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I’ve adopted a slightly different method of proof from the textbook for many of
the Galois theory results. For your reference, here’s a summary of the main results
and their proofs, without any of that pesky history and motivation—or distracting
examples—to get in the way. Just the proofs1. Almost all of the hard work lies
in three main theorems: Corollary 7.9 (a splitting field of a separable polynomial
is Galois), Theorem 8.1 (linear independence of characters), and Theorem 9.1 (the
degree of K over KH is bounded by the order of H).

1. Notation and conventions

For groups H and G, we write H < G to mean that H is a (not necessarily
proper) subgroup of G. Similarly, for sets S and T , we write S ⊂ T to indicate
that S is a (not necessarily proper) subset of T .

2. Field extensions

Definition 2.1. A field extension K/F is a triple (F,K, i) consisting of fields F
and K together with a field homomorphism i : F → K. When there is no danger
of confusion F will be identified with its image i(F ) under i, and so regarded as a
subfield of K.

Definition 2.2. A field extension K/F is finite if K is finite-dimensional as a
vector space over F . The degree [K : F ] of a finite extension K/F is the dimension
of K as a vector space over F .

1and the occasional definition or two. Not to mention the theorems, lemmas and so forth.
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2 MARK DICKINSON

Proposition 2.3 (Tower Law). Suppose that K/E and E/F are field extensions.
Then K/F is finite if and only if K/E and E/F are finite, and in this case

[K : F ] = [K : E][E : F ].

Proof. If K/F is finite then any basis for K as a vector space over F spans K
as a vector space over E, hence contains a basis for K over E, so K/E is finite.
Similarly, any basis for E/F gives a subset of K linearly independent over F , which
can be completed to a basis of K/F . Hence E/F is also finite.

Conversely, suppose that K/E and E/F are finite, and let S be a basis for K
as a vector space over E and T a basis for E as a vector space over F . We’ll show
that the [K : E][E : F ] elements ts for s in S and t in T are distinct, and that they
provide a basis for K as vector space over F .

Suppose that v is an element of K. Since S spans K over E,

v =
∑
s∈S

λss

for some elements λs in E. Since T spans E over F , for every s in S there is a
relation

λs =
∑
t∈T

µs,tt

for some elements µs,t of F . Substituting gives

v =
∑
s∈S

∑
t∈T

µs,tts,

hence the elements ts span K as a vector space over F .
Now suppose that there are elements µs,t of F such that∑

s∈S

∑
t∈T

µs,tts = 0.

Letting λs =
∑

t∈T µs,tt for each s in S, we can rewrite this as∑
s∈S

λss = 0.

Since each λs is in E and the elements of S are linearly independent over E, it
follows that λs = 0 for each s, hence∑

t∈T

µs,tt = 0

for each s in S. Since the elements of T are linearly independent over F , it follows
that µs,t = 0 for all s in S and t in T . Hence the elements ts are distinct and linearly
independendent over F . So TS = {ts | s ∈ S, t ∈ T} gives a basis for K over F , and
it follows that [K : F ] = |TS| = |T ||S| = [K : E][E : F ] as required. �

Lemma 2.4. Suppose that K/F is a field extension and that E is a subset of K
that contains F and is closed under addition and multiplication. If E is finite-
dimensional as a vector space over F then E is a field.

Proof. Since E is closed under addition and multiplication, and contains F , it
follows that it is a vector space over F . For each nonzero α in E, multiplication
by α gives an injective F -linear map from E to itself. Since any injective linear
map from a finite-dimensional vector space to itself is automatically surjective,
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multiplication by α must be surjective. In particular, 1 is in the image, so 1 = αβ
for some β in E. Hence α has an inverse in E. Since this is true for arbitrary
nonzero α, E is a field. �

Definition 2.5. Suppose that K/F is a field extension and that S is a subset of
K. Then we write F (S) for the intersection of all subfields of K containing both
F and S, and call it the field generated by S over F . If α is an element of K then
we write F (α) for the field F ({α}) generated by F and α. An extension K/F is a
simple extension if K = F (α) for some α in K.

Definition 2.6. Suppose that K is a field, and that E1 and E2 are subfields
of K. The compositum or composite E1E2 of E1 and E2 is the intersection of all
subfields of K containing both E1 and E2. So in the notation of Definition 2.5,
E1E2 = E1(E2) = E2(E1).

Corollary 2.7. Suppose that K/F is an extension, and that E1 and E2 are subfields
of K containing F . If E1/F and E2/F are finite then E1E2/F is finite, and
[E1E2 : F ] ≤ [E1 : F ][E2 : F ].

Proof. Choose a basis S for E1 over F , and consider the subset E of K consisting
of linear combinations of the elements of S with coefficients in E2:

E =
{∑

s∈S

λss
∣∣∣λs ∈ E2

}
.

Since 1 is in E1 and S spans E1 over F , there are elements εs of F such that

1 =
∑
s∈S

εss.

Hence for any x in E2,
x =

∑
s∈S

(xεs)s

is an element of E. Since E1 is closed under multiplication, for every t and u in S
there are elements µt,u

s of F such that

tu =
∑
s∈S

µt,u
s s.

