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Pooled Estimators, Mean-Group Estimator, and Het Tests

Dynamic Heterogeneous TSCS Models

@ The dynamic heterogeneous TSCS model is an
ARDL(p,q,q,q.....,q) of the form
N——

k—times

P q
Yit = o + Z /\,-jy,-,t_j—i- Z 5,,'J'X,'7t_j+u,'t, fori=1,2....N
j=1 j=1

o If this model is stationary, there is a long-run relationship
between y;; and x;; such that

Yit = 0iXit + njt,
P P
where 8; = —B;/0i, ¢i = —(1 — > Xj),Bi = D 6jj.
=i J=|
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Pooled Estimators, Mean-Group Estimator, and Het Tests

The Bias of Pooled Estimators

e Consider the ARDL(1,0),
Yie = i + Aiyit—1 + Bixie + ujt

with A\; = A+ nj1 and 5; = B+ niz.
@ After substituting, we have

Vit = i + Ayit—1 + BXjt + Vi
Vit = Ujt + Ni1Yit—1 + Ni2Xit

@ It is clear that if we assume fixed A and 3, the estimates from
either the FE or RE model will be biased.
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Pooled Estimators, Mean-Group Estimator, and Het Tests

The Mean-Group Estimator

e Consider again the ARDL(1,0...0)
Vit = ANiYit—1+ X aBi + ui, for i=1,2, . N;t=1,2,.... T
o Let ¥; = ()\;,3’;), and assume the 1; are iid with

E(yi) =1
El(yi — )i —9¥)] = A

@ The pooled least squares regression of y;: on y; ;—1 and x; will
produce inconsistent estimates of ).

Jude C. Hays Time Series Analysis



Pooled Estimators, Mean-Group Estimator, and Het Tests

The Mean-Group Estimator

@ However, unit by unit regressions of y;: on y; ;1 and x will
produce consistent estimates (T — 00) of ;.

@ The mean-group estimator is
R 1N .
Yume = 4 Zlﬁn with
i=1
N

> (Pi—hme) (i — Pmc)

i=1

—, 1
var(Yme) = m

@ The MG estimator is asymptotically normal for large N and T
if VN/T — 0 as both N and T — oo.
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Pooled Estimators, Mean-Group Estimator, and Het Tests

The Mean-Group Estimator

e The estimates for %; suffer from a small-sample (Hurwicz)
bias on the order of 1/T.

@ The MG estimator is unlikely to perform well when either N or
T is small.
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Pooled Estimators, Mean-Group Estimator, and Het Tests

Pesaran and Yamagata A-test

@ Pesaran and Yamagata have proposed a standardized
dispersion statistic

- N(T +1) (N‘1§—k>

Ba =\ T %k vk

where S is a modified Swamy statistic calculated by

~2
g;

g = i (B/ - BWFE)lX/iNITXi (BI - BWFE)
i=1
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Pooled Estimators, Mean-Group Estimator, and Het Tests

Pesaran and Yamagata A-test

N
~ PO IXMAX /A ~
5=> (5:’ - BWFE) — (Bi - BWFE)
i=1 i
where M. is the mean deviation matrix I+ — %TTT'T with 71
defined as a T x 1 vector of ones.

N 1 N
x X' M. X; X'iM.y;
— bl 277 and
e = (X)X
i=1 ! i=1 !
P Y ,
Of = == (Yi - XiﬂFE) M- <Yi - XiﬁFE)
T-1
The A-test has the correct size and good power in dynamic panels
as long as the autoregressive coefficient is not too close to one and
T>N.
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TSCS Common Factor Models

Cross-sectional Dependence and Common Factor Models

@ Cross-sectional dependence is a form of dependence driven by
common shocks to the units in one's dataset.

@ The modern approach to cross-sectional dependence estimates
dynamic common factor models of the form

’ ’
yie = o ids + B e + ujt,

where d; is an n x 1 vector of observed common effects, x;; is
a k x 1 vector of observed covariates for unit / at time t, and
the disturbances have the following common factor structure

’
uip = 7' it + et

where f; is an m-dimensional vector of unobservable common
factors, and 4/ is the associated vector of factor loadings.
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TSCS Common Factor Models

Principal Components and Pesaran's CCE Estimators

@ Bai (2009) has proposed a two-stage estimation procedure.

© Extract the PCs from the OLS residuals as proxies for the
unobservable factors.

@ Estimate an augmented regression where the estimated factors
are treated as observable.

Yit = a,idt + ﬁ,ixit + '}’/ii:f + et

@ One problem is that if the factors are correlated the the
regressors, the two-stage estimator is inconsistent.

@ Pesaran’s (2009) Correlated Common Effects (CCE) estimator
approximates the linear combinations of unobserved factors by
cross-sectional averages of the dependent and explanatory
variables, which are included in an augmented regression.
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TSCS Common Factor Models

A Simple LM test for Cross-sectional Independence

@ The Breusch and Pagan (1980) Lagrange multiplier (LM) test
evaluates the null hypothesis that all the pairwise error
correlations are zero.

@ Each pairwise correlation is estimated by
T A~ A
2 e DirGjt

(ora) " (sie)”

where {; are the OLS residuals.

Pij = Pji =

@ Under the null hypothesis, asymptotically, the sum of the
squared correlations will follow a x? distribution with
N(N — 1)/2 degrees of freedom.

Jude C. Hays Time Series Analysis



Unit Roots and Cointegration in TSCS Data

Dickey-Fuller Tests for TSCS Data

@ Diagnosing Unit Roots and Cointegration in TSCS is complicated by
parameter heterogeneity, cross-sectional dependence and specification of
the alternative hypothesis.

@ Consider the following Dickey-Fuller regression with parameter
heterogeneity
Ayie = pi + ¢iyie—1 + €it
@ Im, Pesaran and Shin (2003) developed the following alternative
hypothesis:

Ha:0i<0,i=1,2. Ni,0;i=0,i=N+1, N +2,...N,

such that [im % = 6,0 < 6 < 1, which allows us to state the null and
N— oo

alternative hypotheses as Hp : § = 0 and Ha : § > 0 respectively.
N
@ The test statistic is the mean of the unit specific t-statistics: £ = % > t;.
i-1

@ This test can be augmented to allow for cross-sectional dependence by
including cross-sectional averages in the DF regressions.
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Unit Roots and Cointegration in TSCS Data

Adapting the Engle-Granger Methodology for TSCS Data

o ldentify the order of integration for each of the variables using
the appropriate Cross-section augmented Dickey-Fuller test.

@ Estimate the long-run equilibrium relationship between y; and
z; using an estimator that allows for parameter heterogeneity
and cross-sectional (or spatial) dependence (e.g., Pesaran’s
Correlated Common Effects (CCE) estimator).

o Identify the order of integration for the estimated disturbances
{é}.

o If {y:} and {z:} are determined to be /(1) and the
disturbances are /(0), we can conclude that the variables are
cointegrated.
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