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Difference Equations and Time Series Analysis

Stochastic Difference Equations

“A difference equation expresses the value of a variable as a
function of its own lagged values, time, and other variables... The
reason for introducing...[these| equations is to make the point that
time-series econometrics is concerned with the estimation of
difference equations containing stochastic components” (Enders,
p.3).

o 15t 2" and nth difference A, A2, and A"

o 15t, 2" and nt" order linear difference equations
Yt =ao+ aiyr-1+ Xt
Ye=aot+ aiyr-1+ayt—2+xt
n

ye=ao+ Y aiye—i + Xt
i=1
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Difference Equations and Time Series Analysis

Theory Evaluation

Many economic theories generate model specifications in the form
of difference equations

@ The Random Walk Hypothesis

@ Reduced-form and Structural Equations

@ Error-Correction: Forward and Spot Prices
@ Non-linear dynamics

Paper stones is an example of political theory that generates a
model specification in the form of difference equations
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Solving Difference Equations (First-Order)

Solving by lteration

“A solution to a difference equation expresses the value of y; as a
function of the elements of the x; sequence and t ... and possibly
initial conditions” (Enders, p.9).

Yt =ao+ atyit—1 + &t
yi=a +ayo+e1
y2 = ao + a1fao + a1y + €1] + 2
Yo = a0 + ara0 + (a1)*yo + a1e1 + &2

t—1 t—1

ye=a0 > (a1) +(a1)'yo + 2 (a1) ee
i=0 i=0
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Solving Difference Equations (First-Order)

The Dynamics of First-Order Difference Equations
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Solving Difference Equations (General)

Solving n™" Order Difference Equations

The complete nth order difference equation is

n
Ye=a0+ > aiyei+x
i=1

The homogeneous portion of the nt" order difference equation is
n
e = Z aiYt—i
i=1

@ A homogeneous solution to an n*" order difference equation is a
solution to the homogeneous portion of the difference equation.
There should be n solutions.

@ A particular solution is a solution to the original complete difference
equation.

@ A general solution to an n'" order difference equation is a particular
solution plus all homogeneous solutions.
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Solving Difference Equations (General)

The Solution Methodology

@ Form the homogeneous equation and find all n homogeneous
solutions;

@ Find a particular solution;

© Obtain the general solution as the sum of the particular
solution and a linear combination of all homogeneous
solutions;

Q Eliminate the arbitrary constant(s) by imposing the initial
condition(s) on the general solution.
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Solving Difference Equations (General)

Solving Homogeneous Difference Equations

Ex. 1 (First-order): y; = .9y;—1
The homogeneous solution will take the form y/" = Aat

The goal is to solve for A and «

Substitute for y;
Aat — 9Aatt =0

Divide by Aat~!

@ So, now we have
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Solving Difference Equations (General)

Solving Homogeneous Difference Equations

Ex. 1 (First-order): y: = .9y;_1
@ We can eliminate the arbitrary constant if we know the
outcome in the initial period yg

_ 0
yo = A(.9)
o If we set yp = 1, we have our final solution
h_ t
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Solving Difference Equations (General)

Stability Conditions for First-Order Solutions

If || < 1, then o' converges to zero as t goes to infinity.

Convergence is direct if 0 < o < 1 and oscillatory if —1 < a < 0.
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Solving Difference Equations (General)

Stability Conditions for First-Order Solutions

If || > 1, the solution is not stable. If & > 1, then o' converges
to infinity as t goes to infinity. If &« < 1 and the solution oscillates

explosively.
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Solving Difference Equations (General)

Solving Homogeneous Difference Equations

Ex. 2 (Second-order): y: =34+ 9y;—1 — 2yt_»

Again, the homogeneous solutions will take the form y" = Aa?

The goal is to solve for A;, Az, a1, and as

Substitute for y;
Aat — 9Aat ™t + 2402 =0

Divide by Aat~?

a®— 9a+.2=0

@ There are two solutions. We solve for a; and asp using the
quadratic formula

9+ /81-4(2) _

2

ayp, =
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Solving Difference Equations (General)

Solving Homogeneous Difference Equations

Ex. 2 (Second-order): y+ =3+ .9y:—1 — 2y; >

@ So, now we have
Vi = Al(.5)t + A2(.4)t

@ We can eliminate the arbitrary constants if we know the
outcome in the initial periods yp and y;

o If we set yop = 13 and y; = 11.3, for instance, we two
equations and two unknowns. To these equations, we need to
add the particular (steady-state) solution
(c=3/(1-.9+.2)).

