Print your first and last name legibly above the line:

Calculus III

Professor Piotr Hajłasz
First Exam
October 12, 2015.

Problem	Possible points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Problem 1. $(20 \mathrm{p}=4 \times 5 \mathrm{p})$
(a) For what values of a are the vectors $\langle a-1,2\rangle$ and $\langle a-4,1\rangle$ orthogonal?
(b) Find the angle between the planes $x+2=y-z$ and $2 x-y=z$
(c) Find the equation of a plane passing through the points $A(1,1,1), B(2,2,2), C(1,2,3)$
(d) Find the area of the triangle with vertices $A(1,1,1), B(2,2,2), C(1,2,3)$.

Problem 2.
(a) Find the length of the curve $\mathbf{r}(x)=\langle x, f(x)\rangle, a \leq x \leq b$, where f is a given function.
(b) Show that the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ does not exist.

Problem 3. $(20 \mathrm{p}=2 \times 10 \mathrm{p})$
(a) Find the equation of the tangent plane to the surface $x^{2}+y^{2}+z^{2}-8 x-6 y-8 z+24=0$ at the point $(1,1,2)$.
(b) Classify the surface $x^{2}+y^{2}+z^{2}-8 x-6 y-8 z+24=0$ (i.e. is it ellipsoid, paraboloid, cylinder,...?)

Problem 4. (20p) Find the maximum and minimum values of $f(x, y)=(x-1)^{2}+(y-2)^{2}$ on the disc $x^{2}+y^{2} \leq 45$.

Problem 5. $(20 \mathrm{p}=2 \times 10 \mathrm{p})$ Using the method of Lagrange multipliers find the distance of the point $(17,-4,-3)$ to the plane $6 x-3 y+2 z=10$.

