
An architecture for highly available wide-area service composition

Bhaskaran Raman*, Randy H. Katz

EECS Department, 475 Soda Hall, U.C. Berkeley, Berkeley, CA 94720-1776, USA

Abstract

Service composition provides a flexible way to quickly enable new application functionalities in next generation networks. We focus on

the scenario where next generation portal providers ‘compose’ the component services of other providers. We have developed an architecture

based on an overlay network of service clusters to provide failure-resilient composition of services across the wide-area Internet: our

algorithms detect and recover quickly from failures in composed client sessions.

In this paper, we present an evaluation of our architecture whose overarching goal is quick recovery of client sessions. The

evaluation of an Internet-scale system like ours is challenging. Simulations do not capture true workload conditions and Internet-wide

deployments are often infeasible. We have developed an emulation platform for our evaluation—one that allows a realistic and

controlled design study. Our experiments show that the control overhead involved in implementing our recovery mechanism is

minimal in terms of network as well as processor resources; minimal additional provisioning is required for this. Failure recovery can

be effected using alternate service replicas within about 1 s after failure detection on Internet paths. We collect trace data to show that

failure detection itself can be tight on wide-area Internet paths—within about 1.8 s. Failure detection and recovery within these time

bounds represents a significant improvement over existing Internet path recovery mechanisms that take several tens of seconds to a

few minutes.

q 2003 Elsevier B.V. All rights reserved.

Keywords: Service composition; Service cluster; Overlay networks; Failure detection; Session recovery; Network emulation

1. Introduction

Value added services and content provisioning will be

the driving force behind the development and deployment

of future communication networks. It is important to

enable quick and flexible development of end application

functionality. Composition of services from independent

components offers a flexible way to enable new

application functionalities. Consider for instance a user

with a new wireless thin client roaming to a foreign

network. She wishes to access a local news/weather video

service. A portal provider enables this by composing the

video service with an appropriate transcoder to adapt the

contents of the video to the thin client’s capabilities

(Fig. 1). Further, she wishes to access her email from her

home provider on her cell-phone while she is on the

move. The portal provider enables this by composing a

third-party text-to-speech conversion engine, with the

user’s email repository. In either example, a novel

composite service functionality is enabled through the

composition of existing service components. We term the

set of component services that are strung together as a

service-level path.

Composition of complex services from primitive

components enables quick development of new appli-

cation functionality through the reuse of the components

for multiple compositions. We envision a wide variety of

service components such as media transcoding agents

(audio/video), rate-adapting agents, media transformation

engines (e.g. text-to-speech), redirection/filtering agents,

personalization/customization/user-interface agents, etc.

These would be deployed and managed by a variety of

service providers and be available for composition of new

applications for novel devices in next-generation

networks.

Composition by itself is not a novel idea. However, there

are critical challenges to be addressed in the context of

composing independent components across multiple service

providers. When providers deploy service instances inde-

pendently, the composed service-level path could span

multiple Internet domains, as shown in Fig. 1. This has

implications on the availability of the composed service.

0140-3664/03/$ - see front matter q 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0140-3664(03)00042-2

Computer Communications 26 (2003) 1727–1740

www.elsevier.com/locate/comcom

* Corresponding author. Tel.: þ91-512-259-7588; fax: þ91-512-259-

0725.

E-mail addresses: bhaskar@cs.berkeley.edu (B. Raman), randy@cs.

berkeley.edu (R.H. Katz).

http://www.elsevier.com/locate/comcom


Service providers would like to have their services always

available for client sessions. However, studies have shown

that inter-domain Internet path availability is very poor [1],

and that Internet route recovery can take of the order of a few

minutes [2]. This in turn reflects on the availability of the

composed service. Since multimedia sessions could last for

several minutes to hours, it is important to address network

failures during a session, to improve the overall availability.

Our approach to address this issue involves the use of

alternate service replicas as well as alternate Internet paths

when the original service-level path experiences an outage.

Thedotted lines inFig.1showonesuchalternateservice-level

path for the composed video session. It is important to ensure

that suchrecovery isquick for real-timeapplications. In taking

such an approach to recovery, we assume that services have

only soft-state, and no persistent state. Soft-state can be built

up at an alternate server without affecting the correctness of

the session. Our examples fall under this category (also see

Ref. [3]). Quick restoration of service-level paths is challen-

ging since there are scaling implications when a large number

of client sessions have to be restored on a failure.

A second challenge is that of performance of the

composed service through appropriate choice of service

instances for the composition. This is more challenging than

traditional web-server selection since we have to choose a

set of service instances, ensuring network reachability and

performance along the entire path.

A third issue is that of failure detection over the wide-area

Internet. There is inherent variability in delay, loss-rates, and

outage durations on an inter-domain Internet path. A

conservative timeout mechanism to detect failures could

mean longer detection times in general, while a more

aggressivemechanismmaytriggerspuriouspathrestorations.

We have developed an architecture for addressing the

issues of availability and performance in service-level paths.

In this paper, we present an evaluation of our design. We

specifically look at the issue of quick failure detection

and recovery for availability of the service-level path.

A challenge that relates to evaluation of mechanisms for

path recovery is the following. Simulations are not ideal for

capturing true processor/network overheads, especially

under scale. However, creating and maintaining a realistic

research testbed across the wide-area Internet would be too

cumbersome and expensive. Also, with a real deployment, a

controlled design study (to identify system bottlenecks)

would be difficult due to non-repeatability of experimental

conditions.

Our evaluation is based on an emulation platform that we

have developed. The platform allows us to realistically

implement our algorithms, while emulating wide-area

Internet latency and loss. The different instances of our

distributed recovery algorithm run on multiple machines of

a cluster within our testbed.

Our experiments show that the control overhead involved

in updating distributed state to effect service-level path

restoration is manageable, both in terms of network resources

as well as processor resources. This allows the system to

scale well with an increasing number of simultaneous client

sessions. In our implementation, a single machine (Pentium-

III 500 MHz) can easily handle the path state associated with

about 400–500 simultaneous client sessions. (Beyond this,

we run into bottlenecks in our emulation setup.) This

amounts to little additional provisioning, especially when

dealing with heavy-weight service components such as the

video transcoder or the text-to-speech engine of our example

(these have much higher provisioning requirements).

To analyze how quickly failure detection can be done, we

collect trace-data on Internet path outages across geo-

graphically distributed hosts. Our analysis shows that failure

detection itself, over the wide-area can be done quite

aggressively, within about 1.8 s. We use the traces to model

losses and outages on Internet paths and use this to drive our

emulation. We find that even with an aggressive failure

detection timeout of 1.8 s, spurious path restorations happen

infrequently—about once an hour. Also, the overhead

associated with each spurious path restoration is small.

Fig. 1. Service composition across the wide-area Internet.

B. Raman, R.H. Katz / Computer Communications 26 (2003) 1727–17401728



Under our trace-based modeling of Internet outages, we

find that recovery of paths after failure detection can be done

within 1 s for over 90% of the client sessions. Such a

combination of quick detection and recovery, within a few

small number of seconds, would be immensely useful for the

kinds of real-time composed applications described above.

The rest of the paper is organized as follows. Section 2

presents an overview of our architecture. Section 3

describes the emulation testbed. Our evaluation of path

recovery mechanisms is in Section 4. We discuss related

work in Section 5 and conclude in Section 6.

