
GEOMETRIC ANALYSIS

PIOTR HAJ LASZ

1. The Sard theorem for mappings into `∞

In the theory of countably rectifiable metric spaces it is important to be able to verify

whether the image of a Lipschitz mapping f : Rn ⊃ E → X into a metric space satisfies

Hn(f(E)) = 0. The next result shows how to reduce this problem to the case of mappings

into Rn.

Definition 1.1. Let f : Z → X be a mapping between metric spaces and let y1, . . . , yn ∈
X. The mapping g : Z → Rn defined by

g(x) = (d(f(x), y1), . . . , d(f(x), yn)),

where d denotes the metric in X, is called the projection of f associated with points

y1, . . . , yn.

Note that π : X → Rn, π(y) = (d(y, y1), . . . , d(y, yn)) is Lipschitz. Hence if f is Lipschitz,

then g = π ◦ f is Lipschitz too.

Theorem 1.2. Let X be a metric space, let E ⊂ Rn be measurable, and let f : E → X be

a Lipschitz mapping. Then the following statements are equivalent:

(1) Hn(f(E)) = 0;

(2) For any Lipschitz mapping ϕ : X → Rn, we have Hn(ϕ(f(E))) = 0;

(3) For any collection of distinct points {y1, y2, . . . , yn} ⊂ X, the associated projection

g : E → Rn of f satisfies Hn(g(E)) = 0;

(4) For any collection of distinct points {y1, y2, . . . , yn} ⊂ X, the associated projection

g : E → Rn of f satisfies rank (apDg(x)) < n for Hn-a.e. x ∈ E.

Remark 1.3. It follows from the proof that in conditions (3) and (4) we do not have to

consider all families {y1, y2, . . . , yn} ⊂ X of distinct points, but it suffices to consider such

families with points yi taken from a given countable and dense subset of f(E).
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The implications from (1) to (2) and from (2) to (3) are obvious. The equivalence

between (3) and (4) easily follows from the change of variables formula (Theorem ??):

if g : Rn ⊃ E → Rn is Lipschitz, then

(1.1)

∫
E

|Jg(x)| dHn(x) =

∫
g(E)

Ng(y, E) dHn(y).

Therefore, it remains to prove the implication (4) to (1) which is the most difficult part of

the theorem. We will deduce it from another result which deals with Lipschitz mappings

into `∞, see Theorem 1.5.

Remark 1.4. 1 In general it may happen for a subset A ⊂ X that Hn(A) > 0, but

for all Lipschitz mappings ϕ : X → Rn, Hn(ϕ(A)) = 0. For example the Heisenberg

group2 Hk satisfies H2k+2(Hk) = ∞, but H2k+2(ϕ(Hk)) = 0 for all Lipschitz mappings

ϕ : Hk → R2k+2. Hence the implication from (2) to (1) has to use in an essential way

that the assumption that A = f(E) is a Lipschitz image of a Euclidean set. Since the

condition (2) is satisfied for X = Hk with n = 2k + 2, we conclude that Hk is purely

(2k + 2)-unrectifiable.

Let f = (f1, f2, . . .) : Rn ⊃ E → `∞ be an L-Lipschitz mappings. Then the components

fi : E → R are also L-Lipschitz. Hence for Hn-almost all points x ∈ E, all functions fi,

i ∈ N are approximately differentiable at x ∈ E. We define the approximate derivative of

f componentwise

apDf(x) = (apDf1(x), apDf2(x), . . .).

For each i ∈ N, apDfi(x) is a vector in Rn with component bounded by L. Hence apDf(x)

can be regarded as an n×∞ matrix of real numbers bounded by L, i.e.

apDf(x) ∈ (`∞)n, ‖apDf‖∞ ≤ L,

where the norm in (`∞)n is defined as the supremum over all entries in the n×∞ matrix.