Hence for elements x =
∑

s∈S λss and y =
∑

s∈S νss of E,

x+ y =
∑
s∈S

(λs + νs)s

is in E and

xy =
∑

t∈S,u∈S

λtνutu =
∑

t∈S,u∈S

λtνu

(∑
s∈S

µt,u
s s

)
=

∑
s∈S

( ∑
t∈S,u∈S

λtνuµ
t,u
s

)
s

is an element of E. So E contains E2 and is closed under addition and mul-
tiplication. Furthermore, S spans E as a vector space over E2, so E is finite-
dimensional over E2, of dimension at most |S| = [E1 : F ]. Hence by Lemma
2.4, E is a subfield of K. Since E contains both E1 and E2, and is generated
by elements of E1E2, E = E1E2. By the Tower Law, E1E2/F is finite, and
[E1E2 : F ] = [E1E2 : E2][E2 : F ] ≤ [E1 : F ][E2 : F ] as required. �
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3. Algebraic extensions

Throughout this section, K/F will be a field extension and α will denote an
element of K.

Notation 3.1. Let f =
∑

0≤i≤d aix
i be a polynomial in F [x]. Then we write f(α)

for the element
f(α) =

∑
0≤i≤d

aiα
i

of K.

It follows directly from the definitions that for f and g in F [x] and α in K,
(f ± g)(α) = f(α)± g(α), (fg)(α) = f(α)g(α) and a(α) = a for any a in F (where
a is interpreted as the constant polynomial a on the left-hand side).

Remark 3.2. While the notation above resembles the usual one for application of
a function f to an argument α, it’s important not to forget that a polynomial is
not, strictly speaking, a function from F to F . For example, when F = Fp is the
finite field with p elements, the polynomials f = xp and g = x in F [x] are distinct,
even though as functions on F they’re identical: f(α) = g(α) for all α in F .

Definition 3.3. Let f be a nonzero polynomial in F [x]. The element α of K is a
root of f if f(α) = 0 in K.

Proposition 3.4. With the notation of the previous definition, α is a root of F
if and only if there is a factorization f = (x − α)g in K[x] for some nonzero
polynomial g in K[x].

Proof. Apply the Division Algorithm (in K[x]) to f and (x− α) to K[x] to obtain
f = (x−α)q+r for some polynomial q in K[x] and some constant r in K. Applying
both sides to α, 0 = f(α) = r(α), hence r = 0 and so f = (x−α)q gives the required
factorization. The converse is obvious. �

Definition 3.5. An element α of K is algebraic over F if α is the root of some
nonzero polynomial f in F [x]. An extension K/F is algebraic if every element α of
K is algebraic over F .

Proposition 3.6. If α is an algebraic element of K, then there is a unique monic
irreducible polynomial m such that m(α) = 0. Furthermore, for any polynomial f
in F [x], m divides f if and only if α is a root of f .

Proof. Since α is algebraic there is a nonzero polynomial f such that f(α) = 0.
By rescaling f if necessary, we may assume that f is monic. Now choose a monic
polynomial m of smallest degree such that m(α) = 0. Then m is irreducible: it’s
clearly nonconstant, and if m = gh for some polynomials g and h of smaller degree
then m(α) = g(α)h(α), so either g(α) = 0 or h(α) = 0, contradicting the choice
of m.

Now suppose that f is any polynomial in F [x]. It’s clear that if m|f then
f(α) = 0. Conversely, suppose that f(α) = 0 let g = gcd(f,m). Since g is a linear
combination of f and m, g(α) = 0. But then deg(g) ≥ deg(m), by the choice of m.
Since g|m, and both g and m are monic, it follows that g = m, hence that m|f .

It remains to show uniqueness of m. But if m′ is a monic irreducible polynomial
such that m′(α) = 0 then m|m′. Hence m = m′, by irreducibility of m′. �
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Definition 3.7. The unique irreducible monic polynomial m in F [x] such that
m(α) = 0, whose existence is guaranteed by Proposition 3.6, is the minimal polyno-
mial of α. The degree deg(α) of α is deg(m). Note that deg(α) is always a positive
integer.

Lemma 3.8. Suppose that α is an element of K, algebraic over F of degree d.
Then every element of the simple extension F (α) can be represented uniquely in
the form

∑
0≤i<d aiα

i, where the coefficients ai are elements of F .

Proof. Consider the ‘evaluate at α’ map φ : F [x] → K defined by φ(f) = f(α).
Let E be the image of this map. We will first show that the image E of φ is
precisely F (α), and then show that every element of E can be represented in the
given form.

It follows directly from the definitions that E is a subset of F (α) that is closed
under addition and multiplication and contains F . To show that E is equal to
F (α), it suffices to show that every nonzero element of E has an inverse in E; then
E is a subfield of K containing both F and α = φ(x), and hence contains F (α) by
Definition 2.5. Suppose that f(α) is a nonzero element of the image of φ. Then by
Proposition 3.6, f is not divisible by the minimal polynomial m of α in F [x]. Hence
f is relatively prime to m, so there are polynomials a and b such that af + bm = 1
in F [x]. But then 1 = a(α)f(α)+b(α)m(α) = a(α)f(α) in K and a(α) is an inverse
for f(α).