2. Design overview

In this section, we present a walk-through of our

architecture. We highlight the main design points and

establish the context for the performance evaluation. The

goal of our architecture is to enable service-level path

recovery upon failure detection, and performance-sensitive

choice of service instances for path creation as well as

recovery. The idea behind path recovery is to use an

alternate Internet path, much as in Refs. [4,5], as well as

possibly alternate service replicas. The motivation for this is

that inter-domain network-path failures can happen quite

often—studies show that inter-domain Internet paths can

have availability as low as 95% [1]. Importantly, when such

failures do happen, they can last for several tens of seconds

to several minutes [2].

The choice of service instances for service-level path

creation/recovery is somewhat like web-mirror selection,

but is more complicated, since in general, we may need to

select a set of instances for a client session. Further, unlike

traditional web-server selection mechanisms, client sessions

in our scenario could last for a long time, and it is desirable

to provide mechanisms for path recovery using alternate

service instances during a session.

A hop-by-hop approach where each leg of the path is

constructed independently could result in sub-optimal

paths—a good choice of the first leg of the path could

mean a poor choice for the second leg. Or, it may even

happen that no instance of the required second service for

composition is reachable from the first chosen service

replica. Hence, a simple architecture that uses such a hop-

by-hop approach is not appropriate for ensuring availability

and performance in wide-area service composition. We

reject this approach.

Since service components are central to composition, we

think in terms of service-execution platforms, and a service-

level over-lay network. Our architecture for composition is

depicted in Fig. 2. We have three planes of operation: at the

lowest layer is the hardware platform consisting of compute

clusters deployed at different points on the Internet. This

constitutes the middle-ware platform on which service

providers deploy their services. Providers could deploy their

own service cluster platforms, or could use third party

providers’ clusters. We define a logical overlay network on

topof this.At the top-level, service-levelpathsareconstructed

as paths in the overlay network. Fig. 3 explains this better.

Fig. 3 shows the architectural components as they would

be deployed on the Internet. Each oval in the figure

represents a service cluster execution platform. Each cluster

has one or more independent service components. A

service-level path is formed as a path in the overlay

network. An example is shown in the figure, using an

instance each of ‘Service 0’ and ‘Service 1’, in that order.

Each cluster also implements a (trivial) ‘no-op’ service that

simply provides data connectivity, and does not perform any

operation on the data. These no-op services allow

composition of services that are not necessarily adjacent

in the overlay network.

The overlay network provides the context for exchange

of reachability and performance information to create

service-level paths. Redundancy in the overlay network

allows us to define alternate service-level paths to recover

from failures—the dotted lines in Fig. 3.

The use of cluster execution platforms as building blocks

is an important design feature. We leverage known

mechanisms to handle process and machine level failures

of service instances within each cluster execution platform

[6]. And we design and evaluate mechanisms to focus on

handling wide-area network path failures. Further, with the

use of clusters, the overhead of monitoring the liveness of an

Internet path representing an overlay link, as well as the

overhead of maintaining the distributed overlay graph state,

are amortized across all client sessions and all service

Fig. 2. Architecture: three layers.

Fig. 3. Architecture.

B. Raman, R.H. Katz / Computer Communications 26 (2003) 1727–1740 1729



instances. That is, these overheads are neither dependent on

the number of client sessions nor on the number of service

instances in deployment.

We now divide the remainder of our discussion in this

section into three parts. We first describe the various

software functionalities and their interaction to enable

composition, in Section 2.1. Then we discuss the important

aspect of the scale and extent of the service overlay network,

in Section 2.2. In the context of these discussions, Section

2.3 brings out the various aspects of the system that call for

quantitative evaluation.

2.1. Software functionalities

For each composed client session, the data exits the

overlay network, after passing through the required set of

services. The overlay node at which the data exits is called

the exit-node for that particular client session. The exit node

is the one that interfaces with the client, and is responsible

for handling client requests for service composition. A

client and the associated exit node are shown in Fig. 3.

For a particular client, the choice of the exit overlay node

could be made using pre-configuration, or some simple

selection mechanism. Fig. 4 shows the various software

functionalities in our architecture. The first vertical layer in

Fig. 4 captures the functionality of finding an exit node. The

next functionality we separate is that of service-location.

This is the second vertical layer in Fig. 4. Here, we just need

a list of locations of service replicas—something like the list

of mirrors for a web-site. This can either be distributed

slowly across the overlay nodes, or can be retrieved from a

central (replicated) directory.

In each cluster, a cluster manager (CM) is responsible for

implementing our algorithms for service-level path creation

and recovery. The software architecture at the CM is also

shown in Fig. 4. The CM implements the mechanisms for

inter-cluster, wide-area distributed service-level path cre-

ation and recovery.

The functionality at the manager node is in three layers

(Fig. 4). The lowest layer implements communication

between adjacent nodes (service-clusters) in the overlay

network. This includes liveness tracking and performance

measurement. We have implemented liveness tracking as a

simple periodic two-way heart-beat exchange, with a

timeout to signal failure. In this paper, we consider latency

as a performance measure—our architecture also allows

measurement and exchange of other metrics such as cluster

load, bandwidth, or other generic metrics.

At the next layer, global information about overlay link

liveness and performance is built using a link-state

algorithm in the overlay network. A link-state approach

gives global information about the entire overlay graph.

This is used in combination with the service-location

information to construct service-level paths, at the top layer.

The top layer implements the functionalities for service

composition itself: initial creation, and recovery when

overlay network failures are detected. The client sends the

request for composition to (the CM of) its chosen exit

overlay node. This CM then constructs the service-level

path by choosing a particular set of service instances and

paths between them in the overlay network. For this, it uses

the overlay graph information built up by the link-state

layer, as well as the service-location information. On

choosing the service-level path, the exit node then sends

signaling messages to setup the path.

The messaging at the link-state and service-composition

layers are implemented on top of a UDP-based messaging

layer that provides at-least-once semantics using re-

transmits.

Since all the computations and control messaging

relevant to composition are done at the CM of each overlay

node, in our discussion below, unless mentioned otherwise,

we use the terms ‘cluster-manager’ and ‘overlay-node’

interchangeably—the CM is the one at the overlay cluster

node.

The algorithm used for choosing the set of service

instances is based on the Dijkstra’s algorithm on a

transformation of the over-lay graph [7]. (The transform-

ation ensures that the path chosen in the graph has the

required set of service instances in the required order.) We

skip the details of this here since it is not relevant for our

evaluation. In Ref. [8], we have studied how this algorithm

can be used in combination with a load balancing metric to

balance load across service replicas. However, in this paper,

we simply use a latency metric and choose service instances

to minimize the end-to-end latency in the service-level path.

When a failure is detected, there are two kinds of

recovery mechanisms possible, as in MPLS [9]. We could

have end-to-end path recovery or perform local-link

recovery. In end-to-end path restoration, the failure

information propagates downstream, to the exit-node,

which then constructs an alternate service-level path. This

construction resembles the original path construction

process. In local-link recovery, the failure is corrected

locally, by choosing a local path to get around the failed

edge. Both kinds of recovery are shown in Fig. 3 using

dotted lines. In either case, the composed application

session continues in the alternate path, from the pointFig. 4. Software architecture of the various functionalities.

B. Raman, R.H. Katz / Computer Communications 26 (2003) 1727–17401730



where the old path failed and stopped (we assume client

support at the application layer to implement this).

Finally, we make one crucial observation. We note that

service- level paths have an explicit session setup phase, and

there is connection-state at the intermediate nodes. For

instance, for a transcoder service, this switching state

includes the input data type and source stream, and the

output data type and next-hop destination information. This

means that, unlike Internet routing, failure information need

not propagate to the entire network and stabilize before

corrective measures are taken. This is an important aspect of

the system that allows quick restoration of client sessions.

