Memory and Storage

- Main Memory
 - Fast Access
 - Directly Accessible by CPU
 - Usually RAM or ROM
- Secondary Storage
 - Access Via I/O Subsystem
 - Normally Disk Storage

Structure of Memory

- An Array of "Registers"
- Each "Register" is a Memory Location

```
b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0
```

- Register N (Location N)
- Register N-1 (Location N-1)
- Register N-2 (Location N-2)

- Register 1 (Location 1)
- Register 0 (Location 0)
Structure of Memory

- Data is Organized in Words
 - Contains the Maximum Number of Bits the CPU Can Utilize
 - Larger Words Imply the Ability to Deal with Larger Numbers
 - Smaller CPU's Must Make Multiple Fetches to Memory
 - Processors Are Classified According to Word Size
- Words Are Stored in Memory Locations
- Memory Locations Have an Address
 - This is Equivalent to the Register Number
 - Also, The Location

Random-Access Memory (Read-Write)

- Memory Locations Can be Accessed in Any Order (i.e., Randomly)
- An Address is Decoded into a Memory Location By a n-to-2^n Decoder
- Dynamic RAM's
 - Data Are Stored in Small Capacitors
 - Must Be Refreshed Periodically
- Static RAM's
 - Data Are Stored in Flip Flop's
 - No Refresh Is Necessary
- Non-Volatile RAM's
 - Do Not Lose Their Contents After Power is Turned Off
 - May Be Dynamic or Static RAM's
Physics Structure of Static RAMs

Basic Cell for Static RAMs

<table>
<thead>
<tr>
<th>In</th>
<th>R/W</th>
<th>S</th>
<th>Q_{t+1}</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Q_t</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Q_t</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Q_t</td>
<td>Q_t</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Q_t</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Q_t</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Q_t</td>
<td>Q_t</td>
</tr>
</tbody>
</table>
Basic Cell for Static RAMs

Physical Structure of Dynamic RAMs
Read-Only Memory

- Memory Contents Are Fixed (Permanently Programmed)
 - Permanent Changes Are Often Made at a Device Level
 - Burning A Silicon Fuse
 - Causing Physical Material Changes By High Voltage
- Programmable Read-Only Memory (PROM)
- Erasable Programmable ROM (EPROM)
- Electrically Alterable ROM (EAROM)

Sequential Access Memory

- Data Must Be Accessed in a Sequence With Other Data
- Direct Access
 - The Computer Can Directly Access the Storage Medium
 - Occurs Via a Transducer
 - Via the I/O Subsystem
 - DASD is the IBM Acronym for Disk Storage
- Indirect Access
 - Tape Subsystem
 - Intermediate System Is Required
Structure of Disk Drives

Disk Types

- **Constant Angular Velocity (CAV)**
 - Rotational Speed Remains Constant
 - Data Density Varies
 - High Near Spindle
 - Low Near Perimeter
 - Applications
 - Most Hard Disks
 - Many Flexible Disks

- **Constant Linear Velocity (CLV)**
 - Rotational Speed Varies
 - Data Density Is Constant
 - Some Flexible Disks
 - CD/ROMs
Programmable Logic Device

- Allows the development of inexpensive "custom" chip functions
- Types of PLDs
 - PROM
 - Form of Memory Device
 - Program the Truth Table of a Function
 - Programmable Logic Array (PLA)
 - Standard Chip
 - Based on Minterm Structure of Boolean Expressions
 - Inputs Connected by Fuses to AND/OR gates
 - PAL
 - Similar to PLAs
 - Easier to Program than a PLA

Structure of PLAs
Programmable Logic Arrays

- Procedure
 - Write Combinational Logic as Sum of Minterms
 - Program Minterms in First Array
 - Program Sums in Second Array
 - Programming by Burning Fuses
- Programmable Array Logic (PAL)
 - Like PLA
 - OR is not Programmable