Now we show that every element f(α) of E has the given form. For any poly-
nomial r, f(α) = r(α) if and only if (f − r)(α) = 0, which is true if and only if
f − r is divisible by m by Proposition 3.6. But by the Division Algorithm applied
to f and m, there is a unique polynomial r such that f − r is divisible by m and
r =

∑
0≤i<d aix

i for some ai in F . Hence there are unique coefficients ai in F such
that f(α) =

∑
0≤i<d aiα

i. �

Corollary 3.9. Suppose that K/F is a field extension and that α is an element
of K. Suppose that α is algebraic over F , of degree d. Then the extension F (α)/F
is finite, of degree d.

Proof. By Lemma 3.8, the set of elements {αi | 0 ≤ i < d} gives a basis for F (α) as
a vector space over F . �

Proposition 3.10. The following are equivalent, for an element α of a field ex-
tension K/F .

(1) α is algebraic.
(2) The extension F (α)/F is finite.
(3) There is a subfield E of K containing α such that E/F is finite.

Proof. That (1) implies (2) follows from Corollary 3.9 The implication (2) implies
(3) is immediate: just take E = F (α). To show that (3) implies (1), suppose that
[E : F ] = d. Then the d+1 elements αi, 0 ≤ i ≤ d of E must be linearly dependent
over F . Hence there’s a relation

∑
0≤i≤d aiα

i = 0 for some ai in F , not all zero,
and then α is a root of the nonzero polynomial f =

∑
0≤i≤d aix

i. �

Corollary 3.11. Any finite extension is algebraic.

Proof. This follows immediately from Proposition 3.10 and Definition 3.5. �
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Corollary 3.12. Suppose that K/F is a field extension. Then the subset of K
consisting of all elements that are algebraic over F is a subfield of K.

Proof. Suppose that α and β are elements of K that are algebraic over F . Then
F (α) and F (β) are finite over F by Proposition 3.10. Thus the compositum
F (α)F (β) = F ({α, β}) is finite over F by Corollary 2.7. Since this compositum is
a field containing both α and β, it contains α ± β, αβ and (provided β 6= 0) α/β;
hence all these elements are algebraic by Proposition 3.10 again. �

Proposition 3.13. Suppose that K/E and E/F are field extensions. Then K/F
is algebraic if and only if both K/E and E/F are algebraic.

Proof. If K/F is algebraic then every element of E is an element of K, and hence
is algebraic over F . So E/F is algebraic. Furthermore, any element α of K is the
root of some nonzero polynomial f in F [x]; regarding f as a nonzero polynomial in
E[x] we find that K/E is algebraic.

For the other direction, suppose that K/E and E/F are algebraic. Let α be
an element of K. Since K/E is algebraic there is a polynomial f in E[x] such
that f(α) = 0. Let ci, 0 ≤ i ≤ d be the coefficients of this polynomial. Since
E/F is algebraic, each extension F (ci)/F is finite by Proposition 3.10. Hence the
compositum F (c0, . . . , cd)/F is finite, by repeated application of Corollary 2.7. Now
α is algebraic over F (c0, . . . , cd), hence F (c0, . . . , cd;α) is finite over F (c0, . . . , cd)
by Proposition 3.10, and so by the Tower Law it’s finite over F . So α is algebraic
over F by Proposition 3.10. �

4. Splitting fields

Definition 4.1. Let F be a field and f a nonzero polynomial in F [x]. The poly-
nomial f splits completely in F [x] if it can be written as a nonzero constant times
a product of linear polynomials in F [x].

Suppose that K is an extension field of F . Then K is a splitting field for f over
F if f splits completely in K[x] and the roots of f generate K over F .

Lemma 4.2. Suppose that F is a field, and that m is an irreducible polynomial
in F [x]. Then there is an extension E/F such that m has a root α in E and
E = F (α).

Proof. The relation ∼ defined on F [x] by

f ∼ g ⇐⇒ m|(f − g)

is easily seen to be an equivalence relation. Let E be the set of equivalence classes
in F [x] under this equivalence relation, and define addition and multiplication on E
by the formulas

[f ] + [g] = [f + g]; [f ][g] = [fg]

where [f ] denotes the equivalence class of f . It’s straightforward to check that these
operations are well-defined, and that all field axioms are satisfied, with the possible
exception of the existence of inverses. We now show that E is a field: suppose that
[f ] is a nonzero element of E. Then m does not divide f , so m and f are relatively
prime. Hence there are polynomials a and b in F [x] such that am+bf = 1. But then
[b][f ] = [a][m]+ [b][f ] = [am+bf ] = [1] = 1E , so [b] is an inverse for [f ] in E. Write
α for the element [x] of E. Then 0E = [m] = [m(x)] = m([x]) = m(α), hence α is
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a root of m in E. Similarly, for any element [f ] of E, [f ] = [f(x)] = f([x]) = f(α),
so E is generated by F and α. Hence E = F (α). �

Theorem 4.3. Let F be a field and f a nonzero polynomial in F [x]. Then there
is a splitting field K for f over F .