2.2. Scale of the overlay network

In our architecture, an important issue is that of the

size and extent of the overlay network. We discuss this

now. We first note that the portion of the service-level

path after the exit node is not ‘protected’. That is,

failures on this portion of the path are neither monitored

nor recovered. Hence, ideally, each client should have an

exit node ‘close’ to it. It should be close in the sense that

the client should experience roughly the same network

connectivity to the rest of the Internet as its chosen exit-

node. In this sense, the overlay network should span the

Internet. The question then is, how many overlay nodes

are required to achieve this.

As a point in comparison, we consider the Autonomous-

System (AS) network in the Internet. By definition, it spans

the Internet since the AS network is what constitutes the

Internet. Also, by definition, each node within an AS has

roughly the same inter-domain connectivity to the rest of the

Internet (like in the definition of ‘close’ in our case in the

previous paragraph). The AS network had about 12,000

nodes as of December 2001.

Another useful point of comparison for the size of the

overlay topology is another Internet-wide service in

operation—the Akamai content-distribution network of

cache servers (www.akamai.com). While this network is

not an ‘overlay’ network in that it does not do routing of

user-data, it is similar to our overlay network in that it is an

Internet-wide service. Here too, the goal is to span the

Internet so that there is a cache server close to each client.

This service had an expanse of 13,000 þ server locations in

1000 þ ISP network locations as of October 2001 (www.

akamai.com).

As an estimate, using these two points of comparison, we

can say that a few thousand nodes are probably sufficient to

span the current Internet. Making a stronger claim about the

exact number of overlay nodes required is an interesting

research issue in itself and is out of scope of this work.

However, the ballpark figure of a few thousand nodes (for

the overlay size) suffices for the purposes of our evaluation

below.

2.3. Potential scaling bottlenecks and sources of overhead

Each of the layers of functionality in Fig. 4 has

overheads. There are two different issues of scale that arise.

The first is with respect to the number of simultaneous

client sessions. At the service-composition layer, the

presence of connection-state per path makes quick failure

recovery easier. This is because recovery is per client session,

and does not depend on propagation and stabilization of the

failure information across the network. However, this could

have scaling implications since a large number of client

sessions may have to be restored on failure of an overlay link.

The second scaling issue concerns the size of the overlay

network. During path creation or restoration, finding a path

through a set of intermediate service instances involves a

graph computation based on the information collected by

the link-state layer. This could have memory or CPU

bottlenecks for a large overlay network. Further, the choice

of a link-state approach for building global information

could pose problems. Link-state flooding consumes network

bandwidth, and this could be a potential source of bottleneck

for a large network.

Apart from these issues of scale, at the lowest layer of

Fig. 4, failure detection itself is a concern when service-

clusters adjacent in the overlay network, are separated over

the wide-area Internet. A conservative mechanism to detect

failures (in the Internet path in-between) could mean longer

detection times in general, while a more aggressive

mechanism may trigger spurious path restorations. A

spurious path restoration is wasted effort and represents a

form of system overhead. Our main goal in the rest of the

paper is to identify sources of scaling bottlenecks, quantify

the various overheads, and determine how quickly we can

effect service-level path recovery. We now turn to

describing our evaluation testbed to study these overheads.

3. Experimental testbed

Evaluation of an Internet-scale system like ours is

challenging since performance metrics such as time-to-

recovery from failure and scaling with the number of clients

depend on Internet dynamics. A large-scale wide-area

testbed is cumbersome to setup and maintain. Simulations

are inappropriate since they do not capture processing

bottlenecks. They also do not scale for large numbers of

client sessions. We have developed a network-emulation

plat-form for our experiments. We have a real implemen-

tation of the distributed algorithms and mechanisms. Instead

of having them run across the wide-area, we have the

different components run on different machines in a cluster

connected by a high-speed LAN. We then emulate the wide-

area network characteristics between the machines.

The opportunity for such an emulation-based platform is

provided by the Millennium cluster (www.millennium.

berkeley.edu). Our setup is shown in Fig. 5. Each machine

B. Raman, R.H. Katz / Computer Communications 26 (2003) 1727–1740 1731

http://www.akamai.com
http://www.akamai.com
http://www.akamai.com
http://www.millennium.berkeley.edu
http://www.millennium.berkeley.edu


represents an overlay node of our architecture. We run only

the CM software of an overlay node on the testbed machine

corresponding to it. This is because the CM is the one

responsible for all the control traffic associated with service

composition. We have all traffic between the distributed

components pass through an emulator machine. (Note that

the millennium cluster in our emulation is quite different

from the service-clusters in our architecture. In fact, each

node in our emulation setup represents a CM of a service-

cluster/overlay-node in our architecture, and runs the

software shown in Fig. 4.) The emulator has rules to capture

the behavior of the overlay link between pairs of overlay

nodes. We have modeled delay/latency behavior between

overlay nodes, as well as the frequency and duration of

failures of the overlay link. The actual settings for these

packet handling rules, and the choice of the overlay

topology itself, are presented in Section 4.1.

Each emulation node in our testbed is a 500 MHz

Pentium-III machine with up to 3 GB memory, and a

500 kB cache. Each is a 2-way, or 4-way multi-

processor, and runs Linux 2.4. The emulator is setup

on a Pentium-4 1500 MHz machine with 256 MB

memory, and 256 kB cache, running Linux 2.4.2-2. It

is on a 100 Mbps network.

Table 1 presents a brief characterization of our emulator

setup. We have traffic passing through the emulator at a

constant packet rate, with all packets being the same size.

The emulator fires a randomly picked rule for each packet.

In this setup, we vary the packet rate and packet size across

different runs, and measure the percentage of packets lost at

the emulator (these losses exclude the packet drops at the

emulator as stipulated by the randomly picked rule).

In Table 1, the scaling limits of the emulator are reached

in both dimensions—at large packet sizes and at high packet

rates. We note that the emulator performs quite well for up

to a packet rate of 20,000 pkts/s, for pkt sizes below 500

bytes. This constitutes about 20,000 £ 500 £ 8 ¼ 80 Mbps,

which is close to the ethernet limit in our setup. We shall

refer back to these numbers later to verify that in our

experiments, we do not exceed these limits of operation of

the emulator.

4. Evaluation

In this section, we turn to the evaluation of our system.

We seek to understand the scaling behavior of the system

and quantify overheads as summarized in Section 2.3. In our

set of experiments, we consider several metrics: (a) the time

to recovery of client path sessions, after failure detection,

(b) the time to detection of failures in Internet paths, (c) the

additional control overhead due to spurious path restor-

ations, and (d) other memory, CPU, and network overheads

in our software architecture. We study client session

recovery time as a function of the number of client sessions

(load) at each CM. We analyze the two different recovery

algorithms presented in Section 2.1. In Section 4.2, we

consider end-to-end path recovery and study its scaling

behavior. In Section 4.3, we compare local recovery with

end-to-end recovery. For these set of experiments, we use

realistic modeling of Internet delay, but use controlled link

failures. We then turn to a trace-based study of Internet path

failure behavior in Section 4.4, and look at failure detection.

Using this trace data, we study the time to path recovery

under Internet failure patterns in Section 4.5. This allows us

to examine spurious path restorations. Finally, we look at

other sources of overhead in our system in Section 4.6.

4.1. Parameter settings for the experiments

Before presenting our experiments, we explain two

important parameter settings in this subsection: the overlay

topology, and the nature of performance variation of the

links in the overlay network.

4.1.1. The overlay network topology

While we envision a full-fledged deployment of our

architecture to constitute a few thousand overlay nodes

(Section 2.2), we first wish to study system behavior with a

smaller number of nodes. This is also a limitation imposed

by our emulation testbed which has a maximum of a

hundred machines to act as overlay nodes. However, we

study scaling in the dimension of the number of client

sessions with this setup.

