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ABSTRACT
We present a method for simulating rigid multibody dynam-
ics with joints, contact, and friction. In this work, the non-
smooth contact and frictional constraints are represented
by hard constraints. The method requires the solution of
only one linear complementarity problem per step and can
progress at much larger time steps than explicit penalty
methods, which are currently the method of choice for most
of these simulations.
Categories & Subject Descriptors: G.1.7 [Ordinary

Differential Equations]: Differentiall-algbraic equations; J.2
[Physical Sciences and Engineering]: Mathematics and Statis-
tics, Physics, Engineering; I.6.3 [Applications]
General Terms: Performance, Experimentation,Theory.
Keywords: Numerical Analysis, Complementarity Prob-

lems, Rigid Body Dynamics, Friction, Contact Problems.
Subject Index 65L80, 90C33, 70E55, 74M10, 74M15

1. INTRODUCTION
Simulating the dynamics of a system with several rigid

bodies and with joint, contact (noninterpenetration), and
friction constraints is an important part of virtual reality
and robotics simulations.
If the simulation has only joint constraints, then the prob-

lem is a differential algebraic equation (DAE) [19, 10]. How-
ever, the nonsmooth nature of the noninterpenetration and
friction constraints requires the use of specialized techniques.
Approaches used in the past for simulating rigid multibody
dynamics with contact and friction include piecewise DAE
approaches [19], acceleration-force linear complementarity
problem (LCP) approaches [17, 11, 28], penalty (or regu-
larization) approaches [15, 25], and velocity-impulse LCP-
based time-stepping methods [27, 26, 5, 7]. When the value
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of the time step is set to 0, the LCP of the velocity-impulse
approach is the same as the one used in the compression
phase of multiple collision resolution [18].
Of all these approaches the penalty approach is probably

the most frequently encountered in the mechanical engineer-
ing literature. It accommodates the nonsmooth nature of
contact and friction by smoothing their mathematical de-
scriptions. The advantage of this approach is that it is easy
to set up and results in a DAE, for which both analytical
and software tools are in a fairly mature state of develop-
ment. The disadvantages are that finding a priori appro-
priate values for the smoothing parameters is difficult and
that it results a very stiff problem even for moderate time
steps.
The LCP method represents both contact and friction as

inequality constraints that are computationally treated as
hard constraints. The advantage of this method is that there
are no extra parameters to tune and no artificial stiffness.
It may therefore be expected to work better with less user
input. On the other hand, the subproblems are now con-
strained by inequalities, and separate analysis and software
tools need to be developed to make the approach successful.
In this work we use the velocity-impulse LCP-based ap-

proach, which has the advantage that it does not suffer from
the lack of a solution that can appear the piecewise DAE and
acceleration-force LCP approach [11, 26]. It also does not
suffer from the artificial stiffness that is introduced by the
penalty approach. In previous work, we have shown how to
approach stiffness [6].
In previous work we have shown that the method [2] achieves

geometrical (noninterpenetration and joint) constraint sta-
bilization for complementarity-based time-stepping methods
for rigid multibody dynamics with contact, joints, and fric-
tion. A variant of the scheme presented here is currently
used for the dynamical simulation of dynamical robotic grasps
[21, 4]. This scheme needs no computational effort other
than that for solving the basic LCP subproblem, though
the free term of the LCP is modified compared with other
time-stepping LCP approaches [6, 5, 27].
The constraint stabilization issue in a complementarity

setting has been tackled by using nonlinear complementar-
ity problems [27], an LCP followed by a nonlinear projec-
tion approach that includes nonlinear inequality constraints
[6], and a postprocessing method [12] that uses one poten-
tially nonconvex LCP based on the stiff method developed
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in [6] followed by one convex LCP for constraint stabiliza-
tion. When applied to joint-only systems, the method from
[12] belongs to the set of postprocessing methods defined
in [9, 8]. In order to achieve constraint stabilization, how-
ever, all of these methods need additional computation after
the basic LCP subproblem has been solved. This stands in
contrast with our approach, which needs no additional com-
putational effort to achieve constraint stabilization.

