Position vector \mathbf{r}
Write the vector \mathbf{r}_{AB} in Cartesian vector notation:

Write the force vector \mathbf{F} in Cartesian vector notation:
Section 2.8 Force vector directed along a line

Problem 1 (Reference 3D Model)
Given: A person is positioned as shown below. He pulls the cable with a force of 70 lb.
Required: Write this force in terms of a vector.

Solution:

Approach:

Step 1: Determine the position vector \(\mathbf{r}_{AB} \)

Step 2: Determine the unit vector of this position vector

\[
\mathbf{u}_{AB} = \frac{\mathbf{r}_{AB}}{r}
\]

Step 3: Multiply the magnitude of this force to the vector \(\mathbf{u}_{AB} \)

\[
\mathbf{F}_{AB} = F \mathbf{u}_{AB}
\]
Problem 2-86. Determine the position vector \mathbf{r} directed from point A to point B and the length of cord AB. Take $z = 4$ m.
Problem 2-101. The cable AO exerts a force on the top of the pole of $F = \{-120i - 90j - 80k\}$ lb. If the cable has a length of 34 ft, determine the height z of the pole and the location (x,y) of its base.
TEAM PROBLEM

F2–22. Express the force as a Cartesian vector.

![Diagram showing vectors and forces](image)

Step 1: Determine the position vector \(\mathbf{r}_{AB} \).

Step 2: Determine the unit vector, \(\mathbf{u}_{AB} \), of the position vector \(\mathbf{r}_{AB} \).

Step 3: Multiply the magnitude of this force to the vector \(\mathbf{u}_{AB} \): \(F_{AB} = F \mathbf{u}_{AB} \)