The meaning of the rank of the n×∞ matrix apDf(x) is clear. It is the dimension of the

linear subspace of Rn spanned by the vectors apDfi(x), i ∈ N. Hence rank (apDf(x)) ≤ n

a.e.

1See Section 11.5 in David, G., Semmes, S.: Fractured fractals and broken dreams. Self-similar ge-

ometry through metric and measure. Oxford Lecture Series in Mathematics and its Applications, 7. The

Clarendon Press, Oxford University Press, New York, 1997.
2Do not worry if you do not know what the Heisenberg groups are. This is just an example that will

not be used in what is to follow.
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The next theorem is the main step in the proof of the remaining implication (4) to (1)

of Theorem 1.2.

Theorem 1.5. Let E ⊂ Rn be measurable and let f : E → `∞ be a Lipschitz mapping.

Then Hn(f(E)) = 0 if and only if rank (apDf(x)) < n, Hn-a.e. in E.

Before we prove this result we will show how to use it to complete the proof of Theo-

rem 1.2.

Proof of Theorem 1.2. As we already pointed out, it remains to prove the implication from

(4) to (1). Although we do not assume that X is separable, the image f(E) ⊂ X is sepa-

rable and hence it can be isometrically embedded into `∞ via the Kuratowski embedding

(Theorem ??). More precisely let {yi}∞i=1 ⊂ f(E) be a dense subset and let y0 ∈ f(E).

Then

f(E) 3 y 7→ κ(y) = {d(y, yi)− d(yi, y0)}∞i=1 ∈ `∞

is an isometric embedding of f(E) into `∞. Clearly

Hn
d (f(E)) = Hn

`∞((κ ◦ f)(E)),

where subscripts indicate metrics with respect to which we define the Hausdorff measures.

It remains to prove that Hn
`∞((κ ◦ f)(E)) = 0. Since

(κ ◦ f)(x) = {d(f(x), yi)− d(yi, y0)}∞i=1

it easily follows from the assumptions that

rank (apD(κ ◦ f)) < n Hn-a.e. in E.

Hence (1) follows from Theorem 1.5. �

Thus it remains to prove Theorem 1.5. Before doing this let us make some comments

explaining why it is not easy. Theorem 1.5 is related to the Sard theorem for Lipschitz

mappings (Theorem ??) which states that if f : Rn → Rm, m ≥ n is Lipschitz, then

Hn(f({x ∈ Rn : rankDf(x) < n})) = 0.

The standard proof presented earlier is based on the observation that if rankDf(x) < n,

then for any ε > 0 there is r > 0 such that

|f(z)− f(x)−Df(x)(z − x)| < εr for z ∈ B(x, r)
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and hence

dist (f(z),Wx) ≤ εr for z ∈ B(x, r),

where Wx = f(x) +Df(x)(Rn) is an affine subspace of Rm of dimension less than or equal

to n − 1. That means f(B(x, r)) is contained in a thin neighborhood of an ellipsoid of

dimension no greater than n − 1 and hence we can cover it by C(L/ε)n−1 balls of radius

Cεr, where L is the Lipschitz constant of f . Now we use the 5r-covering lemma to estimate

the Hausdorff content of the image of the critical set.

The proof described here employs the fact that f is Frechet differentiable and hence this

argument cannot be applied to the case of mappings into `∞, because in general Lipschitz

mappings into `∞ are not Frechet differentiable, i.e. in general the image of f(B(x, r)∩E)

is not well approximated by the tangent mapping apDf(x). To overcome this difficulty we

need to investigate the structure of the set {apDf(x) < n} using arguments employed in

the proof of the general case of the Sard theorem for Ck mappings that will be presented

in Section ??. In particular we will need to use a version of the implicit function theorem.

In the proof of Theorem 1.5 we will also need the following result which is of independent

interest.

Proposition 1.6. Let D ⊂ Rn be a bounded and convex set with non-empty interior and

let f : D → `∞ be an L-Lipschitz mapping. Then

diam (f(D)) ≤ C(n)L
( diamD)n

Hn(D)
Hn(D \ A)1/n

where

A = {x ∈ D : Df(x) = 0}.