2. THE LINEAR COMPLEMENTARITY
SUBPROBLEM OF THE
TIME-STEPPING SCHEME

In this section, we review a velocity-impulse LCP-based
time-stepping scheme that uses an Euler discretization [5,
27]. In the following, q and v constitute, respectively, the
generalized position and generalized velocity vector of a sys-
tem of several bodies [19].

2.1 Model Constraints
Throughout this subsection we use complementarity

notation. If a, b ∈ RI , we say that a is complementary
to b, and we denote it by a ⊥ b or a ≥ 0 ⊥ b ≥ 0 if a ≥ 0,
b ≥ 0, and ab = 0.

2.1.1 Geometrical Constraints
Joint constraints (2.1) and noninterpenetration constraints

(2.3) involve only the position variable and depend on the
shape of the bodies and the type of constraints involved. We
call them geometrical constraints.
Joint Constraints. Joint constraints are described by the
equations

Θ(i)(q) = 0, i = 1, 2, . . . ,m . (2.1)

Here, Θ(i)(q) are sufficiently smooth functions. We denote

by ν(i)(q) the gradient of the corresponding function, or

ν(i)(q) = ∇qΘ
(i)(q), i = 1, 2, . . . ,m. (2.2)

The impulse exerted by a joint on the system is c
(i)
ν ν(i)(q),

where c
(i)
ν is a scalar related to the Lagrange multiplier of

classical constrained dynamics [19].

Noninterpenetration Constraints. Noninterpenetration
constraints are defined in terms of a continuous signed dis-
tance function between the two bodies Φ(j)(q) [1]. The non-
interpenetration constraints become

Φ(j)(q) ≥ 0, j = 1, 2, . . . , p. (2.3)

The function Φ(j)(q) is generally not differentiable every-
where. We discuss sufficient conditions for local differentia-
bility of Φ(j)(q) in [2]. In the following, we refer to j as
the contact j, although the contact is truly active only when
Φ(j)(q) = 0. We denote the normal at contact (j) by

n(j)(q) = ∇qΦ
(j)(q), j = 1, 2, . . . , p. (2.4)

When the contact is active, it can exert a compressive nor-

mal impulse, c
(j)
n n(j)(q), on the system, which is quantified

by requiring c
(j)
n ≥ 0. The fact that the contact must be

active before a nonzero compression impulse can act is ex-
pressed by the complementarity constraint

Φ(j)(q) ≥ 0 ⊥ c(j)n ≥ 0, j = 1, 2, . . . , p. (2.5)

Differentiability properties. The mappings Θ(i)(q) that
define the joint constraints are differentiable [19]. The sit-
uation, is different, however, for the mapping defining the
noninterpenetration constraints. The mappings Φ(j)(q) can-
not be differentiable everywhere, in general, no matter how
simple or regular the shape of the bodies [2]. If the bodies
are smooth and relatively strictly convex, then the mapping
Φ(j)(q) is differentiable as long as the interpenetration value

is not large [1]. The mappings Φ(j)(q) are obviously not
differentiable for bodies with nonsmooth shapes.
To simplify our analysis, we assume that the mappings

that define the joint and noninterpenetration constraints
are differentiable. If the shapes are such that the mappings
Φ(j)(q) are differentiable only for small values of the inter-
penetration, then the analysis of this work can be extended,
in a straightforward though laborious manner, as in [2] to
demonstrate the constraint stabilization effect.
Since any body can be approximated by a finite union of

convex, smooth-shaped bodies, we could extend, in princi-
ple, the analysis in this work for approximation of any con-
figuration. Probably, however, it is computationally more
efficient to accommodate nonsmooth or nonconvex shapes
directly, by working with a piecewise smooth mapping Φ(j).
We defer the analysis of this situation to future research.