We use the following procedure to generate an overlay

network. We first generate an underlying physical network

with a Transit-Stub topology. This graph has a total of 6510

nodes, and 20,649 edges. This topology is generated using

the GT-ITM package [10] (with 14 transit ASes, each with

Table 1

% packets lost by the emulator

10,000 (s) 15,000 (s) 20,000 (s) 25,000 (s)

250B 0.000 0.020 0.005 23.9

500B 0.010 0.020 0.185 20.4

800B 0.86 8.72 29.24 44.1

1100B 1.63 36.14 49.75 64.71

1400B 36.36 50.65 65.48 68.95

Fig. 5. Emulator setup.

B. Raman, R.H. Katz / Computer Communications 26 (2003) 1727–17401732



15 nodes, 10 stub-ASes per transit-node, and three nodes per

stub-AS). We then select a random subset of N nodes from

this physical network to generate an N-node overlay

topology (N is a much smaller number than 6510). Next,

we examine pairs of overlay nodes in the order of their

closeness and decide to form overlay links between these.

Overlay links are thus equivalent to physical paths. In this

process, we impose the constraint that no physical link is

shared by two overlay links. (Although this could

theoretically result in a disconnected overlay topology, for

the graph that we used, the final overlay network was

connected.)

4.1.2. Overlay network parameters

To study our mechanisms for service-level path creation,

adaptation, and recovery, we vary two network parameters:

latency, and occurrence of failures (packet drops are

modeled simply as short failures). We use these two

parameters to capture the nature of overlay links in our

emulations. Each rule at the emulator involves these two

parameters.

Latency variation. To model this, we use results from a

study of round-trip-time (RTT) behavior on the Internet

[11]. We make use of two results: (1) Significant changes

(defined as over 10 ms) in average RTT, measured over

1 min intervals occur only once in about 52 min. This value

of 52 min is averaged over all host-pairs. (2) The average

run length of RTT, within a jitter of 10 ms, is 110 s across all

host-pairs. The first result says that sustained changes in

RTT occur slowly, and the second result says that the jitter

value is quite small for periods of the order of 1–2 min.

We use these as follows. The costs of edges of the

physical network are as generated by the GT-ITM package.

For the overlay links, the cost is simply the addition of the

costs of the physical path edges between the overlay nodes.

This cost is however, only relative. We normalize this by

setting the maximum overlay link cost of 100 ms. This is the

one-way cost, and is the base-value for the latency in an

overlay link. Given a base-value L for the latency, we

gradually vary the latency between L and 2L: Such a

variation of overlay link cost gives a maximum one-way

latency of 2 £ 100 ¼ 200 ms, and a max RTT of up to

2 £ 200 ¼ 400 ms. This is a reasonable choice since overlay

links are likely to be formed between ‘close-by’ overlay

nodes—they are unlikely to be separated by an RTT of over

400 ms. We impose the constraint that significant sustained

changes happen once in an ‘epoch’ of length 52 min (using

result (1)). Also, to have some variability, we set a value of

15 min for this epoch for 10% of the overlay links, and

100 min for another 10% (the rest 80% have the value of

52 min). Within an epoch of RTT value, 1 min averages are

varied within 10 ms (in accordance with (1)). And within a

minute, jitter is within 10 ms (in accordance with (2)).

In our modeling of latency variation, we do not include

occasional, isolated RTT spikes that do happen [11].

Instead, we model RTT spikes also as loss-periods/failures,

which is worse than RTT spikes. (Although the study we

have used is somewhat old, it is extensive. Also, our own

UDP-based experiments in Section 4.4 agree in spirit with

observation (2) above—in our experiments, we observe that

outage periods lasting beyond 1–2 s are very rare.)

Occurrence of failures. For the initial set of experiments,

we fail graph links in a controlled fashion. We then used a

trace-based emulation of network failures. We postpone a

discussion of this emulation to Section 4.4.

4.2. Time to path recovery: end-to-end recovery

In this subsection, we study the system behavior with an

increasing number of simultaneous client sessions, while

using the end-to-end recovery mechanism for failed paths.

We capture our metric of time-to-recovery of client sessions

as a function of the number of client sessions for which an

overlay node is the exit node (and hence its CM is

responsible for path creation and recovery for that session).

In the rest of the discussion, we refer to the number of client

sessions for which an overlay node is an exit node as the

load L on it (or equivalently, the load on its CM).

In this set of experiments, we first use a 20-node overlay

network (with 54 edges) generated as described earlier, and

study scaling in the dimension of the number of clients. We

later consider the effect of increasing the overlay size. There

are a total of ten different services, ‘s0’ through ’s9’, each

with two replicas in the overlay network. Having two

replicas ensures an alternate server for failure recovery, and

having 10 different kinds of services with two replicas each

ensures that the overlay network is uniformly covered with

services. The replicas are placed at random locations in the

overlay. Each client path request involves two different

randomly chosen services from among the 10. (Note that

although each path has only two logical services, the path

could stretch across many more overlay nodes, via the no-op

services.)

Across the runs, we vary the load L from an initial value

of 25 paths per CM, and increase it gradually to examine the

scaling behavior. We have equal load at all the 20 CMs. For

a given load, we first establish all the paths (total

#paths ¼ #paths terminating at a CM £ 20 CMs). We then

deterministically fail the link in the overlay network with

the maximum number of client sessions traversing it. This is

the worst case in a single-link failure. We conclude the

experiment shortly after all the failed paths have been

recovered (a few seconds). We then compute the time to

recovery, averaged over all the paths that failed and were

recovered. Fig. 6(a) shows this average metric plotted

against the load as we defined above. The error bars indicate

the standard deviation.

There are several things we note about the plot. Firstly,

the average time to recovery remains low, below 600 ms

even for a load of up to 500 paths per CM. This time-to-

recovery is the time taken for signaling messages to setup

the alternate path, after failure detection. Secondly,

B. Raman, R.H. Katz / Computer Communications 26 (2003) 1727–1740 1733



the average time-to-recovery increases only slowly as the

load increases. This suggests that the system has not reached

its saturation point yet. That is, even at higher load, queuing

delays associated with processing the distributed recovery

messages are minimal. The third observation we make is

that the variance of the time-to-recovery across all failed

paths is large at high load. To explain this, we plot another

graph.

Fig. 6(b) shows the CDF of the time-to-recovery of all

the failed paths. Different plots are shown for different

values of the load. We see that the majority of the paths

recover well within 1 s, and a small fraction of the paths

take over 1 s to recover (notice the flat region in the

CDF). This is due to the following reason. The path

recovery control messages are transmitted using the

reliable UDP messaging layer of Fig. 4. This layer

implements a re-transmit after 1 s, if there is no reply to

the first packet.1 Such a re-transmit occurs for the path

recovery control messages since the first control message

is lost, at higher load. A certain fraction of the paths being

recovered thus experience significantly higher recovery

time than others. This explains the high variance at high

load, in Fig. 6(a).

There are two reasons why packet losses can occur: (1)

excess load in processing the path recovery messages at the

CMs, or (2) bottleneck at the emulator in our setup. (Note

that we have not yet modeled packet-losses/outages on the

overlay links. Also, the control packet losses could not be

because of the deterministically failed link, since our

algorithm does not send any recovery messages on the

failed link itself.) Case (1) would mean that we have a

bottleneck in our software architecture, while case (2)

would mean that the emulator setup is being stressed. To

check this, we instrument the emulator to: (a) count the

number of packets it sent and received, and (b) measure the

packet rate it saw, in 100 ms windows. The CMs also keep

track of the number of packets they send and receive. Using

(a), we compute the number of control packets lost at the

CM, and the number of control packets lost in the emulator

setup. We use (b) to check against the emulator limits given

in Table 1 of Section 3.

