Pulse Modulation and Signal Prop.

David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh

http://www.tele.pitt.edu/tipper.html

- Encode PAM signal digitally
- Each analog PAM sample is assigned a binary code
- The digital signal consists of block of *n* bits, where each *n*-bit number is the amplitude of a PAM sample pulse
- Basically Analog to Digital (A/D) conversion

Path Loss Models Commonly used to estimate link budgets, cell sizes and shapes, capacity, handoff criteria etc. "Macroscopic" or "large scale" variation of RSS Path loss = loss in signal strength as a function of distance Terrain dependent (urban, rural, mountainous), ground reflection, diffraction, etc. Site dependent (antenna heights for example) Frequency dependent Line of site or not Simple characterization: PL = L₀ + 10α log₁₀(d) L₀ is termed the frequency dependent component The parameter α is called the "path loss gradient" or exponent

Antennas

- An antenna is a way of converting guided signals into electromagnetic radiation as efficiently as possible in the direction required
- An antenna has a near field and a far field
 - The near field is called the Fresnel region (close to the antenna)
 - The far field is called the Fraunhofer region (far away from the antenna)
- The radiation pattern of an antenna is the way in which energy propagates in the far field of an antenna as a function of direction

Cellular Antennas

Cells are typically sectored into 3 parts each having 120⁰ sector of the cell to cover

1 transmit antenna in middle of each sector face

2 receive antenna at edge of sector face on the tower.

This is done to provide antenna diversity – it combats fast fading – as only 1 antenna will likely be in fade at any point in time. Can get 3-5 dB gain in the system

Link Budget

Link	Up	Down
TX Power	30dbm	30dbm
Antenna Gain	3	5
Antenna Diversity Gain	5	Х
Shadow Margin	10	10
Body Attenuation	2	2
Vehicle Penetration	5	5
Receiver Sensitivity	-105	-90
Path Loss Budget	126 db	108 db

Typical Cellular System Downlink Limited!

