Calculus III

Professor Piotr Hajłasz

First Exam

October 7, 2013.

Problem	Possible points	Score
1	20	
2	20	
3	20	
4	20	
5	$20+10$	
Total	110	

The total score is 100 . The problem 5 is the most difficult one, so for a complete solution without any mistakes you will get an extra bonus of 10 points. However, do not get stuck on that problem. Solve the problems 1-4 first.

Problem 1. $(20 \mathrm{p}=4 \times 5 \mathrm{p})$
(a) Find an equation of the plane passing through the points $A(1,2,3), B(0,1,3)$ and $C(1,1,1)$.
(b) What is the area of the triangle $\triangle A B C$ with the vertices A, B, C as in (a)?
(c) For what value of the parameter a are the planes $3 x+6 y+2 z=7$ and $x+2 y+a z=24$ perpendicular?
(d) Find parametric equations of the line through $(1,0,6)$ that is perpendicular to the plane $x+3 y+z=5$.

Problem 2. $(20 \mathrm{p}=2 \times 10 \mathrm{p})$
(a) Find the tangent plane to the surface $x^{3} y^{7}+\sin (\pi x) y-x y z=0$ at $(1,1,1)$.
(b) Let $\psi(x, y, z)=\sin (x)+\cos (y)+2 z$. Find the direction in which the function ψ decreases most rapidly at the point $(0, \pi, 1)$.

Problem 3. (20p) Show that the function $u(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$ is harmonic, i.e. $u_{x x}+u_{y y}+u_{z z}=0$.

Problem 4. (20p) Find the absolute maximum and minimum values of $f(x, y)=x y-x-2 y+1$ on the closed triangular region with vertices $(0,0),(1,0)$ and $(0,1)$.

Continuation of the solution of Problem 4.

Problem 5. $(20 \mathrm{p}+10 \mathrm{p})$ Use the Lagrange multipliers to find the point on the sphere $x^{2}+y^{2}+z^{2}=$ 4 that is closest to the point $(3,1,-1)$. (You must use the Lagrange multipliers; other solutions will not be accepted.)

Continuation of the solution of Problem 5.