In Fig. 6(c), we tabulate these values for different loads.

We notice that there are no packet losses at any of the CMs,

meaning that the bottleneck is not in the message processing

at these nodes. However, the emulator node (or the local

area network in-between) loses a small number of packets,

and this number increases with the load in the system. The

table also gives the maximum rate seen by the emulator in

100 ms windows. Referring back to Table 1, we see that the

emulator setup is close to its limits in these experiments, in

terms of the packet rate. (The sizes of all control packets

were within 300 bytes.) Note that for every packet lost by

the emulator, a client session recovery could experience a

control message re-transmit, and thus a recovery time higher

than 1.0 s.

We thus conclude with certainty from the above

experiments that the system can handle at least 200

paths/CM easily. Also, since no packets are lost by the

CMs due to processing bottlenecks (column 1 of the table in

Fig. 6) even at higher loads, we can say with reasonable

certainty that the scaling limits of the CMs have not been

reached even at loads of 400–500 paths/CM. This is also

corroborated by the fact that the average time-to-recovery

increases only slowly with increasing load—if saturation

point had been reached, we would have expected to see a

steep increase in the plot at this saturation point.

Our CM machines are Pentium III 500 MHz quad-

processor machines. During our experiments, since the

cluster was in production use, we were not able to get fully

unloaded machines, but always used the least loaded set of

machines. The number of 400–500 simultaneous paths per

CM is a reasonable number, since we are dealing with

heavy-weight application services such as video transco-

ders, text-to-speech converters in our examples given

earlier. For comparison, the text-to-speech service we

implemented in Ref. [12] could support only about 15

simultaneous client sessions on hardware similar to those

running our CMs. This means that in deploying a service

cluster, the amount of provisioning required for CM

functionality would be small in comparison to that required

for actual services such as the text-to-speech engine. Also,

note that a cluster can have multiple CMs dealing with

Fig. 6. (a) Time to recovery vs. load. (b) CDF of time-to-recovery for different values of load. (c) Detecting the bottleneck.

1 We use a value of 1 s for the first re-transmit, 1.5 s for the second re-

transmit, 2 s for all further re-transmits.

B. Raman, R.H. Katz / Computer Communications 26 (2003) 1727–17401734



different sets of client path sessions—the system can be

provisioned with more CMs to support a larger number of

simultaneous client sessions.

We make another observation. We have used latency as a

metric for path creation, and in the above experiments,

failed the over-lay link with the maximum number of client

paths traversing it. This represents a worst-case scenario.

This is because, as is well known, a metric such as latency is

very poor in distributing load across the network. In fact, in

our experiments above, we observed that the load across the

overlay nodes was highly skewed. The system can be

expected to scale even better if a load balancing metric such

as cluster-load is used. We have implemented such a load

balancing metric, described in Ref. [8].

In the above experiments, we have not considered scaling

along the dimension of the number of overlay nodes.

However, intuitively, if we grow the overlay network size,

and correspondingly also increase the number of service

replicas, the load on the over-lay links should remain the

same irrespective of the size of the network. In fact, we do

observe this experimentally. We generate overlay topolo-

gies of various sizes, as explained in Section 4.1. We choose

a number of service replicas in the overlay proportional to

its size. We place these replicas at random locations in the

overlay. We setup a number of client sessions, and then

measure the load on each overlay link. We plot a CDF of

this edge load across all the edges in the overlay, for

different overlay sizes. Fig. 7 shows this set of plots. We see

that as the network size grows, the load distribution across

the various edges does not change much. In fact, with

greater connectivity for the larger networks, the edge load

only evens out. This is suggested by the fact that the CDF

becomes more vertical at the middle with increasing overlay

size. Even the maximum edge load does not change with

growing overlay size. These observations mean that a link

failure in a larger network, with a proportionally larger

number of clients, is no worse than in a smaller network.

That is, scaling with respect to the number of clients does

not worsen with increasing overlay size.

4.3. Time to path recovery: local recovery

We now examine the alternate method of local recovery

where the failed edge is replaced by a local path. This

recovery mechanism has the advantage over end-to-end

recovery that since the signaling messages are local,

the recovery time can be lower. However, since the path

is being fixed locally, we might lose out on global

optimization. That is, the resultant path after local recovery

might have a higher cost than if end-to-end recovery had

been used. We look at the nature of this trade-off now.

Like in our earlier set of experiments, we have a set of

runs with varying load; in each run, we create paths before-

hand, and then fail the overlay link with the maximum

number of paths going through it. Apart from the trade-off

mentioned above, there is a further issue with local

recovery. Since paths are constrained to pass through

nodes with services, they may not be simple graph paths:

they may have repeated occurrences of nodes or edges in

them. An example is shown in Fig. 8(a). Since local

recovery hides the recovery information from the rest of the

nodes in the path, handling race conditions in distributed

messaging, when there are multiple occurrences of nodes in

the original path, becomes difficult. For this reason, we fall

back on end-to-end recovery when the original path has

repeated occurrences of nodes.

Hence in each run, we use local recovery for client

sessions whose original paths do not have repeated nodes,

and end-to-end recovery for other client sessions. In each

run, there were a significant fraction (at least 25%) of client

sessions in each category—it was not the case that one kind

of recovery was applied for most client sessions in any run.

This has the side effect of making our comparison simpler,

since we can compare the average time-to-recovery of

paths, under either algorithm, in the same run. The two plots

in Fig. 8 illustrate the trade-off between the two algorithms.

The first graph shows the average time-to-recovery as a

function of the load, much as in Fig. 6(a). The second graph

shows the other metric: the ratio of the cost of the recovery

path, to the cost of the original path, as a function of the

load. (Recall that the path cost in our case the end-to-end

latency.)

In the first graph, we note that the time-to-recovery has

low values, around 700 ms, as earlier. Also, the variance in

the time-to-recovery goes up with load, as in Fig. 6(a). The

small non-uniformity in the plot is understandable given the

magnitude of the variance. Another point we note is that

local recovery has consistently lower average recovery time,

as expected. Although it has lower time-to-recovery, we

note that the difference is very low in absolute terms—

within 200–300 ms. (As our discussion in Section 4.4 will

show, these small differences will be dwarfed by the time to

failure detection in Internet paths—about 1.8 s.)

The second graph shows the flip side of local recovery—

it results in paths that are costlier than with end-to-end

recovery. Here, the difference between local and end-to-endFig. 7. CDF of edge loads, for various overlay sizes.

B. Raman, R.H. Katz / Computer Communications 26 (2003) 1727–1740 1735



recovery are significant. Local recovery results in paths that

are 20–40% costlier than the original path, due to the

additional re-route in the middle of the original path. On the

other hand, end-to-end recovery causes a maximum extra

cost of 10% over the original path, and in many cases

actually improves the path cost over the original path.

Improvement in path cost over the original path is due to the

following reason. The latency metric along overlay links is

variable, as explained in Section 4.1. Hence the original

min-cost path is no more the min-cost path after a while—at

the time of path recovery. Hence, when an alternate end-to-

end path is setup, it can incur a lower cost than the original

path. While these differences of 10–30% one way or

another may not greatly affect the performance of the client

path when using the latency metric, it is significant if we use

a graph metric such as load on the cluster node.

4.4. Internet failure behavior and failure detection

So far in our experiments, the failures in the overlay links

have been artificially introduced. We have not modeled how

often Internet path failures happen, or how long they last.