Proof. We prove this by induction on the degree of f . If deg(f) = 0 then F is
already a splitting field for f . So suppose that deg(f) > 0 and that splitting fields
exist for all polynomials of smaller degree. Let p be an irreducible factor of f . By
Lemma 4.2, there is an extension E/F such that p has a root α in E and E = F (α).
Then we can write f = (x − α)g in E[x]. By the induction hypothesis there is a
splitting field K for g over E. Then f splits completely in K[x], and K is generated
over F by α and the roots of g, hence by the roots of f . So K is a splitting field
for f over F . �

5. Normality

Definition 5.1. An algebraic extension K/F is normal if every irreducible poly-
nomial f in F [x] that has a root in K splits completely in K[x].

Proposition 5.2. The following conditions are equivalent, for an algebraic exten-
sion K/F .

(1) K/F is normal.
(2) For every element α of K, the minimal polynomial of α over F splits com-

pletely in K[x].
(3) For every element α of K, there is some polynomial f in F [x] such that

f(α) = 0 and f splits completely in K[x].

Proof. (1) implies (2): For any element α of K, the minimal polynomial of α is an
irreducible polynomial in F [x] that has a root α in K, and hence splits completely.
(2) implies (3): just take f to be the minimal polynomial of α. (3) implies (1):
Suppose that f is an irreducible polynomial in F [x] and that α is a root of f in
K. Let g be a polynomial such that g(α) = 0 and g splits completely in K[x].
Then since f and g share a root, gcd(f, g) is nontrivial. Hence gcd(f, g) = f by
irreducibility of f , so f |g and f must also split completely in K[x]. �

6. Separability

Definition 6.1. Let F be a field and f =
∑

0≤i≤d aix
i a polynomial in F [x]. The

derivative of f is the polynomial

Df =
∑

1≤i≤d

iaix
i−1

in F [x].

Proposition 6.2. For polynomials f and g in F [x] and a constant a in F , D(1) =
0, D(f ± g) = Df ±Dg, D(af) = aDf , Dx = 1, and D(fg) = f Dg +Df g.

Proof. All of these except the product rule follow directly from the definition. The
product rule can be proved by first establishing it in the case f = x, then giving a
proof by induction on the degree of f . �
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Definition 6.3. Suppose that F is a field. A nonzero polynomial f in F [x] is
separable if f and its derivative Df are relatively prime in F [x]. Otherwise, f is
inseparable.2

Definition 6.4. Suppose that K/F is an extension and that f is a nonzero poly-
nomial in F [x]. Say that α in K is a multiple root of f if f = (x − α)2g for some
polynomial g in K[x].

Proposition 6.5. Suppose that F is a field and f a separable polynomial in F [x].
Then f has no multiple roots in any extension E/F . Conversely, if f splits com-
pletely in an extension E/F and f has no multiple roots in E then f is separable.

Proof. Suppose, for a contradiction, that f = (x − α)2g for some α in E and g in
E[x]. Then Df = (x − α)(2g + (x − α)Dg), hence f(α) = Df(α) = 0. It follows
that both f and Df are divisible by the minimal polynomial m of α over F [x],
hence are not relatively prime.

For the converse, suppose that f splits completely in E/F and f has no multiple
roots in E. Let g = gcd(f,Df); note that since g is a divisor of f , it splits
completely in E[x]. So if f and Df are not relatively prime then g has a root α in
E. Then f(α) = Df(α) = 0. So f = (x− α)h for some polynomial h in E[x]. But
then Df = h+ (x−α)Dh, so 0 = Df(α) = h(α). Hence h = (x−α)h′ for some h′

in E[x]. Then f = (x−α)2h′, contradicting the assumption that f has no multiple
roots. Hence f and Df are relatively prime. �

Proposition 6.6. If f is separable and g|f then g is separable.

Proof. Write f = gh. Then Df = g Dh + Dg h. So if g and Dg have a common
irreducible factor p then so do f and Df . �

Definition 6.7. LetK/F be an extension. An algebraic element α ofK is separable
over F if there is a separable polynomial f in F [x] such that f(α) = 0. An algebraic
extension K/F is separable if every element α of K is separable over F .

Proposition 6.8. Suppose that K/F is an extension and that α is an algebraic
element of K. Then α is separable if and only if its minimal polynomial is separable.

Proof. Suppose that α is the root of a separable polynomial f in F [x]. Since
f(α) = 0, the minimal polynomial m of α divides f . Hence m is separable by
Proposition 6.6. The other direction is immediate. �

7. Galois extensions

Definition 7.1. Suppose that E/F and K/F are extensions of a common base
field F . Say that a field homomorphism φ : E → K fixes F if φ(x) = x for all x
in F . We also call a homomorphism from E to K that fixes F an F -homomorphism.

Definition 7.2. Suppose that K is a field. An automorphism of K is a field
homomorphism φ : K → K for which there is an inverse ψ with φ ◦ ψ = ψ ◦ φ =
idK . (Equivalently, it’s a homomorphism from K to K which is a bijection on the
underlying sets.) We write Aut(K) for the group of automorphisms of K under
composition.

2This definition, although it’s the one adopted by Dummit and Foote, is slightly unorthodox:
the more usual definition is that a polynomial g is separable if and only if f and Df are relatively

prime for every irreducible factor f of g.



