
Continuum Mech. Thermodyn. (2010) 22:317–344
DOI 10.1007/s00161-010-0148-7

ORIGINAL ARTICLE

Evgeni Trofimov · Anna Vainchtein

Shocks versus kinks in a discrete model of displacive
phase transitions

Received: 24 February 2010 / Accepted: 1 June 2010 / Published online: 25 June 2010
© Springer-Verlag 2010

Abstract We consider dynamics of phase boundaries in a bistable one-dimensional lattice with harmonic
long-range interactions. Using Fourier transform and Wiener–Hopf technique, we construct traveling wave
solutions that represent both subsonic phase boundaries (kinks) and intersonic ones (shocks). We derive the
kinetic relation for kinks that provides a needed closure for the continuum theory. We show that the different
structure of the roots of the dispersion relation in the case of shocks introduces an additional free parameter in
these solutions, which thus do not require a kinetic relation on the macroscopic level. The case of ferromagnetic
second-neighbor interactions is analyzed in detail. We show that the model parameters have a significant effect
on the existence, structure, and stability of the traveling waves, as well as their behavior near the sonic limit.

Keywords Kinks · Shocks · Displacive phase transitions · Kinetic relation · Dispersion · Nonlinear waves

1 Introduction

Many materials are capable of undergoing displacive phase transitions which change the symmetry of the crys-
tal lattice through a diffusionless coordinated motion of atoms. The best known example of such transitions is
the martensitic transformation in shape memory alloys. A signature feature of these materials is the hysteresis
they exhibit in response to cyclic loading due to the energy dissipated by moving phase boundaries [17].

In continuum elasticity theory displacive phase transitions are typically modeled via a nonconvex elastic
energy density, where each convex region corresponds to a different material phase, and the phase boundaries
are described as moving discontinuities of the deformation gradient. This approach has been quite successful
in predicting the complex equilibrium microstructures observed in martensites [3]. However, extending it to
dynamics is problematic due to the failure of the classical theory to describe the dissipative phenomena inside
a phase transition front. Although the theory shows that the rate of dissipation must be nonzero, it provides
no information about either the origin of dissipation or its dependence on the interface dynamics. To illustrate
this fundamental problem, it suffices to consider longitudinal deformation of a homogeneous bar with a unit
cross-section and initial density ρ > 0. Let u(x, t) be the displacement of a reference point x at time t , and
introduce the strain field w(x, t) = ux (x, t) and the velocity field v(x, t) = ut (x, t), where ut ≡ ∂u/∂t and
ux ≡ ∂u/∂x . The total energy of the bar is
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Fig. 1 The macroscopic stress–strain law and the Rayleigh line connecting the strains ahead and behind a phase boundary. a An
interphase shock. The driving force equals the shaded area A and depends on w+ and V . b A kink, or a subsonic phase boundary.
The driving force equals the difference A2 − A1 between the shaded areas and is determined only by the phase boundary velocity
V , which needs to be specified. Insets: schematic representation of incoming and outgoing characteristics in each case

E =
∫ [

ρv2

2
+ φ(w)

]
dx, (1)

where φ(w) is the elastic energy density. To model phase transitions, we follow [6] and assume that φ(w) is
nonconvex, so that the stress–strain relation σ(w) = φ′(w) is non-monotone, as shown in Fig. 1.

The regions where σ ′(w) > 0 correspond to two material phases, phase I and phase II. The balances of
mass and linear momentum yield the p-system

wt = vx , ρvt = (σ (w))x . (2)

Due to the non-monotonicity of σ(w), this is a mixed-type hyperbolic–elliptic system. Initial value problems
associated with such equations are known to be ill-posed whenever they lead to the appearance of discontinuities
that violate the Lax condition [5,12,16,27].

To see this, consider a strain discontinuity propagating along the bar with a constant velocity V > 0. Let
[[ f ]] ≡ f+ − f− denote the difference between the limiting values f+ and f− of a function f (x) to the right
and to the left of the discontinuity and { f } ≡ ( f+ + f−)/2 denote their average value. On the discontinuity
the balance laws reduce to the Rankine–Hugoniot jump conditions

[[v]] + V [[w]] = 0, ρV [[v]] + [[σ(w)]] = 0. (3)

In addition, the entropy condition requires that the rate of energy dissipated by the discontinuity is nonnegative:

R = GV ≥ 0, (4)

where

G = [[φ(w)]] − {σ(w)}[[w]] (5)

is the driving (configurational) force.
Two types of discontinuities need to be considered separately. The first one is a classical shock whose

velocity satisfies the inequality c+ < V < c−, where c+ and c− denote the sound speeds in front and behind
the shock: c± = √

σ ′(w±)/ρ. If the strains w+ and w− are in two different phases, this discontinuity rep-
resents an intersonic phase boundary (see Fig. 1a). If they are in the same phase, the shock is a sound wave.
In either case, a shock satisfies the Lax condition, and its parameters can be uniquely found from the above
conditions. Indeed, the five parameters—the velocities v± and strains w± in front and behind the shock and
its speed V —can be found from the two jump conditions (3) on the shock and the conservation laws along the
three incoming characteristics (see the inset in Fig. 1a). A kink, or a subsonic discontinuity (also known in the
literature as an undercompressed shock), is a different type of discontinuity that represents phase boundaries
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observed in martensites (see Fig. 1b). The kinks satisfy V < c+ and V < c−, meaning that they violate the
Lax condition. One can see that this type of discontinuities are the ones leading to a one-parameter family of
solutions of the initial value problem. Indeed, since there are now only two incoming characteristics (Fig. 1b),
the classical theory provides only four conditions, while we still have five unknowns [27]. To close the system,
one thus needs to supplement the theory with an additional kinetic relation specifying the dependence of the
driving force on the velocity of the phase boundary [1,26]:

G = G(V )

Once such relation is specified, it determines the strains w± in front and behind the kink for given V and thus
fixes the location of the Rayleigh line in Fig. 1b. Since the continuum theory provides no information about
the kinetic relation, and the few available experimental data are scattered [15] and mostly rely on indirect
measurements [7,8], it is usually obtained from a regularized theory that introduces an internal structure of
the discontinuity, e.g., [18,25,29,31].

In this article, we follow the approach of [29] and regularize the continuum model by replacing it with its
natural discrete analog, a chain of point masses, each interacting with several neighbors via elastic springs.
To model phase transitions, we assume that the interactions between the nearest neighbors are governed by
a nonconvex potential, with two convex regions representing two different material phases. The dynamics
of the chain is governed by a nonlinear conservative system of ordinary differential equations that replaces
the p-system (2) of the classical theory. In the discrete model an isolated phase boundary is represented by a
traveling wave front. As the front propagates through the one-dimensional lattice, the nearest-neighbor (NN)
springs switch from the low-strain phase I to the high-strain phase II. To derive the kinetic relation, one needs to
find the traveling wave solution describing an isolated phase boundary traveling with a given subsonic velocity
and use this solution to compute the corresponding driving force. In the discrete model, a propagating phase
boundary emits short-length lattice waves that carry energy away from the front [21,29]. On the macroscopic
level, these waves are invisible, and the energy radiation is perceived as dissipation. This radiative damping
phenomenon is commonly observed when a defect (whether it is a dislocation, a crack or a phase boundary)
propagates through a lattice, e.g., [2,4,9–11,13,20].

An exact solution can be obtained using Fourier transform if one considers a biquadratic NN interaction
potential, and all other (long-range) interactions are assumed to be governed by quadratic potentials. This was
done in [29] for the special case when the elastic moduli κI and κII in the two phases are equal. When the elastic
moduli are different, γ = κII/κI �= 1, the problem becomes technically more difficult and requires the use of
Wiener–Hopf factorization technique. In the absence of long-range interactions it was studied in [21–23]. The
case γ ≤ 1, which allows for only subsonic phase boundaries, was considered, in [21,23], and nontrivial shock
solutions, which occur when γ > 1, were the focus of [22]. However, some important details about existence,
structure, and stability of the traveling wave solutions and the fundamental difference between shock and kink
solutions remained unclear.

In this work, we allow the elastic moduli to be different while also incorporating the effect of long-range
interactions. We obtain the traveling wave solutions for both kinks (for any γ �= 1) and interphase shocks (for
γ > 1) in a unified framework. The inclusion of long-range interactions changes the structure of the roots
of the dispersion relation and affects both the internal structure of a phase boundary and the frequency of the
radiated lattice waves. This influences existence and stability of the steady interface motion at a given speed
and the rate of energy dissipated by the moving front.

We derive the kinetic relation for kinks and show that the lack of such relation in case of shocks is due to
the different structure of the roots of the dispersion relation in the intersonic regime, which in turn results in
different asymptotic behavior of the Wiener–Hopf factorization in the Fourier space. Instead of being constant
at infinite wave numbers, as was the case for kinks, both sides of the Wiener–Hopf equation now behave as a
linear polynomial. This leads to the additional degree of freedom in the shock problem that is also seen on the
continuum level: one of the strains w±, say, w+, can be specified independently of the given V . Since changing
w+ at the same V shifts the Rayleigh line in Fig. 1a parallel to itself, this means that the same shock velocity
corresponds to a set of values of the driving force instead of a single value. The extra degree of freedom in
this case corresponds to the third incoming characteristic which brings additional information about the state
in front of the shock and can be interpreted as a non-oscillating “feeding wave” with zero wave number [22].