While this allowed us control over our experiments to

understand the system behavior, we would like to see our

system performance given Internet path failure patterns.

Further, an aspect we have not addressed so far is, how

quickly failures can be detected, reliably. We turn to these

issues now.

Failure detection. A key aspect of our system is its

ability to detect failures in Internet paths. To achieve high-

availability, we need to detect failures quickly. In particular,

we are concerned about keeping track of the liveness of the

wide-area Internet path between successive components in

the service-level path. An example is shown in Fig. 3—the

first leg of the service-level path. This is important since

unlike the telephone network, the Internet paths are known

to have much lesser availability [1,2].

While the notion of failure if very application specific,

for our purposes, we consider Internet path outages such as

those that happen when there is a BGP-level failure [2].

These could last for several tens of seconds to several

minutes. We wish to detect such long outages. In the rest of

the discussion, we use the terms ‘failure’ and ‘long-outage’

interchangeably, and both refer to instances when no packet

gets through from one end of the Internet path to the other

for a long duration such as several tens of seconds.

The straightforward way to monitor for liveness of the

network path between two Internet hosts is to use a keep-

alive heart-beat, and a timeout at the receiving end of the

heart-beat to conclude failure. This is shown in Fig. 9. There

is a notion of a false-positive when the receiver concludes

failure too soon, when the outage is actually not long-lasting

(Fig. 9(c)). False-positives occur due to intermittent

congestion/loss. We term a path restoration triggered by

such a false-positive to be a spurious path restoration.

There are three questions to answer in this context. (1)

What should be the heart-beat period? (2) Given a heart-beat

period, what should the timeout be to conclude long

outages? (3) Given a timeout period, how often do false-

positives occur, when we confuse intermittent congestion

for a long outage? Intuitively, there is a trade-off between

the time to failure detection and the rate of false-positives. If

the timeout is too small, failures are detected rapidly, but the

false-positives increase, and vice-versa when the timeout is

too large. We study these in detail now, using wide-area

trace data.

Trace data. To answer the three questions posed above,

we need a frequency/probability distribution of the

incidence and duration of failures. There have been studies

Fig. 8. (a) Node repetition: an example. (b) Local vs. E2E recovery (time-to-recovery). (c) Local vs. E2E recovery (path cost).

Fig. 9. Failure detection using heart-beats.

B. Raman, R.H. Katz / Computer Communications 26 (2003) 1727–17401736



of outages or packet loss patterns at small time scales (less

than 1 s) [13,14]. These have shown that there is correlation

of packet loss behavior within 1 s, but little correlation over

a second. Further studies have estimated failures that last for

over 30 s [15,16]. To the best of our knowledge, there does

not exist publicly available data, or a study, that gives a

probability distribution of these failure gap periods on a

wide-area Internet path.

We have collected data to arrive at such a probability

distribution. We run a simple UDP-based periodic heartbeat

between pairs of geographically distributed hosts. We

choose a heart-beat period of 300 ms. This is based on

the fact that packet losses are highly correlated within 1 s

[13,14]. The set of hosts from which we collected data are:

Berkeley, Stanford, CMU, UIUC, UNSW (Australia), and

TU-Berlin (Germany). This represents some trans-oceanic

links, as well as Internet paths within the continental US

(including Internet2 links). We have data for nine pairs of

hosts among these, a total of 18 Internet paths. Six of the

nine pairs of data were collected in Nov 2000, and three in

October 2001. One pair of hosts was a repeat between these

two runs. Across these 18 paths, the RTT varied from about

3 to 220 ms. The number of AS domains on each Internet

path varied between three and six for these 18 paths. The

heart-beat exchange was done for an extended period of

time—for 3–7 days for the nine pairs of hosts.

To understand the nature of Internet path outages, we

compute the gaps between successive heart-beats at the

receiving end. Looking across all gap-lengths in an

experiment, we get a distribution. Fig. 10(a) shows this

distribution as a CDF for three pairs of hosts (six Internet

paths). The plots for other host-pairs are similar and we do

not show them here.

Note that the y-axis in Fig. 10(a) starts from 99.9%. This

is because a large number of gaps in reception that are

between 300 and 600 ms. This is merely inter-arrival jitter

since the heart-beat period itself is 300 ms. In the graph, we

first draw attention to the last plot which is marked as the

ideal case. This is with fictional data, has no connection with

our trace data, and is for purposes of illustration. We term

this plot as ideal since there is a long flat region in the CDF.

This flat region starts from 1800 ms and continues up to

30,000 ms (30 s), before the CDF begins to increase again

(this increasing part beyond 30 s cannot be seen on the

graph). This long flat region means that, if we choose a

timeout of 1800 ms for detecting long outages, we would

never confuse an intermittent congestion for a failure. That

is, all intermittent congestion lasts for less than 1800 ms. An

outage lasting 1800 ms implies an outage lasting for longer

than 30,000 ms.

We observe that the plots with the real data are very close

to the ideal case. There is a sharp knee in the plot, and the

CDF has a region that is almost flat beyond this knee. This

suggests a value for the timeout (for failure detection) that is

just beyond the knee in the plot. For the different plots, this

value varies between 1200 and 1800 ms.

The region beyond the knee is ‘almost’ flat, but it

definitely has a small slope in all the plots with the real data.

This slope means that there is a non-zero probability that we

confuse intermittent congestion with long outages or

failures. That is, there is intermittent congestion that lasts

for periods of time ranging beyond the timeout value. To

give an quantitative idea of this observation, suppose that

we want to detect outages lasting for 30,000 ms or more,

and have a timeout of 1800 ms. For four of the 18 Internet

paths, the timeout would be able to predict a long outage

with probability 40% or more. For six other cases, this

probability would be between 15 and 40%, and for the rest

of the eight cases, the prediction probability would be less

than 15%.

In terms of the prediction probability of long outages,

these numbers of 15 or even 40% may not seem good. But

we argue that this does not really matter in absolute terms.

For this, we plot a second set of graphs in Fig. 10(b). This

shows the rate of occurrence of outages of various durations

on a log scale. If we consider outages of 1800 ms or above,

these occur about once an hour or less frequently. (The long

outages happen even less frequently, but contribute

significantly to loss of availability.) Intuitively, this is a

very small absolute rate of occurrence of timeouts, and

hence a small rate of occurrence of false positives. (Section

4.6 will quantify as to why this rate of occurrence is

manageable even under scale, with a large overlay network.)

The plots in Fig. 10(b) also have knees at around the

same points as those in Fig. 10(a). This also explains why a

timeout just beyond the knee (in either of these plots) is

Fig. 10. (a) Gap distribution (CDF). (b) Outage occurrence rate. (c) Performance under Internet failures.

B. Raman, R.H. Katz / Computer Communications 26 (2003) 1727–1740 1737



appropriate. A value before the knee, say 1000 ms, for the

timeout would mean that timeouts occur much more

frequently—1–2 orders of magnitude more frequently.

This in turn implies a correspondingly large absolute rate of

occurrence of false positives. On the other hand, a timeout

value much beyond the knee, say 3000 ms does not bring

much reduction in terms of rate of occurrence of false

positives, but only increases the failure detection time

significantly.

We use this set of data in two ways: (1) we use the plots

in Fig. 10(a) to model the distribution of outage periods on

the over-lay links, which are Internet paths, and (2) we use

the empirical value of 1.8 s, as suggested by the knee-points

in either set of plots, as a timeout to conclude failures. (In

reality, the timeout can be selected dynamically, using the

data collected with the heart-beats.) We now return our

discussion of path recovery time, but with the above

modeling of Internet failures.

