Homework 2

1. Let $K \subseteq L \subseteq M$ be fields with L normal over K, and M normal over L. Prove that if every automorphism of L/K can be extended to M, then M is normal over K.

2. Prove that for fields L and M we have $(L \cup M)' = L' \cap M'$ and for groups H and J we have $(H \cup J)' = H' \cap J'$. Extend to arbitrary, even infinite, unions. Prove that any intersection of closed fields or groups is closed.

3. If K is an infinite field and x is an indeterminate, then $K(x)$ is normal over K. [Hint: The map $x \mapsto x + a$, for $a \in K$, induces a field automorphism of $K(x)/K$. If the rational function f/g lies in the fixed field K' let $h(x, y) = f(x)g(x + y) - g(x)f(x + y)$. By using that K is infinite, show that h is identically 0. Conclude that f/g is a constant.]

4. With K any field and x an indeterminate, prove that $K(x)$ is finite-dimensional over any intermediate field L different from K. [Hint: If $r = f/g \in L$, then x satisfies the equation $rg(x) - f(x) = 0$.]

5. If K is an infinite field and x is an indeterminate, then the only closed subgroups of $G := \text{Gal}(K(x)/K)$ are the finite subgroups of G and G itself.

6. Prove that in the field $Q(x)$, with x an indeterminate, the subfield $Q(x^2)$ is closed but the subfield $Q(x^3)$ is not closed.