The model that includes second-neighbor interactions of ferromagnetic type is analyzed in detail. Such
interactions introduce an interfacial energy contribution into the problem, which penalizes the formation of
many phase boundaries and creates an additional structure around the interface [28]. We analyze the effect of
the elastic moduli ratio γ and the parameter β, which measures the strength of second-neighbor interactions, on
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the existence of traveling waves solutions of the assumed form. While solutions typically exist when velocities
are above a certain threshold, sufficiently small γ or large enough |β| result in existence of some low-velocity
kinks and non-existence of shocks in a certain velocity interval. We also investigate how kinetic relations
for kinks and stability of the constructed solutions are influenced by the two parameters. Stability is studied
numerically by checking whether the long-time solutions of the Riemann problem approach the traveling wave
solutions. Our results suggest that sufficiently fast kinks and all existing shock solutions are stable. Some of
the slower kinks may become stable at smaller γ and larger |β|. At large |β| we also observe non-steady phase
boundary motion which is not described by the traveling wave ansatz.

The structure of the article is as follows. The discrete model and the governing equations are formulated
in Sect. 2. In Sect. 3, we seek solutions in the form of a traveling wave. Factorization and the Wiener–Hopf
technique are applied in Sect. 4 to represent the corresponding equation in Fourier space in the Wiener–Hopf
form. In Sect. 5, we construct exact solutions for kinks, including equilibrium states with the corresponding
trapping region, and derive the kinetic relation. In Sect. 6, interphase shock solutions are constructed. Example
with ferromagnetic second-neighbor interactions is studied in Sect. 7, and stability of the traveling waves is
investigated numerically in Sect. 8. The proof of the proposition in Sect. 4 is given in the Appendix.

2 The discrete model

We consider the one-dimensional lattice model that consists of a chain of isolated point masses connected
by springs (Fig. 2). Each particle in the chain interacts with its q neighbors on each side. If un(t) is the
displacement of the nth particle, the total energy of the chain can be written as

E = ε

∞∑
n=−∞

⎡
⎣ρu̇2

n

2
+

q∑
p=1

pφp

(
un+p − un

pε

)⎤
⎦ , (6)

where ε is the reference interparticle distance and φp(w) is the potential of interaction between pth neighbors.
The dynamics of the chain with energy (6) is then governed by the following infinite system of ordinary
differential equations:

ρün = 1

ε

q∑
p=1

[
φ′

p

(
un+p − un

pε

)
− φ′

p

(
un − un−p

pε

)]
. (7)

To model phase transitions, we assume that the NN interactions are governed by a nonconvex potential
φ1(w). To obtain an analytic solution, we further assume that φ1(w) is biquadratic:

φ1(w) =
{ 1

2κIw
2, w ≤ wc, phase I

1
2κII(w − a)2 + 1

2κIw
2
c − κII

2
(wc − a)2, w ≥ wc, phase II.

(8)

Here, κI > 0 and κII > 0 are the elastic moduli in phase I and phase II, respectively, a is the transformation
strain, and wc is the critical strain separating phase I from phase II. As in [21–23], we allow the elastic moduli
of the two phases to be different (κI �= κII) (see Fig. 3). This makes it possible to study both subsonic phase
boundaries (kinks) and intersonic ones (shocks).

As in [29], we also include long-range interactions, which are assumed to be harmonic:

φp = 1

2
p μp w2, p = 2, . . . , q, (9)

0 1

ε

2ε

linear springbi-stable  spring

2 3−3 −2 −1

Fig. 2 One-dimensional chain with nearest and next-to-nearest-neighbor interactions (q = 2)
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Fig. 3 The bilinear macroscopic stress–strain law

with elastic moduli μp chosen so that the uniform deformation un = nwε of the chain is stable for w �= wc.
Let

wn = un − un−1

ε

denote the strain in the nth NN spring. We introduce dimensionless variables

ũn = un

εa
, w̃n = wn

a
, t̃n = t

√
κI

ε
√

ρ
,

and the dimensionless parameters

γ = κII

κI
, 
p = μp

κI
for p = 2, . . . , q (
1 = 1).

The parameter γ > 0 measures the elastic stiffness of phase II relative to phase I, and the parameters 
p, p =
2, . . . , q , measure the relative strength of the long-range interactions. Here, we set γ �= 1. The equal moduli
case γ = 1 was considered in [29].

In terms of the dimensionless quantities, with the tildes dropped, the system (7) of governing ordinary
differential equations becomes

ẅn =
q∑

p=1


p
[
wn+p − 2wn + wn−p

]

+(γ − 1)
[
�(wn+1 − wc)wn+1 − 2�(wn − wc)wn + �(wn−1 − wc)wn−1

]
−γ

[
�(wn+1 − wc) − 2�(wn − wc) + �(wn−1 − wc)

]
, (10)

where �(x) is the unit step function. This equation for the discrete model replaces the continuum-level partial
differential equation utt = (σ (ux ))x (the rescaled version of the p-system (2)), where the macroscopic stress–
strain law is given by

σ(w) =
q∑

p=1

pφ′
p(w) =

{
c2

1w, w < wc

c2
γ w − γ, w > wc.

(11)

See Fig. 3. Here,

cα =
⎛
⎝α +

q∑
p=2

p2
p

⎞
⎠

1
2

(12)
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is the macroscopic sound speed in the phase I when α = 1 and in phase II when α = γ , with cγ =
√

c2
1 + γ − 1.

The two lines in (11) intersect at the strain

w∗ = γ

γ − 1
. (13)

The critical strain wc satisfies wc > w∗ when γ < 1 and wc < w∗ when γ > 1.

3 Traveling wave equation

To model an isolated phase boundary moving with a constant velocity V we consider the traveling wave
solutions of (10) in the form wn(t) = w(ξ), ξ = n − V t , with phase II (wn > wc) behind the moving front
(ξ < 0) and phase I ahead of it (ξ > 0). Substituting this ansatz into (10), we obtain

V 2w′′ −
q∑

p=1


p [w(ξ + p) − 2w(ξ) + w(ξ − p)]

= (γ − 1) [�(−ξ − 1)w(ξ + 1) − 2�(−ξ)w(ξ) + �(−ξ + 1)w(ξ − 1)]

−γ [�(−ξ − 1) − 2�(−ξ) + �(−ξ + 1)] , (14)

a single advance-delay differential equation.
The configuration at ξ = ±∞ must correspond to stable homogeneous equilibria (constant strains), which

due to the Hamiltonian structure of the problem are possibly superimposed with short-wave oscillations with
zero average; the averaging is over the largest period of oscillations but can be also defined as

〈w(ξ)〉 = lim
s→∞

1

s

ξ+s∫

ξ

w(ζ )dζ. (15)

In terms of averaged quantities we thus obtain the following boundary conditions

〈w(ξ)〉 → w±, as ξ → ±∞, (16)

where w+ < wc < w−, w+ > w∗ when γ < 1 and w− < w∗ when γ > 1. Note that although the original
system (7) is nonlinear, the traveling wave equation (14) is linear due to our assumption of linearity in each
phase and the known phase distribution for a traveling wave front. The nonlinearity of the problem thus reduces
to the phase switch condition

w(0) = wc. (17)

Note also that in writing (14) we assumed that the NN springs in front of the moving interface are in phase I
and the springs behind it are in phase II. This implies that admissible solutions must satisfy the inequalities

w(ξ) < wc for ξ > 0 (phase I), w(ξ) > wc for ξ < 0 (phase II). (18)

Consequently, the mathematical problem reduces to solving (14) subject to (16), (17), and (18).
In what follows, we will consider two types of solutions: a kink (subsonic, 0 < V < cmin = min{c1, cγ })

and an interphase shock, which can occur only when γ > 1 and has intersonic velocity: c1 < V < cγ .
By linearity of (10), the solution in each phase region (i.e., behind and ahead of the moving front) can be

represented as a sum of the average strain at infinity and a superposition of linear waves wn = ei(ωt−kn). The
dispersion relation for the waves is

ω2(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 sin2 k

2
+ 4

q∑
p=2


p sin2 pk

2
, phase I,

4γ sin2 k

2
+ 4

q∑
p=2


p sin2 pk

2
, phase II.