4.5. Performance under Internet failure behavior

In this experiment, we wish to study two things: (a) the

extent of spurious path restorations under Internet outage

patterns, and (b) the performance of our recovery messaging

under Internet packet losses as given by our traces in the

prior section. Given the set of CDFs of outage durations in

the earlier section, we fail links in our overlay with a

particular probability, for a particular duration, according to

the distribution as in Fig. 10(a). For an overlay link in the

testbed, we choose one of the 18 distributions at random.

We have a fixed timeout of 1.8 s to detect failures between a

pair of overlay nodes. We now run the same experiment,

with the 20-node graph, with a load of 300 paths per CM

(total number of paths in the system ¼ 20 £ 300 ¼ 6000).

We use only the end-to-end recovery algorithm for this run.

We let the system run for a period of 15 min.

During the run, across all the 54 edges in the graph, there

are 162 outages that last 1 s or more, of which 32 outages

last 1.8 s or more, and seven last for 20 s or more. There are

11,079 end-to-end recovery attempts triggered. This

represents an average of about two recoveries per client

path session during the experimental run. 10,974 (99.05%)

of these recovery attempts were successful.

For a number of the shorter outages, the outage time

itself is comparable to the recovery time. Such short outages

are, in some sense, false-positives that trigger spurious path

restorations. Ideally, these should not have triggered any

recovery—but this happens due to our aggressive timeout

mechanism to detect failures quickly. To quantify the

fraction of spurious path restorations in our experimental

run, we count the number of recovery attempts that were a

result of a failure lasting less than 3 s.

We find that, of the 11,079 recovery attempts, 6557

(59.18%) are caused by such short outages. This figure of

about 60% for the fraction of spurious restorations triggered

merits some discussion. We first note that even if a recovery

attempt is spurious, application data is not lost any more

than during normal Internet performance, without our

recovery algorithms. This is because the original path is

torn down only after the new path has been established. The

only overhead of a spurious recovery attempt is in the

control messages introduced by our service composition

layer. The control overhead itself is minimal, and can easily

be handled with little additional provisioning in terms of

CMs, as shown in Section 4.2. In absolute terms, spurious

path restorations and failures themselves occur infrequently.

The average rate of occurrence of failures per link in our

experimental run is: #outages over 1.8 s/#links/

15 min ¼ 32/(54 £ 2)/0.25 ¼ 1.2/hour/link. The rate of

occurrence of spurious restorations is even lower since

only a fraction of the outages represent spurious failure

detections. Hence spurious restorations are a small price to

pay for the benefits of quick failure detection with an

aggressive timeout.

An important aspect of path restorations (including

spurious ones) is that of system stability. If the absolute rate

of occurrence of path restorations is high in the system,

instability could result. That is, paths could be switched

repeatedly, with cascading or alternating failures due to

overload in portions of the overlay network. In our

experiment above, we did not observe any such instability.

In retrospect, the reason for this is simple—our system can

easily handle loads of 300 paths/CM (which is what we had

in the experiment above), and there are no processing

bottlenecks that drive the system to an unstable state.

Fig. 10(c) shows the CDF of the time-to-recovery of all

the paths. Note the flat region in the CDF, as in Fig. 6(b).

This represents a re-transmit of a control message during

path recovery. Such re-transmits are due to the Internet

packet losses we have modeled in this experiment. The plot

indicates that over 90% of the recoveries are completed

within 1 s. This represents the re-covery time under packet

loss as modeled by our outage periods. Such a quick

restoration represents orders of magnitude better perform-

ance than Internet path recovery that takes several tens of

seconds to minutes [2].

4.6. Other sources of overhead

So far we have focused on the path recovery algorithm

component of our architecture. The other pieces are (1) the

peer-peer heart-beat and measurements, (2) the link-state

propagation, and (3) the path creation algorithm itself. The

first consumes minimal resources: the heart-beat is sent

every 300 ms in our implementation. And peer–peer

latency measurements are done once every 2 s. The

bandwidth consumed by these is minuscule.

The second, link-state propagation, is performed when-

ever there is a change in the link-status (dead/live), or when

there is a significant change in the latency over the link.

Apart from this, we also have a soft-state link-state

propagation every 60 s to handle dynamic graph partitions.

B. Raman, R.H. Katz / Computer Communications 26 (2003) 1727–17401738



Given the nature of latency variation as described earlier,

sudden large changes in latency are rare. So most link-state

floods are sent over the network due to link failures or

restorations. In the experiment we described in Section 4.5,

150 link-state floods happen over the entire run of the

experiment lasting 15 min, notifying nodes of a link failure

or link recovery. Given that a link-state flood means a single

message over each link in the graph, there are only 150

messages per link due to these floods over the entire run.

This is also minimal. We expect this number to increase

linearly as the number of edges in the graph increases. This

is not too bad however, since we do not stipulate a complete

graph for the overlay network as in Ref. [4]. In fact, it is

ideal if the overlay network maps onto the underlying

physical network closely. That is, it is good if multiple

overlay links do not share underlying physical links.

Another possible source of overhead is the graph

computation involved during path creation and path

recovery. The complexity of Dijkstra’s algorithm is E £

logðNÞ; where E is the number of edges and N is the number

of nodes in the graph. In Section 2.1 we mentioned that the

algorithm is applied on a transformation of the overlay graph.

In turns out that this transformation does not affect the

algorithm complexity. In our implementation, this algorithm

performs quite well. We performed micro-benchmark

studies (not an emulation run) of this algorithm alone, with

a 6510-node overlay network, with 20,649 edges. On the

configuration of our cluster machines, the computation takes

about 50 ms, and only about 3 MB of memory. This figure of

50 ms could be significant overhead if this computation is

done for every path creation or recovery. However, we

perform an optimization that we term path caching. We run

the algorithm, and store the resulting ‘tree’ structure for

requests for path creation/recovery in the near future. We

store one such tree for every kind of service-level path (not

every client path session). We update this tree only when the

graph state changes, i.e. only 150 times, once for each link-

state update, during our experimental run in Section 4.5.

Since we do not run this algorithm for every path creation/

recovery, this is not a source of bottleneck.

4.7. Summary of results

In summary, our results show that failure recovery can be

performed in our overlay network of service clusters, within

1 s for over 90% of client sessions (Section 4.5). Our trace-

data, and the experiments using those show that failure

detection can be quite aggressive, with a timeout as low as

1.8 sec, with an infrequent occurrence of spurious path

restorations—about once an hour in our experiments.

Hence, overall, paths can recover from outages within

about 1 þ 1.8 ¼ 2.8 s. This would be of tremendous use to

applications such as video streaming—without our mech-

anisms for recovery, client sessions could experience

outages that last for several minutes [2]. This figure

of 2.8 s is definitely good enough for real-time, but

non-interactive applications, which usually buffer about

5–10 s of data. For interactive applications, this may not be

perfect, but would provide significantly better end-user

experience than without our recovery mechanisms.

Our data shows that there is no bottleneck with the control

message processing involved during path recovery, so far as

wehave beenable toscale ouremulation testbed.We explored

the use of local recovery—while this results in quicker

recoveryunder lowload, the local nature of the recoverycould

lead to sub-optimal path metric for the recovered path.

5. Related work

The idea of service composition itself is not novel, a

simple example being unix piping. The TACC project [6]

developed models for fault-tolerance of composed services

within a single cluster. The solution is based on monitoring

using CMs and front-ends. Apart from the TACC model,

cluster-based solutions for fault-tolerance have been studied

for other kinds of applications as well. The Active Services

[17] model uses a soft-state mechanism for maintenance of

long-lived sessions. The LARD approach [18] does load-

balancing of client requests for a web-server within a

cluster. However, such cluster-based approaches do not

address performance or robustness across the wide-area.

