

Modulation

- Motivation
 - Smaller antennas (e.g., λ /4 typical antenna size)
 - λ = wavelength = c/f , where c = speed of light, f= frequency.
 - 3000Hz baseband signal => 15 mile antenna, 900 MHz => 8 cm
 - Frequency Division Multiplexing provides separation of signals
 - medium characteristics
 - Interference rejection
 - Simplifying circuitry
- Modulation
 - shifts center frequency of baseband signal up to the radio carrier
- Basic schemes
 - Amplitude Modulation (AM)
 - Frequency Modulation (FM)
 - Phase Modulation (PM)

Amplitude Shift Keying (ASK) Frequency Shift Keying (FSK) Phase Shift Keying (PSK)

Example of BPSKA binary 1 is represented by: $s_1(t) = \sqrt{\frac{2E_b}{T}} \cos(2pf_c t)$, $0 \le t \le T$, $f_c = \frac{n}{T}$ A binary 0 is represented by: $s_2(t) = -\sqrt{\frac{2E_b}{T}} \cos(2pf_c t)$, $0 \le t \le T$ We can write $s_1(t) = \sqrt{E_b} \Psi(t)$ $s_2(t) = -\sqrt{E_b} \Psi(t)$ where $\Psi(t) = \sqrt{\frac{2}{T}} \cos(2pf_c t)$, $0 \le t \le T$

Normal Distribution Review

Let
$$Z = \frac{\left(x + \sqrt{E_b}\right)}{\sqrt{\frac{N_0}{2}}}, \quad dZ = \frac{dx}{\sqrt{\frac{N_0}{2}}}$$

When $x = 0, \quad Z = \sqrt{\frac{2E_b}{N_0}}$
 $P_e = \int_{\sqrt{\frac{2E_b}{N_0}}}^{\infty} \frac{1}{\sqrt{2p}} \exp\left(\frac{-Z^2}{2}\right) dz = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$
 $= Q(\mathbf{g}_b)$

This assumes that s(t) exists only for a duration of T second Let us look at the output for k = 1.

$$y(t) = r(t) * h(t)$$

= $\int r(t) s(T - (t - t)) dt$
= $\int r(t) s(T - t + t) dt$
= $\int r(t) s(t + T - t) dt$

Compare with cross-correlation: $R_{rs}(t) = \int r(t)s(t-t)dt$

The output of the matched filter is the cross-correlation of the received signal and the time shifted transmitted signal.

At
$$t = T$$
, $y(T) = \int r(t)s(t)dt = R_{sr}(0)$
If $s(t) = r(t)$, $y(t) = E_s$ or $-E_s$

renormance companson of valious Digital Modulation Schemes (DEIX = 10 ⁻)		
Modulation Technique	C/N Ratio (dB)	$E_b N_0$ Ratio (dB)
BPSK	10.6	10.6
QPSK	13.6	10.6
4-QAM	13.6	10.6
8-QAM	17.6	10.6
8-PSK	18.5	14
16-PSK	24.3	18.3
16-QAM	20.5	14.5
32-QAM	24.4	17.4
64-QAM	26.6	18.8
04-QAM	20.0	18.8

