

Slides 7 http://www.sis.pitt.edu/~dtipper/tipper.html

Telcom 2700/INFSCI 1072

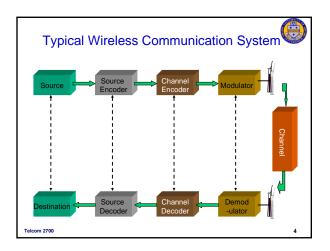
Digital Speech Coding

Digital Speech

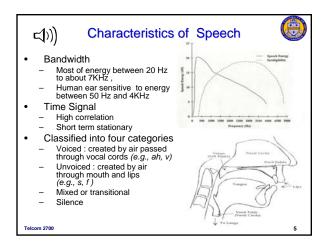
Issues

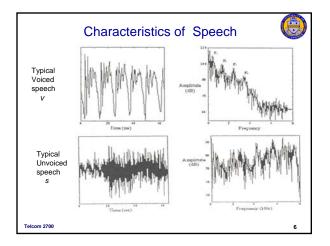
- Convert analog speech to digital form and transmit digitally
- Applications
- Telephony: (cellular, wired and Internet- VoIP)
- Speech Storage (Automated call-centers)
- High-Fidelity recordings/voice
- Text-to-speech (machine generated speech)

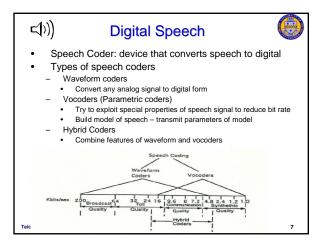
2

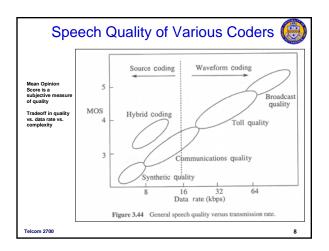

3

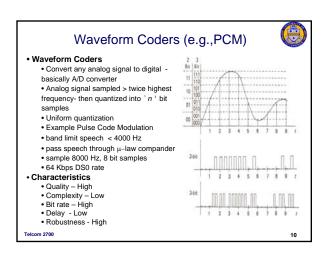
- Efficient use of bandwidth
 - Compress to lower bit rate per user => more users
 - Speech Quality
 - Want tollgrade or better quality in a specific transmission environment · Environment (BER, packet lost, packet out of order, delay, etc.)
- Hardware complexity
 - Speed (coding/decoding delay), computation requirement and power consumption

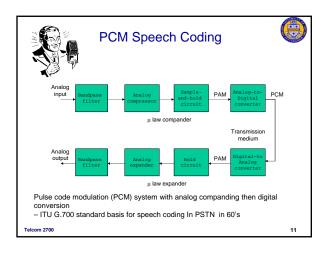

Telcom 2700

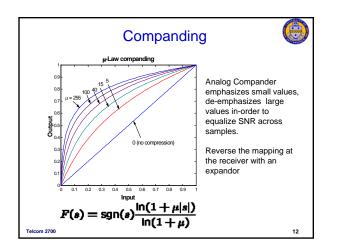

- Motivation for digital speech
 - Increase system capacity
 - Compression possible
 - Quality/bandwidth tradeoffs can be made
 - Improve quality of speech
 - · Error control coding possible, equalization, etc.
 - Improve security as encryption possible for privacy
 - Reduce Cost and Operations and Maintenance (OAM)