(19)
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Note that stability of the uniform deformation in each phase means that ω2(k) > 0 must hold for all k ∈ (0, π]
[30]. In order for the linear modes to be compatible with the traveling waves ansatz, their phase velocity
Vp(k, V ) = ω/k must be equal to V . This gives the restriction on the admissible wave numbers in the form
g1(k, V ) = 0 in phase I (ξ > 0) and gγ (k, V ) = 0 in phase II (ξ < 0), where

gα(k, V ) = −V 2k2 + 4α sin2 k

2
+ 4

q∑
p=2


p sin2 pk

2
, α = 1, γ . (20)

To find the solution we set w(ξ) = w+ + h(ξ) and apply the generalized Fourier transform to (14). Let
ĥ(k, V ) = F[h(ξ)] = ∫∞

−∞ h(ξ)eikξ dξ = ĥ−(k, V )+ĥ+(k, V ), where ĥ±(k, V ) = F[�(±ξ)h(ξ)]. Standard
properties of the Fourier transform yield

g1(k, V )ĥ+(k, V ) + gγ (k, V )ĥ−(k, V ) = (w+ − w∗)
1

ik
(g1(k, V ) − gγ (k, V )).

where we used (20). Dividing both sides by gγ (k, V ) and introducing the function

L(k, V ) = g1(k, V )

gγ (k, V )
, (21)

we obtain the equation

L(k, V ) ĥ+(k, V ) + ĥ−(k, V ) = (w+ − w∗)
1

ik
(L(k, V ) − 1). (22)

We want to solve this equation for two unknown functions ĥ+(k, V ) and ĥ−(k, V ). This can be done by
applying the Wiener–Hopf technique, as described in the next section.

4 Wiener–Hopf technique and factorization

Consider the equation

S+(k) H+(k) = S−(k) H−(k), (23)

where the functions H+(k), H−(k) are unknown and S+(k) and S−(k) are given. We assume that the left-hand
side is regular (meaning it is analytic and has no zeroes or poles) on C

+⋃
R, and the right-hand side is regular

on C
−⋃

R. Here, C
+, C

−, R denote the upper half of the complex plane (Im k > 0), the lower half (Im k < 0)
and the real line, respectively. Since both sides are defined and regular on R, there exists a unique analytic
continuation function Q(k) defined on the whole complex plane that equals to the right-hand side of (23) in
the upper half plane and to the left-hand side of (23) in the lower half plane. If the function Q(k) grows at
infinity not faster than kn , then by Liouville’s theorem it must be a polynomial pn(k) of degree not higher than
n. Assuming that the coefficients for this polynomial can be found and equating both sides of (23) to pn(k),
we can find functions H+(k) and H−(k). This is the Wiener–Hopf technique in a nutshell. We remark that it
is sufficient to have both sides of (23) regular on an interval on the real line.

To apply the Wiener–Hopf technique to solve the Eq. (22), we need to factor L(k, V ) defined in (21) into
two functions:

L(k, V ) = L−(k, V )L+(k, V ). (24)

The domains of regularity of L−(k, V ) and L+(k, V ) will be defined later. To find the factorization (24) we
need to study the structure of the roots of the function gα(k, V ) at α = 1 and α = γ and its dependence on
the parameter V .

The function gα(k, V ) has a double root at k = 0 which can be factored out by setting

gα(k, V ) = (c2
α − V 2) k2 fα(k, V ).
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Here, fα(k, V ) = 1 + O(k2) in a small neighborhood of zero, and cα is given by (12). Then

L(k, V ) = L0(V )
f1(k, V )

fγ (k, V )
, (25)

where

L0(V ) = L(0, V ) = c2
1 − V 2

c2
γ − V 2 .

The set of all roots of fα(k, V ) coincides with all nonzero roots of gα(k, V ) and has a single accumulation
point at infinity. We denote this set Mα(V ). Note that

fα(k, V ) = fα(k, V ) and fα(−k, V ) = fα(k, V ),

which implies that if k is a root, then so are −k, k̄, and −k̄. Thus, the complex roots with nonzero real and
imaginary parts appear in quadruples, and the roots with zero real or imaginary parts appear in pairs. We can
divide Mα(V ) into two major subsets. The first subset contains all real roots ±rα,i . These roots play a major
role in the Hamiltonian dynamics of the chain since they correspond to constant-amplitude waves emitted by
a moving phase boundary. We denote the set of all positive real roots by

Nα(V ) = {r : gα(r, V ) = 0, Im r = 0, r > 0}
and the set of all negative real roots by −Nα(V ). At nonzero V these sets have a finite number of elements.
The remaining non-real roots belong to the set

Cα(V ) = {k : gα(k, V ) = 0, Imk �= 0}.
This set includes a finite number of purely imaginary roots ±isα,i that provide the monotone structure of the
core region around the phase boundary and an infinite number of complex roots kα,i = ±rα,i ± isα,i , with
nonzero real and imaginary parts, that provide oscillatory contributions to the core. We thus have

Mα(V ) = Cα(V ) ∪ Nα(V ) ∪ −Nα(V ).

For real r and V ≥ 0 the equation gα(r, V ) = 0 implicitly defines the continuous curve V = V̂α(r), where

V̂α(r) = 2

|r |

√√√√α sin2 r

2
+

q∑
p=2


p sin2 pr

2
; (26)

the real roots are found by solving V̂α(r) = V for a given V . Observe that V̂α(0) = cα, V̂ (2πn) = 0 for integer
n, so that the number of roots tends to infinity as V → 0. The curve V̂α(r) has local maxima and minima, as
shown in Fig. 4. The corresponding values of V are called the resonance velocities. Note that the inclusion
of long-range interactions may result in additional extrema (compare Fig. 4a, b) and change the number of
roots for a given V . Branches of non-real roots in the set Cα(V ) bifurcate from the extrema at the resonance
velocities. There are also isolated non-real root branches that emanate from V = 0.

The function fα(k, V ) is entire and satisfies the conditions of the infinite product theorem [14,24], which
we apply to find factorization (24):

fα(k, V ) = fα(0) exp

[
k

f ′
α(0)

fα(0)

] ∏
kα,i ∈Mα(V )

(
1 − k

kα,i

)
ek/kα,i .

Due to fα(0) = 1, f ′
α(0) = 0 and the symmetry of the roots about the origin, the product representation can

be simplified to

fα(k, V ) =
∏

kα,i ∈Mα(V )

(
1 − k

kα,i

)
. (27)
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Fig. 4 Functions V̂1(r) (solid curve) and V̂γ (r) (dashed curve) for positive real roots r , with γ = 3 and a q = 5 with 
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−0.3, 
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1 (0.3), and three positive real roots of gγ (r, V ) (white circles), distributed to N +
3 (0.3) and N −

3 (0.3)
according to the signs

We now want to factorize fα as

fα(k, V ) = f +
α (k, V ) f −

α (k, V ), (28)

so that the function f ±
α (k, V ) are regular in the union of corresponding halves C

± of the complex plane and
a subset of real line that contains an interval. The problem of factorization is thus equivalent to the problem
of dividing the roots into two sets and can be done as follows. The set Cα(V ) of all non-real roots can be split
into two subsets:

Cα(V ) = C+
α (V ) ∪ C−

α (V ), with C±
α (V ) = {k : g±

α (k, V ) = 0, Im k ≷ 0}. (29)

The positive real roots Nα(V ) have to be distributed according to the radiation condition [19] that places the
waves with group velocity

Vg = ∂ω

∂r
= V +

∂gα

∂r (r, V )

2V r
(30)

larger than the phase velocity V in front, while the waves with Vg < V can appear only behind the phase
boundary. Assuming V > 0, we obtain that Vg ≷ V whenever r ∂gα

∂r (r, V ) ≷ 0. This condition follows from
the causality principle [20] and can also be obtained in the limit of zero viscosity [31]. The notation r ± i0
will be used to reflect the effect of the radiation condition on the real roots. The radiation condition yields

Nα(V ) = N+
α (V ) ∪ N−

α (V ),

with

N±
α (V ) =

{
r : g±

α (r, V ) = 0, Im r = 0, r > 0,
∂gα

∂r
(r, V ) ≶ 0

}
. (31)

This implies that the real roots along the decreasing portions of V̂α(r) are placed in the set N+
α (V ), which,

as we will see, contributes waves that propagate behind the phase boundary. Meanwhile, the roots along the
increasing portions are in N−

α (V ) and correspond to waves propagating ahead of the moving front. See Fig. 4a
for an example. Note that there is a difference in how non-real and real roots are distributed. For any non-real
root k ∈ C+

α (V ) we have −k ∈ C−
α (V ). This is not the case for real roots. If r is a real root that belongs to the

set N+
α (V ), then −r belongs to −N+

α (V ), not to N−
α (V ). Denoting by −N±

α (V ) the corresponding sets of
negative real roots, we define the subsets

M±
α (V ) = C±

α (V ) ∪ N±
α (V ) ∪ −N±

α (V ), with Mα(V ) = M+
α (V ) ∪ M−

α (V ). (32)
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Factorizing the terms with real and non-real roots separately, we obtain

f ±
α (k, V ) =

∏
kα,i ∈M∓

α (V )

(
1 − k

kα,i

)
= f ±

α,R(k, V ) f ±
α,C (k, V ), (33)

where

f ±
α,R(k, V ) =

∏
rα,i ∈N ∓

α (V )

(
1 + (0 ∓ ik)2

r2
α,i

)
, f ±

α,C (k, V ) =
∏

kα,i ∈C∓
α (V )

(
1 − k

kα,i

)
. (34)

Here, we combined the terms with real roots in symmetric pairs using

(
1 − k

r ± i0

)(
1 − k

−r ± i0

)
= 1 + (0 ∓ ik)2

r2 .

