
1

Wireless Java with J2MEWireless Java with J2ME

David Tipper
Associate ProfessorAssociate Professor

Department of Information Science and
Telecommunications

University of Pittsburgh

dipper@mail.sis.pitt.edudipper@mail.sis.pitt.edu
http://www.sis.pitt.edu/~dtipper/2727.html

Slides 7+Slides 7+
+ based on material from + based on material from OlaOla Bo at Bo at MoldeMolde College, NorwayCollege, Norway

andand
F. Ricci at Free University F. Ricci at Free University BozenBozen--BolzanoBolzano, Italy, Italy

Infsci 1073/Telcom 2727
2

Smart Client Architecture
•Custom software executes on Devices
•Components:

•Smart clients
•Synchronization server
•data/content source
•may include proxies or gateways

WWAN
Internet

Wireless
Gateway

Base Station

Synchronization
server

Smart
Clients

Enterprise
Data Sources

Wired connection

2

Infsci 1073/Telcom 2727
3

Platform Independence
• Biggest problem in smart client development is wide

variety of mobile devices
• Different operating systems, different CPUs, memory,

displays, etc.
• If develop application in native code (e.g., assembly

language) for a specific platform (e.g., Nokia 655) will
likely not work on another platform

• Use virtualization to strive for platform independence

Infsci 1073/Telcom 2727
4

J2ME – Java for Hand-Held Devices

• Platform independence main
goal of Java
– The same byte-code Java

application can be downloaded
and executed by all Java-
enabled devices

– Pre-verification at compile time
to verify if an application can
run on Java Virtual Machine

– Java 2 Micro Edition (J2ME)
ports this idea to handheld
devices

Byte-code Java
Applications

(e.g., MIDlets)

3

Infsci 1073/Telcom 2727
5

Why Java for Wireless Devices
• The wireless Internet revolution will transform wireless

devices from voice-oriented to extensible Internet-
enables devices

• Devices need to support dynamic downloading of new
software and running software written not only by the
device manufactures

• Java is (becoming) a standard application development
language for wireless devices

• Is not defining a new operating system (Symbian or
PocketPC) but it standardizes a portable wireless
application development environment

• The environment can be added on top of existing software
and hardware solutions that the device manufacturer
already have.

Infsci 1073/Telcom 2727
6

What Java Offers on Wireless Devices
• Dynamic delivery of content: new application, services and

content can be downloaded dynamically
• Security: class file verification, a well-defined application

programming interface, security features, ensure that applications
cannot harm the device or network

• Cross-platform compatibility: standardized language features and
libraries implies that the application can run on different devices

• Enhanced user experience and interactive content
• Offline access: applications can be used without active network

connection
• Object oriented: good abstraction mechanisms and higher level

programming constructs
• Large developer community: more than 3 millions Java

developers worldwide.

4

Infsci 1073/Telcom 2727
8

Overview of the Java 2 Platform
• The Java 2 Platform is split into three editions
• J2SE (Standard Edition)

– designed for desktop computers.
• J2EE (Enterprise Edition)

– designed for server based applications - J2SE and
adds APIs for server-side computing.

• J2ME (Micro Edition)
– designed for small/handheld devices (set-top boxes,

sensors, mobile phones)
– subset of J2SE APIs plus j2ME specific class libraries

• Each edition provides a complete environment
for running Java applications including the Java
Virtual Machine and runtime classes

Infsci 1073/Telcom 2727
10

J2ME in the Java landscape

(Source Sun
Microsystems
Inc.)

Smartphones

5

Infsci 1073/Telcom 2727
11

J2ME Architecture
• JVM layer

– Virtual machine – hides platform
– Kilobyte Virtual Machine – for resource-

constrained devices
• Configuration layer

– Defines a minimum set of Java class libraries
that is useful for developing applications to run
on a range of devices

– CLDC and CDC
– E.g., java language, input/output

• Profile layer
– Defined class libraries (supplemental to

Configuration) that targets a particular type of
devices

– MIDP (Mobile Information Device Profile)
– Class libraries, e.g., for building user interface,

making network connections, and controlling
application life cycles

Hardware
(SH4, ARM, 68k, ...)

Java Virtual Machine
(JVM, KVM)

Operating system
(Symbian, Palm, WinCE)

Configurations
(CDC, CLDC)

Profile
(MIDP)

Applications

Infsci 1073/Telcom 2727
12

J2ME Core Concepts

J2ME
Profile

J2ME
Libraries

Java Virtual Machine

Pr
of

ile
s

C
on

fig
ur

at
io

n

Host Operating System

Java Language

Optional Packages

6

Infsci 1073/Telcom 2727
13

J2ME Architecture

From S. Helal, “Pervasive Java,” IEEE Pervasive Computing, Vol. 1, No. 1, Jan.-March 2002, pp. 82-85.