GALOIS THEORY: THE PROOFS 9

Now suppose that K/F is an extension of fields. Then an automorphism of K
over F is an automorphism of K that fixes F . We write Aut(K/F ) for the subgroup
of Aut(K) whose elements fix F :

Aut(K/F ) = {φ ∈ Aut(K) |φ(x) = x for all x in F} < Aut(K).

Definition 7.3. Say that a field extension K/F is Galois if K/F is finite and
|Aut(K/F )| = [K : F ]. It’s common to write Gal(K/F ) for the automorphism
group Aut(K/F ) when K/F is a Galois extension.

Lemma 7.4. Suppose that E/F and K/F are extensions of a base field F , and
that φ : E → K is a field homomorphism that fixes F . Then for any polynomial f
in F [x] and element α of E, φ(f(α)) = f(φ(α)).

Proof. The evaluation of α builds up f(α) from α and the coefficients of f by
addition and multiplication. The result then follows from the observation that φ
respects addition and multiplication and fixes all coefficients of f . �

Proposition 7.5. Suppose that E/F is a simple algebraic extension: E = F (α)
for some α in F . Let m be the minimal polynomial of α over F . Suppose that
K/F is another extension. Then every homomorphism E → K that fixes F takes
α to a root of m in K. Conversely, for each root β of m in K there is a unique
homomorphism φ : E → K that fixes F and maps α to β.

Proof. Suppose that φ : E → K is a homomorphism that fixes every element of F .
Then m(φ(α)) = φ(m(α)) = φ(0) = 0, hence φ(α) is a root of m.

For the second part, we define a map as follows. Every element of the simple
extension E = F (α) has the form f(α) for some polynomial f in F [x]. For any
element f(α) of E, φ(f(α)) = f(φ(α)) = f(β), so φ is uniquely determined, if it
exists. To show existence, we define a map φ : E → K by φ(f(α)) = f(beta).
This is well-defined: if f(α) = g(α) then (f − g)(α) = 0, hence m divides f − g,
so f(β) − g(β) = 0 and f(β) = g(β). It’s also clearly a homomorphism that
preserves F since for example φ(f(α)g(α)) = φ((fg)(α)) = (fg)(β) = f(β)g(β) =
φ(f(α))φ(g(α)). �

Theorem 7.6. Suppose that E/F is a finite extension and let S be a subset of E
that generates E over F . Suppose further that K/F is an extension such that the
minimal polynomial of any α in S splits completely in K[x]. Then there is a field
homomorphism from E to K that fixes F . If every element of S is separable, then
there are exactly [E : F ] such homomorphisms.

Proof. We give a proof by induction on [E : F ]. If [E : F ] = 1 then E = F and the
result is trivial. Suppose that [E : F ] > 1 and the result has already been proved
for all extension of smaller degree. Since E is generated by S over F , there is an
element α of S not contained in F . Let m = mα be its minimal polynomial.

Each homomorphism E → K that fixes F restricts to a homomorphism F (α)→
K fixing F . By Proposition 7.5 these homomorphisms are in one-to-one correspon-
dence with roots of mα in K; since mα splits completely in K[x] by assumption,
there is at least one such homomorphism, and if α is separable then the number of
these homomorphisms is exactly deg(mα), which is equal to [F (α) : F ] by Corollary
3.9.

Now given a homomorphism φ : F (α)→ K, we can consider K as an extension
of F (α) via the map φ. By the induction hypothesis there is a map E → K that
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fixes F (α), and hence F . Furthermore if every element of S is separable then
by the induction hypothesis there are exactly [K : F (α)] such maps for each of
the [F (α) : F ] choices for φ, and so by the Tower Law there are exactly [K :
F (α)][F (α) : F ] = [K : F ] maps E → K that fix F , as claimed. �

Corollary 7.7. Suppose that F is a field, f a nonzero polynomial in F [x]. Then
any splitting field for f over F is normal.

Proof. Let K be a splitting field for f over F , let α be an element of K, and let m
be its minimal polynomial. Let H be a splitting field for m over K, and suppose
that β is any root of m in H. Then there is a homomorphism φ : F (α) → F (β)
taking α to β, and since both F (α) and F (β) are finite, of degree deg(m) over F ,
this homomorphism is an isomorphism. Now K is a splitting field for f over F (α),
while K(β) ⊂ H is a splitting field for f over F (β).

�

Corollary 7.8. Suppose that F is a field, f a nonzero polynomial in F [x]. Then
any two splitting fields for f over F are isomorphic.

Proof. Suppose that E/F and K/F are both splitting fields for f over F . Let S
be the set of roots of f in E, and apply the theorem with this S. �

Corollary 7.9. Suppose that K/F is the splitting field of a separable polynomial
f in F [x]. Then K/F is Galois.

Proof. By the previous theorem, applied with E = K and S the set of roots of f
in K, there are exactly [K : F ] automorphisms of K fixing F . �

8. Linear independence of characters

Theorem 8.1. Let E and K be fields. Then any set S of field homomorphisms
s : E → K is linearly independent over K. More precisely, suppose that there exist
elements λs of K for each s in S such that all but finitely many of the λs are zero
and ∑

s∈S

λss(x) = 0

for all x in E. Then λs = 0 for all s in S.

