Print your first and last name legibly above the line:

Calculus III

Professor Piotr Hajłasz First Exam October 12, 2015.

Problem	Possible points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Problem 1. (20p=4×5p) (a) For what values of a are the vectors $\langle a - 1, 2 \rangle$ and $\langle a - 4, 1 \rangle$ orthogonal?

(b) Find the angle between the planes x + 2 = y - z and 2x - y = z

(c) Find the equation of a plane passing through the points A(1,1,1), B(2,2,2), C(1,2,3)

(d) Find the area of the triangle with vertices A(1,1,1), B(2,2,2), C(1,2,3).

Problem 2.

(a) Find the length of the curve $\mathbf{r}(x) = \langle x, f(x) \rangle$, $a \leq x \leq b$, where f is a given function.

(b) Show that the limit $\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$ does not exist.

Problem 3. $(20p=2\times10p)$ (a) Find the equation of the tangent plane to the surface $x^2 + y^2 + z^2 - 8x - 6y - 8z + 24 = 0$ at the point (1, 1, 2).

(b) Classify the surface $x^2 + y^2 + z^2 - 8x - 6y - 8z + 24 = 0$ (i.e. is it ellipsoid, paraboloid, cylinder,...?)

Problem 4. (20p) Find the maximum and minimum values of $f(x, y) = (x - 1)^2 + (y - 2)^2$ on the disc $x^2 + y^2 \le 45$.

Problem 5. $(20p=2\times10p)$ Using the method of Lagrange multipliers find the distance of the point (17, -4, -3) to the plane 6x - 3y + 2z = 10.