The desired factorization (24) is then obtained by substituting (33) and (34) into

L± = √
L0

f ±
1 (k, V )

f ±
γ (k, V )

. (35)

We can now write the Eq. (22) in the Wiener–Hopf form. Dividing both sides of the equation by L−(k, V )
and rearranging the terms, we obtain:

L+(k, V )
(
w+ − w∗ − ik ĥ+(k, V )

)
= 1

L−(k, V )

(
w+ − w∗ + ik ĥ−(k, V )

)
. (36)

Note that the functions L±(k, V ) are regular in corresponding half planes C
±. They are also both regular in

the set

R0 = R \ ∪
r∈N (V )

(r − δ/2, r + δ/2),

where N (V ) = N1(V ) ∪ −N1(V ) ∪ Nγ (V ) ∪ −Nγ (V ). This set is the complement on real line to the union
of intervals centered at the real roots (which are thus removed), of infinitesimally small length δ each, so the
Wiener–Hopf technique is applicable. Thus L±(k, V ) are regular in C

±
0 = C

± ∪ R0. Since by taking the
Fourier transform we have implicitly assumed the same regularity for ĥ+ and ĥ−, it follows that the left side
of (36) is regular in C

+
0 , while the right side is regular in C

−
0 . Both sides define an analytic function on R0 and

thus can be analytically continued on the whole space C.
To solve the Eq. (36) we need to know the asymptotic behavior of the functions L±(k, V ) at infinity and

zero. As we will see, these asymptotics are different for shocks and kinks due to the following proposition
proved in Appendix.

Proposition Let V > 0 be a non-resonance velocity and let |Nα(V )| denote the finite number of elements in
the set Nα(V ). If V is a kink velocity, V < min{c1, cγ }, we have

|N+
α (V )| = |N−

α (V )| + 1

for both α = 1 and α = γ . If V is a shock velocity, c1 < V < cγ (γ > 1), this equality holds only for α = γ ,
while

|N+
1 (V )| = |N−

1 (V )|.
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We remark that second equality in the proposition trivially holds for shocks in the case of only NN interactions
that was studied in [22]. Indeed, in this case V̂1(r) always reaches its maximum at r = 0, and thus the sets
N±

1 (V ) are both empty for V > c1 = V̂1(0). This, however, is not generally true when long-range interactions
are included (see Fig. 4a for an example).

To find the asymptotic behavior of L±(k, V ) at zero and infinity we will follow the procedure given in [19]
and use the Cauchy-type integral for factorization. A function Fα(k, V ) that satisfies conditions [23]

Fα(±∞, V ) = 1, Ind Fα(k, V ) = 0, (37)

can be split as Fα(k, V ) = F+
α (k, V ) F−

α (k, V ), where

F±
α (k, V ) = exp

⎡
⎣± 1

2π i

∞∫

−∞

ln Fα(ξ, V )

ξ − k ∓ i0
dξ

⎤
⎦.

The function fα,C (k, V ) does not satisfy the conditions (37), but the function

Fα(k, V ) = − c2
α − V 2

V 2 (�+
α )2 (�−

α )2
(0 − ik)2|N −

α |(0 + ik)2|N +
α | fα,C (k, V ), �

±
α =

∏
rα,i ∈N ±

α

rα,i ,

does and gives the desired factorization for fα,C (k, V ):

f ±
α,C (k, V ) = i

V �
+
α �

−
α√

c2
α − V 2

(0 − ik)−|N −
α |(0 + ik)−|N +

α | F±
α (k, V ).

We can now find the asymptotes. At infinity we obtain for both kinks and shocks

f ±
α,C (k, V ) ≈ i

V �
+
α �

−
α√

c2
α − V 2

(0 − ik)−|N −
α |(0 + ik)−|N +

α |,

f ±
α,R(k, V ) ≈ (0 ∓ ik)2|N ∓

α |

(�
∓
α )2

, k → ±i∞.

Due to the above Proposition, this implies different asymptotic behavior for kinks and shocks. For kinks
we have

f ±
α (k, V ) ≈ i

V√
c2
α − V 2

�
±
α

�
∓
α

k∓1, k → ±i∞ (38)

for both α = 1 and α = γ , so that as in [23]

L±(k, V ) → R(V )∓1 as k → ±i∞, (39)

where

R(V ) =

∏
N −

1 (V )

r1,i

∏
N +

1 (V )

r1,i
·

∏
N +

γ (V )

rγ,i

∏
N −

γ (V )

rγ,i
. (40)

Meanwhile, for shocks Proposition implies that (38) holds only at α = γ , while

f ±
1 (k, V ) → i

V√
c2

1 − V 2

�
±
1

�
∓
1

, as k → ±i∞,

so that

L±(k, V ) ≈ R(V )∓1k±1, k → ±i∞. (41)

At zero the asymptotics are the same for shocks and kinks:

L±(k, V ) → √
L0 as k → ±i0. (42)

We can now solve the Eq. (36). Due to the different asymptotics (39) and (41), the solution of (36) is
different for kinks and shocks. In what follows, we consider these two cases separately.
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5 Kink solutions

5.1 Dynamic solutions

Consider velocities in the kink interval, 0 < V < min{c1, cγ }. In this case, the asymptotics (39) at infinity
ensure that the analytic continuation of both sides of (36) is likewise bounded at infinity and hence is a constant.
The value of this constant A can be found by calculating the values of each side of (36) in the limits k → ±i0
and k → ±i∞. Using (39), (42) and the properties of the Fourier transform [20], we obtain

A = √
L0(V )(w+ − w∗) = 1√

L0(V )
(w− − w∗) = 1

R(V )
(wc − w∗). (43)

It follows that

w− = L0(V ) (w+ − w∗) + w∗, (44)

which coincides with the Rankine-Hugoniot condition V 2[[w]] = [[σ(w)]] (obtained by eliminating the particle
velocity from the two Rankine-Hugoniot conditions (3) for the rescaled variables) computed for the macro-
scopic stress–strain relation (11). Equation (43) also implies that the strains w± are determined by the given
V :

w+ = 1

R(V )
√

L0(V )
(wc − w∗) + w∗, w− =

√
L0(V )

R(V )
(wc − w∗) + w∗. (45)

Equating each side of the Eq. (36) to A from (43), we find the functions ĥ+(k, V ) and ĥ−(k, V ). Adding
them up, we get

ĥ(k, V ) = ĥ+(k, V ) + ĥ−(k, V ) = w+ − w∗
ik

√
L0(V )

(
L−(k, V ) − 1

L+(k, V )

)
. (46)

Applying inverse Fourier transform to ĥ(k, V ), we then obtain

w(ξ) = w+ + 1

2π

∫

�

ĥ(k, V )e−ikξ dk, (47)

where � is the contour that runs in the direction of increasing Rek and coincides with the real line every-
where except near the singular points. To resolve the singularity at k = 0, the contour goes below the origin
k = 0 along a small-radius semicircle in the lower half plane. To resolve the singularities at nonzero real roots
according to the radiation condition, the contour passes below all real roots from the sets ±N+

1 (V ), ±N+
γ (V )

and above the real roots from the sets ±N−
1 (V ), ±N−

γ (V ). This contour deformation effectively shifts the

roots to the appropriate sets of singularities, either above (M+
1 ∪ M+

γ ) or below (M−
1 ∪ M−

γ ) the contour �.
Closing the contour along a semicircle in the upper half plane at ξ < 0 and the lower half plane at ξ < 0

and using Jordan’s lemma and the residue theorem, we obtain the kink solution:

(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w− − (w− − w∗)
∑

kγ,i ∈M+
γ (V )

P+(kγ,i , V )e−ikγ,i ξ , ξ < 0,

w+ − (w+ − w∗)
∑

k1,i ∈M−
1 (V )

P−(k1,i , V )e−ik1,i ξ , ξ > 0.
(48)

Here, we defined

P+(k, V ) =

∏
k1, j ∈M+

1 (V )

(
1 − k

k1, j

)

∏
kγ, j ∈ M+

γ (V ),

j �= i

(
1 − k

kγ, j

) , P−(k, V ) =

∏
kγ, j ∈M−

γ (V )

(
1 − k

kγ, j

)

∏
k1, j ∈ M−

1 (V ),

j �= i

(
1 − k

k1, j

) . (49)
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Note that in the generic case q ≥ 2 the continuity of w(ξ) at ξ = 0 is ensured by the fact that the sum of all
residues is zero:1

1 − L0(V ) + L0(V )
∑

kγ,i ∈M+
γ (V )

P+(kγ,i , V ) =
∑

k1,i ∈M−
1 (V )

P−(k1,i , V ).