Infsci 1073/Telcom 2727
14

J2ME Configurations
• A Configuration defines class libraries for a particular category of

devices that share similar characteristics such as memory budget,
processing power, and network connectivity
– CLDC Connected Limited Device Configuration

• The smaller of the two configurations (subset)
• Designed for devices with slow processor and limited memory (160-

512k RAM for Java)
• Mobile phones, two-way pagers and PDA’s

– CDC Connected Device Configuration
• Designed for devices that have more memory, faster processors,

and greater network bandwidth
• Set top boxes, navigation system, and high-end wireless devices

e.g. Nokia 9500 and some PDAs

CLDCCDCJ2SE

7

Infsci 1073/Telcom 2727
15

J2ME Profiles

• A set of specific APIs available for a single device
or a group of devices

• Mostly, related to GUI, buttons, local data storage
– MIDP (Mobile Information Device Profile)
– PDAP (PDA Profile)
– Foundation Profile (non-GUI networked device)

• A basis for Personal Profile
– Personal and RMI Profiles

KVM
CDC CLDC

Foundation PDAP MIDP
Personal

RMI

Infsci 1073/Telcom 2727
16

Examples of CDC and CLDC

CellphonesKVM/CVMCDC/CLDCTelephony

AnyKVM/CVMCLDC/CDCGaming

AnyKVM/CVMCLDC/CDCMultimedia

AnyCVMCDCRMI

PocketPC, TabletsCVMCDCPersonal

Foundation for Personal ProfileCVMCDCFoundation

PDAsKVMCLDCPDAP

Cellphones, PagersKVMCLDCMIDP

Device ExamplesVirtual
Machine

Configu-
ration

Profile

From J. White and D. Hemphill, Java 2 Micro Edition, Manning Publications Co., 2002.

8

Infsci 1073/Telcom 2727
17

CLDC 1.1 and MIDP 2.0 packages

javax.microedition.lcdui

javax.microedition.lcdui.game

javax.microedition.media

javax.microedition.media.control

javax.microedition.midlet

javax.microedition.pki

javax.microedition.rms

java.lang

java.lang.ref

java.io

java.util

javax.mcroedition.io

MIDP 2.0 CLDC 1.1

Infsci 1073/Telcom 2727
18

Devices Evolution (Nokia)
6600 (2003) N70 (2005) N95 (2007)

MIDP 2.0
CLDC 1.1
Bluetooth API (JSR-82)
FileConnection and PIM API
(JSR-75)
JTWI (JSR-185)
Mobile 3D Graphics API
(JSR-184)
Mobile Media API
(JSR-135)
Nokia UI API
Web Services API
(JSR-172)
Wireless Messaging API
(JSR-120)

MIDP 2.0
CLDC 1.1
Advanced Multimedia
Supplements (JSR-234)
Bluetooth API (JSR-82)
FileConnection and PIM API (JSR-
75)
JTWI (JSR-185)
Location API (JSR-179)
Mobile 3D Graphics API (JSR-
184)
Mobile Media API (JSR-135)
Nokia UI API
Scalable 2D Vector Graphics API
(JSR-226)
Security and Trust Services API
(JSR-177)
SIP API (JSR-180)
Web Services API (JSR-172)
Wireless Messaging API (JSR-
205)

MIDP 2.0
CLDC 1.0
Bluetooth API
(JSR-82 No OBEX)
Mobile Media API
(JSR-135)
Nokia UI API
Wireless Messaging
API (JSR-120)

For a list see
http://developers.sun.com/techtopics/mobility/devi

ce/device

9

Infsci 1073/Telcom 2727
19

Developing a J2ME Application

• Define application requirements
• Application design (control)

– May need to break into small apps
– What type of connections

• User Interface design
• Data storage design
• Select targeted devices
• Choosing the right configuration and profile
• Write code, compile, verify, pack, test, and

deploy.

Infsci 1073/Telcom 2727
20

J2ME for mobile and wireless devices

The small memory footprint
virtual machine –
corresponding to JVM in
standard Java

A subset of the Java libraries
adapted to a lowest common
denominator for mobile
devices

Specific libraries for mobile
and wireless devices: GUI,
storage

10

Infsci 1073/Telcom 2727
21

CLDC

• CLDC library APIs can be divided into two
categories:
– Classes that are a subset of the J2SE APIs

• These classes are located in the following packages:
java.lang.*, java.util.*, java.io.*

– Classes specific to the CLDC
• These classes are located in the javax.microedition package

• Java Specification Request–JSR 139 (CLDC1.1)
• CLDC not contain:

– UI, application life cycle, Persistence, and special
interfaces for the device.