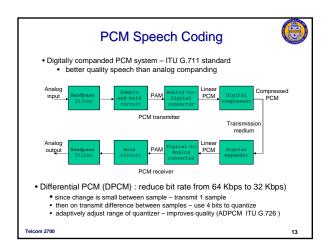


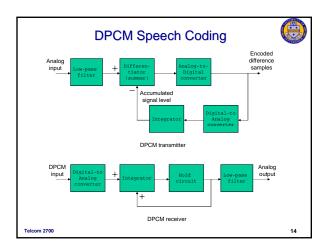


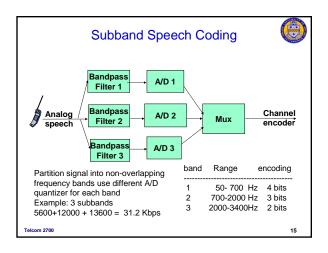








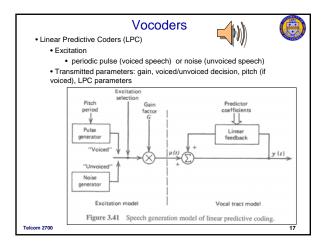




Vocoders

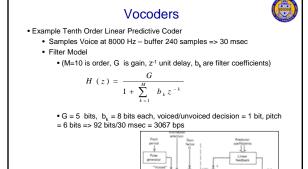
Vocoders (Parametric Coders)

- Models the vocalization of speech
- Speech sampled and broken into frames (~25 msec)
 - Instead of transmitting digitized speech
 - 1. Build model of speech
 - 2. Transmit parameters of model
- 3. Synthesize approximation of speech
- Linear Predictive Coders (LPC) basic Vocoder model
- Models vocal tract as a filter
- Filter excitation

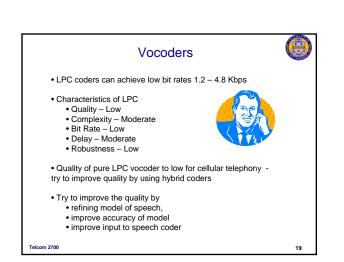

•

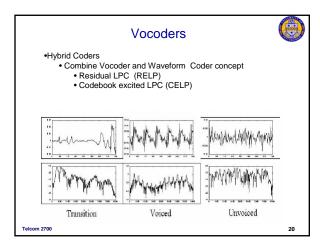
Telcom 2700

- periodic pulse (voiced speech) or noise (unvoiced speech)
- Transmitted parameters:
- gain, voiced/unvoiced decision, pitch (if voiced), LPC
 parameters

