Successive Survivable Routing for Fault Tolerant Communication Networks

Yu Liu* and D. Tipper *
Department of Information Science and Telecommunications
University of Pittsburgh
Pittsburgh, PA U.S.A

*supported in part by grants from NSF ANIR and DARPA

Motivation

• Why do communications networks need to be survivable?
• Communication Networks are Critical Infrastructure (CI) (PCCIP 1996) the systems, assets and services upon which society and the economy depend
• Communication infrastructure often considered most important CI due to reliance on it by other infrastructures
 – banking and finance, government services
 – power grid SCADA, etc.
• Increasing Impact of Failures
 – Increased bandwidth of links (WDM technology in fiber optic network)
 – Increased societal dependence

Causes of Network Outages

• According to Sprint a link outage in IP backbone every 30 min on average
• Accidents
 – cable cuts, car wreck, etc.
 – According to AT&T 4.39 Cable cuts / year / 1000 miles
• Human errors
 – incorrect maintenance, installation
• Environmental hazards
 – fire, flood, etc.
• Substantive
 – physical, electronic
• Operational disruptions
 – schedule upgrades, maintenance, power outage
• Hardware/Software failures
 – Line card failure, faulty laser, software crash, etc.

Network Survivability

• Definition
 – Ability of the network to support the committed Quality of Services (QoS) continuously in the presence of various failure scenarios
• Survivability Components
 – Analysis: understand failures and system functionality after failures
 – Design: adopt network procedures and architecture to prevent and minimize the impact of failures/attacks on network services.
 – Goal: maintain service for certain scenarios at reasonable cost
• Self - Healing network

Survivable Network Design

• Three steps towards a survivable network
 1. Prevention:
 – Robust equipment and architecture (e.g., backup power supplies)
 – Security (physical, electronic), Intrusion detection, etc.
 2. Topology Design and Capacity Allocation
 – Design network with enough resources in appropriate topology
 – Spare capacity allocation – to recover from failure
 3. Network Management and traffic restoration procedures
 – Detect the failure, and route traffic around failure using the redundant capacity

Survivable Network Design

• Spare Capacity Allocation (SCA) Problem:
 – given working paths and network (or virtual network) topology
 – provision spare capacity and find backup routes for fault tolerance
 – Goal: minimum spare capacity or cost
• Survivable Mesh Networks
 – Consider preplanned protection in mesh networks
 – STM - DCS, ATM - VP, WDM, MPLS, etc.
 – determine routing/capacity allocation for normal demand
 – find location and amount of spare capacity for failure scenarios
 – spare capacity required depends on restoration/survivability technique
Restoration techniques

- Types of restoration schemes
 - link (span) restoration
 - path restoration:
 - Failure dependent (FD), with stub release
 - Failure independent (FID)

Previous Work

- Mesh Network Spare Capacity Design
 - Optimization Techniques
 - Integer Programming Models – NP Hard – scaling problems
 - Heuristics
 - Find feasible solution for fault scenario
 - Drawbacks
 - Ignore Modularity of cost
 - Scalability of optimization techniques
 - Linear variables (difficult to model nonlinear cost)

Present a matrix based formulation and a new heuristic
- fast, near optimal, nonlinear cost and different restoration schemes

SCA Problem

- SCA for Failure Independent Shared Backup Path Restoration
- Notation
 - \(r = 1, 2, \ldots, D \) set of demands (source-destination pairs)
 - \(p = 1, 2, \ldots, P_r \) set of possible paths for demand pair \(r \)
 - \(l = 1, 2, \ldots, L \) set of network links

- Input parameters (constants)
 - \(\alpha_r \) offered traffic load of demand pair \(r \)
 - \(c_l \) unit cost of capacity on link \(l \)
 - \(\delta^r_{p,l} = 1 \) if \(l \) belongs to path \(p \) realizing demand \(r \)
 - \(0 \), otherwise
 - \(f \) set of link failure scenarios

- Variables
 - \(x^r_p \) flow of demand \(r \) on path \(p \)
 - \(s_l \) spare capacity on link \(l \)

Find \(s_l \) and \(x^r_p \), which

\[
\text{minimize} \quad \sum_{l \in L} c_l \cdot s_l \\
\text{subject to} \quad \sum_{p \in P} x^r_p = 1, \forall r \in D \\
\sum_{r \in D} \sum_{p \in P} \delta^r_{p,l} \cdot x^r_p \leq s_l, \quad \forall l \in L - \{f\}, \forall f, f \in L
\]

SCA Path-flow model

Matrix Based Formulation of SCA

- Matrix Based formulation of Optimization model for FID shared backup path restoration
- Consider path incident matrices \(P \) and \(Q \) for working and backup paths where each matrix has
 - number of rows = number of flows in the network
 - number of columns = number of links in the network
 - row \(i \) in the matrix \(P \) corresponds to the set of links used by flow \(i \)
 - similarly row \(i \) in the matrix \(Q \) corresponds to the set of backup path links used by flow \(i \)
- Relate to spare provision matrix \(G \), and spare capacity reservation \(s \)
 - \(G = Q^T P \), element \(G_{ij} \) gives required spare capacity on link \(j \) when link \(j \) fails
 - \(s = \max(G) \), or \(s \leq G \), spare capacity reservations are the maximum spare capacity for any single link failure

Example

From working and backup paths, \(G = Q^T P \)

From \(G \), \(s = \max(G) \)