CLDCJ2SE

Infsci 1073/Telcom 2727
23

CLDC-based class special handling
• Verification: identify and reject

invalid class files
• In J2SE, verification is performed

by JVM on device at runtime
– This class file verification process is

expensive and time consuming, and
therefore not ideal for small,
resource-constrained devices

• CLDC proposes two-phase class
file verification process
– Preverification process performed at

development station – to move most
of the verification work off device

– Supports faster start up of CLDC
based apps

• Preverification and packaging may
be done using
– Command line tools
– KToolbar in the WTK

11

Infsci 1073/Telcom 2727
24

MIDP
• The first J2ME profile, and the most mature and widely

deployed one
• Primarily deployed on PDAs and cellphones
• Complying devices are readily available

– http://developers.sun.com/techtopics/mobility/device/device
• MIDP APIs can be divided into two parts:

– Two classes inherited directly from the J2SE API
• Java.util.Timer, Java.util.TimerTask

– MIDP-specific classes.
• These classes are located in the following packages:

– javax.microedition.midlet, javax.microedition.lcdui, javax.microedition.io,
and javax.microedition.rms

• New standard MIDP released Nov 2002 (JSR 118)
– Add new packages: javax.microedition.lcdui.game,

javax.microedition.media., javax.microedition.media.control, and
javax.microedition.pki

Infsci 1073/Telcom 2727
25

MIDP applications AKA MIDlets
• A MIDP application is called a

MIDlet
– Must extend the MIDlet class

• A MIDlet suite is a bundle of
MIDlets.
– can access same persistent data

• MIDP Packaging
– Midlet suites are packaged in

compressed Java Archive (JAR) format
(JAR) files
• The preverified class files in the suite
• Resource files (for example icons,

sounds)
• A manifest file describing a JAR

comtent
– Each JAR file comes with a Java

Application Descriptor (JAD) metafile
containing instructions describing its
contents for deployment (name,
description, version etc.)

sony.jar File

12

Infsci 1073/Telcom 2727
26

JAD (Java Application Descriptor)

MIDlet-Name: SonyMenu
MIDlet-Version: 1.0.0
MIDlet-Vendor: University of Pittsburgh
MIDlet-Description: A sample MIDlet suite
MIDlet-Info-URL: http://www.tele.pitt.edu
MIDlet-Jar-URL: http://localhost/sony.jar
MIDlet-Jar-Size: 3000
MicroEdition-Profile: MIDP-1.0
MicroEdition-Configuration: CLDC-1.0
MIDlet-1: funstuff, midlet1
MIDlet-2: afile, midlet2
MIDlet-3: needed, midlet3

• A text file that lists important information about a set of MIDlets
packaged together into a single JAR file

• Description includes many attributes:
– Name of MIDlet suite, location and size of JAR file, and configuration

and profile requirement
• It is used by the Application Management Software (AMS) to

download and install the application
• AMS is a software on a device responsible for downloading, (un)

installing, and managing life-cycle of MIDlets

sony.jad

Infsci 1073/Telcom 2727
27

Provisioning

• Provisioning is getting the application into the
device. Two basic ways to install a MIDlet suite:
– Direct method:

• involving some direct connection between the device and the
development platform (with synchronization software),
commonly USB cable, IR, or bluetooth link

– "Over The Air (OTA) " using HTTP over wireless
protocols
• Link to the application .jad file from a wap

compatible –page (WML, XHTML-MP) using a
device’s browser

• OTA not standardized in MIDP 1.0,
• OTA provisioning standardized in MIDP 2.0

13

Infsci 1073/Telcom 2727
28

Application Life Cycle

Paused

Active

Destroyed

StartApp

DestroyApp

DestroyApp

PauseApp

Destroyed: All resources
released, All threads stopped

Active: Resources acquired,
application executing

Pause: Release some resources
if allocated and become inactive

Initialized and ready to run

Application State Description

Infsci 1073/Telcom 2727
29

Application LifeCycle methods
(source javadoc for class javax.microedition.MIDlet, consult documentation for details)

notifyDestroyed()

MIDlet calls this method to shift
itself to Destroyed state

destroyApp(boolean)*

AMS invokes the method
destroyApp () to move MIDlet to
Destroyed state

notifyPaused()

MIDlet calls this method to shift
itself to Paused state.

pauseApp()*

AMS invokes the method
pauseApp () to move MIDlet
from Active state to Paused
state

resumeRequest()

Midlet asks AMS to reactivate
the MIDlet

startApp()*

AMS invokes the method
startApp() to move Midlet from
Paused state to Active state

Called by midletCalled by device (AMS)

* abstract methods, to be implemented by programmer when subclassing MIDlet.