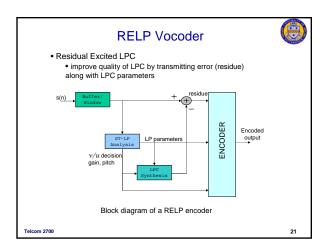

16

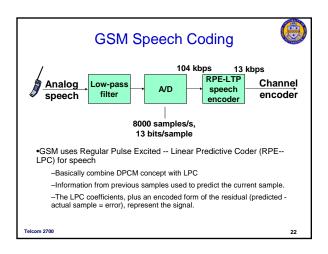
5

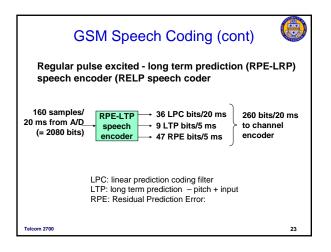

Vocoders

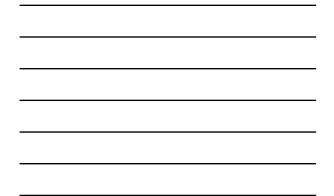

Noise generator Exc Figure 3.41 Speech

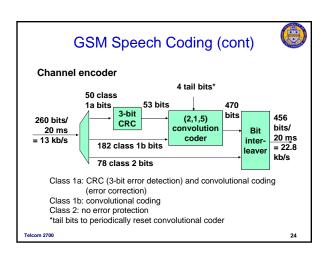
odel of linear predictive codis

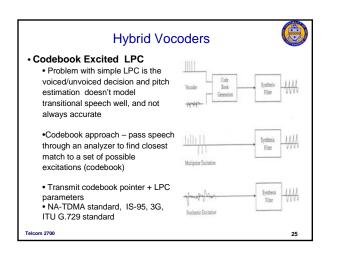

18

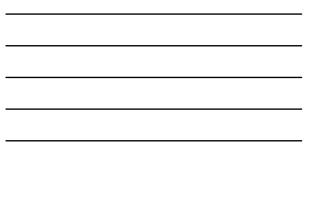


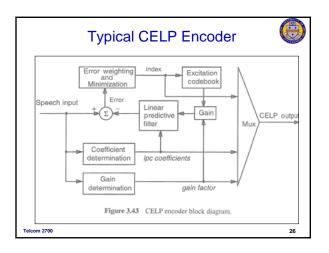


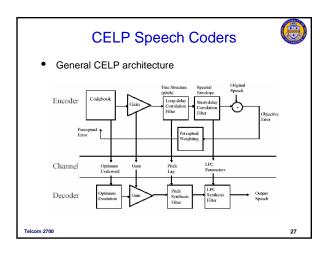


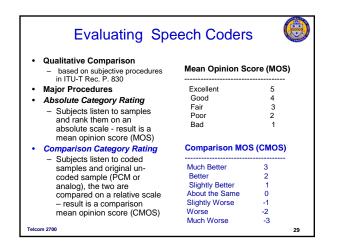




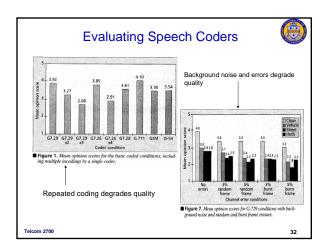











	Evaluating Speech Coders						
	MOS for clear channel environment – no errors Result vary a little with language and speaker gender						
:	Standard	Speech coder	Bit rate	MOS			
	PCM	Waveform	64 Kbps	4.3			
	CT2	ADPCM	32 Kbps	4.1			
	DECT	ADPCM	32 Kbps	4.1			
	GSM	Hybrid RELPC	13 kbps	3.54			
	QCELP	Hybrid CELP	14.4 Kbps	3.4 – 4.0			
	QCELP	Hybrid CELP	9.6 Kbps	3.4			
	LPC	Vocoder	2.4 Kbps	2.5			
	ITU G.729	Hybrid CELP	8.Kbps	3.9			
Qualcom Codebook Excited LP coder (cdmaone standard)							
Telcom 2700							

31

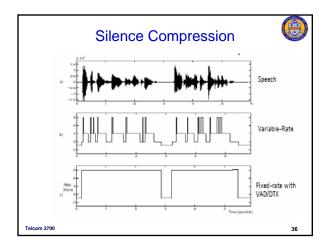
Evaluating Speech Coders

- Types of environments recommended for testing coder quality
 - Clean Channel no background noise
 - Vehicle : emulate car background noise
 - Street : emulate pedestrian environment
 - Hoth : emulate background noise in office environment (voice band interference)
- · Consider environments above for cases of
 - Perfect Channel no transmission errors
 - Random channel errors
 - Bursty channel errors
- May consider repeated encoding/decoding (e.g., mobile to mobile call)

Codec Selection

• For cellular need to consider Quality, Complexity, Delay, Compression Rate

35


ITU Coder	Bit Rate	Coding Delay	Decoding Delay	Complexity			
G.711	64 Kbps	0	0	Low			
G.729	8 Kbps	15 ms	7.5 ms	Medium			
G.723.a,b	6.4/5.3 Kbps	35.5 ms	18.75 ms	High			
elcom 2700 33							

Silence Compression

- Much of a conversation is Silence (~40%) • no need to transmit
 - Voice Activity Detector (VAD) Hardware to detect silence period quickly
- Variable Bit Rate Coder Approach 1.

 - reduce bit rate when silence detected increase compression Cdmaone and CDMA2000 codec use variable bit rate approach
- 2. Discontinuous transmission (DTX) Approach
 - Stop transmitting frames
 - Send minimal # of frames to keep connection up Comfort Noise Generator (CNG)
 - Synthesize background noise avoids: "Did you hang up?"
 - . Random noise or reproduce speaker's ambient background
 - GSM, UMTS and popular VoIP G.723.1 codec use VAD/DTX/CNG

Voice Coding

- Basic Voice Coding Approaches
 - Waveform
 - Vocoders
 - Hybrid Vocoders
- Evaluation of Vocoder Quality
- Codebook based vocoders use in new technology
- 3GPP and ITU recently standardized a
 - AMR wideband CELP
 - input 50-7000 HZ rather than 300-3400 Hz of current systems
 - more natural quality speech slightly higher bit rate

Telcom 2700

37