Finally, one needs to check that the formally obtained solution (48) satisfies the admissibility conditions (18)
which ensure that the assumed phase distribution holds.

To find the particle velocity vn(t) = u̇n(t) we recall that wn(t) = un(t)−un−1(t), so that ẇn = vn −vn−1.
Using the traveling wave ansatz, we thus obtain the following relation between the particle velocity and the
already computed strain profile:

v(ξ) − v(ξ − 1) = −V w′(ξ).

Solving this equation by Fourier transform and using (46), we obtain

v(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v− + V

2
(w− − w∗)

∑
kγ,i ∈M+

γ (V )

kγ,i

sin
kγ,i

2

P+(kγ,i , V )e−ikγ,i (ξ+1/2), ξ < −1

2
,

v+ + V

2
(w+ − w∗)

∑
k1,i ∈M−

1 (V )

k1,i

sin k1,i
2

P−(k1,i , V )e−ik1,i (ξ+1/2), ξ > −1

2
,

(50)

where

v+ − v− = V (w+ − w∗) (L0(V ) − 1) . (51)

coincides with the first Rankine-Hugoniot condition for the macroscopic problem, [[v]] = −V [[w]]. Recall that
the other macroscopic jump condition was recovered by (44). Observe also that by Galilean invariance, v+ is
arbitrary and can be set to zero.

5.2 Kinetic relation

An important feature of the kink solution obtained above is the fact that the strains w+ and w− at infinity
both depend on the velocity V of the phase boundary via the relations (45). Note that in view of (44) the
two relations are not independent. Recall that the traveling wave solution of the discrete problem introduces
the structure in the transformation front, replacing the sharp interface representation of a phase boundary in
the continuum theory by a transition layer. In particular, the limiting strains w± in the kink solution coincide
with the strains ahead of and behind the moving discontinuity in the macroscopic problem and, as we have
established, satisfy the same Rankine-Hugoniot jump conditions.

Thus, we can choose either of the relations (45) as a closing kinetic relation, which is missing from the
continuum theory and relates either w+ or w− to V . Once this relation is specified (in this case, derived from
the discrete problem), the continuum initial value problem becomes well-posed and has a unique solution.

It is more common to specify the kinetic relation in a different but related form, as a relation between the
driving force G on a phase boundary and its velocity V . Using (5) and (11), we obtain the following expression
for the driving force:

G = γ

2
(w+ + w− − 2wc) + γ − 1

2
(w2

c − w+w−) (52)

Applying (45) we then get the kinetic relation

G = G(V ) = γ − 1

2
(wc − w∗)2

(
1 − 1

R2(V )

)
, (53)

which reduces to the expression obtained in [29] when γ → 1. Note that the driving force is entirely determined
by the positive real roots of the dispersion relation, which in turn are determined by V . Recall that these roots

1 In the case of only NN interactions (q = 1) we need to add the contribution of the integrals along the semicircles at infinity,
which in this case is nonzero at ξ = ±0 [29].
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correspond to the undecaying lattice waves radiated by a moving phase boundary and carrying energy away
from it. In fact, the kinetic relation (53) can be derived by accounting for the fluxes of energy carried by the
radiative waves, as was done for the case γ = 1 in [29]. Although discrete system we study is Hamiltonian,
and thus conserves energy, on the macrolevel the short-length lattice waves radiated by the phase boundary
are not seen, and the energy they carry is thus perceived as lost [20]. This transfer of energy from long to
short waves, or the radiative damping phenomenon, as it is known in the physics literature, is responsible for
a substantial part of the macroscopic dissipation [10,11].

5.3 Equilibrium states and lattice trapping

As V tends to zero, the kink profile wn(t) = w(n − V t) approaches an equilibrium solution wn satisfying
the system of difference equations (10) with the second time derivative in the left-hand side replaced by zero.
In the equilibrium states the phase boundary is stationary (V = 0), and the jump conditions (3) reduce to
[[σ(w)]] = 0, meaning that

c2
1w+ = c2

γ w− − γ = σ, (54)

where σ is the stress, which is constant in an equilibrium. The driving force (5) is then given by

G = σ 2(1 − γ )

2c2
1c2

γ

+ σγ

c2
γ

+ γ 2

2c2
γ

+ γ − 1

2
w2

c − γwc. (55)

Note that at γ �= 1 it is a quadratic function of stress. The driving force vanishes at the Maxwell stress

σM = c1cγ wc − c1γ

c1 + cγ

, (56)

which divides the stress–strain curve into two equal areas.
To obtain the equilibrium states with the phase boundary at n = −1, we follow [10,29] and replace the

continuous Fourier transform by its discrete analog. Using (54), we obtain

wn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ + γ

c2
γ

−
(

σ + γ

c2
γ

− w∗

) ∑
kγ,i ∈F+

γ

kγ,i/2

sin(kγ,i/2)
P+(kγ,i , 0)e−ikγ,i (n+1/2), n < 0,

σ

c2
1

−
(

σ

c2
1

− w∗

) ∑
k1,i ∈F−

1

k1,i/2

sin(k1,i/2)
P−(k1,i , 0)e−ik1,i (n+1/2), n ≥ 0.

(57)

Here,

F±
α = {k : gα(k, 0) = 0, Imk ≷ 0, −π ≤ Rek ≤ π}

are the nonzero roots of the dispersion relation (19) in the strip |Rek| ≤ π (note that there are no nonzero real
roots in this region), and P±(k, 0) are given by (49) at V = 0. In this case, the real roots in each phase are
given by integer multiples of 2π , so that the corresponding terms in (49) cancel out, and the products are thus
taken over the sets C±

α (0).
The admissible values of σ are determined by the requirement that the assumed phase distribution holds:

wn ≥ wc for n ≤ −1, wn ≤ wc for n ≥ 0.

If the strain profile is monotone (e.g., when 
p < 0 for p = 2, . . . q), these constraints can be replaced by
w0 ≤ wc and w−1 ≥ wc. In this case, the stress must be within the trapping region

σM − σ−
P ≤ σ ≤ σM + σ+

P (58)
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in order for the equilibrium state (57) to exist. Here, σ−
P and σ+

P are the upper and lower Peierls stresses that
correspond to w0 = wc and w−1 = wc, respectively. Under the conditions2

∑
kγ,i ∈F+

γ

kγ,i/2

sin(kγ,i/2)
P+(kγ,i , 0)eikγ,i /2 < 1,

∑
k1,i ∈F−

1

k1,i/2

sin(k1,i/2)
P−(k1,i , 0)e−ik1,i /2 < 1

we obtain

σ−
P = cγ (wc − w∗)

⎡
⎢⎣c1 − cγ

⎛
⎝1 − ∑

kγ,i ∈F+
γ

kγ,i/2

sin(kγ,i/2)
P+(kγ,i , 0)eikγ,i /2

⎞
⎠

−1
⎤
⎥⎦ ,

σ+
P = −c1(wc − w∗)

⎡
⎢⎣cγ − c1

⎛
⎝1 − ∑

k1,i ∈F−
1

k1,i/2

sin(k1,i/2)
P−(k1,i , 0)e−ik1,i /2

⎞
⎠

−1
⎤
⎥⎦ . (59)

In terms of the driving force, the trapping region (58) corresponds to the interval G−
P < G < G+

P , where

G±
P = ± (1 − γ )σ±

P

c1cγ

(
wc − w∗ ± σ±

P

2c1cγ

)
. (60)

One can show that all equilibria in the interior of the region (58) are stable (local minimizers of energy) since
all springs are inside their respective wells. A phase boundary may get trapped in one of these stable states until
the driving force reaches one of the limiting Peierls values (60). At these values the equilibria become saddle
points from which the dynamic solution bifurcates. The phase boundary starts moving to the left (V < 0)
when G = G−

P = G(0−) and to the right (V > 0) when G = G+
P = G(0+).

6 Interphase shocks

Consider now (14) at γ > 1 and choose a velocity in the shock interval, c1 < V < cγ . In this case, L0(V ) < 0
and hence

√
L0(V ) becomes purely imaginary. Each side of (36) now defines an analytic function which

behaves as O(k) at infinity, which implies that this function must be a linear polynomial of k, p1(k) = Bk + A.
The constant A is calculated by taking the limit k → ±i0 of both sides. Since the zero asymptotics (42) are
the same for shocks and kinks, the first two equalities in (43) still hold. This means that the constant A is the
same, and the Rankine-Hugoniot jump condition (44) again holds. Note, however, that the third equality in
(43) no longer holds in case of shocks because the asymptotics (41) are now different. Using it, we compute
the constant B from

B = lim
k→±i∞

1

k
(L±(k, V ))±1 (w+ − w∗ ∓ ik ĥ±(k, V )

) = wc − w∗
R(V )

.

