Or, with OLS residuals
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@ When W is row-standardized, Moran's [ is the slope
coefficient from the regression of Wy on y.
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Outcome Interdependence and Covariate Clustering

Figure: Moran's | for AFDC Benefits
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Outcome Interdependence and Covariate Clustering

Interdependence vs. Clustering: LM Tests

Now that we know cov(y, Wy) # 0, how can we identify the
source of this covariance? Consider the general model where

y =pWy + X3 +¢
X = oWX + X
e =AWe +u

If we estimate the model

y=XB+e,
and we assume p = 0, we can test the restriction that A = 0.
2W2/52)°
L (W

where
T = tr[(W’ + W)W].
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Outcome Interdependence and Covariate Clustering

Interdependence vs. Clustering: LM Tests

@ The problem is that this test has power against the incorrect
alternative. If p # 0, under the null hypothesis A = 0,
cov(&, WE&) # 0.

e Fortunately, Anselin et al. (1996) have developed a robust LM
test for the null hypothesis A = 0 that does not make any
assumptions about p.

@ The basic strategy is to remove the portion of the cov (&, W¢)
that can be attributable to cov(é, Wy).

(FWe/52 — we'wy/52)°
T[1—w]

LM} =

@ A robust LM test for p = 0 (LM}) can be developed similarly.
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Outcome Interdependence and Covariate Clustering

Interdependence vs. Clustering: LM Tests

@ These tests provide a possible way to distinguish common
exposure from diffusion.

o If cov(y, Wy) # 0 and both LM} and LM; fail to reject their
respective null hypotheses, one can conclude that the
correlation is driven by clustering on observables.

o If cov(y, Wy) # 0, LM} fails to reject and LMj rejects, one
can conclude that the correlation is driven by clustering on
unobservables.

o If cov(y,Wy) # 0, LM} rejects and LM fails to reject, one
can conclude that the correlation is driven by outcome
interdependence.
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Estimating Spatial Regression Models

Maximum Likelihood Estimation

Multivariate change of variables theorem:
gly) = fF(r () M(y)l
The spatial-lag model is:
y=pWy+Xg+ec=ec=(1—pW)y— X3 =Ay—Xj
The likelihood for ¢ is:

1 \"? e'e
L) = (a'227r> P (_ 20’2)

The inverse function is: ¢ = r=*(y) = (I — pW)y — X8

The Jacobian is: g—; =(-pW)=A

Thus, the likelihood for y is

) = A () o (—5haty x5y (ay —x9))
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Spatial Multipliers

Calculating Spatial Multipliers

@ The spatial lag model is
y =pWy + X5 +¢
@ Solving for the reduced-form gives
y = M(Xg +¢),
where M = (I — pW)~1 is the spatial multiplier.

Spillover to unit! from unit 2

\
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/ Total effect on unit 2

(with spatial feedback)

Spillover to unit 3 from unit 2 from a change in x
2 I
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Spatial Multipliers

Bootstrapping Confidence Intervals

@ Our uncertainty about the spatial multiplier stems from our
uncertainty about the estimated parameters 8 and p.

@ We can generate empirical confidence intervals by sampling
from the following bivariate normal distribution.
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