2.1.2 Frictional Constraints
Frictional constraints are expressed by means of a dis-

cretization of the Coulomb friction cone [6, 5, 27]. For a
contact j ∈ {1, 2, . . . , p}, we take a collection of coplanar

vectors d
(j)
i (q), i = 1, 2, . . . ,m

(j)
C , which span the plane tan-

gent at the contact (though the plane may cease to be tan-
gent to the contact normal when mapped in generalized co-

ordinates [1]). The convex cover of the vectors d
(j)
i (q) should

approximate the transversal shape of the friction cone. In
two-dimensional mechanics, the tangent plane is one dimen-
sional, its transversal shape is a segment, and only two such

vectors d
(j)
1 (q) and d

(j)
2 (q) are needed in this formulation.

We denote by D(j)(q) a matrix whose columns are d
(j)
i (q) �=

0, i = 1, 2, . . . ,m
(j)
C , that is, D(j)(q) =

[
d
(j)
1 (q), d

(j)
2 (q), . . . ,

d
(j)

m
(j)
C

(q)

]
. A tangential impulse is

∑m
(j)
C

i=1 β
(j)
i d

(j)
i (q), where

β
(j)
i ≥ 0, i = 1, 2, . . . ,m

(j)
C . We assume that the tangential

contact description is balanced, that is,

∀1 ≤ i ≤ m
(j)
C , ∃k, 1 ≤ k ≤ m

(j)
C such that d

(j)
i (q) = −d

(j)
k (q).

(2.6)
The friction model ensures maximum dissipation for given

normal impulse c
(j)
n and velocity v and guarantees that the

total contact force is inside the discretized cone. We express
this model as

D(j)T

(q)v + λ(j)e(j) ≥ 0 ⊥ β(j) ≥ 0,

µc
(j)
n − e(j)T

β(j) ≥ 0 ⊥ λ(j) ≥ 0.
(2.7)

Here e(j) is a vector of ones of dimension m
(j)
C ,

e(j) = (1, 1, . . . , 1)T , µ(j) ≥ 0 is the Coulomb friction pa-

rameter, and β(j) is the vector of tangential impulses β(j) =
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(
β

(j)
1 , β

(j)
2 , . . . , β

(j)

m
(j)
C

)T

. The additional variable λ(j) ≥ 0 is

approximately equal to the norm of the tangential velocity
at the contact, if there is relative motion at the contact, or∣∣∣∣∣∣D(q)(j)

T

v
∣∣∣∣∣∣ �= 0 [5, 27].

Notation. We denote by M(q) the symmetric, positive
definite mass matrix of the system in the generalized coor-
dinates q and by k(t, q, v) the external force. All quantities
described in this section associated with contact j are de-
noted by the superscript (j). When we use a vector or matrix
norm whose index is not specified, it is the 2 norm.

2.2 The Linear Complementarity Problem
Let hl > 0 be the time step at time t(l), when the system

is at position q(l) and velocity v(l). We have that hl =
t(l+1) − t(l). We choose the new position to be q(l+1) =
q(l) + hlv

(l+1), where v(l+1) is determined by enforcing the
simulation constraints.
The geometrical constraints are enforced at the velocity

level by linearization of the mappings Θ(i) and Φ(j). For
joint constraints the linearization leads to

Θ(i)(q(l)) + hl∇qΘ
(i)T

(q(l))v(l+1) =

Θ(i)(q(l)) + hlν
(i)T

(q(l))v(l+1) = 0, i = 1, 2, . . . ,m.
(2.8)

For a noninterpenetration constraint of index j, Φ(j)(q) ≥
0, linearization at q(l) for one time step amounts to Φ(j)(q(l))+

hl∇qΦ
(j)T

(q(l))v(l+1) ≥ 0; that is, after including the com-
plementarity constraints (2.5) and using the definition of

n(j)(q(l)), we have

n(j)T

(q(l))v(l+1) +
Φ(j)(q(l))

hl
≥ 0 ⊥ c(j)n ≥ 0. (2.9)