Equating both sides of (36) to Bk + A, we obtain

ĥ(k, V ) = ĥ+(k, V ) + ĥ−(k, V )

= w+ − w∗
ik

√
L0(V )

(
L−(k, V ) − 1

L+(k, V )

)
+ wc − w∗

i R(V )

(
L−(k, V ) − 1

L+(k, V )

)
. (61)

Applying the inverse Fourier transform, Jordan’s lemma and the residue theorem as before, we find w(ξ):

w(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w− − ∑
kγ,i ∈M+

γ (V )

(
w− − w∗ +

√
L0(V )

R(V )
(wc − w∗)kγ,i

)
P+(kγ,i , V )e−ikγ,i ξ , ξ < 0

w+ − ∑
k1,i ∈M−

1 (V )

(
w+ − w∗ + wc − w∗

R(V )
√

L0(V )
k1,i

)
P−(k1,i , V )e−ikγ,i ξ , ξ > 0.

(62)

2 We have verified that these inequalities hold in the case q = 2 considered in Sect. 7.
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Here, P±(k, V ) are again given by (49). Observe that in this case

∑
kγ,i ∈M+

γ (V )

P+(kγ,i , V ) = 1,
∑

k1,i ∈M−
1 (V )

P−(k1,i , V ) = 1. (63)

Indeed, consider the integral

I+ = 1

2π i

∫

�+

L−(k, V )

k
dk,

where we assume that the contour �+ is obtained by closing � by a semicircle of infinite radius in the upper
half plane. On one hand, the residue theorem yields

I+ = 1

R(V )

⎡
⎢⎣1 −

∑
kγ,i ∈M+

γ (V )

P+(kγ,i , V )

⎤
⎥⎦ .

On the other hand, direct evaluation using the fact that for shocks L−(k, V ) = O(1/k) at infinity yields
I+ = 0. This gives the first equality in (63). The second one can be shown in the similar way. Note that (63)
does not hold for kinks because of the different asymptotics (39). One can also show that

∑
kγ,i ∈M−

γ (V )

kγ,i P−(kγ,i , V ) = −R(V )
√

L0(V ),
∑

kγ,i ∈M+
γ (V )

kγ,i P+(kγ,i , V ) = − R(V )√
L0(V )

.

Along with (63), these conditions ensure that w(ξ) given by (62) is continuous at ξ = 0 and that the phase
switch condition w(0) = wc is satisfied.

The particle velocity can be found similarly to the kink case:

v(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v− + V

2

∑
kγ,i ∈M+

γ (V )

(
w− − w∗) +

√
L0(V )

R(V )
(wc − w∗)kγ,i

)

×kγ,i P+(kγ,i , V )

sin(kγ,i/2)
e−ikγ,i (ξ+1/2), ξ < −1

2

v+ + V

2

∑
k1,i ∈M−

1 (V )

(
w+ − w∗ + 1

R(V )
√

L0(V )
(wc − w∗)k1,i

)

×k1,i P−(k1,i , V )

sin(k1,i/2)
e−ik1,i (ξ+1/2), ξ > −1

2
,

(64)

where v± once again satisfy the first Rankine-Hugoniot condition (51).
An important difference between the interphase shock and kink solutions is that due to the different behavior

of L±(k, V ) at infinite k in the case of shocks, the strains w± at infinity are no longer uniquely determined by
V , i.e., there is no condition equivalent to (45) we had for kinks. Thus there is no kinetic relation w± = w±(V )
or G = G(V ). Instead, either w+ or w− (which are related through (44)) is an additional parameter in the
problem, and it is easy to see that the driving force, which in this case reduces to

G = 1

2

(
(c2

γ − V 2)(w− − wc)
2 − (c2

1 − V 2)(wc − w+)2
)

, (65)

is a function of V and either w+ or w−, or of w+ and w−, by (44). Given any v+ (which can be set to zero),
w+ and w− > w+, we can find V and v− from the Rankine-Hugoniot conditions (44) and (51), respectively,
obtain the shock solution given by (62) and (64) and calculate the driving force and hence the rate of energy
dissipated by the shock. This reflects on the discrete level the well-known fact that the continuum initial value
problem is well-posed in the case of shocks, which unlike kinks satisfy the Lax condition. However, in the
case of kinks arbitrarily chosen w± may not be compatible with the kinetic relations (45).



Shocks versus kinks in a discrete model 333

0
1

2
3

4
5

0

10

20

0.5

1

0
1

2
3

4
0

10

20

0.3

0.6

Rek
Imk

V V

ImkRek

(a) (b)

Fig. 5 The structure of roots of gα(k, V ) = 0 when a α + 4β > 0 (here α = 1.2, β = −0.2) and b α + 4β < 0 (here
α = 0.6, β = −0.5). The thick curves correspond to the real roots, and thin curves show the non-real root branches. Due to the
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7 Examples

To illustrate the general solution, we now study in detail the case when only the first and second-neighbor
interactions are included, i.e., q = 2. In this case, it is convenient to introduce the dimensionless parameter
β = 4
2 which measures the relative strength of second-neighbor interactions. Then

c1 = √
1 + β, cγ = √

γ + β.

The problem is thus completely determined by two parameters: β and γ . We assume that

βc < β ≤ 0, βc = − min{1, γ }. (66)

The lower bound ensures stability of the uniform deformation in each phase, while the upper bound is moti-
vated by the linearization of the potentials of the Lennard–Jones type [28]. Note that in this case the energy of
the chain can be written as

E =
∞∑

n=−∞

[
u̇2

n

2
+ φ(wn) − β

8
(wn − wn−1)

2
]

, φ(w) = φ1(w) + β

2
w2,

so that β < 0 introduces a strain-gradient-like interfacial energy term that makes an isolated phase boundary
considered here energetically favorable [28]. The case β > 0 favors multiple interface formation and needs to
be treated differently [33].

7.1 Roots of the dispersion relation

We begin by considering the roots of the dispersion relation (20), which in this case reduces to

gα(k, V ) = −V 2k2 + 4α sin2 k

2
+ β sin2 k, α = 1, γ . (67)

The structure of the roots is shown in Fig. 5. As mentioned earlier, the branch of real roots (r, V ) can be
found explicitly. In this case we obtain (for V > 0)

V = 1

|r |
√

β sin2 r + 4α sin2 r

2
;

these roots are shown in Fig. 5 by thick curves. We can also find the branch of purely imaginary roots (is, V ),
where s is real. It is given by

V = 1

|s|
√

β sinh2 s + 4α sinh2 s

2
.
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The two branches intersect at the point (k, V ) = (0, cα). The other roots either bifurcate from the local maxima
of these branches or emanate from the roots at V = 0, given by k = 2πn ± 2isα , where n is any integer and

sα = arccosh
√

α

|β| . (68)

As in [29], we note that there are two types of root structures. Example of the first type of structure is shown in
Fig. 5a. It occurs when α +4β ≥ 0 and thus the point (k, V ) = (0, cα) is the maximum of the real root branch.
In this case, the branch (is, V ) of purely imaginary roots has a maximum point at nonzero sm from which
complex roots with nonzero real part bifurcate. If α + 4β < 0, the point (0, cα) becomes a local minimum,
and we obtain the second type of root structure, an example of which is shown in Fig. 5b. In this case, the
imaginary root branch has a maximum at (0, cα), and the real root branch (r, V ) has a maximum point at
nonzero rm , from which the complex roots bifurcate. As we shall see, the type of root structure has significant
implications in existence and structure of shock and kink solutions, as well as their behavior at velocities near
the sonic limit.

7.2 Equilibrium solutions

The equilibrium solutions (57) reduce to

wn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ + γ

c2
γ

−
(

σ + γ

c2
γ

− w∗

)
sγ

sinh sγ

P+(2isγ , 0)e2sγ (n+1/2), n ≤ −1,

σ

c2
1

−
(

σ

c2
1

− w∗

)
s1

sinh s1
P−(−2is1, 0)e−2s1(n+1/2), n ≥ 0,

(69)

with sα defined in (68). It also can be written as

wn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

byn + σ + γ

c2
γ

, n ≤ −1,

axn + σ

c2
1

, n ≥ 0,

(70)

where

a = (cγ − √
γ )

(γ − 1)σ − c2
1γ

c2
1cγ (1 − γ + c1 + cγ

√
γ )

, x = 2

β
(c1 − 1) − 1;

b = (c1 + 1)
(γ − 1)σ − c2

1γ

c1c2
γ (1 − γ + c1 + cγ

√
γ )

, y = − 2

β

(
cγ

√
γ + γ

)− 1;

The strain profile is monotonically decreasing, and the stress σ must be within the trapping region (58), where
the Peierls stresses (59) reduce to

σ−
P = c1cγ

cγ − √
γ

(
(1 − c1 − √

γ + cγ )wc + γ
cγ − √

γ

c1 + cγ

· 1 + c1 − √
γ + cγ

1 + c1 − γ + cγ
√

γ

)
,

σ+
P = c1cγ

cγ + c1
√

γ

(
(1 − √

γ )(1 + c1 + √
γ − cγ )wc + γ

c1 + cγ

(1 + c1 − √
γ + cγ )

)
,

with the corresponding Peierls values of the driving force given by (60). In particular, G = G(0+) = G+
P

corresponds to the saddle-point equilibrium from which the dynamic solution branch with V > 0 bifurcates:

wn = lim
V →0

w(n − V t) =
{

wc + b(yn − 1), n ≤ −1,
wc + a(xn − 1), n ≥ 0.

