Calculus III

Professor Piotr Hajłasz
First Exam
February 18, 2015.

Problem	Possible points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Problem 1. $(20 \mathrm{p}=4 \times 5 \mathrm{p})$
(a) Find the equation of the plane that passes through the points $P(1,1,1), Q(1,2,3), R(3,2,1)$.
(b) Find the area of the triangle with the vertices $P(1,1,1), Q(1,2,3), R(3,2,1)$.
(c) For what values of the parameter a are the planes $x+a y+2 z=2015$ and $3 x+(a+2) y+6 z=$ 1410 parallel?
(d) Find the equations of the line of intersection of the planes $x+y+z=1$ and $x-2 y+3 z=1$.

Problem 2. $(20 \mathrm{p}=2 \times 10 \mathrm{p})$
(a) Show that the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x y)+y^{2}}{x^{2}+y^{2}}$ does not exist.
(b) Show that the limit exists and find it. $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x y}\left(x^{2}+y^{2}\right)+y^{2} \sin \left(x y^{2}\right)}{2\left(x^{2}+y^{2}\right)}$.

Problem 3. $(20 \mathrm{p}=2 \times 10 \mathrm{p})$
(a) Find the curvature of the helix $\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t, 4 t\rangle$.
(b) Find the normal and the binormal vectors to the helix $\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t, 4 t\rangle$.

Problem 4. $(20 \mathrm{p}=2 \times 10 \mathrm{p})$
(a) Find ∇z where z is a function of variables x and y implicitly defined by the equation

$$
x y z=1+\pi^{3}+\cos (x+y+z) .
$$

(b) Find the equation of the tangent plane to the surface $x y z=1+\pi^{3}+\cos (x+y+z)$ at the point (π, π, π). Hint: You can use the results of the part (a), but you do not have to.

Problem 5. (20p) Find the absolute maximum and minimum values of

$$
x^{3}-y^{3}+6 x y, \quad 0 \leq x \leq 1, \quad 0 \leq y \leq x
$$