In particular if D is a cube or a ball, then

(1.2) diam (f(D)) ≤ C(n)LHn(D \ A)1/n

Proof. We will need two well known facts.

Lemma 1.7. If E ⊂ Rn is measurable, then∫
E

dy

|x− y|n−1
≤ C(n)Hn(E)1/n.

Proof. Let B = B(x, r) ⊂ Rn be a ball such that Hn(B) = Hn(E). Then∫
E

dy

|x− y|n−1
≤
∫
B

dy

|x− y|n−1
= C(n)r = C ′(n)Hn(E)1/n.
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�

The next lemma will be proved in Section ??.

Lemma 1.8. If D ⊂ Rn is a bounded and convex set with non-empty interior and if

u : D → R is Lipschitz continuous, then

|u(x)− uD| ≤
( diamD)n

nHn(D)

∫
D

|∇u(y)|
|x− y|n−1

dy for all x ∈ D,

where

uD =
1

Hn(D)

∫
D

u(x) dx.

Now we can complete the proof of Proposition 1.6. If Df(x) = 0, then ∇fi(x) = 0 for

all i ∈ N. For each i ∈ N we have

|fi(x)− fiD| ≤
( diamD)n

nHn(D)

∫
D

|∇fi(y)|
|x− y|n−1

dy ≤ L( diamD)n

nHn(D)

∫
D\A

dy

|x− y|n−1

≤ C(n)L
( diamD)n

Hn(D)
Hn(D \ A)1/n.

Hence for all x, y ∈ D

|fi(x)− fi(y)| ≤ |fi(x)− fiD|+ |fi(y)− fiD| ≤ 2C(n)L
( diamD)n

Hn(D)
Hn(D \ A)1/n.

Taking supremum over i ∈ N yields

‖f(x)− f(y)‖∞ ≤ 2C(n)L
( diamD)n

Hn(D)
Hn(D \ A)1/n

and the result follows upon taking supremum over all x, y ∈ D. �

Proof of Theorem 1.5. The implication from left to right is easy. Suppose thatHn(f(E)) =

0. For any positive integers i1 < i2 < . . . < in the projection

`∞ 3 (y1, y2, . . .)→ (yi1 , yi2 , . . . , yin) ∈ Rn

is Lipschitz continuous and hence the set

(fi1 , . . . , fin)(E) ⊂ Rn

has Hn-measure zero. It follows from the change of variables formula (1.1) that the matrix

[∂fij/∂x`]
n
j,`=1 of approximate partial derivatives has rank less than n almost everywhere in

E. Since this is true for any choice of i1 < i2 < . . . < in we conclude that rank (apDf(x)) <

n a.e. in E.
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Suppose now that rank (apDf(x)) < n a.e. in E. We need to prove that Hn(f(E)) = 0.

This implication is more difficult. Since fi : E → R is Lipschitz continuous, for any ε > 0

there is gi ∈ C1(Rn) such that

Hn({x ∈ E : fi(x) 6= gi(x)}) < ε/2i.

Moreover apDfi(x) = Dgi(x) for almost all points of the set where fi = gi (Theo-

rem ??(d)). Hence there is a measurable set F ⊂ E such that Hn(E \ F ) < ε and

f = g and apDf(x) = Dg(x) in F

where

g = (g1, g2, . . .), Dg = (Dg1, Dg2, . . .).

It suffices to prove that Hn(f(F )) = 0, because we can exhaust E with sets F up to a

subset of measure zero and f maps sets of measure zero to sets of measure zero. Let

F̃ = {x ∈ F : rank (apDf(x)) = rankDg(x) < n}.

Since Hn(F \ F̃ ) = 0, it suffices to prove that Hn(f(F̃ )) = 0. For 0 ≤ j ≤ n− 1 let

Kj = {x ∈ F̃ : rankDg(x) = j}.