13=10+ A1 + A
11.3 =10+ Al(.5) + Az(.4)
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Solving Difference Equations (General)

Solving Homogeneous Difference Equations

Ex. 2 (Second-order): y: =3+ 9y;—1 — 2y1_2
@ Solving gives us A; = 1 and Ay = 2, and our final solution is

yr = (5) +2(.4)"

Yi= 3+.9y, 1.2yt &
B 't 17+ 4Ye2 —b i bZ — 4ac
X=—
» 2a
1
10 + 2 4
—a, Tija; —4da,

9 o=

o s 10 15 20 2
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Solving Difference Equations (General)

Stability Conditions for Second-Order Solutions

stability requires as all characteristic roots lie within the unit circle
(Enders, p. 29).
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Solving Difference Equations (General)

Stability Conditions for Higher-Order Systems

n
Higher-Order Systems: y; — > ajy;—i =0
i=1
Oftentimes, we do not need to solve for the characteristic roots of
higher-order systems.

n
@ A necessary condition for stability is > a; < 1
i=1

n
@ A sufficient condition for stability is > |a;| < 1
i=1

n
© The process contains a unit root if Y a; =1
i=1
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Solving Difference Equations (General)

Particular Solutions for Deterministic Processes

If xg= 0, the difference equation becomes

Yt =ao+ aiyt-1+ ayt—2+ ... + anyt—n,

which is solved when Ay; =0or yy =y 1 = yt—2 = Yt—n = C.
@ Substituting for y; gives

c=ap+aic+ axc+ ...+ anc
@ Solving for ¢ gives

c=ay/(l—a;—ay—..—ap)
@ Thus, a particular solution is

ye=ao/(l—a1—ax—...— ap)
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Solving Difference Equations (General)

Particular Solutions for Stochastic Processes

The Method of Undetermined Coefficients

@ Since linear equations have linear solutions, we know the form
of the solution.

@ Posit a linear challenge solution that includes all the terms
thought to appear in the solution.

@ Solve for the undetermined coefficients.
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Solving Difference Equations (General)

The Method of Undetermined Coefficients

Ex. 3 (First-Order): y; =3+ 9y;—1 +¢¢

@ Posit a linear challenge solution for the stochastic portion of
the particular solution

x
Yt = E QjE¢—j
i=0

@ Substitute the challenge solution into the difference equation

apertarer_1taper_o+... = Oaper—1taierotager_3+...]+er
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Solving Difference Equations (General)

The Method of Undetermined Coefficients

Ex. 3 (First-Order): y; =3+ 9y;—1 +¢¢

o Collect like terms
(o — Vet + (a1 — 9ap)er—1 + (a2 — 9aq)er—o+ ... =0

@ Verify that there are coefficient values that make the
challenge solution a solution for the difference equation.

(vg—1)=0
(a1 — 9ap) =0
=0

(a2 — 9a1)

e Solving for o, we have a; = (.9)’
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Solving Difference Equations (General)

Putting it all together

Ex. 3 (First-Order): y: =3+ 9y;_1 + &
@ This gives the general solution
ye =30+ A(9) + > (.9)er
i=0

1

@ We can eliminate the arbitrary constant if we have an initial
value for yp.

)
Yo = 30+-A+ Z (.9)’8_,'
i=0
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Solving Difference Equations (General)

Putting it all together

Ex. 3 (First-Order): y =3+ 9y;_1 + &
@ Substituting A into the general solution gives
Ye =30+ |yo—30— i (9)'e_i| (9) + i (.9)'esj
i=0 i=0
@ Collecting like terms, we have
ye =30+ (.9)" [yo — 30] + i (.9) e — (.9)° i (9)'e_;
i=0 i=0

1
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Solving Difference Equations (General)

Putting it all together

Ex. 3 (First-Order): y: =3+ 9y;_1 + &

@ The stochastic portion of this solution can be simplified. To
see this, write out the case for t = 1.

€1+ (.9)60 + (.9)26_1 + ... = (.9)[60 + (.9)8_1 + ]

@ Thus, we have

t—1
ye=30+(.9)" [yo—30] + > _ (.9)'ee_i
i=0
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Solving Difference Equations (General)

Lag Operators and their Properties

Li)/t = Yi—i

@ The lag of a constant is a constant: Lc = c.
@ The distributive law holds:
(L' + )ye =Ly + Uy = ye_i + ye—j.
© The associative law holds:
Ly, =LU(Uys) =Ly j=yrij.
Q L raised to a negative number is the lead operator:
L7y = yepi.
@ For |a| < 1 the infinite sum (14 al + a?L2 + 2313 + ..)y;
converges to y;/(1 — al).
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Solving Difference Equations (General)

Lag Operators and their Properties

Li}’t = Yi—i

@ Lag Operators allow us to write high-order difference
equations,

(1— a1l — apl® + ..apLP)y; = ag + (1 + biL — bol? + ...byL%)e,
A(L)y: = ao + B(L)e:t

as well as their particular solutions, compactly:

e = ao/A(L) + B(L)et/A(L)-
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