For computational efficiency, only the contacts that are
imminently active are included in the dynamical resolution
and linearized, and their set is denoted by A. One prac-
tical way of determining A is by including all j for which
Φ(j)(q) ≤ ε̂, where ε̂ is a sufficiently small quantity.
When using the relation (2.9) to model contact, we may

obtain a nonconvex linear complementarity subproblem which
may be difficult to solve [3]. To alleviate this difficulty,
one can use an approach that results in a convex linear
complementarity problem, that is, in effect, equivalent to
a quadratic program [3]. The approach consists in replacing
the linearized problem (2.9) by

n(j)T

(q(l))v(l+1) +
Φ(j)(q(l))

hl
− µ(j)λ(j) ≥ 0 ⊥ c(j)n ≥ 0.

(2.10)
When using (2.10) to model contact, we call the approach
the optimization approach. Naturally, in using this approach
we modify the dynamics. Nevertheless, the distance be-
tween the solution of the dynamics of the original approach
(2.9) and the relaxed approach (2.10) is bounded above by a

constant times the maximum of the quantitites µ(j)λ(j) [3].
Therefore, in the case of low friction or low tangential slip,
which often occurs in practice, the error will be small. More-
over, optimization-based relaxations for contact and friction
are interesting in themselves and have found applications in
graphics [20] and nonsmooth frictional dynamics [23].
If a collision occurs, then a collision resolution, possibly

with energy restitution, needs to be applied [18, 5]. In our

setup a collision occurs at step l for a contact j if the first
inequality in (2.9) is satisfied with equality, and at step l−1
it was satisfied as a strict inequality.
In this work we assume that no energy lost during collision

is restituted; hence we avoid the need to consider a compres-
sion LCP followed by decompression LCP [5]. The relation
(2.9) is sufficient to accommodate totally plastic collisions.
To completely define the LCP subproblem, we use an Eu-

ler discretization of Newton’s law, which results in the fol-
lowing equation:

M(q(l))
(
v(l+1) − v(l)

)
= hlk

(
t(l), q(l), v(l)

)
+

∑m
i=1 c

(i)
ν ν(i)(q(l))+∑

j∈A
(
c
(j)
n n(j)(q(l)) +

∑m
(j)
C

i=1 β
(j)
i d

(j)
i (q(l))

)
.

After collecting all the constraints introduced above, with
the geometrical constraints replaced by their linearized ver-
sions (2.8) and (2.9), we obtain the following mixed LCP:

M (l) −ν̃ −ñ −D̃ 0
ν̃T 0 0 0 0
ñT 0 0 0 0
D̃T 0 0 0 Ẽ
0 0 µ̃ −ẼT 0




v(l+1)

cν
cn

β̃
λ

+


−Mv(l) − hlk

(l)

Υ
∆
0
0

 =


0
0
ρ
σ̃
ζ


(2.11)

[
cn

β̃
λ

]T [
ρ
σ̃
ζ

]
= 0,

[
cn

β̃
λ

]
≥ 0,

[
ρ
σ̃
ζ

]
≥ 0 .

(2.12)

Here ν̃ = [ν(1), ν(2), . . . , ν(m)], cν = [c
(1)
ν , c

(2)
ν , . . . , c

(m)
ν ]T ,

ñ = [n(j1), n(j1), . . . , n(js)], cn = [c
(j1)
n , c

(j2)
n , . . . , c

(js)
n ]T , β̃ =

[β(j1)T , β(j2)T , . . . , β(js)T ]T , D̃ = [D(j1), D(j2), . . . , D(js)], λ =

[λ(j1), λ(j2), . . . , λ(js)]T , µ̃ = diag(µ(j1), µ(j2), . . . , µ(js))T , Υ =

1
h

(
Θ(1),Θ(2), . . . ,Θ(m)

)T

, ∆ = 1
h

(
Φ(j1),Φ(j2), . . . ,Φ(js)

)T

and

Ẽ =


e(j1) 0 0 · · · 0
0 e(j2) 0 · · · 0
...