(71)
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7.3 Dynamic kinks

We start by considering kink profiles at γ = 2 and β = −0.1. In this case, the kink velocities must satisfy
0 ≤ V < c1 ≈ 0.95. The corresponding structure of the real roots is shown in Fig. 6a. When V is below c1
but above the next resonance velocity, there are two positive real roots, one in N+

1 (V ) and another in N+
γ (V ),

which correspond to non-decaying lattice waves propagating behind the phase boundary. An example of such
strain profile at V = 0.8 is shown in Fig. 7a. One can see that it satisfies the constraints (18) and thus represents
an admissible strain profile. Consider now the velocity V = 0.16. As shown in Fig. 6a, in this case there are
eight real roots, three from N±

1 (black circles) and five from N±
γ (white circles). Five of these roots correspond

to the waves appearing behind the phase boundary (two from N+
1 and three from N+

γ ), and the other three

(one from N−
1 and two from N−

γ ) yield waves propagating in front. However, the corresponding strain profile,
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shown in Fig. 7b, violates the constraints (18) and thus has to be discarded. In general, for these parameter
values only the kink profiles with velocities 0.33 ≤ V < c1 are admissible.

Note, however, that for fixed V and β, a sufficiently small value of γ yields an admissible solution. For
example, at γ = 0.2 the traveling wave solution with V = 0.16 and β = −0.1 becomes admissible, as shown
in Fig. 8a. The corresponding real roots are shown in Fig. 6b. Clearly, the set N1(0.16) remains the same,
but the set Nγ (0.16) now contains only one root (placed behind) since the curve V̂γ (r) is now substantially
below V̂1(r). Note also that the larger |β|/γ in this case implies smaller sγ in (68) and thus the purely imagi-
nary roots of gγ (k, V ) are closer to the origin. The resulting wider boundary layer structure around the phase
boundary prevents the oscillations ahead of the front from crossing over into the phase II region. Similarly, a
sufficiently large |β| also yields an admissible solution at fixed V and γ : see Fig. 8b for an admissible profile
at V = 0.16, γ = 2 and β = −0.93. Observe that the real root structure at V = 0.16 is not significantly
affected by the larger |β| (compare parts (a) and (c) in Fig. 6a). However, the boundary layer effect described
above is more pronounced in this case because increasing |β| reduces both sγ and s1 in (68), making purely
imaginary roots of both gγ (k, V ) and g1(k, V ) closer to the origin.

7.4 Kinetic relations

Kinetic relations (53) at fixed β = −0.1 and different values of γ are shown in Fig. 9 (solid curves) along with
the corresponding values G(0+) = G+

P of the upper Peierls driving force. As discussed above, not all traveling
wave solutions are admissible, and the corresponding low-velocity portions of the kinetic curves need to be
removed. One can see that both the upper bound G+

P of the trapping region and the minimal driving force for
dynamic kinks decrease as γ increases.

Note also that at γ �= 1 the driving force is continuous at the resonance velocities. Indeed, as V approaches
a resonance velocity (local maximum) from below we have two positive real roots, r+

α (V ) ∈ N+
α (V ) and

r−
α (V ) ∈ N−

α (V ) approach the same value at the maximum point, so that their ratio r+
α (V )/r−

α (V ), which
enters in R(V ) via (40), tends to 1. Here, we have either α = γ or α = 1. For velocities above the resonance
value these roots disappear, and thus R(V ) approaches the same value from above. By (53), the continuity of
R(V ) implies that G(V ) is also continuous when γ �= 1 (note, however, that its derivative has a finite jump
discontinuity at each resonance speed). It is not hard to see that this is also true in the general case q ≥ 2,
where resonance velocities may correspond to either maximum or minimum points. As γ → 1, the derivative
of the driving force becomes larger as velocity approaches a resonance value from below (see (b) and (c) in
Fig. 9), and in the limiting case γ = 1 of equal slopes there is an infinite resonance at these values [29].

The behavior of the driving force as V approaches the sonic limit cmin = min{c1, cγ } from below depends
on the structure of the real roots, which is in turn determined by β and γ . To see this, note that at 0 < V < cmin
the sets N+

1 (V ) and N+
γ (V ) each have only one root in the interval (0, 2π), and there are no other positive

real roots in this interval. Denote these roots by r1,1(V ) ∈ N+
1 (V ) and rγ,1(V ) ∈ N+

γ (V ) and observe that
R(V ) in (40) includes the factor rγ,1(V )/r1,1(V ). If γ > 1, the kinetic relation tends to a finite value from
below for any β. Indeed, in this case cmin = c1 and thus if 1 + 4β > 0, we have r1,1(V ) → 0 as V → c1 − 0
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since (0, c1) is the maximum point (e.g., Fig. 6a), while rγ,1(V ) has a nonzero limit. Other positive real roots
r > 2π either disappear or tend to nonzero values in the limit. This means that R(V ) → ∞, and hence the
driving force tends to a finite value as V approaches the sonic limit from below:

G(V ) → Gs = γ − 1

2
(wc − w∗)2 ;

in parts (b), (c) and (d) of Fig. 9 the values of Gs are 50, 2.5, and 1/6, respectively. Note that in view of (13)
Gs becomes infinite when γ = 1 (equal slopes). If 1 + 4β < 0, (0, c1) is a local minimum, and all positive
real roots tend to nonzero values as V → c1 − 0, implying a finite limit of R(V ) and hence G(V ).

If γ < 1, we have cmin = cγ . In this case, the limit is finite if γ +4β < 0, for the same reason as above (the
limits of all positive real roots are nonzero); see Fig. 9a. When γ +4β > 0, R(V ) → 0 and hence G(V ) → ∞
in the sonic limit because in this case rγ,1(V ) approaches zero, while r1,1(V ) tends to a nonzero value.

7.5 Interphase shocks

Consider now the interphase shocks solutions. Recall that they can only occur at γ > 1 and that the shock
velocities satisfy c1 < V < cγ . In what follows, we will fix the average strain w+ in front of the shock, which
is a free parameter in this case, at zero. As in the case of kinks, the two different types of root structure affect
the admissibility and the form of shock solutions. For fixed γ = 2 the two cases are illustrated in Fig. 10. In the
first case we have 1 + 4β > 0, so that the point (0, c1) is the maximum. This implies that all shock solutions
have only one radiative mode, corresponding to a single root in N+

γ (V ) and thus propagating behind the shock.
For γ = 2, β = −0.1, and V = 1.05 this root is shown in Fig. 10a, and the corresponding admissible strain
profile is shown in Fig. 11a. Our calculations suggest that for this type of root structure all interphase shock
solutions are admissible.
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Consider now β = −0.8, when 1 + 4β < 0 and (0, c1) is a local minimum. At V = 1.05, which is above
the maximum of V̂1(r), we still have a single mode propagating behind (see Fig. 10b), and the corresponding
admissible strain profile is shown in Fig. 11b. If, however, the shock velocity is below the maximum of V̂1(r),
two additional radiative modes appear due to roots of g1(r, V ), one propagating behind and the other in front.
This is illustrated in Fig. 10b for V = 0.7. The corresponding solution, shown in Fig. 11c, is not admissi-
ble because the large-amplitude mode in front violates the constraints (18). In fact, our calculations suggest
that only interphase shocks with velocities above the maximum of V̂1(r) that have a single radiative mode
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propagating behind the interface are admissible in the case 1 + 4β < 0.3 Note also that when γ + 4β < 0, as
is the case in Fig. 10b, the wave number of the radiative mode propagating behind approaches a finite value
when V → cγ − 0, whereas at γ + 4β > 0 it tends to zero.

8 Stability of the traveling wave solutions

To study stability of the admissible traveling wave solutions, we numerically solve the equations (10) subject
to the Riemann initial data that consists of piecewise constant strain

wn(0) =
⎧⎨
⎩

wL, n < n0,
wc, n = n0,
0, n > n0.

(72)

and zero initial particle velocity. We assume that wL > wc > 0, so that the initial strain profile has a phase
boundary at n = n0.

On the macroscopic level, we expect to see a self-similar solution shown in Fig. 12. As before, subsonic
and intersonic phase boundaries need to be considered separately.

8.1 Stability of kinks

If the phase boundary is a kink, there are two sound waves (single-phase shock waves), one behind the kink
and propagating with speed cγ > V in the opposite direction, and another one moving ahead of the kink with
velocity c1 > V ; see Fig. 12a. Rankine–Hugoniot jump conditions across each sound wave and across the
phase boundary then result in the following relationships between the left initial strain wL, the velocity V , and
the strain w± in front and behind the phase boundary:

w− = cγ (c1 + V )wL + γ

(c1 + cγ )(cγ + V )
, w+ = cγ (cγ − V )wL − γ

(c1 + cγ )(c1 − V )
. (73)

As remarked in Sect. 1, one can see that in the absence of a kinetic relation that yields w± as functions of V ,
the macroscopic Riemann problem would have an infinite number of solutions parameterized by the velocity
V of the kink. Having solved the discrete problem, however, we now have the relations w± = w±(V ), given
by (45) (or, equivalently, by the kinetic relation (53)), which select a unique velocity V for a given left initial
strain wL, provided that the corresponding traveling wave solution exists and is stable.

