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The Exponential Random Graph Model (ERGM)

In an ERGM, the distribution for Y, a random nxn network matrix,
with support over Ym is parameterized as

Prθ,Ym(Y = y) =
exp{θTg(y)}
κ(θ,Ym)

, y ∈ Ym

where y is an observed network matrix, θ is a vector of coefficients,
and g(y) is a vector of statistics calculated from the observed
network.

The denominator, κ, is the normalizing factor, which ensures a
proper probability distribution.

The sample space in Ym contains up to m = 2n(n−1) networks,
making the calculation of the normalizing constant the primary
barrier to inference. (For example, with only 5 actors, there are
more than one million possible configurations in a directed network.)
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Estimating ERGMs

The log-likelihood function is

`(θ) = θTg(y)− log κ(θ,Ym)

Subtracting the log-likelihood for an arbitrary vector of coefficients,
θ0 gives

`(θ)− `(θ0) = (θ − θ0)Tg(y)− log

[
κ(θ,Ym)

κ(θ0,Ym)

]
The ratio of normalizing factors can be shown to equal

κ(θ,Ym)

κ(θ0,Ym)
= Eθm exp

{
(θ − θ0)Tg(Y)

}
where Eθm is the expectation assuming Y has the distribution
Prθ,Ym .

This allows us to calculate the log-likelihood by sampling from Ym,
which we do using Markov-Chain-Monte-Carlo (MCMC) methods.
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Simulating Networks via Markov Chains

The likelihood (more specifically, the log-ratio of likelihoods) can be
approximated by

`(θ)− `(θ0) ≈ (θ − θ0)Tg(y)− log

[
1

r

r∑
i=1

exp
{

(θ − θ0)Tg(Yi )
}]

where Y1, ...,Yr is a random sample from the distribution Prθ,Ym .

The coefficients in θ0 should be as close to the maximum likelihood
values as possible. Pseudo-likelihood values, which assume the
edges in the network are mutually independent, can be obtained by
logit regression.
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Simulating Networks via Markov Chains

The MCMC sampling proceeds in the following steps
1 Start with a network from Ym and make a large number of sampled

Markov transitions. That is, choose pairs of nodes (ij) uniformly at
random and set Yij equal to one or zero using the conditional
probability

logit
[
Prθ,Ym

(
Yij = 1|Yc

ij = ycij
)]

= θT δg(y)ij

where δg(y)ij is a change statistic defined as

δg(y)ij = g(y+ij )− g(y−ij )

and the networks y+ij and y−ij are those realized by fixing Yij = 1 and
Yij = 0 respectively.

2 Save the network and repeat r − 1 times.

3 Use the r networks to approximate the ratio of normalizing factors.

4 Update the parameter vector and repeat from the top.
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Adding Temporal Dynamics: TERGM

A TERGM takes the form

Pr(Yt = yt |θ,Yt−1
m , . . . ,Yt−K

m ) =
exp{θTg(yt , yt−1, . . . , yt−K )}

κ(θ,Yt−1
m , . . . ,Yt−K

m )
, yt ∈ Yt

m

Pr(YK+1, . . . ,YT |θ,Y1, . . . ,YK ) =
T∏

t=K+1

Pr(Yt |θ,Yt−K , . . . ,Yt−1)

Chose the right K , and the ERGMs from K + 1 to T are
independent.
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Memory Terms

First, write the equation for a individual tie from the ERGM.

πt
ij(θ) = Pr(y t

ij = 1|y t
∼ij , θ) = logit−1

(
θδg(yt)ij

)

A memory term is one designed to capture temporal
dependence in a TERGM.

A particularly important memory term is the positive
autoregression term.

ga =
∑

y tijy
t−1
ij ,where

δg(yt)ij = +1 when y t−1
ij = 1 and +0 otherwise.
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Maximum Pseudo-Likelihood Estimation

The MPLE replaces the joint likelihood used for ML
estimation with a product of conditional likelihoods, or sums
when these likelihoods are logged.

arg max
θ

=
T∑

t=K+1

∑
ij

ln
[(
πt
ij(θ)

)y t
ij
(
1− πt

ij(θ)
)1−y t

ij

]

MPLE assumes the conditional ties are independent.

MPLE consistently estimates θ, but it is inconsistent when it
comes to varcov(θ).

Fortunately, standard errors can be bootstrapped using the
package btergm.
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