In the context of web-servers, the problem of selecting an

appropriate service instance based on network and server

performance has been studied by earlier approaches [19,20].

However, for composed services, we have multiple ‘legs’ of

the service-level path, and we need to optimize the overall

composition, and not just one leg of it. Also, web-server

selection mechanisms do not address fail-over for long-

lived sessions, since web-sessions typically last for a short

period of time (a few seconds).

Routing around failures (above the IP level) in the wide-

area has been addressed in other contexts. Content-

addressable networks [21] provide an overlay topology for

locating and routing toward named objects. The RON

project [4] also uses an overlay topology to route around

temporary failures at the IP level. In the specific context of

video delivery, packet-path diversity has been used as a

mechanism to get around failures in Ref. [5]. However,

these mechanisms are not applicable for composed

services—with composed services there is the constraint

that the alternate recovery path has to include the

component services as well.

The IETF OPES group [3] defines an architecture for

‘open services’ that can be ‘plugged’, or composed.

However, this architecture does not include mechanisms

for recovery when a composed session fails. ALAN [22]

proposes application-layer routing by proxylets. The

operational model there is different in that the proxylets

can be dynamically created and moved around. In our case,

the services are deployed by different service providers, and

are heavy-weight in nature. Also, ALAN does not have

B. Raman, R.H. Katz / Computer Communications 26 (2003) 1727–1740 1739



quick-recovery from failures as one of its goals. In our work,

we specifically evaluate the recovery aspect of the system.

A unique aspect of our work is the use of an emulation-

based testbed for evaluation. Most systems in the network-

ing world are evaluated using either simulations or real

experiments—neither of these approaches is suited for our

purposes. Our emulation testbed using the Millennium

cluster of machines has allowed better modeling than

simulations, and more control than real experiments.

6. Conclusions and future work

We started with the goal of being able to compose

services in a robust fashion, providing recovery mechanisms

for long-running client sessions. Our architecture for this is

based on an overlay network of service clusters. We have

evaluated our architecture for its primary goal of quick

recovery of client sessions. Our approach is based on a

system distributed across the wide-area Internet. Its

evaluation presents a challenge since a simple simulation-

based approach would not only have been unrealistic, but

would also have failed to identify the bottlenecks in a real

system implementation. Developing and maintaining a large

scale testbed across the wide-area Internet would have been

cumbersome, and would not have been suited for a

controlled design study. Our emulation-based approach

has allowed a controlled design study with a real

implementation. The control overhead in our software

architecture is minimal, and requires little additional

provisioning. Our trace-driven emulation shows that our

recovery algorithms can react within 1 s. Such quick

recovery is possible because we do not have to depend on

propagation and stabilization of failure information across

the network, to effect recovery. Network failure detection

itself can be done with a couple of seconds, with a

manageable frequency of spurious path restorations.

There are several avenues for future work, and we point

out two possible directions for further exploration in service

composition. First, in our work, we have considered only

cases of composition where the data flow is a path. While this

covers a range of useful applications, there are others

possible with a more generic definition of composition.

Secondly, in our architecture, we have not considered

mechanisms for optimizations in other dimensions such as

cost to the user. When there are multiple providers they may

have different pricing for their service instances. Considering

these aspects while making the choice of service instances

during recovery pose interesting additional challenges.

Acknowledgements

We thank L. Subramanian, S. Machiraju, A. Costello, S.

Agarwal, and the anonymous reviewers for comments on

earlier versions of this paper. We thank M. Baker, M.

Roussopoulos, J. Mysore, R. Barnes, V. Pranesh, V.

Krishnaswamy, H. Karl, Y.-S. Chang, S. Ardon, and

B. Thai for helping us with the wide-area trace collection.

References

[1] C. Labovitz, A. Ahuja, F. Jahanian, Experimental study of Internet

stability and wide-area network failures, FTCS (1999).

[2] C. Labovitz, A. Ahuja, A. Abose, F. Jahanian, An experimental study

of delayed Internet routing convergence, ACM SIGCOMM August/

September (2000).

[3] Open Pluggable Edge Services, http://www.ietf-opes.org/.

[4] D.G. Andersen, H. Balakrishnan, M.F. Kaashoek, R. Morris, Resilient

overlay networks, ACM SOSP October (2001).

[5] J.G. Apostolopoulos, Reliable video communication over loss packet

networks using multiple state encoding and path diversity, Visual

Communication and Image Processing January (2001).

[6] A. Fox, A framework for separating server scalability and availability

from Internet application functionality, PhD thesis, U.C. Berkeley,

1998.

[7] S. Choi, J. Turner, T. Wolf, Configuring sessions in programmable

networks, IEEE INFOCOM April (2001).

[8] B. Raman, R.H. Katz, Load balancing and stability issues in

algorithms for service composition, IEEE INFOCOM April (2003).

[9] T.M. Chen, T.H. Oh, Reliable services in MPLS, IEEE Communi-

cations Magazine December (1999).

[10] E.W. Zegura, K. Calvert, S. Bhattacharjee, How to model an

internetwork, IEEE INFOCOM April (1996).

[11] A. Acharya, J. Saltz, A study of Internet round-trip delay, Technical

Report CS-TR 3736, UMIACS-TR 96-97, University of Maryland,

College Park, 1996–97.

[12] B. Raman, R.H. Katz, A.D. Joseph, Universal inbox: providing

extensible personal mobility and service mobility in an integrated

communication network, WMCSA December (2000).

[13] M. Yajnik, S.B. Moon, J.F. Kurose, D.F. Towsley, Measurement and

modeling of temporal dependence in packet loss, IEEE INFOCOM

March (1999).

[14] J.C. Bolot, H. Crepin, A.V. Garcia, Analysis of audio packet loss in

the Internet, NOSSDAV April (1995).

[15] Y. Zhang, N. Duffield, V. Paxson, S. Shenker, On the constancy of

Internet path properties, ACM SIGCOMM Internet Measurement

Workshop November (2001).

[16] B. Chandra, M. Dahlin, L. Gao, A. Nayate, End-to-end WAN service

availability, USITS March (2001).

[17] E. Amir, An agent based approach to real-time multimedia

transmission over heterogeneous environments, PhD thesis, U.C.

Berkeley, 1998.

[18] V.S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W.

Zwaenepoel, E.M. Nahum, Locality-aware request distribution in

cluster-based network servers, ASPLOS October (1998).

[19] S. Seshan, M. Stemm, R.H. Katz, SPAND: shared passive network

performance discovery, USITS December (1997).

[20] S.G. Dykes, C.L. Jeffery, K.A. Robbins, An empirical evaluation of

client-side server selection algorithms, IEEE INFOCOM March

(2000).

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A

scalable content addressable network, ACM SIGCOMM August

(2001).

[22] A. Ghosh, M. Fry, J. Crowcroft, An architecture for application layer

routing, IWAN October (2000).

B. Raman, R.H. Katz / Computer Communications 26 (2003) 1727–17401740

http://www.ietf-opes.org/

	An architecture for highly available wide-area service composition
	Introduction
	Design overview
	Software functionalities
	Scale of the overlay network
	Potential scaling bottlenecks and sources of overhead

	Experimental testbed
	Evaluation
	Parameter settings for the experiments
	Time to path recovery: end-to-end recovery
	Time to path recovery: local recovery
	Internet failure behavior and failure detection
	Performance under Internet failure behavior
	Other sources of overhead
	Summary of results

	Related work
	Conclusions and future work
	Acknowledgements
	References