Note that the set of all functions from E to K is naturally a vector space over K,
with addition and scalar multiplication defined pointwise. Linear independence in
the above sense is the usual notion of linear independence in this vector space
over K.

Proof. Suppose, for a contradiction, that the elements s are not linearly indepen-
dent. Then there is a relation

(1)
∑
s∈S

λss(x) = 0 for all x in E

for some coefficients λs in K, not all zero. Choose such a relation with the minimal
number of nonzero coefficients λs. Substituting 1 for x in (1) and using s(1) = 1
gives

∑
s∈S λs = 0, so there must be at least two elements of S, t and u say, for

which the corresponding coefficients λt and λs are nonzero. Since t and u are
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distinct, there is an element y of E such that t(y) 6= u(y). Substituting yx for x in
(1) and using s(yx) = s(y)s(x) gives

(2)
∑
s∈S

λss(y)s(x) = 0 for all x in E.

Taking t(y) times (1) minus (2) gives

(3)
∑
s∈S

λs(t(y)− s(y))s(x) = 0 for all x in E.

But λs(t(y) − s(y)) is zero whenever λs is zero, and it’s also zero for s = t. Since
it’s nonzero for s = u (3) gives a shorter relation, a contradiction to the original
choice of relation. Hence the elements s are linearly independent. �

Corollary 8.2. Suppose that E/F and K/F are field extensions, and that [E : F ]
is finite. Then there are at most [E : F ] distinct field homomorphisms from E to
K that fix F .

Proof. The set of F -linear maps φ from E to K is a vector space of dimension
[E : F ] over K. By Theorem 8.1, the set of maps from E to K that fix F is
linearly independent in this vector space, and hence there are at most [E : F ] such
maps. �

Corollary 8.3. For any finite extension K/F , |Aut(K/F )| ≤ [K : F ].

Proof. Apply Corollary 8.2 with E = K. �

Corollary 8.4. If K/F is Galois then Aut(K/F ) is a finite subgroup of Aut(K)
and KAut(K/F ) = F .

Proof. Let E = KAut(K/F ). Then

[K : F ] = |Aut(K/F )| by definition of Galois

= |Aut(K/E)| since every element of Aut(K/F ) fixes E

≤ [K : E] by Theorem 8.1

= [K : F ]/[E : F ] by the Tower Law

≤ [K : F ]

Hence all inequalities are equalities and [E : F ] = 1, so E = F . �

Proposition 8.5. Let K/F be a Galois extension. Then for any subfield E of K,
K/E is a Galois extension. Furthermore, E/F is Galois if and only if σ(E) ⊂ E for
all σ in Aut(K/F ), and in this case Aut(K/E) is a normal subgroup of Aut(K/F )
and Aut(E/F ) is isomorphic to the quotient group Aut(K/F )/Aut(K/E).

Proof. Let G = Aut(K/F ), and let X be the set of field homomorphisms from E
to K that fix F . Let i be the element of X given by the inclusion map E → K.
Define an action of G on X by composition of functions: g · s = g ◦ s for g in G
and s in X. The stabilizer of i is exactly Aut(K/E). Let orbG(i) be the orbit of i
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under the action of G.

[K : F ] = |G| by definition of Galois

= |Aut(K/E)|| orbG(i)| by the orbit-stabilizer formula

≤ |Aut(K/E)||X| since orbG(i) is a subset of X

≤ [K : E][E : F ] by Corollary 8.3 and Corollary 8.2

= [K : F ] by the Tower Law.

Hence all inequalities are equalities. In particular, |Aut(K/E)| = [K : E] and
hence K/E is Galois. Furthermore, there must be exactly [E : F ] elements of X.

The function Aut(E/F )→ X given by h 7→ i ◦h is easily seen to be injective. If
E/F is Galois then Aut(E/F ) and X both have exactly [E : F ] elements, and hence
this map is also surjective. It follows that for any s in Aut(K/F ), the restriction
of s to E has the form i ◦ h for some h in Aut(E/F ), and hence s(E) = i(h(E)) =
i(E) = E.

Conversely, suppose that s(E) = E for all s in Aut(K/F ). Then restriction
gives a group homomorphism Aut(K/F ) → Aut(E/F ), whose kernel is precisely
Aut(K/E). By the first isomorphism theorem for groups, the quotient group
Aut(K/F )/Aut(K/E) is isomorphic to a subgroup of Aut(E/F ). But

|Aut(K/F )/Aut(K/E)| = |Aut(K/F )|/|Aut(K/E)| by Lagrange’s Theorem

= [K : F ]/[K : E]

= [E : F ] by the Tower Law.

Since |Aut(E/F )| ≤ [E : F ] by Corollary 8.3, it follows that |Aut(E/F )| = [E : F ],
E/F is Galois, and Aut(E/F ) is isomorphic to Aut(K/F )/Aut(E/F ). �

Theorem 8.6. For a finite extension K/F , the following conditions are equivalent.
(1) K/F is Galois.
(2) KAut(K/F ) = F .
(3) K/F is normal and separable.
(4) K is a splitting field for a separable polynomial f in F [x].

