Digital Speech Processing

David Tipper
Associate Professor
Graduate Program of Telecommunications
Networking
University of Pittsburgh
Telcom 2700/INFSCI 1072
Slides 7
http://www.sis.pitt.edu/~dtipper/tipper.html

Digital Speech Coding

- Digital Speech
 - Convert analog speech to digital form and transmit digitally
- Applications
 - Telephony: (cellular, wired and Internet- VoIP)
 - Speech Storage (Automated call-centers)
 - High-Fidelity recordings/voice
 - Text-to-speech (machine generated speech)
- Issues
 - Efficient use of bandwidth
 - Compress to lower bit rate per user => more users
 - Speech Quality
 - Want tollgrade or better quality in a specific transmission environment
 - Environment (BER, packet lost, packet out of order, delay, etc.)
 - Hardware complexity
 - Speed (coding/decoding delay), computation requirement and power consumption
Digital Speech Processing

- Speech coding in wireless systems
 - All 1G systems have analog speech transmission
 - 2G and 3G systems have digital speech
 - Type of source coding

- Motivation for digital speech
 - Increase system capacity
 - Compression possible
 - Quality/bandwidth tradeoffs can be made
 - Improve quality of speech
 - Error control coding possible, equalization, etc.
 - Improve security as encryption possible for privacy
 - Reduce Cost and Operations and Maintenance (OAM)

Typical Wireless Communication System

- Source
- Source Encoder
- Channel Encoder
- Modulator
- Channel
- Demodulator
- Channel
- Destination
- Source Decoder
- Channel Decoder
- Destination
Characteristics of Speech

- **Bandwidth**
 - Most of energy between 20 Hz to about 7KHz
 - Human ear sensitive to energy between 50 Hz and 4KHz

- **Time Signal**
 - High correlation
 - Short term stationary

- **Classified into four categories**
 - Voiced: created by air passed through vocal cords (e.g., ah, v)
 - Unvoiced: created by air through mouth and lips (e.g., s, f)
 - Mixed or transitional
 - Silence

Typical Voiced speech

Typical Unvoiced speech
Digital Speech

- Speech Coder: device that converts speech to digital
- Types of speech coders
 - Waveform coders
 - Convert any analog signal to digital form
 - Vocoder (Parametric coders)
 - Try to exploit special properties of speech signal to reduce bit rate
 - Build model of speech – transmit parameters of model
 - Hybrid Coders
 - Combine features of waveform and vocoders

Speech Quality of Various Coders

Mean Opinion Score is a subjective measure of quality
Tradeoff in quality vs. data rate vs. complexity

Figure 3.44 General speech quality versus transmission rate.
Waveform Coders (e.g., PCM)

- **Waveform Coders**
 - Convert any analog signal to digital - basically A/D converter
 - Analog signal sampled > twice highest frequency - then quantized into n bit samples
 - Uniform quantization
 - Example Pulse Code Modulation
 - Band limit speech < 4000 Hz
 - Pass speech through μ-law compander
 - Sample 8000 Hz, 8 bit samples
 - 64 Kbps DS0 rate

- **Characteristics**
 - Quality – High
 - Complexity – Low
 - Bit rate – High
 - Delay – Low
 - Robustness – High

PCM Speech Coding

Pulse code modulation (PCM) system with analog companding then digital conversion
- ITU G.700 standard basis for speech coding In PSTN in 60's
Companding

μ-Law companding

\[F'(s) = \text{sgn}(s) \frac{\ln(1 + \mu|s|)}{\ln(1 + \mu)} \]

Analog Compander emphasizes small values, de-emphasizes large values in-order to equalize SNR across samples.

Reverse the mapping at the receiver with an expander

PCM Speech Coding

- Digitally companded PCM system – ITU G.711 standard
 - better quality speech than analog companding

- Differential PCM (DPCM) : reduce bit rate from 64 Kbps to 32 Kbps
 - since change is small between sample – transmit 1 sample
 - then on transmit difference between samples – use 4 bits to quantize
 - adaptively adjust range of quantizer – improves quality (ADPCM ITU G.726)
DPCM Speech Coding

Analog input

- Low-pass filter
- Differentiator (summer)
- Analog-to-Digital converter

Accumulated signal level

- Integrator
- Digital-to-Analog converter

Encoded difference samples

DPCM transmitter

DPCM input

- Digital-to-Analog converter
- Integrator
- Hold circuit
- Low-pass filter

Analogue output

DPCM receiver

Subband Speech Coding

Analog speech

- Bandpass Filter 1
- A/D 1

- Bandpass Filter 2
- A/D 2

- Bandpass Filter 3
- A/D 3

Channel encoder

Partition signal into non-overlapping frequency bands use different A/D quantizer for each band