Since F̃ =
⋃n−1
j=0 Kj, it suffices to prove that Hn(f(Kj)) = 0 for any 0 ≤ j ≤ n− 1. Again,

by removing a subset of measure zero we can assume that all points of Kj are density

points of Kj. To prove that Hn(f(Kj)) = 0 we need to make a change of variables in Rn,

but only when j ≥ 1.

If x ∈ Rn \ F , the sequence (g1(x), g2(x), . . .) is not necessarily bounded. Let V be the

linear space of all real sequences (y1, y2, . . .). Clearly g : Rn → V . We do not equip V with

any metric structure. Note that g|F : F → `∞ ⊂ V , because g coincides with f on F .

Lemma 1.9. Let 1 ≤ j ≤ n− 1 and x0 ∈ Kj. Then there exists a neighborhood x0 ∈ U ⊂
Rn, a diffeomorphism Φ : U ⊂ Rn → Φ(U) ⊂ Rn, and a composition of a translation (by

a vector from `∞) with a permutation of variables Ψ: V → V such that

• Φ−1(0) = x0 and Ψ(g(x0)) = 0;

• There is ε > 0 such that for x = (x1, x2, . . . , xn) ∈ B(0, ε) ⊂ Rn and i = 1, 2, . . . , j,(
Ψ ◦ g ◦ Φ−1

)
i
(x) = xi,

i.e., Ψ ◦ g ◦ Φ−1 fixes the first j variables in a neighborhood of 0.
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Proof. By precomposing g with a translation of Rn by the vector x0 and postcomposing it

with a translation of V by the vector −g(x0) = −f(x0) ∈ `∞ we may assume that x0 = 0

and g(x0) = 0. A certain j × j minor of Dg(x0) has rank j. By precomposing g with a

permutation of j variables in Rn and postcomposing it with a permutation of j variables

in V we may assume that

(1.3) rank

[
∂gm
∂x`

(x0)

]
1≤m,`≤j

= j.

Let H : Rn → Rn be defined by

H(x) = (g1(x), . . . , gj(x), xj+1, . . . , xn).

It follows from (1.3) that JH(x0) 6= 0 and hence H is a diffeomorphism in a neighborhood

of x0 = 0 ∈ Rn. It suffices to observe that for all i = 1, 2, . . . , j,(
g ◦H−1

)
i
(x) = xi.

�

In what follows, by cubes we will mean cubes with edges parallel to the coordinate

axes in Rn. It suffices to prove that any point x0 ∈ Kj has a cubic neighborhood whose

intersection with Kj is mapped onto a set of Hn-measure zero. Since we can take cubic

neighborhoods to be arbitrarily small, the change of variables from Lemma 1.9 allows us

to assume that

(1.4) Kj ⊂ (0, 1)n, gi(x) = xi for i = 1, 2, . . . , j and x ∈ [0, 1]n.

Indeed, according to Lemma 1.9 we can assume that x0 = 0 and that g fixes the first j

variables in a neighborhood of 0. The neighborhood can be very small, but a rescaling

argument allows us to assume that it contains a unit cube Q around 0. Translating the

cube we can assume that Q = [0, 1]n. If x ∈ Kj, since rankDg(x) = j and g fixes the first

j coordinates, the derivative of g in directions orthogonal to the first j coordinates equals

zero at x, ∂gk(x)/∂xi = 0 for i = j + 1, . . . , n and any k.

Lemma 1.10. Under the assumptions (1.4) there exists a constant C = C(n) > 0 such

that for any integer m ≥ 1, and every x ∈ Kj, there is a closed cube Qx ⊂ [0, 1]n with edge

length dx centered at x with the property that f(Kj ∩Qx) = g(Kj ∩Qx) can be covered by

mj balls in `∞ each of radius CLdxm
−1, where L is the Lipschitz constant of f .
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The theorem is an easy consequence of this lemma through a standard application of

the 5r-covering lemma (Theorem ??); we used a similar argument in the proof of the Sard

theorem. First of all observe that cubes with sides parallel to coordinate axes in Rn are

balls with respect to the `∞n metric

‖x− y‖∞ = max
1≤i≤n

|xi − yi|.