...
...

...
...

0 0 0 · · · e(js)


are the lumped LCP data, and A = {j1, j2, . . . , js} are the
active contact constraints. The vector inequalities in (2.12)
are to be understood componentwise. We use the ˜ notation
to indicate that the quantity is obtained by properly adjoin-
ing blocks that are relevant to the aggregate joint or contact
constraints. The problem is called mixed LCP because it
contains both equality and complementarity constraints.
To simplify the presentation, we have not explicitly in-

cluded the dependence of the parameters in (2.11–2.12) on

q(l). Also, M (l) = M(q(l)) is the value of the mass matrix at

time t(l), and k(l) = k(t(l), q(l), v(l)) represents the external

force at time t(l).
The optimization approach. When (2.10) is used in-

stead of (2.9), the matrix form is the same as (2.11–2.12)
except that the block appearing in position (5,3) in (2.11)
will be −µ̃T instead of 0. Insofar as LCP is concerned, the
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good properties of the new formulation are evident because
the matrix of the LCP is positive semidefinite for this case.
Choice of the active set A and collision detection.

Most previous approaches have a simulate-detect-restart fla-
vor [5, 11, 13, 27]. In these approaches, after the velocity
is determined as a solution of the LCP, the simulation does
not necessarily progress for the duration of the time step if
a collision is encountered. The simulation is stopped at the
collision, the collision is resolved by using LCP techniques
[18, 5], and the simulation is restarted. For such approaches,
the active set is updated as a result of collision detection. If
many collisions occur per unit of simulation, then there will
be many costly updates that will interfere with the perfor-
mance of the solver.
In the approach presented here, the active set is defined,

with ε̂ an appropriately chosen quantity, as

A(q) =
{
j|Φ(j)(q) ≤ ε̂, 1 ≤ j ≤ p

}
. (2.13)

In this case there is no need to stop the simulation if ε̂ is
appropriately chosen. A good guideline for this choice is ε̂ =
vmaxh, where h is of the order of the expected size of the time
step and vmax is the expected range of the velocity. Since
the definitions of the active sets are different, the results
of computing with our definition of the active set and the
simulate-detect-restart strategy [11, 5, 27] will be different.
In [2] we have shown that this scheme achieves constraint

stabilization and that infeasibility at step l is upper bounded

by O(||hl−1||2
∣∣∣∣∣∣v(l)

∣∣∣∣∣∣2).
3. NUMERICAL RESULTS FOR CONTACT

CONSTRAINTS
To compute our results, we have use the PATH solver

[16, 14]. The path solver solves the general linear comple-
mentarity problem and, since it implements some version of
Lemke’s algorithm, it is guaranteed to find a solution for ei-
ther the LCP formulation or the optimization formulation.
In a preceding paper, we have called the optimization for-
mulation LCP3 [3]. We are currently investigating using
convex quadratic program solvers instead of PATH for the
optimization formulation. Since PATH solves the general
linear complementarity problem; it does not exploit symme-
try and uses only LU factorization for linear algebra. A QP
solver would be able to solve symmetric subproblems, so we
expect computational savings even from the linear algebra.
To validate the concepts introduced in the preceding sec-

tions, we applied our method where v(l+1) is computed by
(2.11–2.12) to two two-dimensional examples, and we com-
pared it with the unstabilized version (which corresponds
to the choice ∆ = 0, and Υ = 0 in (2.11–2.12). We ran
both examples for 20 seconds with a time step of 0.05. The
mass data corresponds to a density of 10kg/m2. All com-
putations were done by solving one linear complementarity
problem per step, using PATH [14].
We choose ε̂, the parameter that governs the choice of the

active set (2.13), to be equal to 0.3. In the limit of hl → 0,
the value of the active set parameter ε̂ is not an issue, as
proved in [2]. This parameter does influence the efficiency
of the algorithm, however, since a larger ε̂ means that the
size of the LCP (2.11–2.12) will increase. On the other hand,
a smaller ε̂ means that certain collisions may be missed and
could result in a large increase of the infeasibility.