To investigate stability of the obtained subsonic traveling wave solutions, we conducted numerical simu-
lations of the Riemann problem for the discrete system (10) on a truncated chain with 600 lattice points for
an increasing sequence of values of the initial strain wL in (72). For wL below a certain threshold value, the
long-time solution featured a trapped phase boundary (V = 0) with sound waves propagating away from it.

3 In general, admissibility of shock solutions also depends on the choice of w+. Larger w+ makes the interval of admissibility
narrower.
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At some parameter values, e.g., γ = −0.2, β = −0.1, and wc = 1, formation and annihilation of additional
phase boundaries was also seen in this regime, due to the oscillations behind the sound wave propagating
ahead. At higher wL a steady motion of the phase boundary with some nonzero velocity V was typically
observed after an initial transient period. Using (73) for given wL and V , we then computed the driving force
(52) and compared it to the value given by the kinetic relation G = G(V ). If the numerical solution around the
phase boundary approaches the corresponding traveling wave solution, implying its stability, the difference
between these two values should be small. The results of the simulations at β = −0.1, wc = 1 and different
values of γ are shown in Fig. 9. They suggest that kinks that travel sufficiently fast are stable, in agreement
with the observation made in [29] for the case γ = 1. These solutions typically have velocities between the
sound speed cmin = min{c1, cγ } and the next resonance velocity and feature lattice waves that propagate only
behind the phase boundary. An example of such solution is shown in Fig. 13.

One can see that the structure of the long-time solution is as predicted by the macroscopic theory (Fig. 12a),
with two sound waves propagating away from the kink, but in the discrete problem the piecewise constant
macroscopic strain is superimposed with oscillations due to lattice dispersion. Note that the numerical solution
zoomed around the phase boundary (circles in Fig. 13b) is in perfect agreement with the analytical traveling
wave solution (solid line).

Recall that when γ is sufficiently small (or when |β| is large enough), traveling wave solutions with smaller
velocities may become admissible. Figure 9a suggests that some of these admissible kinks may be also stable.
An example of such solution at γ = 0.2, β = −0.1 and V = 0.16 is shown in Fig. 14. Note that in this case
the moving kink emits lattice waves in both directions.

Based on [32], where a trilinear up–down–up stress–strain law with equal moduli was considered, we
expect that introducing a sufficiently wide spinodal region will result in more admissible and stable solutions
in the low-velocity regime since the nonlinearity tends to reduce the amplitude of lattice waves. For the case
of different elastic moduli this problem will be analyzed elsewhere.
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We found that when |β| is very large, there are also other attractors that do not have a traveling wave form
near the phase boundary and feature a non-steady kink motion with velocity oscillating about some average
value. Such solutions are usually seen for a small interval of wL values above and below which the attractors
are again the traveling waves. Consider, for example, the position s(t) of the front at γ = 1.2, β = −0.8, and
wc = 2. At wL = 4.8 the numerical solution quickly approaches a steady motion, as shown in Fig. 15a, with
velocity V = 0.1866. This motion is described by the corresponding traveling wave solution. Like the solution
shown in Fig. 14, this solution is a slower kink with lattice waves propagating in both directions. The same is
true for 4.5 ≤ wL ≤ 4.9, and for wL ≥ 6 the numerical solution around the phase boundary approaches a fast
traveling wave that oscillations behind the front. However, for the intermediate values of the left initial strain
the attractor is different. For instance, at wL = 5 the motion of the front is no longer described by the traveling
wave ansatz, as can be seen in Fig. 15b. Instead, the time intervals over which the phase boundary advances
by one lattice space continue to oscillate between the values 3.08 and 5.05 even at large times.

We plan to explore such breather-like attractors in the future work.

8.2 Stability of interphase shocks

If γ > 1 and the initial left strain wL is sufficiently high, the phase boundary becomes a shock with w+ = 0
and c1 < V < cγ . The structure of the corresponding macroscopic solution is shown in Fig. 12b. Applying
the Rankine-Hugoniot conditions across the interphase shock and the sound wave propagating behind, one
obtains the average strain behind the phase boundary and the relationship between V and wL:

w− = γ

c2
γ − V 2 , wL = γ (cγ + V )

cγ (c2
γ − V 2)

. (74)

Inverting the second equation in (74), one can obtain a unique shock velocity for given wL, find the corre-
sponding w− and compute the driving force (65), which reduces to

G = γ 2

2(c2
γ − V 2)

+ (γ − 1)w2
c

2
− γwc.

since w+ = 0. This function is plotted in Fig. 16 at γ = 2 and two different values of β (solid lines), along
with the results of the numerical simulations (circles).

At β = −0.1, the numerical solutions of the Riemann problem for the discrete system exhibit a single
interface with V and w− very close to the ones predicted by (74) for the entire range of wL that corresponds
to c1 < V < cγ ; see Fig. 16a. Around the phase boundary numerical solutions converge to the corresponding
traveling wave solutions, which in this case are admissible in the entire shock interval. See, for example, the
comparison of numerical and analytical solutions at V = 1.05 in Fig. 17a.

Meanwhile, at β = −0.8 the numerical simulations with the initial data that corresponds to velocities below
the resonance velocity Vres ≈ 0.7406 (the maximum of V̂1(r) in Fig. 10a) result in formation of multiple phase
boundaries; see Fig. 18 for an example.
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Fig. 16 Driving force as the function of velocity for interphase shock solutions of the Riemann problem as predicted by continuum
theory (solid line) and numerical simulations of the discrete model (circles) at γ = 2 and a β = −0.1; b β = −0.8
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Fig. 17 Solutions of the Riemann problem wn(t) around the phase boundary (circles) and the corresponding traveling wave
solutions (solid lines) at t = 200, V = 1.05, γ = 2, wc = 1 and a β = −0.1; b β = −0.8. The corresponding traveling wave
profiles w(ξ) are shown in Fig. 11a, b
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Fig. 18 a Solution of the Riemann problem wn(t) with multiple phase boundaries. b Zoom-in of the rectangle in part (a). Here,
t = 100, wc = 1, γ = 2, β = −0.8, and wL = 4.6169, which corresponds to V = 0.7 according to (74). The corresponding
traveling wave solution is not admissible, as shown in Fig. 11c
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Recall that the corresponding traveling wave solutions are not admissible, e.g., see Fig. 11c. When the
initial data yield Vres < V < cγ , only one phase boundary forms. These simulations are shown by circles in
Fig. 16b. In each simulation with such initial data the numerical solution around the phase boundary converges
to the corresponding admissible traveling wave solution; see, for example, Fig. 17b.
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Appendix: Proof of the Proposition

Let V be a non-resonance velocity. We first show that

|N+
α (V )| =

{ |N−
α (V )| + 1, 0 < V < cα

|N−
α (V )|, V > cα

. (75)

Fix V such that 0 < V < cα . The real roots can be found from the equation V̂α(r) = V , where we recall (26).
On every interval [2πn, 2π(n + 1)], where n is a positive integer, the curve V̂α(r) can intersect the horizontal
line corresponding to V an even number of times because it is a continuous nonnegative function that vanishes
at the ends of the interval and must have nonzero derivative at the intersections (if there are any) since V
is a non-resonance velocity. The points of intersections belong to Nα(V ). The points where V̂α(r) increases
belong to the set N−

α (V ), and the points where it decreases belong to N+
α (V ). For each point from N−

α (V )
there is a corresponding point from N+

α (V ) and hence on every such interval the number of roots in both sets
is same. Now consider the interval [0, 2π]. Recall that V (0) = cα > 0 and V < cα . The smallest positive root
rα,1 ∈ [0, 2π] is a point of intersection where the function decreases, and hence it belongs to the set N+

α (V );
it does not have a corresponding root in the set N−

α (V ). If there are other roots in the interval (rα,1, 2π], they
appear in pairs by the same argument. Thus, the first case in (75) holds.

To show the second case, observe that when V approaches the sound speed cα from below, the first root rα,1

in N+
α (V ) disappears if r = 0 is a point of a local maximum of V̂α(r), and the number of roots in N+

α (V )
decreases by one. If r = 0 is a local minimum, then a new smaller root appears on the increasing part of the
curve V̂α(r). This root belongs to the set N−

1 (V ) and increases the number of elements in this set by one. In
either case, the number of elements in the two sets becomes the same for V > cα .

Thus, for a kink velocity, which satisfies 0 < V < min{c1, cγ }, the first case in (75) holds for both α = 1
and α = γ . Meanwhile, for a shock velocity, c1 < V < cγ , the first case in (75) holds only for α = γ , and
the second case is true for α = 1, proving the Proposition. ��
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