Example: 3 subbands

5600+12000 + 13600 = 31.2 Kbps

<table>
<thead>
<tr>
<th>band</th>
<th>Range</th>
<th>encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50-700 Hz</td>
<td>4 bits</td>
</tr>
<tr>
<td>2</td>
<td>700-2000 Hz</td>
<td>3 bits</td>
</tr>
<tr>
<td>3</td>
<td>2000-3400Hz</td>
<td>2 bits</td>
</tr>
</tbody>
</table>
Vocoders

- Vocoders (Parametric Coders)
 - Models the vocalization of speech
 - Speech sampled and broken into frames (~25 msec)
 - Instead of transmitting digitized speech
 1. Build model of speech
 2. Transmit parameters of model
 3. Synthesize approximation of speech
 - Linear Predictive Coders (LPC) basic Vocoder model
 - Models vocal tract as a filter
 - Filter excitation
 - periodic pulse (voiced speech) or noise (unvoiced speech)
 - Transmitted parameters:
 - gain, voiced/unvoiced decision, pitch (if voiced), LPC parameters

Vocoders

- Linear Predictive Coders (LPC)
 - Excitation
 - periodic pulse (voiced speech) or noise (unvoiced speech)
 - Transmitted parameters: gain, voiced/unvoiced decision, pitch (if voiced), LPC parameters

Figure 3.41 Speech generation model of linear predictive coding.
Vocoders

- Example Tenth Order Linear Predictive Coder
 - Samples Voice at 8000 Hz – buffer 240 samples => 30 msec
 - Filter Model
 - \((M=10 \text{ is order}, G \text{ is gain}, z^{-1} \text{ unit delay}, b_k \text{ are filter coefficients}) \)
 \[
 H(z) = \frac{G}{1 + \sum_{k=1}^{M} b_k z^{-k}}
 \]
 - \(G = 5 \text{ bits}, b_k = 8 \text{ bits each}, \text{voiced/unvoiced decision} = 1 \text{ bit}, \text{pitch} = 6 \text{ bits} \Rightarrow 92 \text{ bits}/30 \text{ msec} = 3067 \text{ bps} \)

Vocoders

- LPC coders can achieve low bit rates 1.2 – 4.8 Kbps
- Characteristics of LPC
 - Quality – Low
 - Complexity – Moderate
 - Bit Rate – Low
 - Delay – Moderate
 - Robustness – Low
- Quality of pure LPC vocoder to low for cellular telephony - try to improve quality by using hybrid coders
 - Try to improve the quality by
 - refining model of speech,
 - improve accuracy of model
 - improve input to speech coder
Vocoders

- Hybrid Coders
 - Combine Vocoder and Waveform Coder concept
 - Residual LPC (RELP)
 - Codebook excited LPC (CELP)

RELP Vocoder

- Residual Excited LPC
 - Improve quality of LPC by transmitting error (residue) along with LPC parameters

Block diagram of a RELP encoder
GSM Speech Coding

8000 samples/s, 13 bits/sample

- GSM uses Regular Pulse Excited -- Linear Predictive Coder (RPE--LPC) for speech
 - Basically combine DPCM concept with LPC
 - Information from previous samples used to predict the current sample.
 - The LPC coefficients, plus an encoded form of the residual (predicted - actual sample = error), represent the signal.

GSM Speech Coding (cont)

Regular pulse excited - long term prediction (RPE-LRP) speech encoder (RELP speech coder)

160 samples/20 ms from A/D (= 2080 bits) → 36 LPC bits/20 ms
 → 9 LTP bits/5 ms
 → 47 RPE bits/5 ms
 → 260 bits/20 ms to channel encoder

LPC: linear prediction coding filter
LTP: long term prediction -- pitch + input
RPE: Residual Prediction Error:
GSM Speech Coding (cont)

Channel encoder

Class 1a: CRC (3-bit error detection) and convolutional coding (error correction)
Class 1b: convolutional coding
Class 2: no error protection
*tail bits to periodically reset convolutional coder

Telcom 2700

Hybrid Vocoder

- **Codebook Excited LPC**
 - Problem with simple LPC is the voiced/unvoiced decision and pitch estimation doesn’t model transitional speech well, and not always accurate
 - Codebook approach – pass speech through an analyzer to find closest match to a set of possible excitations (codebook)
 - Transmit codebook pointer + LPC parameters
 - NA-TDMA standard, IS-95, 3G, ITU G.729 standard

Telcom 2700
Typical CELP Encoder

Figure 3.43 CELP encoder block diagram.