In the first example, we simulate with the LCP method
an elliptic body above and on a tabletop. The length of
its axes are 8 and 4. The body is dropped from a height
of 8 with respect to its center of mass and with an angular
velocity of 3. The friction coefficient is 0.3. In Figure 1
we present ten frames of the simulation. In Figure 2 we
present a comparison of the constraint infeasibility between
the unstabilized and stabilized version of our algorithm. The
benefit of the stabilization is evident in the figure where the
infeasibility is more than 100 times smaller toward the end
of the simulation in the stabilized case compared with the
unstabilized case. We also see that in the stabilized case the
infeasibility oscillates in a narrow range without exhibiting
a substantial increase.
In the second example, we simulate with the LCP method

the behavior of 21 identical disks of radius 3 on a horizontal
tabletop bounded by two slanted walls, starting from the
cannonball arrangement at 0 velocity (with 6 disks at the
bottom). The friction coefficient is 0.2. Four frames of the
simulation are presented in Figures (3)–(6).
In Figure 8 we compare the constraint infeasibility be-

tween the unstabilized and the stabilized method. We see
that the stabilized method has smaller constraint infeasibil-
ity and consistently corrects incidental large infeasibility. At
the end of the simulation, all disks are separated, and they
are all in contact with the tabletop. The disk on tabletop
constraint is satisfied exactly because it is linear in the re-
gion of differentiability, which explains the essentially zero
infeasibility in both methods toward the end of the simula-
tion time interval.
In both examples we see that constraint stabilization is

achieved by our method, whereas the unstabilized method
exhibits a continuous drift in the first example and a larger
and more persistent infeasibility in the second example. We
also note that in both examples we were able to achieve
constraint stabilization by solving only one LCP per step
with a constant time step.
In the example of the Brazil nut effect [24], we have smaller

particles shaken together with a large particle that, after a
while, emerges on top. This is a behavior that is character-
istic of granular matter. This effect is seen in four frames
of the simulation in Figure 9. That example contains 201
bodies and is simulated with the optimization method for
75 seconds with time step of 0.1s and friction coefficient
of 0.5 at all interactions. Our time step compares very fa-
vorably with the traditional molecular dynamics approaches
that uses a penalty method and that needs time steps on the
order of microseconds. The computing time spent using this
method and the number of contacts are presented in Figure
7. We do not have currently any molecular dynamics result
to compare with, mostly since molecular dynamics simula-
tions use periodic boundary conditions, whereas we use hard
walls. In any event, the number of shakes needed to get the
larger body emerge to the top is comparable to the num-
ber of shakes needed by a molecular dynamics simulation
that uses periodic boundary conditions and temperature to
model the dynamics of the bodies [24].
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Figure 1: Ten frames of an ellipse on a tabletop
simulation.
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Figure 2: Ellipse simulation: Comparison of the
constraint infeasibility between the unstabilized
method and the stabilized method.

Figure 3: Frame 1 of the simulation.

Figure 4: Frame 2 of the simulation.

Figure 5: Frame 3 of the simulation.

Figure 6: Frame 4 of the simulation.
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Figure 7: Performance statistics and number of con-
tacts for the Brazil nut simulation
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Figure 8: Disks simulation: Comparison of the
constraint infeasibility between the unstabilized
method and the stabilized method.

Figure 9: Four frames of a Brazil nut simulation
with inelastic collisions
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