Central Venous Cannulation: Venous Entry Device

Jenn Adams
Janet Chan
Evan Hill
Matt Wolf
Central Venous Cannulation: Venous Entry Device

- Overview / Background
- Market
- Connector Design and Production
- Handle Design and Production
- Pressure Sensor Design
- Simulator Design
- Validation and Verification
Central Venous Cannulation

• Definition: Insertion of a catheter into a vein leading directly to the heart (Internal jugular most common)

• Purpose:
 • Administer IV fluids when no peripheral veins are accessible
 • Administer drugs that cannot be given peripherally (Vasodilation/constriction drugs)
 • Measurement of central venous pressure
Problems

Steps 1 - 3:

1. Needle inserted into IJ
 - Bulky syringe: physician discomfort, mistakes lead to multiple insertions, lead to infection

2. Tubing connected to check venous entry
 - Blood exposed when removing syringe from needle: infection
 - Significant free space needed to lower and raise tubing
 - Blood exposed during lowering and raising: infection

3. Guide wire inserted into vein through needle
 - Needle short and light, difficult to keep steady while inserting guide wire: complex
Market

By the numbers:

- 5 million CVC procedures per year
- 2,013 incidents of infection every 1,000 patients (year 2000)
- = 10,000 procedures complicated by infection.

- CVC complications costs: $6,000 to $90,000 per patient

- Estimating $10,000 per complication, yearly expenses: $100 million

Vast majority of infections occur during steps 1 – 3...

Solution: Combine these 3 steps!

Device Design

• The design must address the issues which cause complications with the current CVC method

• New design consists of three parts:
 • A three way connector with a one way valve
 • A handle
 • A pressure sensor
Intended Final Device Design

Current device with circuit pressure sensor

Intended device with miniaturized pressure sensor
Three Way Connector

- Provides ports for needle, sensor, and handle
- Handle and needle are in line with each other
- Pressure sensor is perpendicular
- Clear plastic casing for visualizing blood flow
 - Currently SLA
Three Way Connector

- The internal cavity allows blood flow from the vessel
- A duckbill check valve fits into the back port
 - Guide wire can be inserted through valve
Support Handle

• Provides a counter weight to rest on the clinician’s hand
 • Does not require awkward hand positions
 • Allows the clinician more mobility
 • Increased comfort should lead to reduced error in placement
Handle Prototypes

Initial clinician feedback indicated a screw driver-like handle to be held as a pencil would provide comfort and stability.

Clinician feedback: Too fat
Clinician feedback: Too long

Less moment arm, more control

Clinician feedback: Too light
Just right
Device Prototype Production

- Current prototype was fabricated at the Swanson Center by stereo lithography
- Suggested final three-way connector material: polyethylene
 - Cheap
 - Easy to grip firmly with latex gloves
 - Transparent for visualizing blood flow
 - Easily sterilized
- Suggested final support material: rubber coated high density polyethylene
Pressure Sensor

• Key aspect of device design
 • Eliminates syringe
 • Eliminates additional pressure checking step
 • Provides continuous pressure readings to clinician
Pressure Sensor

• Currently the PX05 Pressure Sensor from Omega
 • Tubing from the pressure sensor port allows blood to flow to the sensor
 • Transducer has a voltage output that can be read through LabVIEW
 • LabVIEW converts the voltage to pressure and then provides an output to the display
Pressure Sensor

- Images of the current circuit (bottom) and the LabVIEW readout (right)
Pressure Sensor

Current Pressure Sensor Schematic

Desired Pressure Sensor Display
Pressure Sensor

- Eventually all parts of the pressure sensor circuit can be incorporated on an FPGA chip and fit into the small display case

http://zone.ni.com/devzone/cda/tut/p/id/3357
Proof of Concept of the Pressure Sensor

- Can the pressure sensor distinguish high (~80mmHg) from low (~7mmHg) i.e. above/below 30 mmHg?
- Need to simulate arterial and venous pressures to test this goal
Pressure Generating Apparatus

- To give control over a range of pressures & pulsatility

- Venous pressure:
 - IV bag of known height: to generate pressure following $P = \rho gh$ (estimate!)

- Arterial pressure:
 - 2 IV bags of different heights (same concept)
 - Connect to a solenoid valve to switch between the two and thus create pulsatility

- Verify the pressures/pulsatility from the simulator using a Patient monitor from Dr. Timothy Maul
Pressure Generating Apparatus

IV bags at different heights to create different pressures

Solenoid Valve

Labview Display

“Vein”

“Artery”

Tru-Waves

Pressure Sensor

Spacelabs Patient Monitor
Demonstration Video
Verification of Device

• Goal is for it to correctly distinguish between high and low pressures >90% of the time over a range of pressures
 • Tested both arterial and venous at different heights
 • Compare our LabView display with the patient monitor to verify that the pressures are correct (within 4mmHg)

<table>
<thead>
<tr>
<th></th>
<th>Correct Pressures</th>
<th>Incorrect Pressures</th>
<th>Correct Light</th>
<th>Incorrect Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venous</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Arterial</td>
<td>9</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Results: Correct pressure identification in 21 out of 22 trials (95.5% success rate)
How Does it Compare to the PDS?

- Original goals:
 - Differentiate High/Low pressure
 - Recognize pulsatility
 - Display Waveform
 - LED display
 - Ergonomic handle
 - Cost: no greater than $5 more
 - Fit within 1x1 cm display case
Clinician Evaluation

• Device not ready for med students or large-scale clinical testing…

• Dr. William Mclvor (anesthesiologist extraordinaire) will provide preliminary feedback

• After using the device he will be asked to complete a survey
 • Did he feel comfortable using it?
 • Was it easy to understand?
 • What was the most undesirable aspect?
Division of Labor

• Janet Chan: Documentation
• Evan Hill: Handle and Connector Prototype and Verification
• Jennifer Adams: Pressure Sensor and Verification
• Matt Wolf: Pressure Simulator and Verification
Acknowledgments

• Mentors
 • Dr. Joe Samosky
 • Dr. William McIvor

• Resources
 • Andy Holmes
 • Dr. Timothy Maul
 • WISER Center
 • Dr. Patzer’s Lab

• Funding
 • Department of Bioengineering
 • Generous gift of Hal Wrigley and Linda Baker
Questions
Additional Reference

Central Venous Access and Monitoring, Dr Graham Hocking, Frimley Park Hospital, Portsmouth Road, Frimley, Camberley, Surrey, GU16 5UJ