CELP Speech Coders

- General CELP architecture
Evaluating Speech Coders

- **Qualitative Comparison**
 - based on subjective procedures in ITU-T Rec. P. 830

- **Major Procedures**

- **Absolute Category Rating**
 - Subjects listen to samples and rank them on an absolute scale - result is a mean opinion score (MOS)

- **Comparison Category Rating**
 - Subjects listen to coded samples and original uncoded sample (PCM or analog), the two are compared on a relative scale - result is a comparison mean opinion score (CMOS)

<table>
<thead>
<tr>
<th>Mean Opinion Score (MOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
</tr>
<tr>
<td>Good</td>
</tr>
<tr>
<td>Fair</td>
</tr>
<tr>
<td>Poor</td>
</tr>
<tr>
<td>Bad</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparison MOS (CMOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Much Better</td>
</tr>
<tr>
<td>Better</td>
</tr>
<tr>
<td>Slightly Better</td>
</tr>
<tr>
<td>About the Same</td>
</tr>
<tr>
<td>Slightly Worse</td>
</tr>
<tr>
<td>Worse</td>
</tr>
<tr>
<td>Much Worse</td>
</tr>
</tbody>
</table>

MOS for clear channel environment – no errors
Result vary a little with language and speaker gender

<table>
<thead>
<tr>
<th>Standard</th>
<th>Speech coder</th>
<th>Bit rate</th>
<th>MOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM</td>
<td>Waveform</td>
<td>64 Kbps</td>
<td>4.3</td>
</tr>
<tr>
<td>CT2</td>
<td>ADPCM</td>
<td>32 Kbps</td>
<td>4.1</td>
</tr>
<tr>
<td>DECT</td>
<td>ADPCM</td>
<td>32 Kbps</td>
<td>4.1</td>
</tr>
<tr>
<td>GSM</td>
<td>Hybrid RELPC</td>
<td>13 kbps</td>
<td>3.54</td>
</tr>
<tr>
<td>QCELP</td>
<td>Hybrid CELP</td>
<td>14.4 Kbps</td>
<td>3.4 – 4.0</td>
</tr>
<tr>
<td>QCELP</td>
<td>Hybrid CELP</td>
<td>9.6 Kbps</td>
<td>3.4</td>
</tr>
<tr>
<td>LPC</td>
<td>Vocoder</td>
<td>2.4 Kbps</td>
<td>2.5</td>
</tr>
<tr>
<td>ITU G.729</td>
<td>Hybrid CELP</td>
<td>8.6 Kbps</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Qualcomm Codebook Excited LP coder (cdmaone standard)
Evaluating Speech Coders

- Types of environments recommended for testing coder quality
 - Clean Channel no background noise
 - Vehicle: emulate car background noise
 - Street: emulate pedestrian environment
 - Hoth: emulate background noise in office environment (voice band interference)

- Consider environments above for cases of
 - Perfect Channel – no transmission errors
 - Random channel errors
 - Bursty channel errors

- May consider repeated encoding/decoding (e.g., mobile to mobile call)

![Graph showing Mean opinion scores for the basic coded conditions, including multiple encodings by a single coder.](image)

Repeated coding degrades quality

[Figure 1. Mean opinion scores for the basic coded conditions, including multiple encodings by a single coder.]

Background noise and errors degrade quality

![Graph showing Mean opinion scores for G.720 conditions with background noise and random burst frame errors.](image)

[Figure 2. Mean opinion scores for G.720 conditions with background noise and random burst frame errors.]

Telcom 2700
Codec Selection

For cellular need to consider Quality, Complexity, Delay, Compression Rate

<table>
<thead>
<tr>
<th>ITU Coder</th>
<th>Bit Rate</th>
<th>Coding Delay</th>
<th>Decoding Delay</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.711</td>
<td>64 Kbps</td>
<td>0</td>
<td>0</td>
<td>Low</td>
</tr>
<tr>
<td>G.729</td>
<td>8 Kbps</td>
<td>15 ms</td>
<td>7.5 ms</td>
<td>Medium</td>
</tr>
<tr>
<td>G.723.a,b</td>
<td>6.4/5.3 Kbps</td>
<td>35.5 ms</td>
<td>18.75 ms</td>
<td>High</td>
</tr>
</tbody>
</table>

Silence Compression

Much of a conversation is Silence (~40%) no need to transmit

Voice Activity Detector (VAD)
- Hardware to detect silence period quickly

1. Variable Bit Rate Coder Approach
- reduce bit rate when silence detected – increase compression
- Cdmaone and CDMA2000 codec use variable bit rate approach

2. Discontinuous transmission (DTX) Approach
- Stop transmitting frames
 - Send minimal # of frames to keep connection up
- Comfort Noise Generator (CNG)
 - Synthesize background noise - avoids: “Did you hang up?"
 - Random noise or reproduce speaker’s ambient background
- GSM, UMTS and popular VoIP G.723.1 codec use VAD/DTX/CNG
Silence Compression

Voice Coding

- Basic Voice Coding Approaches
 - Waveform
 - Vcoders
 - Hybrid Vcoders
- Evaluation of Vocoder Quality
- Codebook based vocoders use in new technology
- 3GPP and ITU recently standardized a
 - AMR wideband CELP
 - input 50-7000 HZ rather than 300-3400 Hz of current systems
 - more natural quality speech – slightly higher bit rate