Example: when link 2 fails,

Spare capacity on backup path link 17
Arc-flow model of SCA

\[\min \quad s = e^T s \quad \text{Total spare capacity} \]
\[\text{s.t.} \quad s \geq G \quad \text{spare capacity on each link} \]
\[G = Q^T M P \quad \text{Calculation of spare provision matrix} \]
\[P + Q \leq 1 \quad \text{Link-disjointed backup paths} \]
\[Q B^T = D \quad \text{(mod 2)} \quad \text{Flow conservation of backup} \]
\[Q \text{ is a binary matrix} \]

Decision variable: \(Q, G, s \)

Given: \(P \) – working path link incidence matrix
\(B \) and \(D \) – node-link & flow-node incidence matrices
\(M \) – traffic demand matrix

Another way to find \(G \)

\[G = \sum_r G_r, \quad \text{where } G_r = q_r^T p_r, \quad p_r \text{ and } q_r \text{ are vectors for working and backup paths of flow } r \]

Approximation algorithm

- Decomposition
 - multi-commodity flow \(\rightarrow \) multiple single flows
- Using shortest path algorithm for each flow to
 - route link-disjointed backup paths
 - using spare provision matrix \(G \) to calculate
 \[\text{link cost} = \text{incremental spare reservation } v_r; \]
- Flows successively update their backup paths
 \(\rightarrow \) termed: *successive survivable routing* (SSR)

Find spare capacity \(s \)

From \(Q^T \) and \(P \), get \(G \)

From \(G \), get \(s \)

For \(r = 2 \), find \(G_r = q_r^T p_r \)

Link cost and local objective

- **Goal:** Each flow seeks a new backup path with minimal additional reservation
- **Additional reservation as link cost:**
 - Let \(G^+ = (e-p)^T p \)
 - and \(s^+ = \max (G^+ + G) \)
 - \((e-p) \) assumes that a backup path uses all possible links
 - \(s^+ \) is a temporary spare capacity reservation vector
 - Additional spare reservation \(v_r = s^+ - s \)
 - \(v_r \) tells how much additional spare capacity needed if a link is used on a new backup path
 - Run shortest path with link cost \(v_r \)

Example of link cost

Assume backup path are using all possible links
\(e = (e-p)^T p \)

Find the contribution
\(G^+ = (e-p)^T p \)
SSR flowchart of flow r

1. Given p_r and d_r
2. Periodically update G
3. Calculate v_r
4. Update q_r using v_r
5. Update s_r and G

- On source node of flow r:
 - p_r, q_r: working and backup path vectors
 - d_r: destination node
 - G, s_r: spare provision matrix and spare reservation vector
 - v_r: incremental spare reservations as link cost
- Stop after no backup path update on the network

Complexity

- Polynomial running time
 - shortest path algorithm for each flow, $O(N^2)$
 - Limited backup path update iterations for each flow
- Polynomial space complexity
 - Advertised information in $O(L^2)$
 - No per-flow based information

Numerical comparison

- Compare different algorithms and bounds
 - RAFT: Resource aggregation fault tolerance
 - SPI: Sharing with partial information
 - SR: Survivable routing (SSR without iteration)
 - SSR: Successive survivable routing
 - SA: Simulated annealing
 - BB: Branch and bound on a path-flow model – optimal
 - LP: Linear programming lower bound
- Metrics:
 - % Redundancy = spare capacity/working capacity,
 - execution time

Experiment networks

Network node degree ranges from 2.31 to 4.4
Consider balanced mesh load case

Redundancy versus Time on Network 3

- SSR, SR, SPI have 64 random cases with different flow orders
- Range of solutions
- Time is the sum of time to compute all 64 cases

Typical SSR results

- RAFT: Resource aggregation fault tolerance
- SPI: Sharing with partial information
- SR: Survivable routing (SSR without iteration)
- SSR: Successive survivable routing
- SA: Simulated annealing
- BB: Branch and bound on a path-flow model – optimal
- LP: Linear programming lower bound
Conclusions

- **Redundancy**
 - $LP \leq BB \leq SA \leq SSR \leq SR \ll SPI \equiv RAFT$
- **Time**
 - $BB > (LP, SA) >> SSR \geq SR \geq SPI \geq RAFT$
- **SSR has best trade-off**
 - Near optimal
 - Fast

Non-linear link cost

- Objective changed to:
 - $\min \sum \phi(s_i)$
 - decision variable: Q
- Numerical results using modular link cost
 - Link dimensioning comes in trunks: OC3, OC48, OC192, etc.

Typical Nonlinear Cost Results

- Failure dependent path restoration
 - Each column G_i is decided by column vector P_i and Q_j, backup path link adjacency matrix for link i failure
 - $G_i = Q_i^T M P_j$, $1 \leq j \leq L$
 - $G_r = m_r q_r^T p_j$, $1 \leq j \leq L$, $1 \leq r \leq R$
 - $G = \sum G_r$
 - Stub release add -1 in the working link locations in Q_j except link i

Comparison between restoration schemes

Summary

- Matrix based model reveals the structure of the spare capacity allocation problem
- Approximation – successive survivable routing
 - Partitioning multi-commodity to single flow
 - Using shortest path algorithm with special link cost
 - Update backup paths iteratively
- Extensions for nonlinear cost and different restoration schemes
 - Speed and near optimality of SSR => use in distributed implementation for automatic dynamic preplanning