Proof. Corollary 7.9 states that (4) implies (1), while Corollary 8.4 gives us (1)
implies (2). We now show that (2) implies (3). Assume that KAut(K/F ) = F ,
and let α be an element of K. Consider the action of Aut(K/F ) on K given by
g ·x = g(x), and let X be the orbit of α under this action. Now define a polynomial
f in K[x] by

f =
∏
β∈X

(x− β).

Any element g of the group Aut(K/F ) permutes the elements of X, hence if g(f)
denotes the result of applying g to the coefficients of f , then

g(f) =
∏
β∈X

(x− g(β)) = f.

So the coefficients of f lie in the fixed field of Aut(K/F ); by assumption this fixed
field is F . Hence f is an element of F [x]. Now f is a monic polynomial in F [x]
such that f(α) = 0, f splits completely in K[x] and all roots of f in K are distinct.
Since we can find such an f for any α, it follows that K/F is both separable and
normal.
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Finally, we show that (3) implies (4). Suppose thatK/F is normal and separable.
Let B be a basis for K as a vector space over F . Then for each b in B, the minimal
polynomial mb of b in F [x] splits completely in K[x] (since K/F is normal) and has
distinct roots in K (since K/F is separable). Let f be the product of all distinct
polynomials mb arising this way. Then f splits completely in K[x] and the set of
roots of F in K contains B, hence generates K over F . So K is a splitting field
for f over F . Finally, f has distinct roots in K: any multiple root would have to be
a root of more than one of the polynomials mb, but if mb and mc share a root then
gcd(mb,mc) is nontrivial, and hence gcd(mb,mC) = mb = mc by irreducibility of
mb and mc. �

9. Fixed fields

Theorem 9.1. Suppose that K is a field and H is a finite subgroup of Aut(K).
Then K/KH is finite and [K : KH ] ≤ |H|.

Proof. Let B be a finite subset of K that’s linearly independent over KH . We’ll
show that the corresponding maps g 7→ g(b) from H to K are linearly independent.
Since the space of maps H → K is a finite-dimensional vector space over K, of
dimension |H|, it follows that [K : KH ] ≤ |H|.

Suppose, for a contradiction, that there is a nontrivial relation

(4)
∑
b∈B

λbg(b) = 0 for all g in H

with not all of the λb nonzero; say λc 6= 0 for some c in B. Choose a relation with
the minimal number of nonzero λb. Substituting the identity element of H for g
in (4) gives

∑
b∈B λbb = 0, and dividing by λc gives

∑
b∈B λb/λcb = 0. Since the

elements of B are linearly independent over KH it follows that there’s at least one
d in B such that λd/λc is not in KH . Choose h such that h(λd/λc) 6= λd/λc. Now
substituting h−1g for g in (4), and applying h to the result, gives

(5)
∑
b∈B

h(λb)g(b) = 0 for all g in G.

Now taking h(λc) times (4) and subtracting λc times (5) gives

(6)
∑
b∈B

(λbh(λc)− λch(λb))g(b) = 0 for all g in G.

The b = c term of this sum vanishes, so this relation has fewer nonzero entries than
the original one. However, the b = d term does not vanish, since λdh(λc)−λch(λd) 6=
0. So this is a shorter relation, again contradicting the choice of the relation. �

Corollary 9.2. Suppose that K is a field and H is a finite subgroup of Aut(K).
Then H = Aut(K/KH) and K/KH is Galois.

Proof. Since H < Aut(K/KH), it’s enough to show that |H| = |Aut(K/KH)|. But

|Aut(K/KH)| ≤ [K : KH ] by Corollary 8.3

≤ |H| by Theorem 9.1

Hence |H| = |Aut(K/KH), and H = Aut(K/KH). Furthermore, |Aut(K/KH)| =
[K : KH ], so K/KH is a Galois extension. �
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10. The Fundamental Theorem

Fix a field K, and let G = Aut(K). Let F be the set of subfields of K. Let G
be the set of subgroups of G. Define maps α : F → G and β : G → F by

α(E) = Aut(K/E)

and
β(H) = KH .

The sets F and G have important additional structure. Both sets are posets, the set
F with respect to the subset relation ⊂, and the set G with respect to the subgroup
relation <. Moreover, both sets are lattices: any pair of fields E1 and E2 has a
meet E1 ∩E2 and a join E1E2, and similarly any pair of subgroups H1 and H2 has
a meet H1 ∩ H2 and a join 〈H1,H2〉. Finally, both sets enjoy a natural action of
the group G: suppose that σ is an element of G. Then for any subfield E of K
σ(E) = {σ(x) |x ∈ E} is a subfield of E, while for any subgroup H of G, σHσ−1

is also a subgroup of G.

Proposition 10.1. The following hold, for any field E in F and any group H in G.
(1) For any E in F and H in G, H < α(E) if and only if E ⊂ β(H).
(2) For any inclusion E1 ⊂ E2 of fields in F , α(E2) < α(E1).
(3) For any inclusion H1 < H2 of groups in G, β(H2) ⊂ β(H1).
(4) H < αβ(H), with equality if and only if H = α(E) for some E in F .
(5) E ⊂ βα(E), with equality if and only if E = β(H) for some H in G.
(6) The maps α and β are G-invariant:

α(σE) = σα(E)σ−1

and
β(σHσ−1) = σ(β(H)).