Hence the 5r-covering lemma applies to families of cubes in Rn. By 5−1Q we will denote a

cube concentric with Q and with 5−1 times the diameter. The cubes {5−1Qx}x∈Kj
form a

covering of Kj. Hence we can select disjoint cubes {5−1Qxi}∞i=1 such that

Kj ⊂
∞⋃
i=1

Qxi .

If di is the edge length of Qxi , then
∑∞

i=1(5
−1di)

n ≤ 1, because the cubes 5−1Qxi are disjoint

and contained in [0, 1]n. Hence

Hn
∞(f(Kj)) ≤

∞∑
i=1

Hn
∞(f(Kj ∩Qxi)) ≤

∞∑
i=1

mj(CLdim
−1)n ≤ 5nCnLnmj−n.

Since the exponent j − k is negative, and m can be arbitrarily large we conclude that

Hn
∞(f(Kj)) = 0 and hence Hn(f(Kj)) = 0.

Thus it remains to prove Lemma 1.10.

Proof of Lemma 1.10. Various constants C in the proof below will depend on n only. Fix

an integer m ≥ 1. Let x ∈ Kj. Since every point in Kj is a density point of Kj, there is a

closed cube Q ⊂ [0, 1]n centered at x of edge length d such that

(1.5) Hn(Q \Kj) < m−nHn(Q) = m−ndn.

By translating the coordinate system in Rn we may assume that

Q = [0, d]j × [0, d]n−j.

Each component of f : Q∩Kj → `∞ is an L-Lipschitz function. Extending each component

to an L-Lipschitz function on Q results in an L-Lipschitz extension f̃ : Q → `∞. This is

well known and easy to check.

Divide [0, d]j into mj cubes with pairwise disjoint interiors, each of edge length m−1d.

Denote the resulting cubes by Qν , ν ∈ {1, 2, . . . ,mj}. It remains to prove that

f((Qν × [0, d]n−j) ∩Kj) ⊂ f̃(Qν × [0, d]n−j)



GEOMETRIC ANALYSIS 9

is contained in a ball (in `∞) of radius CLdm−1. It follows from (1.5) that

Hn((Qν × [0, d]n−j) \Kj) ≤ Hn(Q \Kj) < m−ndn.

Hence

Hn((Qν × [0, d]n−j) ∩Kj) > (m−j −m−n)dn.

This estimate and the Fubini theorem imply that there is ρ ∈ Qν such that

Hn−j(({ρ} × [0, d]n−j) ∩Kj) > (1−mj−n)dn−j.

Hence

Hn−j(({ρ} × [0, d]n−j) \Kj) < mj−ndn−j.

It follows from (1.2) with n replaced by n− j that

(1.6) diam `∞(f̃({ρ} × [0, d]n−j)) ≤ CLHn−j({ρ} × [0, d]n−j) \Kj)
1/(n−j) ≤ CLm−1d.

Indeed, the rank of the derivative of g restricted to the slice {ρ} × [0, d]n−j equals zero at

the points of ({ρ}× [0, d]n−j)∩Kj and this derivative coincides a.e. with the approximate

derivative of f̃ restricted to ({ρ}× [0, d]n−j)∩Kj which by the property of g must be zero

as well.

Since the distance of any point in Qν × [0, d]n−j to {ρ}× [0, d]n−j is bounded by Cm−1d

and f̃ is L-Lipschitz, (1.6) implies that f̃(Qν × [0, d]n−j) is contained in a ball of radius

CLdm−1, perhaps with a constant C bigger than that in (1.6). The proof is the lemma is

complete. �

This also completes the proof of Theorem 1.5. �
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