Calculus III

Professor Piotr Hajłasz

Second Exam

November 8, 2013.

Problem	Possible points	Score
1	20	
2	$20+10$	
3	20	
4	20	
5	20	
Total	110	

Part (b) of Problem 2 is an extra bonus for 10 points. If you get 100 points it is 100%, so with the extra bonus you can get up to 110% from the exam.

Problem 1.

(a) Write $\iint_{D} f(x, y) d A$ as an iterated integral in polar coordinates, where D is the part of the unit disc in the first quadrant

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0\right\} .
$$

(b) Evaluate the integral

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} y \sqrt{x^{2}+y^{2}} d y d x
$$

by converting it to polar coordinates. (In order to compute the integral it might be helpful to remember that $\left((\cos \theta)^{5}\right)^{\prime}=-5(\cos \theta)^{4} \sin \theta$.)

Problem 2. (20 for (a) +10 for (b))
Rewrite the integral $\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x$ as
(a)

$$
\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} f(x, y, z) d x d y d z
$$

(b)

$$
\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} f(x, y, z) d y d z d x
$$

Problem 3. Evaluate the integral

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d z d y d x
$$

by converting it to spherical coordinates.

Problem 4.
(a) Let $\mathbf{F}=\left\langle y^{2} e^{z}, 2 x y e^{z}+1,2 z+x y^{2} e^{z}\right\rangle$. Find a function $f(x, y, z)$ such that $\nabla f=\mathbf{F}$.
(b) Use part (a) to evaluate the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where \mathbf{F} is as in part (a) and C has parametrization $\mathbf{r}(t)=\left\langle t e^{\sin t}, t e^{1+\cos t}, t(t-\pi)\right\rangle, 0 \leq t \leq \pi$.

Problem 5.

(a) State the Green theorem.
(b) Evaluate the integral $\int_{C}(-y+\sin x) d x+\left(x+e^{y}\right) d y$ where the closed curve C is the triangle with vertices $(0,0),(1,0)$ and $(1,1)$ oriented clockwise.