14

Infsci 1073/Telcom 2727
30

MIDlet Application Skeleton
• All MIDlets have this

common skeleton
– Constructor called once

• E.g. for initialization
– startApp() called when

system active MIDlet
– pauseApp() called when

system pauses MIDlet
– destroyApp() called

when system destroys
MIDlet

Infsci 1073/Telcom 2727
31

MIDP 1.0 User Interface

• Low Level User Interface API (Canvas)
– Designed for applications that needs precise

placement and control of graphic elements
– Offer higher flexibility to implement a much better

graphics
– E.g. needed for interactive game applications

• High Level User Interface API (Screen)
– Provide a series of predefined graphical elements
– Provide very little control over look and feel
– Provide abstraction from low-level graphic

management

15

Infsci 1073/Telcom 2727
32

MIDP UML Displayable Class

Displayable

Canvas Screen

Alert TextBox Form List

Low Level UI

High Level UI

Command

CommandListener

Infsci 1073/Telcom 2727
33

MIDP 1.0 High Level UI
• Using whole Screens – four kinds of Screen

1. Alert - message
2. TextBox – Editable or non-editable textbox
3. Form
4. List
– Screens have a Title
– Commands can be added to screens

• How commands appear is device dependent
(Soft key, Menu item, ...)

• Commands must be handled by class implementing a
CommandListener Interface

• (for further details see javax microedition.lcdui.Command)

– Show a screen by using
display.setCurrent(myScreen)

16

Infsci 1073/Telcom 2727
34

TextBox

• A screen that allows the user to enter or edit text
• Input constraints specifies content type and other

aspects of the TextBox (i.e., defines a specific set
of characters that are valid to be entered)
– ANY
– EMAILADDR
– NUMERIC
– PHONENUMBER
– URL
– DECIMAL
– PASSWORD

new constraints from MIDP 2.0
•UNEDITABLE
•SENSITIVE
•NON_PREDICTIVE
•INITIAL_CAPS_WORD
•INITIAL_CAPS_SENTENCE

Infsci 1073/Telcom 2727
35

TextBox Code

Title
Initial text

Command

Soft Key

Maximum
text length Constraint

17

Infsci 1073/Telcom 2727
36

Alert

• A screen that shows a message and an
optional emage to the user for a certain
period of time before proceeding to the
next screen.
– A timeout can be set
– An image can be added
– Is displayed by a special version of

display.setCurrent(Alert,Screen)
• The second parameter is what to display when

alert screen gone. (display.getCurrent can be used
here)

Infsci 1073/Telcom 2727
37

Alert and Command Listener Code

18

Infsci 1073/Telcom 2727
38

List
• A screen that contains a list of choices
• There are three types of lists (Choice.type)

1. EXCLUSIVE selecting one deselects previous
2. IMPLICIT selecting invokes command
3. MULTIPLE selecting more than one possible

From: Q. H. Mahmoud, Learning Wireless Java, O’Reilly, Inc., 2001

Infsci 1073/Telcom 2727
39

Exclusive List Code

.

.

.

19

Infsci 1073/Telcom 2727
40

Implicit List Code

.

.

.

Infsci 1073/Telcom 2727
41

Multiple List Code

20

Infsci 1073/Telcom 2727
42

Form
• A form displays an arbitrary number of Items
• Form is used in cases where a screen with single

function is not sufficient
• Items can be:

– TextField for flexible text entry
– StringItem for text display
– ImageItem for image display
– DateField for date display and entry
– ChoiceGroup selectable list of text and/or images
– Gauge a bar graph display of a numeric quantity
– CustomItem an item you can develop
– Spacer, a layout assistance item

• Commands can be connected to Items
• If form too high for display, it will scroll
• What Items where used on the form shown?