(7) For any two fields E1 and E2, α(E1E2) = α(E1) ∩ α(E2).
(8) For any two subgroups H1 and H2, β(〈H1,H2〉) = β(H1) ∩ β(H2).

Proof. The first three properties follow directly from the definitions of α and β.
Substituting E = β(H) in (1) and observing that β(H) < β(H) is always true, the
first part of (4) follows. Similarly, the first part of (5) follows on substituting H =
α(E) in (1). Applying β to both sides of (4) and using (3) gives βαβ(H) < β(H),
while substituting E = β(H) in (5) gives β(H) < βαβ(H). Combining these two
inequalities gives β(H) = βαβ(H), which proves the second part of (5); the proof
of the second part of (4) is entirely analogous.

For the proof of (6), simply unravelling the definitions shows that σα(E)σ−1 <
α(σE), and that σ−1α(E)σ < α(E). Conjugating the latter relation gives α(E) <
σα(E)σ−1, and hence the first half of (6). The second half is similar.

To prove (7), let H be an arbitrary subgroup of G. Then by (1), H < α(E1E2)
if and only E1E2 < β(H). But this condition is equivalent to E1 < β(H) and
E2 < β(H), hence to the condition that H < α(E1) and H < α(E2), or equivalently
that H < α(E1) ∩ α(E2). So H < α(E1E2) if and only if H < α(E1) ∩ α(E2).
Applying this with H = α(E1E2) and H = α(E1) ∩ α(E2) gives (7). The proof
of (8) is analogous. �

Note that the maps α and β above are not necessarily inverse to one another.
But properties (4) and (5) suggest that if we restrict attention to the fields in F
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arising as fixed fields, and the groups in G arising as automorphism groups—that
is, those E in the image of β and H in the image of α respectively, then α and β
do in fact give a bijection

{E ∈ F |E = β(H) for some H} ←→ {H ∈ G |H = α(E) for some E}
between these two subsets.

Now fix a subfield F of K. If E is a subfield of K containing F then α(E)
is contained in α(F ) = Aut(K/F ), by property (2) above. Conversely, if H is a
subgroup of G contained in Aut(K/F ) then β(H) contains F , by property (1). Thus
we can restrict the correspondence above one further step to give a correspondence{

E ∈ F
E = β(H) for some H
F ⊂ E

}
←→

{
H ∈ G

H = α(E) for some E

H < Aut(K/F )

}
So far in this section, we’ve used very little of the theory from the previous

sections of this document, and none of the major theorems. That’s about to change.
We now assume that K/F is Galois, so that K/F is finite and |Aut(K/F )| = [K :
F ]. We’ll use earlier results to simplify the description of the correspondence given
above.

Let E be any subfield of K containing F . Then K/E is Galois by Proposition
8.5, and hence KAut(K/E) = E by Corollary 8.4. But this can be rewritten as
βα(E) = E, and hence E is in the image of β.

Let H be any subgroup of Aut(K/F ). Then H is finite, so H = Aut(K/KH)
by Corollary 9.2. This says exactly that H = αβ(H), hence H is contained in the
image of α. Thus the correspondence above becomes a correspondence between all
subfields of K containing F , and all subgroups of Aut(K/F ).

Finally, if K/F is Galois then for any subfield E of K containing F , E/F is
Galois if and only if σ(E) = E for all σ in Aut(K/F ), by Proposition 8.5. Since the
correspondence respects G-actions, E/F is Galois if and only if σα(E)σ−1 = α(E)
for all σ in Aut(K/F ), which is precisely the condition for α(E) to be a normal
subgroup of Aut(K/F ). We summarize all of the above as follows.

Theorem 10.2 (Fundamental Theorem of Galois Theory). Suppose that K/F is
a Galois extension and let G = Aut(K/F ). Let F be the set of fields E such that
K ⊂ E ⊂ F , and let G be the set of subgroups of G. Then the maps α : F → G
and β : G → F defined by α(E) = Aut(K/E) and β(H) = KH give a well-defined
bijective correspondence between F and G. This correspondence enjoys the following
properties:

(1) It’s inclusion reversing: if E1 and E2 correspond to H1 and H2 respectively,
then E1 ⊂ E2 if and only if H2 < H1.

(2) If E corresponds to H then [K : E] = |H| and [E : F ] = |G : H|.
(3) For any E in F , K/E is a Galois extension.
(4) Suppose that E corresponds to H. Then E/F is a Galois extension if and

only if H is normal in G; in this case, the Galois group of E over F is
Aut(E/F ) ∼= Aut(K/F )/Aut(K/E).

(5) If E1 and E2 correspond to H1 and H2 respectively, then E1∩E2 corresponds
to 〈H1,H2〉, while the composite field E1E2 corresponds to H1 ∩H2.


	1. Notation and conventions
	2. Field extensions
	3. Algebraic extensions
	4. Splitting fields
	5. Normality
	6. Separability
	7. Galois extensions
	8. Linear independence of characters
	9. Fixed fields
	10. The Fundamental Theorem

