Wireless Communications and
Cellular Network
Fundamentals

Traffic Engineering

\qquad

- Given or $\mathrm{N}=\mathrm{T} / \mathrm{K}$ traffic channels per cell - what is grade of service (GoS) or how many users can \qquad be supported for a specific GoS
- Required grade of service?
- Usually 2% blocking probability during busy hour
\qquad
- Busy hour may be

1. busy hour at busiest cell
2. system busy hour
3. system average over all hours

- Basic analysis called Traffic Engineering or

Trunking

- same as circuit switched telephony
- use Erlang B and Erlang C Models \qquad
\qquad

Traffic Engineering

- Estimate traffic distribution?
- Traffic intensity is measured in Erlangs (mathematician AK Erlang)
- One Erlang = completely occupied channel,
- Example: a radio channel occupied for 30 min . per hour carries 0.5 Erlangs
- Traffic intensity per user A_{u}
$\mathrm{A}_{u}=$ average call request rate \times average holding time $=\lambda \times \mathrm{t}_{\mathrm{t}}$
- Total traffic intensity $=$ traffic intensity per user \times number of users $=A_{u} \times n_{u}$
- Example 100 subscribers in a cell 20 make $1 \mathrm{call} /$ hour for $6 \mathrm{~min}=>\quad 20 \times 1 \times 6 / 60=2 \mathrm{E}$ 20 make 3 calls/hour for $1 / 2 \mathrm{~min}=>20 \times 3 \times .5 / 60=.5 \mathrm{E}$ 60 make 1 call/hour for $1 \mathrm{~min}=>60 \times 1 \times 1 / 60=1 \mathrm{E}$

100 users produce 3.5 E load or 35 mE per user

- To estimate the performance of a trunked system use the Erlang B queueing model
- The system has a finite capacity of size c, customers arriving when all servers busy are dropped
- Blocked calls cleared model (BCC)
- Assumptions
- c identical servers process customers in parallel.
- Customers arrive according to a Poisson process
- Customer service times exponentially distributed

\qquad
\qquad
\qquad

M/M/C/C	(\%)
Probability of a customer being blocked $B(c, a)$ $B(c, a)=\frac{\frac{a^{c}}{c!}}{\sum_{n=0}^{c} \frac{a^{n}}{n!}}$ $B(c, a) \Leftarrow$ Erlang's B formula, Erlang's blocking formula Erlang B formula can be computed from the recursive formula $B(c, a)=\frac{a \cdot B(c-1, a)}{c+a \cdot B(c-1, a)}$ Usually determined from table or charts Example for 100 users with a traffic load of 3.5 E - how many channels are need in a cell to support 2% call blocking? From Erlang B table with 2% call blocking need 8 channels	

$$
L_{q}=\left(\frac{a}{c-a}\right) \cdot C(c, a)
$$

$$
L=L_{q}+a
$$

$$
W_{q}=\frac{L_{q}}{\lambda}=\frac{\frac{1}{\mu} C(c, a)}{c-a}
$$

$$
w=w_{q}+\frac{1}{\mu}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Erlang C model

\qquad
\qquad
\qquad
The p th percentile of the time spent waiting in the queue t_{p}

$$
t_{p}=\frac{-\ln \left(\frac{1-p}{C(c, a)}\right)}{c \mu(1-\rho)}
$$

Note: $p>1-\mathrm{C}(\mathrm{c}, \mathrm{a})$

Traffic Engineering Example 3

[^0]| Multiple Access and Mode | |
| :---: | :---: |
| | - Mode how two parties shares channel during conversation
 - Simplex - one way communication (e.g., broadcast AM)
 - Duplex - two way communication
 - TDD - time division duplex - users take turns on the channel
 - FDD - frequency division duplex - users get two channels - one for each direction of communication
 - For example one channel for uplink (mobile to base station) another channel for downlink (base station to mobile)
 - Multiple Access determines how users in a cell share the frequency spectrum assigned to the cell:
 - FDMA, TDMA, CDMA
 - Wireless systems often use a combination of schemes; GSM - FDD/FDMA/TDMA |
| Telcom 27 | 37 |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

FDMA
- FDMA is simplest and oldest method - Bandwidth F is divided into T non-overlapping frequency channels - Guard bands minimize interference between channels - Each station is assigned a different frequency Can be inefficient if more than T stations want to transmit or traffic is bursty (resulting in unused bandwidth and delays) - Receiver requires high quality filters for adjacent channel rejection - Used in First Generation Cellular (AMPS, NMT, TACS)
Telcom 2700

| -Users share same frequency band in non-
 overlapping time intervals, eg, by round robin
 - Receiver filters are just windows instead of
 bandpass filters (as in FDMA)
 - Guard time can be as small as the
 synchronization of the network permits
 - All users must be synchronized with base station to
 within a fraction of guard time
 - Guard time of 30-50 microsec common in TDMA
 - Used in GSM, NA-TDMA, (PDC) Pacific Digital
 Cellular |
| :--- | :--- |
| Telcom 2700 |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CDMA

- Code Division Multiple Access

Narrowband message signal is multiplied by very large bandwidth spreading signal using direct sequence spread spectrum

- All users can use same carrier frequency and may transmit simultaneously
Each user has own unique access spreading codeword which is approximately orthogonal to other users codewords
- Receiver performs time correlation operation to detect only specific codeword, other users codewords appear as noise due to decorrelation
Cocktail party example

\qquad
\qquad
\qquad

\qquad
\qquad

Simple CDMA continued

- Proceeding in this fashion for each "bit", the information transmitted by Alice can be recovered
- To recover the information transmitted by Bob, the received signal is correlated bit-by-bit with Bob's code
[1,1]
\qquad
- Such codes are "orthogonal"
- Multiply the codes element-wise
- $[1,1] \times[1,-1]=[1,-1]$
- Add the elements of the resulting product
- $1+(-1)=0=>$ the codes are orthogonal
- CDMA used in IS-95 standard and both 3G standards: UMTS, cdma2000
- CDMA has big capacity advantage as frequency reuse cluster size = 1
\qquad

[^0]: - A service provider receives unsuccessful call attempts to wireless subscribers at a rate of 5 call per minute in a given geographic service area. The unsuccessful calls are processed by voice mail and have an average mean holding time of 1 minute. When all voice mail servers are busy - customers are placed on hold until a server becomes free.
 - Determine the minimum number of servers to keep the percentage of customers placed on hold $<$ or equal to 1%
 The offered load is a = 5 call per minute $\times 1$ minute/call $=5$
 From the Erlang C tables 13 servers are needed.
 - Determine the .995\% of the delay in access the voice servers
 - With $\mathrm{p}=.995, \mathrm{C}(\mathrm{c}, \mathrm{a})=.01, \mathrm{c}=13$, and $\mu=1$

 $$
 \frac{-\ln \left(\frac{1-p}{C(c, a)}\right)}{c \mu(1-\rho)} \quad \text { yields } t_{p}=.0866 \text { minute }=5.2 \text { secs }
 $$