– ImageItem, StringItem and two Textfields

Infsci 1073/Telcom 2727
43

High level UI – Form An Overview

ChoiceGroup ImageItem GaugeStringItem Spacer CustomItem

Form

append()

Item
label
layout

TextField

For text entry For text
presentation
only

Multiple or
single choice
between
texts/images

Display of an
image

Often used
as a progress
indicator

Used for
adjusting space
between other
items

Make your
own item

21

Infsci 1073/Telcom 2727
44

Form Items
DATE and TIME Gauge

TextField Image

From: Q. H. Mahmoud, Learning Wireless Java, O’Reilly, Inc., 2001

Infsci 1073/Telcom 2727
45

Form Code

22

Infsci 1073/Telcom 2727
46

One Form, different devices, different results

Find five differences!
Where can you find ”Start Quiz” on the Nokia device?

Infsci 1073/Telcom 2727
47

High Level Interface – A Summary

Screen

TextBox
text
maxsize
constraints

Alert
title
text
type
image

List
listtType

append()
getSelectedIndex()

Displayable

addCommand()
addCommandListener()

Form

append()

Item

23

Infsci 1073/Telcom 2727
48

Guidelines for UI Design
• HCI on mobile and wireless devices a challenge!

– Why?
• Use simple forms with few Items

– Remember: Small screen size, mobile context of use
– Can you avoid scrolling?

• Minimize input, use RMS to store user settings
• Use static form content

– Small screen means small changes not easy to spot
• Use uniform appearance for easy learning
• Always provide commands like OK, BACK and EXIT on screen

– use uniform command configuration on all forms to ease learning
and use

– Use soft keys rather than on-screen keys
• Use Threads and Gauges to avoid UI-blocking during network IO

– improves user experience

Infsci 1073/Telcom 2727
49

Canvas
• Canvas is a displayable that is completely controlled by

program
• An application can combine canvases and screens

– A list to choose racing track
– A canvas to do the racing

• Methods to handle game actions and pointer events
• A Canvas must be subclassed!
• paint method for painting must be implemented
• The paint method provides a Graphics object having

methods for painting

24

Infsci 1073/Telcom 2727
50

Canvas with Graphics

From J. White and D. Hemphill, Java 2 Micro Edition, Manning Publications Co., 2002.

Infsci 1073/Telcom 2727
51

MIDP 1.0 Communication

• Use a standard framework
called Generic Connection
Framework (GCF) to
connect to the Internet, a
socket, a file, or etc.

• Device must implement a
HTTP 1.1 client interface

• Transport is not
necessarily over TCP/IP

Source: Bill Day J2ME

25

Infsci 1073/Telcom 2727
52

Networking using GCF

• provide a more compact solution, than the
standard libraries
– In GCF all protocols can be specified using an URL-

approach:
Connector.open("<protocol>:<address>;<parameters>")

– But no network protocol is mandatory in CLDC
– What protocol can actually be used depend on the

device and the profile
– Examples
Connector.open("http://www.sis.pitt.edu/mwap/test.html")
Connector.open("file:/pictures/picture12.jpg")
Connector.open("comm:0;baudrate=9600;parity=8N1")
Connector.open(“socket://localhost:8080”)

Infsci 1073/Telcom 2727
53

GCF Code Sample

• Use openInputStream (from java.io package) to
receive data stream

• Only a subset of java.io stream classes of J2SE is
available for J2ME
– ByteArrayInput/OutputStream
– DataInput/OutputStream
– PrintStream

26

Infsci 1073/Telcom 2727
54

J2ME Development
• Steps in software development

– edit (code)
– compile
– preverify,
– emulate
– test on device
– deploy

• Several tools to help process J2ME Wireless Toolkit
(WTK) – compiles, verifies, emulates, can monitor
performance

• Most manufacturers have SDKs that build on WTK
(Nokia, Sony/Ericcson, Motorola, etc.) see class web
page for links

• Sun has Wireless Blueprints for common J2ME
applications
– Games, End-to-End, etc.

Infsci 1073/Telcom 2727
55

MIDP Development with J2ME WTK

1. Write your Java
application (midlets)
using any text editor or
IDE (e.g., netbeans,
JEDIT, etc.)

2. Use J2ME Wireless
Toolkit (WTK), Create
a Project

3. Click on Build
4. Run against a built in

emulator.

27

Infsci 1073/Telcom 2727
56

MIDP Development with J2ME WTK

• Wireless Toolkit (WTK) Features
• Can incorporate specific device emulators

from manufacturer
• Automatic JAD verification
• Can monitor performance
• Wireless Messaging APIs
• Mobile Media APIs
• Integrated Over the Air emulation
• Integrated Security Tools
• Push emulation

Infsci 1073/Telcom 2727
57

OTA Development with J2ME WTK

28

Infsci 1073/Telcom 2727
58

OTA Development with J2ME WTK

Infsci 1073/Telcom 2727
59

OTA Development with J2ME WTK

